


FINITE-STATE METHODS AND NATURAL LANGUAGE 

PROCESSING



Frontiers in Artificial Intelligence and 

Applications

FAIA covers all aspects of theoretical and applied artificial intelligence research in the form of 

monographs, doctoral dissertations, textbooks, handbooks and proceedings volumes. The FAIA 

series contains several sub-series, including “Information Modelling and Knowledge Bases” and 

“Knowledge-Based Intelligent Engineering Systems”. It also includes the biennial ECAI, the 

European Conference on Artificial Intelligence, proceedings volumes, and other ECCAI – the 

European Coordinating Committee on Artificial Intelligence – sponsored publications. An 

editorial panel of internationally well-known scholars is appointed to provide a high quality 

selection. 

Series Editors: 

J. Breuker, R. Dieng-Kuntz, N. Guarino, J.N. Kok, J. Liu, R. López de Mántaras, 

R. Mizoguchi, M. Musen, S.K. Pal and N. Zhong 

Volume 191 

Recently published in this series 

Vol. 190. Y. Kiyoki et al. (Eds.), Information Modelling and Knowledge Bases XX  

Vol. 189. E. Francesconi et al. (Eds.), Legal Knowledge and Information Systems – JURIX 

2008: The Twenty-First Annual Conference 

Vol. 188. J. Breuker et al. (Eds.), Law, Ontologies and the Semantic Web – Channelling the 

Legal Information Flood 

Vol. 187. H.-M. Haav and A. Kalja (Eds.), Databases and Information Systems V – Selected 

Papers from the Eighth International Baltic Conference, DB&IS 2008 

Vol. 186. G. Lambert-Torres et al. (Eds.), Advances in Technological Applications of Logical 

and Intelligent Systems – Selected Papers from the Sixth Congress on Logic Applied 

to Technology 

Vol. 185. A. Biere et al. (Eds.), Handbook of Satisfiability 

Vol. 184. T. Alsinet, J. Puyol-Gruart and C. Torras (Eds.), Artificial Intelligence Research and 

Development – Proceedings of the 11th International Conference of the Catalan 

Association for Artificial Intelligence 

Vol. 183. C. Eschenbach and M. Grüninger (Eds.), Formal Ontology in Information Systems – 

Proceedings of the Fifth International Conference (FOIS 2008) 

Vol. 182. H. Fujita and I. Zualkernan (Eds.), New Trends in Software Methodologies, Tools 

and Techniques – Proceedings of the seventh SoMeT_08 

Vol. 181. A. Zgrzywa, K. Choroś and A. Siemiński (Eds.), New Trends in Multimedia and 

Network Information Systems 

ISSN 0922-6389 



Finite-State Methods and Natural 

Language Processing 

Post-proceedings of the 7th International Workshop

FSMNLP 2008 

Edited by 

Jakub Piskorski 

Web Mining and Intelligence Group of IPSC, Joint Research  

Centre of the European Commission, Ispra, Italy 

Bruce Watson 

FASTAR Research Group, Department of Computer Science,

University of Pretoria, Pretoria, South Africa 

and

Anssi Yli-Jyrä 

HFST Research Group, Department of General Linguistics,  

University of Helsinki, Helsinki, Finland 

Amsterdam • Berlin • Tokyo • Washington, DC 



© 2009 The authors and IOS Press.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, 

or transmitted, in any form or by any means, without prior written permission from the publisher. 

ISBN 978-1-58603-975-2 

Library of Congress Control Number: 2008943548 

Publisher

IOS Press BV 

Nieuwe Hemweg 6B 

1013 BG Amsterdam 

Netherlands

fax: +31 20 687 0019 

e-mail: order@iospress.nl 

Distributor in the UK and Ireland Distributor in the USA and Canada 

Gazelle Books Services Ltd. IOS Press, Inc. 

White Cross Mills 4502 Rachael Manor Drive 

Hightown Fairfax, VA 22032 

Lancaster LA1 4XS USA

United Kingdom fax: +1 703 323 3668 

fax: +44 1524 63232 e-mail: iosbooks@iospress.com 

e-mail: sales@gazellebooks.co.uk 

LEGAL NOTICE 

The publisher is not responsible for the use which might be made of the following information. 

PRINTED IN THE NETHERLANDS 



Preface

These proceedings contain the final versions of the papers presented at the 7th Interna-
tional Workshop on Finite-State Methods and Natural Language Processing, FSMNLP
2008. The workshop was held in Ispra, Italy, on September 11–12, 2008. The event was
the seventh instance in the series of FSMNLP workshops, and the third that was arranged
as a stand-alone event. In 2008 FSMNLP was merged with the FASTAR workshop.

The aim of the FSMNLP workshops is to bring together members of the research
and industrial community working on finite-state based models in language technology,
computational linguistics, web mining, linguistics, and cognitive science on one hand,
and, on related theory and methods in fields such as computer science and mathematics,
on the other. Thus, the workshop series is a forum for researchers and practitioners work-
ing on applications as well as theoretical and implementation aspects. The special theme
of FSMNLP 2008 centered around high performance finite-state devices in large-scale
natural language text processing systems and applications.

In the context of FSMNLP 2008, we received in total 37 submisions, of which 13
were selected as regular papers, 6 as short papers and 1 as demo paper. The acceptance
rate for regular papers was 46,4%. Most of the papers were evaluated by at least four
Programme Committee members, with the help of external reviewers. Only 15% of the
papers were reviewed by three reviewers. In addition to the submitted papers, four lec-
tures were given by invited speakers. The invited speakers and the authors of the papers
represented (at least) Croatia, Finland, France, Gemany, Italy, Luxembourg, Netherlands,
Portugal, Puerto Rico, Sweden, U.K., and the USA.

We would like to thank all workshop participants for their contributions and lively
interaction during the two days. The presented papers covered a range of interesting NLP
applications, including machine learning and translation, logic, computational phonol-
ogy, morphology and semantics, data mining, information extraction and disambigua-
tion, as well as programming, optimization and compression of finite-state networks.
The applied methods included weighted algorithms, kernels, and tree automata. In ad-
dition, relevant aspects of software engineering, standardization, and European funding
programmes were discussed.

We are greatly indebted to the members of the Programme Committee and the
external referees for reviewing the papers and maintaining the high standard of the
FSMNLP workshops. The members of the Programme Committee of FSMNLP 2008
were Cyril Allauzen (Google Research, New York, USA), Francisco Casacuberta (In-
stituto Tecnologico De Informática, Valencia, Spain), Jean-Marc Champarnaud (Univer-
sité de Rouen, France), Maxime Crochemore (Department of Computer Science, King’s
College London, U.K.), Jan Daciuk (Gdańsk University of Technology, Poland), Karin
Haenelt (Fraunhofer Gesellschaft and University of Heidelberg, Germany), Thomas Han-
neforth (University of Potsdam, Germany), Colin de la Higuera (Jean Monnet University,
Saint-Etienne, France), André Kempe (Yahoo Search Technologies, Paris, France), Der-
rick Kourie (Dept. of Computer Science, University of Pretoria, South Africa), Andras
Kornai (Budapest Institute of Technology, Hungary and MetaCarta, Cambridge, USA),
Marcus Kracht (Univeristy of California, Los Angeles, USA), Hans-Ulrich Krieger

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

v



(DFKI GmbH, Saarbrücken, Germany), Eric Laporte (Université de Marne-la-Vallée,
France), Stoyan Mihov (Bulgarian Academy of Sciences, Sofia, Bulgaria), Herman Ney
(RWTH Aachen University, Germany), Kemal Oflazer (Sabanci University, Turkey),
Jakub Piskorski (Joint Research Center of the European Commission, Italy), Michael
Riley (Google Research, New York, USA), Strahil Ristov (Ruder Boskovic Institute,
Zagreb, Croatia), Wojciech Rytter (Warsaw University, Poland), Jacques Sakarovitch
(Ecole nationale supérieure des Télécommunications, Paris, France), Max Silberztein
(Université de Franche-Comté, France), Wojciech Skut (Google Research, Mountain
View, USA), Bruce Watson (Dept. of Computer Science, University of Pretoria, South
Africa) (PC co-chair), Shuly Wintner (University of Haifa, Israel), Atro Voutilainen
(Connexor Oy, Finland), Anssi Yli-Jyrä (University of Helsinki and CSC – IT Center
for Science, Espoo, Finland) (PC co-chair), Sheng Yu (University of Western Ontario,
Canada), and Lynette van Zijl (Stellenbosch University, South Africa). The external re-
viewers were Marco Almeida, Marie-Pierre Beal, Oliver Bender, Jan Bungeroth, Pas-
cal Caron, Loek Cleophas, Matthieu Constant, Stefan Hahn, Christopher Kermorvant,
Sylvain Lombardy, Patrick Marty, Evgeny Matusov, Takuya Nakamura, Ernest Ketcha
Ngassam, Jyrki Niemi, Sébastien Paumier, Maciej Pilichowski, Adam Przepiórkowski,
Magnus Steinby, Yael Sygal, David Vilar, Hsu-Chun Yen, Francois Yvon, Artur Zaroda,
and Djelloul Ziadi.

FSMNLP 2008 was organised by the Institute for the Protection and Security of the
Citizen of the Joint Research Centre (JRC) of the European Commission in Ispra, Italy,
in cooperation with the host of the next FSMNLP event, the FASTAR group of the Uni-
versity of Pretoria in South Africa. The Organizing Committee in 2008 had five JRC
representatives: Regina Corradini, Daniela Negri, Jakub Piskorski (OC chair), Hristo
Tanev, and Vanni Zavarella, and two members from the Department of Computer Sci-
ence, University of Pretoria, South Africa: Derrick Kourie and Bruce Watson. A comple-
mentary role in long-term planning and coordination was played by the Steering Com-
mittee: Lauri Karttunen (Palo Alto Research Center, USA and Stanford University, USA)
Kimmo Koskenniemi (University of Helsinki, Finland), Kemal Oflazer (Sabanci Uni-
versity, Turkey) and Anssi Yli-Jyrä (University of Helsinki and CSC – IT Centre for
Science, Espoo).

The current year’s event is pivotal to the series of FSMNLP workshops since it starts
the tradition of organizing the workshops on a yearly basis. Locations for successive
events, including FSMNLP 2008 in Ispra and FSMNLP 2009 in Pretoria were proposed
already in FSMNLP 2007 in Potsdam. The success of FSMNLP 2008 indicates that
there is a growing and wide interdisciplinary community with shared interest in finite-
state methods and natural language processing. Therefore, we are looking forward to the
FSMNLP 2009 that is to be held in Pretoria, South Africa next year!

In October 2008

Jakub Piskorski
Bruce Watson
Anssi Yli-Jyrä

vi



Contents

Preface v 

Jakub Piskorski, Bruce Watson and Anssi Yli-Jyrä 

Invited Lectures 

CLARIN and Free Open Source Finite-State Tools 3 

Kimmo Koskenniemi and Anssi Yli-Jyrä 

Learning with Weighted Transducers 14 

Corinna Cortes and Mehryar Mohri 

Finite-State Machines for Mining Patterns in Very Large Text Repositories 23 

Wojciech Skut 

Regular Papers 

The Kleene Language for Weighted Finite-State Programming 27 

Kenneth R. Beesley 

Large-Scale Statistical Machine Translation with Weighted Finite State  

Transducers 39 

Graeme Blackwood, Adrià de Gispert, Jamie Brunning and William Byrne 

Proper Noun Recognition and Classification Using Weighted Finite State  

Transducers 50 

Jörg Didakowski and Marko Drotschmann 

Finite-State Local Grammars for Disambiguating Conjunctions in Portuguese  

Proper Names 62 

Samuel Eleutério and Elisabete Ranchhod 

A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State  

Automata 72 

Thomas Hanneforth 

Regular Expressions and Predicate Logic in Finite-State Language Processing 82 

Mans Hulden 

Making Finite-State Methods Applicable to Languages Beyond Context-Freeness  

via Multi-Dimensional Trees 98 

Anna Kasprzik 

Transducer Minimization and Information Compression for NooJ Dictionaries 110 

Slim Mesfar and Max Silberztein 

Representing and Combining Calendar Information by Using Finite-State  

Transducers 122 

Jyrki Niemi and Kimmo Koskenniemi 

vii



Optimality Theory and Vector Semirings 134 

Wolfgang Seeker and Daniel Quernheim 

A Compression Method for Natural Language Automata 146 

Lamia Tounsi, Béatrice Bouchou and Denis Maurel 

Event Extraction for Italian Using a Cascade of Finite-State Grammars 158 

Vanni Zavarella, Hristo Tanev and Jakub Piskorski 

Short Papers 

Finite State Models for the Generation of Large Corpora of Natural Language  

Texts 175 

Domenico Cantone, Salvatore Cristofaro, Simone Faro and  

Emanuele Giaquinta 

CroMo – Morphological Analysis for Standard Croatian and Its Synchronic and  

Diachronic Dialects and Variants 183 

Damir Ćavar, Ivo-Pavao Jazbec and Tomislav Stojanov 

Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms 191 

Loek Cleophas 

An XML Format Proposal for the Description of Weighted Automata,  

Transducers and Regular Expressions 199 

Akim Demaille, Alexandre Duret-Lutz, Florian Lesaint, Sylvain Lombardy,  

Jacques Sakarovitch and Florent Terrones 

A Simple Formalism for Capturing Reduplication in Finite-State Morphology 207 

Mans Hulden and Shannon T. Bischoff 

Applying Finite State Morphology to Conversion Between Roman and  

Perso-Arabic Writing Systems 215 

Jalal Maleki, Maziar Yaesoubi and Lars Ahrenberg 

Morphisto – An Open Source Morphological Analyzer for German 224 

Andrea Zielinski and Christian Simon 

Subject Index 233 

Author Index 235 

viii



Invited Lectures 



This page intentionally left blank



CLARIN and Free Open Source

Finite-State Tools1

Kimmo KOSKENNIEMI 2, Anssi YLI-JYRÄ

Department of General Linguistics, University of Helsinki, Finland

Abstract. A new emerging European research infrastructure called CLARIN and a

related project called HFST are briefly described. HFST has built a programming

interface on top of some existing open source finite-state packages such as SFST

and OpenFST. In order to verify its utility, HFST has built open source tools on

top of this HFST interface. These tools create lexical transducers, compile mor-

phophonological two-level rules and combine them into a transducer lexicon. The

tools have been tested against independently created with full-scale lexicons and

rules for Northern Sámi and Lule Sámi languages which have more complicated

lexical and morphophonological structure than most other European languages.

Keywords. Research infrastructures, Finite state transducers, Morphological

analysis, Software architecture

Introduction

Finite-state methods provide means for uniform treatment of morphology and other

lower level phenomena in different languages. Even if the languages differ, the corre-

sponding finite-state transducers (FST) can be used by the very same programs. Fur-

thermore, different lexicon and rule formalisms can be compiled into technically similar

FSTs if the programs just obey the same format for representing the FSTs.

It would be desirable to broaden the use of finite-state methods because it would

make it easier to cope with the multitude of languages in Europe in a single framework.

Because there are altogether perhaps about 100 majority and significant minority lan-

guages, a solution to this problem is both urgent and valuable for CLARIN which is

committed to cope with all these languages.

Commercial proprietary finite-state tools for natural language processing (NLP)

have been created by Xerox [1] and AT&T [2] and they are widely used in the researcher

community. However, they are difficult to use in production systems partly because the

licensing conditions and restrictions of use, and partly because their source code is not

accessible for making one’s own modifications or improvements.

There have been quite a few freely available open source packages of the basic finite-

state tools, but only a handful of them are fully tested, have a reasonable documentation

1This paper is part of the activities of CLARIN infrastructure project

http://www.clarin.eu
2Corresponding Author: Department of General Linguistics, P.O. Box 9, FI-00014 University of Helsinki,

Finland, email: kimmo.koskenniemi@helsinki.fi.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-3

3



and tutorials and are maintained on a long term basis. Types of such packages can be

exemplified by FSA Utilities [3], MONA [4], and Tiburon [5]. Few of these packages

have such open source licenses that cover simultaneously the needs of the industry, the

academy and common research infrastructures. At the same time as basic FST packages

have been reimplemented repeatedly, there has been a clear lack of more specialized open

source tools such as lexicon and rule compilers that would produce transducers needed

in lexical analysis and generation.

A project called HFST (Helsinki Finite-State Technology) was started in late 2007

with the aim of producing a programming interface on top of some existing free open

source finite-state packages. It is expected to:

• provide a better documented programming interface which makes the building of

new finite-state NLP tools more efficient and robust,

• allow the developer of a compiler to create code which is independent of a partic-

ular finite-state package, possibly changing the underlying package if that makes

the tool run faster,

• allow comparisons of the efficiency of algorithms in different packages and stim-

ulate further improvement of the packages and their algorithms,

• allow free combining of various transducers as Unix pipelines (in the spirit of the

AT&T finite-state tools), and

• include weighted FSTs as a part of the basic finite-state tools.

1. CLARIN

CLARIN stands for Common Language Resources and Technologies Research Infras-
tructure and it is one of the 34 infrastructure projects listed in the ESFRI roadmap.3

CLARIN is one of the few infrastructure projects for humanities and it has now entered

its 3 year preparatory phase (EC Grant FP7-RI-2122230). CLARIN represents prac-

tically all EU member states and has currently some 120 member organizations. The

CLARIN preparatory phase project has 32 partner organizations. CLARIN is coordinated

by Steven Krauwer at the University of Utrecht.

At numerous centers and institutions around Europe, there are lots of language re-

sources and tools of several types including (but not limited to):

• computer readable text corpora possibly with grammatical or other annotation,

• speech corpora with possible transliteration and annotations,

• multimedia recordings of conversations, child language learning, etc.,

• computer readable dictionaries and other lexical materials,

• tools, i.e. programs for parsing and processing of the above data,

• metadata and taxonomies describing the above types of materials,

• standards and norms governing the formats of various materials and the input and

output of the tools.

3See http://cordis.europa.eu/esfri/roadmap.htm for more information on European

Strategic Forum for Research Infrastructures (ESFRI) and http://www.clarin.eu for more details of

CLARIN and its organization.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools4



In addition to those specialized centers, large amounts of relevant language materials

exist at digital libraries, stored by the publishers and printers, and in various archives for

television and radio broadcastings. As digitizing becomes more practical, we can expect

that almost all relevant language materials will be digitized sooner or later.

At first glance, even ordinary present day technology, i.e. the Internet, conventional

servers, and desktop computers could handle these volumes of language data and provide

the researchers an easy access to all these materials and tools. The resources and tools

are, however, fragmented in several senses:

• It is difficult to find out whether certain types of materials or tools exist and if

they exist, where they are.

• Even if the researcher would find the resources or tools needed, it is difficult to see

how to get permission for using them. On the other hand, it is currently not even

easy for the possessor of such materials to grant the necessary permissions. Most

materials are constrained by copyright, and many recordings contain sensitive

personal data restricted by ethical codes of conduct.

• Finally, even if one succeeds in getting the permissions, then he/she probably

cannot use the materials efficiently because the tools and the materials cannot

be combined as such. If parts of the material are in different formats, or their

annotations are incompatible, they cannot be combined without conversions and

additional programming. Furthermore, the use of the tools will be difficult or

impossible, if the input and output formats of the tools are not the same as what

the materials follow, or the licenses of different tools prevent combining them.

The goal of CLARIN is to overcome all these obstacles by creating (1) systems with

metadata to ease the locating of the resources, (2) a harmonized system for licensing,

online authorization and authentication for enabling easy application and granting of

permissions, and finally (3) standards for text and speech corpora, lexicons and tools

which guarantee compatibility and interoperability. Also web services will be used for

distributed and standardized communication among materials and tools, possibly located

at different sites.

A set of CLARIN centers or hubs will be established, possibly by upgrading some

of the existing service centers to meet the CLARIN norms of advanced networking and

identity federation techniques. These centers will be the backbone of the interoperability,

in particular for the metadata, authentication and authorization and web-based services.

Other centers will probably connect to these hubs, or possibly share their materials and

tools with these hubs.

In essence, the current preparatory phase is not funded to create materials and tools,

i.e. the contents of CLARIN. Instead, the preparatory phase sets up those standards,

licensing patterns and formats needed for the interoperability. Nationally funded projects

will make existing contents compatible with CLARIN services formats. They will also

provide new CLARIN compatible materials and tools in the building phase of CLARIN.

Ultimately CLARIN might contain all relevant European written and spoken materials,

ancient and current, all smoothly accessible by the research community. The estimated

cost of building CLARIN is more than 100 million euros. Already during the first year,

the national CLARIN related funding has exceeded the funding the EC has granted to

the preparatory phase of CLARIN (which was a total of 4.1 million euros for 3 years).

CLARIN is the infrastructure for the humanities. It will serve a wide spectrum of re-

search which benefits from the seamless access to the European heritage of written docu-

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools 5



ments and recorded speech as well as the study of specific languages. CLARIN will also

encourage the creation of language technological tools and applications for individual

languages according to the Basic Language Resource Kit (BLARK) [6] scheme.

The Work Package 5 of CLARIN concerns among other things the software tools to

be included in CLARIN. A particular challenge here for the finite-state research is the

fact that there are so many relevant European languages which ought to be handled on

an equal basis. In order to enable searching and indexing, CLARIN has to define and

provide a platform for processing all these languages. Language specific programs coded

separately for each language are not practical for such an environment where so many

languages are used in parallel. Robustness cannot be achieved, because if one of such

programs contains a bug, the whole service might crash.

2. Benefits of Finite-State Techniques

Finite-state automata (FSA) and finite-state transducers (FST), both unweighted and

weighted ones, are almost as simple devices there are which still can perform useful lan-

guage and speech processing tasks [7,8]. They are mathematically fairly well understood

and there are simple characteristics and measures which indicate their computational

complexity, most notably the number of states of the machines.

Morphological analysis of a wide range of languages can be implemented using

finite-state technologies in a straight-forward manner using pure finite-state transducers.

This purity means essentially that the machines only have plain states and plain transi-

tions and no ad hoc additions such as registers or special procedures or conditions embed-

ded in states or transitions. Purity makes it possible to combine operations algebraically

and optimize modules using formal theories. Pure transducers are bidirectional, i.e. in

addition to analyzing forms, they can also be directly used for generating them.

Using pure finite-state machines also makes the common handling of many or all of

the relevant languages attractive for the software engineer. Programs may easily process

lots of different languages if the only thing a programmer needs to know of a language,

is the name of the file containing a transducer for that language. One can, therefore

use nontrivial rule based full scale inflectional dictionaries for any language in order to

perform high precision and good recall searches, frequency calculations, lemmatization

of online concordances etc. The software only needs to select an appropriate transducer

in order to process each language correctly. The language specific transducers need to

be created, of course, by computational linguists, but once they are available, the system

can safely use any number of them.

The linguists and language technologist in the industry or within the academic re-

search community can thus produce language modules as transducers. For morpholog-

ical analysis, several tools and frameworks have been used. Well known tools include

Xerox XFST4 with cascades of replace rules and LEXC transducer lexicons, morpholog-

ical two-level analyzers such as the core of PC-KIMMO [9], morphological (unidirec-

tional) analyzers such as HunMorph [10] and Malaga [11]. The remarkable thing is that

these and many others can all be converted with reasonable effort into pure finite-state

transducers which are technically similar to any FST.

4See http://www.xrce.xerox.com/competencies/content-analysis/fssoft/home.
en.html for more information on the Xerox finite-state NLP tools.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools6



The programmer of CLARIN services could do several sophisticated things for the

100 languages without language specific code, just by using different transducers accord-

ing to the target language. One operation, the transduction can be used for a wide range

of different tasks including:

• lemmatizing, i.e. reducing the inflected word-forms into their base form for in-

dexing or information retrieval,

• disambiguation, of ambiguous word forms,

• generating search prefixes for retrieval of words in inflecting languages,

• generation of series of inflected forms to assist information retrieval,

• named entity recognition or other information extraction tasks,

• preprocessing of the input in order to standardize coding conventions or remove

unnecessary annotations.

What we need are formalisms and compilers which convert various linguistic de-

scriptions into finite-state transducers. A lexicon might need a different formalism than

a morphophonological rule, and a named entity recognizer a different formalism than

an information retrieval preprocessor. But descriptions of all these can be represented as

transducers in a natural way.

Full scale syntactic description of languages is usually done with more powerful

frameworks, even if finite-state devices are used in some parts of them. E.g. the local

grammar framework in NooJ [12] (and INTEX) by Max Silberztein describes the phrase

level information and larger syntactic constructions using finite-state networks. But these

are not pure FSTs as they use some additional devices such as registers and tests in

order to describe complicated linguistic phenomena. The maintainability and long-term

support of special formalisms and impure network characteristics has to be addressed

when we build common research infrastructures [13].

Impure finite-state systems can sometimes be converted mechanically into pure

finite-state systems. In other cases, the testing and setting and reading of registers can

perhaps be separated from the transduction and postponed to be performed after the ap-

plication of the transducers. With a general formalism for such setting and testing of

registers, some generality may still be achieved.

3. HFST Finite-State Initiative

We have started an initiative called HFST aiming at a more unified and productive im-

plementations of finite-state tools for language processing. We have three full time pro-

grammers during 2008 for HFST. The work is supervised by PhD Krister Lindén and the

authors of this paper participate the work as advisors while Erik Axelson programs the

HFST interface, Miikka Silfverberg programs the HFST-TWOLC rule compiler, Tommi

Pirinen, MA, programs the HFST-LEXC lexicon compiler. In addition, there are local

research activities that use HFST and contribute to it.

Several libraries and compilers for finite-state calculus have been built during the

past decades.5 Some commercial ones by Xerox [1] and AT&T [2] are well tested and

efficient, but they are difficult and probably expensive to get for purposes other than

5See https://kitwiki.csc.fi/twiki/bin/view/KitWiki/FsmReg for a listing of a few

dozens of finite-state packages.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools 7



academic research and testing. In order to be freely available, generally applicable and

extensible resource production methods e.g. for morphology, the libraries and compilers

need to meet additional requirements [14]. The commercial packages cannot be used

freely and, in particular, it would be difficult to modify their code or combine them with

some other software. The openness and extent of CLARIN might make it even more

difficult to acquire appropriate licenses.

There are also several open source implementations of the finite-state calculus, e.g.

SFST (by Helmut Schmid) [15], Vaucanson (Jacques Sakarovitch and the Vaucanson

group) [16] and OpenFST (by M. Riley, J. Schalkwyk, W. Skut, C. Allauzen and M.

Mohri) [17]. These are fairly well-matured and tested, and therefore most valuable for

the implementers of further finite-state tools for natural language processing.

There are, however, some practical problems in using any one of these calculus

packages as the basis for building another rule or lexicon compiler. The first problem is

to choose the right one. The choice is difficult because there are several apparently good

ones to choose of. Most packages fail to complement each other with interchangeable

and extensible modules [18]. Furthermore, most packages have only limited documen-

tation of their interface, data types and hidden assumptions and it will be difficult for

the programmer to utilize and extend the existing code. Once the choice is made, the

programmer becomes more or less permanently tied to that particular package, because

one’s code is shaped according to idiosyncrasies of that package: names and parameters

of the functions being the easiest to observe, whereas special concepts and underlying

conventions are more difficult even to notice. The undocumented features and assump-

tions will silently be used here and there in the code. Thus the choice of the package

becomes soon irreversible.

3.1. Goals of the HFST

In order to ease the problems mentioned above HFST defines and documents a generic

interface for the finite-state calculus so that the building of finite-state based tools would

be easier and safer. The interface was first implemented for a few most promising basic

finite-state calculus packages, initially for SFST and OpenFST. Thus, authors of finite-

state based tools need not commit themselves to the data structures or underlying as-

sumptions a particular underlying implementation of the finite-state calculus. The defi-

nition of a HFST programming interface serves some long and medium term goals:

• To enable the comparison of the underlying finite-state packages and to set up

common concepts and terms for expressing expectations and claims on the pack-

ages. Thus, different packages can coexist in one neutral framework and be used

through a single documented interface. We hope that this will also stimulate the

competition among alternative finite-state packages and research groups and will

lead improvement of the performance. In the best case, a critical mass of research

is achieved which speeds up the development of underlying algorithms.

• To make it easier to build compilers for rule and lexicon formalisms because of

the explicit documentation of functions and abstract data types in the interface.

We hope that various research groups would make use of the HFST when building

their own tools. We also hope that this will stimulate the research and develop-

ment of formalisms to express various NLP problems and open source compilers

for them.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools8



implementation

of HFST-SFST

reg. expression

formalism

implementation

of HFST-XFST

reg. expression

formalism

implementation

of

HFST-TWOLC

rule compiler

implementation

of HFST-LEXC

lexicon

compiler

...

HFST Interface

SFST finite-state

calculus

OpenFST finite-state

calculus

Vaucanson finite-state

calculus
...

Figure 1. The Overview of the HFST Framework

• To stimulate the creation of morphological descriptions and corresponding trans-

ducer lexicons and other FST modules for the remaining European languages for

which there are no adequate analyzers yet. We hope that this will be possible as

more HFST based tools become available. This may be an attractive option for

those who are already acquainted with similar tools and concepts.

It is worth noting that most of the ca. 100 languages mentioned above, still lack

adequate tools. They are languages having relatively few speakers, so there is no hope of

getting commercial implementations just by waiting. Instead, language technology for

those languages must be funded by public authorities, as was the case with the Sámi

languages. Free open source software suits such languages well. Progress towards this

goal serves the CLARIN purposes in a natural way.

3.2. Design of the HFST

The HFST framework consists of three main layers, see also figure 1:

1. At the bottom, there are the individual finite-state calculus packages as alterna-

tive modules: one for the SFST, another for OpenFST, and later on, one for Vau-

canson, etc. These modules provide the basic operations of finite-state automata

and transducers, such as union, concatenation, intersection and composition.

2. The HFST API interface which uses the first level modules to implement a more

abstract view to the FSMs and FSTs. The interface defines abstract data struc-

tures and concepts which are common to all underlying bottom level packages.

HFST relates this abstract representation to the bottom level data structures and

functions by some minimal program code. The API interface is carefully and ex-

plicitly defined so that the user need not know anything of the internal solutions

of the first level.

3. The application level of lexicon or rule compilers which are implemented with

the knowledge of the HFST API and using its documentation. This level includes

a reimplementation of (a) the SFST regular expression language interpreter, (b)

the HFST-LEXC lexicon compiler, and (c) the HFST-TWOLC rule compiler. It

will later on include interpreters e.g. for the Xerox XFST regular expression for-

malism and other (newer) formalisms.

The HFST API layer itself will be divided into sublayers. The lower ones define just

the implementation of a minimal finite-state calculus and the higher sublayers defining

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools 9



some useful derived concepts and operations for rule compilation, sub-expressions and

alphabet manipulation. The most essential sublayers will be defined first, while higher

sublayers may be inserted and changed until they mature. For example, the support for

particular kinds of weight types and the fancy interpretations of auxiliary symbols are

not among the concerns of the bottom layer of HFST API.

3.3. Implementation of the HFST

The HFST API is documented using the DOXYGEN system which generates HTML

documentation out of inline comments we have put in the actual C++ program of the API.

The documentation is available on the web site,6 where one can also find the user man-

uals, technical details, file formats and development ideas concerning HFST. HFST has

put considerable effort to use consistent names for functions, parameters and data types

and to establish the underlying concepts which are then used for the accurate definition

of the logical effects of individual functions.

The HFST API has been made into as free open source software as possible. The

API itself is neutral and allows switching between alternative FST calculus packages ac-

cording to the user’s application is created. However, the underlying FST calculus pack-

ages may pose some conditions, depending on their respective licenses: SFST is under

GNU GPL license and OpenFST is under Apache license. A tool under such licenses is

quite useful in the sense that it can be used for the creation of both open source FSTs

(which is likely in case of languages with small number of speakers) and proprietary

FSTs (which is a typical case for commercial language technology providers). GNU GPL

and Apache licenses specifically guarantee the use of the programs for any purpose, be it

academic or commercial. E.g. for the minority languages, it is essential that the resulting

transducers can be used in open source applications such as OpenOffice Writer, but also

in connection with commercial software such as Microsoft Office Word.

3.4. First Tools as the Proof of Feasibility

The HFST group has implemented the first applications and modules on the top of the

HFST API. The purpose of these is to be test cases and demonstrations of the maturity of

the interface layer. The most notable applications that have been realized so far reimple-

ment well-known and widely used formalisms for lexicons and rules. These formalisms

were ideal for purposes of testing of the API, and the recent results [19,20,21] simplified

the methods needed to implement them as modules on top of the HFST API. The created

modules include the following:

1. A lexicon compiler HFST-LEXC, which compiles lexicons into a FST in the

same manner as the Xerox LEXC. The HFST-LEXC can cope with full scale

dictionaries, multi-character symbols and regular expressions.

2. A two-level compiler HFST-TWOLC, which compiles two-level morphophono-

logical rules into a set of transducers. The compiler also handles multi-context

rules and detects possible rule conflicts and resolves them as appropriate.

6see http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/ for documenta-

tion, downloading and the online HFST API interface.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools10



3. For combining the compiled lexicon and the rules, a special program for Kart-

tunen’s intersecting composition operation [22] has been implemented. This pro-

gram constructs the composition of the lexicon with the set-theoretic intersection

of all TWOLC or HFST-TWOLC rules. The construction combines intersection

and composition into a single step, which avoids the need for intersecting the

rules by themselves and the risk to produce an intermediate result that is exces-

sively large.

These steps were completed in October 2008 and tested with two independently built

descriptions, one for Northern Sámi and the other for Lule Sámi. The lexicons and rules

for these were created by a Sámi language technology project.7 The aim of the Sámi

project is to build NLP tools such as spelling checkers for the major Sámi languages

spoken in Norway. The descriptions were made initially using Xerox LEXC and TWOLC

tools. The testing included sets of word-lists analyzed on the two systems, and a set of

test cases for rules, all provided by the Sámi team. Identical results were produced with

the Xerox and HFST tools.

A medium term aim of these initial implementations and tests is to encourage fur-

ther projects to convert their existing morphological and lexical descriptions into HFST-

LEXC and HFST-TWOLC formats which may be a relatively easy task in some cases.

Teams who are familiar with the LEXC and TWOLC concepts might use the HFST-

LEXC and HFST-TWOLC tools for creating new morphological analyzers as the tools

and their documentation is readily available for downloading. Previously, the LEXC and

TWOLC formalisms lacked fully compatible free implementations and defining speci-

fications. The new HFST-based tools are the first fully compatible and freely available

implementations of the well-known TWOLC and LEXC formalisms. They also comple-

ment the prior documentation of these formalisms in various tricky situations.

Previously, some uniformity to the design of new FST calculi packages has been

created by AT&T’s FSM Library, but there have not been attempts to combine so differ-

ent finite-state calculi as SFST, OpenFST etc. Therefore comparison of alternative FST

calculi has been a tricky and time-consuming task. The HFST-LEXC and HFST-TWOLC

formalisms were implemented purely with the HFST API interface and they can now

be compiled either with the SFST or the OpenFST engine for finite-state calculus (the

former being somewhat faster).

HFST-TWOLC implements rule compilation algorithms by applying Generalized
Restriction (GR) by Anssi Yli-Jyrä [19,20,21]. Only a part of the possibilities provided

by GR are actually in use in HFST-TWOLC, but this formalism is an important step

towards more general formalisms similar to Xerox’ XFST. In fact, the known compi-

lation formulas based on GR [21] are more general than the ones used in XFST. As a

consequence, all types of two-level rules, and parallel, directed and ranked rewriting and

mark-up rules could be handled in a uniform way using the GR formulas. Even the res-

olution of right-arrow rule conflicts in TWOLC can be accounted for with the coherent

intersection operation of the GR.

We hope that the first HFST-based tools stimulate the field by attracting more re-

searchers to experiment and create new tools. Building tools on the top of HFST API is

easier than using packages such as SFST and OpenFST directly.

7See http://giellatekno.uit.no/english.html for more information.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools 11



3.5. Summary and Future Perspectives of the HFST

In sum, the HFST API and the derived formalisms such as HFST-LEXC and HFST-

TWOLC contribute towards the following objectives

• improved documentation, maintainability, testing and harmonization of program-

ming interfaces

• modularization and improved code reuse

• comparison and cross-fertilization of FST calculi packages.

The obvious next step is to define and implement new rule formalisms (or program-

ming languages) by using the HFST API. This step involves several domains:

1. Lexicon formalims with both contextual selectors and non-concatenative deriva-

tion, as well as weights indicating the probabilities of inflectional forms, deriva-

tional constructions and word roots: Weights of forms might be very useful for

morphological disambiguation and guessing of the base form.

2. Morphophonological rules which assign probabilities of alternations: These

might be very useful for treating dialectal, historical or otherwise non-standard

forms of language. Another possible application could be in comparative linguis-

tics when searching for cognates.

3. Rewrite formalisms, including variant application modes for parallel and ranked

replace and mark-up rules [21]: New rewriting formalisms could be designed also

specifically for text normalization, information extraction, named entity recogni-

tion, various task in information retrieval etc.

4. New formalisms for surface oriented syntactic analysis, including tagging and

chunking, weighted grammars for bracket-encoded dependency and constituent

structures [21], and for computational semantics of e.g. calendar expressions

[23].

5. Along with richer knowledge-driven approaches, new formalisms would enable

domain-specific approaches to machine learning of structured data (e.g. through

string kernels, stochastic models and memory-based methods) and computer

aided production of annotation, lexicons and treebanks plus numberless dynamic

applications.

The list could be continued, and we invite other researchers to start projects of their

own and share the experiences and ideas and build a larger community around the goal

of developing finite-state methods for NLP.

References

[1] Kenneth Beesley and Lauri Karttunen. Finite state morphology. CSLI Studies in Computational Lin-

guistics. CSLI Publications, Stanford, CA, USA, 2003.

[2] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. The design principles of a weighted finite-

state transducer library. Theoretical Computer Science, 231(1):17–32, 2000.

[3] Gertjan van Noord and Dale Gerdemann. An extendible regular expression compiler for finite-state ap-

proaches in natural language proc essing. In O. Boldt and H. Jürgensen, editors, Automata Implementa-
tion. 4th International Workshop on Implementing Automata, WIA’99. Revised Papers., volume 2214 of

Lecture Notes in Computer Science, Potsdam, Germany, July 17-19 2001.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools12



[4] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, Department of

Computer Science, University of Aarhus, January 2001. Notes Series NS-01-1. Available from

http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

[5] Jonathan May and Kevin Knight. Tiburon: A weighted tree automata toolkit. In Oscar H. Ibarra and

Hsu-Chun Yen, editors, CIAA, volume 4094 of Lecture Notes in Computer Science, pages 102–113.

Springer, 2006.

[6] Steven Krauwer. The basic language resource kit (BLARK) as the first milestone for the language

resources roadmap. Invited talk at SPECOM 2003, Moscow. Available from http://www.elsnet.
org/dox/krauwer-specom2003.pdf, 2003.

[7] Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331–378, 1994.

[8] Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,

23(2):269–312, 1997.

[9] Evan L. Antworth. User’s Guide to PC-KIMMO Version 2. SIL International, 1995.

[10] Viktor Trón, Lászlo Németh, Peter Halácsy, András Kornai, György Gyepesi, and Dániel Varga. Hun-

morph: open source word analysis. In M. Jansche, editor, Proceedings of ACL 2005 Software Workshop,

pages 77–85, 2005.

[11] Björn Beutel. Malaga 7.12: User’s and programmer’s manual. Downloaded in October 2008 from

http://home.arcor.de/bjoern-beutel/malaga/, 1995.

[12] Max Silberztein. Nooj: a linguistic annotation system for corpus processing. In Proceedings of
HLT/EMNLP on Interactive Demonstrations, pages 10–11, Morristown, NJ, USA, 2005. Association

for Computational Linguistics.

[13] Anssi Yli-Jyrä, Kimmo Koskenniemi, and Krister Lindén. Common infrastructure for finite-state meth-

ods and linguistics descriptions. In International Workshop Towards a Research Infrastructure for
Language Resources. LREC 2006 Workshop. May 22, 2006, Magazzini del Cotone Conference Center,
Genoa, Italy, 2006.

[14] Anssi Yli-Jyrä. Toward a widely usable finite-state morphology workbench for less studied languages -

part I: Desiderata. Nordic Journal of African Studies, 14(4 Special Issue):479–491, 2005.

[15] Helmut Schmid. A programming language for finite state transducers. In Anssi Yli-Jyrä, Lauri Kart-

tunen, and Juhani Karhumäki, editors, FSMNLP, volume 4002 of Lecture Notes in Computer Science,

pages 308–309. Springer, 2005.

[16] Sylvain Lombardy, Yann Régis-Gianas, and Jacques Sakarovitch. Introducing vaucanson. Theoretical
Computer Science, 328:77–96, November 2004.

[17] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. Openfst: A

general and efficient weighted finite-state transducer library. In Jan Holub and Jan Zdárek, editors,

CIAA, volume 4783 of Lecture Notes in Computer Science, pages 11–23. Springer, 2007.

[18] Anssi Yli-Jyrä. Generality and openness in enabling methodologies for morphology and text processing.

Genoa Cocosda & Write workshop presentations. COCOSDA 2006. 28th May 2006. Genoa, Italy, 2006.

[19] Anssi Yli-Jyrä and Kimmo Koskenniemi. Compiling contextual restrictions on strings into finite-state

automata. In The Eindhoven FASTAR Days, Proceedings, 04/40, Computer Science Reports, Eindhoven,
The Netherlands, 2004.

[20] Anssi Yli-Jyrä and Kimmo Koskenniemi. Compiling generalized two-level rules and grammars. In

Advances in Natural Language Processing, Proceedings of the 5th International Conference on NLP,
FinTAL 2006, Turku, Finland, August 2006, volume 4139 of Lecture Notes in Artificial Intelligence,

pages 174–185. Springer, 2006.

[21] Anssi Yli-Jyrä. Applications of diamonded double negation. In Finite-State Methods and Natural
Language Processing, 6th International Workshop, FSMNL-2007, Potsdam, Germany, September 14–
16, Revised Papers. Universitätsverlag, Potsdam, 2008.

[22] Lauri Karttunen. Constructing lexical transducers. In Proceedings of the 15th conference on Computa-
tional linguistics, pages 406–411, Morristown, NJ, USA, 1994. Association for Computational Linguis-

tics.

[23] Jyrki Niemi and Lauri Carlson. Towards modeling the semantics of calendar expressions as extended

regular expressions. Proceedings of the 15th NODALIDA conference, Joensuu 2005, Ling@JoY, 1, 2006,

pages 133–138, 2005.

K. Koskenniemi and A. Yli-Jyrä / CLARIN and Free Open Source Finite-State Tools 13



Learning with Weighted Transducers

Corinna CORTES a and Mehryar MOHRI b,1

a Google Research, 76 Ninth Avenue, New York, NY 10011
b Courant Institute of Mathematical Sciences and Google Research,

251 Mercer Street, New York, NY 10012

Abstract. Weighted finite-state transducers have been used successfully in a variety
of natural language processing applications, including speech recognition, speech
synthesis, and machine translation. This paper shows how weighted transducers
can be combined with existing learning algorithms to form powerful techniques for
sequence learning problems.

Keywords. Learning, kernels, classification, regression, ranking, clustering, weighted
automata, weighted transducers, rational powers series.

Introduction

Weighted transducer algorithms have been successfully used in a variety of applications
in speech recognition [1,2,3], speech synthesis [4,5], optical character recognition [6],
machine translation, a variety of other natural language processing tasks including pars-
ing and language modeling, image processing [7], and computational biology [8,9]. This
paper outlines the use of weighted transducers in machine learning.

A key relevance of weighted transducers to machine learning is their use in kernel
methods applied to sequences. Weighted transducers provide a compact and simple rep-
resentation of sequence kernels. Furthermore, standard weighted transducer algorithms
such as composition and shortest-distance algorithms can be used to efficiently compute
kernels based on weighted transducers.

1. Overview of Kernel Methods

Kernel methods are widely used in machine learning. They have been successfully used
to deal with a variety of learning tasks including classification, regression, ranking, clus-
tering, and dimensionality reduction. This section gives a brief overview of these meth-
ods.

Complex learning tasks are often tackled using a large number of features. Each
point of the input space X is mapped to a high-dimensional feature space F via a non-
linear mapping Φ. This may be to seek a linear separation in a higher-dimensional space,

1Corresponding Author: Courant Institute of Mathematical Sciences and Google Research, 251 Mercer
Street, New York, NY 10012; E-mail: mohri@cs.nyu.edu. Mehryar Mohri’s work was partially funded by
the New York State Office of Science Technology and Academic Research (NYSTAR).

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-14

14



which was not achievable in the original space, or to exploit other regression, ranking,
clustering, or manifold properties easier to attain in that space. The dimension of the
feature space F can be very large. In document classification, the features may be for
example the set of all trigrams. Thus, even for a vocabulary of just 200,000 words, the
dimension of F is 2 × 1015.

The high dimensionality of F does not affect the generalization ability of large-
margin algorithms such as support vector machines (SVMs). Remarkably, these algo-
rithms benefit from theoretical guarantees for good generalization that depend only on
the number of training points and the separation margin, and not on the dimensionality
of the feature space. But the high dimensionality of F can directly impact the efficiency
and even the practicality of such learning algorithms, as well as their use in prediction.
This is because to determine their output hypothesis or to make predictions, these learn-
ing algorithms rely on the computation of a large number of dot products in the feature
space F .

A solution to this problem is the so-called kernel method. This consists of defining
a function K : X × X → R called a kernel, such that the value it associates to two
examples x and y in input space, K(x, y), coincides with the dot product of their images
Φ(x) and Φ(y) in feature space:

∀x, y ∈ X, K(x, y) = Φ(x) · Φ(y). (1)

K is often viewed as a similarity measure. A crucial advantage of K is efficiency: there is
no need anymore to define and explicitly compute Φ(x), Φ(y), and Φ(x) ·Φ(y). Another
benefit of K is flexibility: K can be arbitrarily chosen so long as the existence of Φ is
guaranteed, which is called Mercer’s condition. This condition is important to guarantee
the convergence of training for algorithms such as SVMs. Some standard Mercer kernels
over a vector space are the polynomial kernels of degree d ∈ N, Kd(x, y) = (x ·y +1)d,
and Gaussian kernels Kσ(x, y) = exp(−‖x − y‖2/σ2), σ ∈ R+.

A condition equivalent to Mercer’s condition is that the kernel K be positive definite
and symmetric (PDS), that is, in the discrete case, the matrix (K(xi, xj))1≤i,j≤m must
be symmetric and positive semi-definite for any choice of n points x1, . . . , xm in X .
Thus, the matrix must be symmetric and its eigenvalues non-negative.

The next section briefly describes a general family of kernels for sequences that is
based on weighted transducers, rational kernels.

2. Rational Kernels

We start with some preliminary definitions of automata and transducers.

2.1. Weighted Transducers and Automata

Finite-state transducers are finite automata in which each transition is augmented with
an output label in addition to the familiar input label [10,11]. Output labels are concate-
nated along a path to form an output sequence and similarly with input labels. Weighted
transducers are finite-state transducers in which each transition carries some weight in
addition to the input and output labels. The weights of the transducers considered in this
paper are real values and they are multiplied along the paths. The weight of a pair of in-

C. Cortes and M. Mohri / Learning with Weighted Transducers 15



put and output strings (x, y) is obtained by summing the weights of all the paths labeled
with (x, y). The following gives a formal definition of weighted transducers.

Definition 1. A weighted finite-state transducer T over (R,+, ·, 0, 1) is an 8-tuple T =
(Σ,Δ, Q, I, F,E, λ, ρ) where Σ is the finite input alphabet of the transducer, Δ is the
finite output alphabet, Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q
the set of final states, E ⊆ Q× (Σ∪{ε})× (Δ∪{ε})×R×Q a finite set of transitions,
λ : I → R the initial weight function, and ρ : F → R the final weight function mapping
F to R.

For a path π in a transducer, we denote by p[π] the origin state of that path and
by n[π] its destination state. We also denote by P (I, x, y, F ) the set of paths from the
initial states I to the final states F labeled with input string x and output string y. The
weight of a path π is obtained by multiplying the weights of its constituent transitions
and is denoted by w[π]. We shall say that a transducer T is regulated if the output weight
associated by T to any pair of strings (x, y) by:

T (x, y) =
∑

π∈P (I,x,y,F )

λ(p[π])w[π] ρ[n[π]] (2)

is in R ∪ {∞} and if this definition does not depend on the order of the terms in the
sum. By convention, T (x, y) = 0 when P (I, x, y, F ) = ∅. In the absence of ε-cycles,
the set of accepting paths P (I, x, y, F ) is finite for any (x, y) ∈ Σ∗ × Δ∗, and thus T is
regulated. The transducers considered in this paper are all regulated. Figure 1 shows an
example of a weighted transducer.

The standard rational operations, sum +, product or concatenation ·, and Kleene-
closure ∗ can be defined for regulated transducers [12,13]. For any pair of strings (x, y),
and any three weighted regulated transducers T, T1, T2,

(T1 + T2)(x, y) = T1(x, y) + T2(x, y) (3)

(T1 · T2)(x, y) =
∑

x1x2=x
y1y2=y

T1(x1, y1)T2(x2, y2) (4)

T ∗(x, y) =

+∞∑
n=0

Tn(x, y). (5)

For any weighted transducer T , we denote by T−1 its inverse, that is the transducer ob-
tained from T by swapping the input and output label of each transition. The composition
of two weighted transducers T1 and T2 with matching input and output alphabets Σ, is a
weighted transducer denoted by T1 ◦ T2 when the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z)T2(z, y) (6)

is well-defined and in R for all x, y ∈ Σ∗ [12,13]. There exists an efficient algorithm for
the composition of two weighted transducers [14,15]. The worst case complexity of that
algorithm is quadratic, that is O(|T1||T2|), where |Ti| denotes the size of transducer Ti.

C. Cortes and M. Mohri / Learning with Weighted Transducers16



0

1a:b/0.1
2

a:b/0.5

b:a/0.2

a:a/0.4
3/0.1

b:a/0.3

b:a/0.6

Figure 1. Example of a weighted transducer T . A bold circle indicates an initial state and a double-circle a
final state. A final state carries a weight indicated after the slash symbol representing the state number. The
initial weights are not indicated in all the examples in this paper since they are all equal to one. There are two
paths in the transducer with input label abb and ouput label baa, thus the weight associated by T to the pair
(abb, baa) is T (abb, baa) = .1 × .2 × .3 × .1 + .5 × .3 × .6 × .1.

2.2. Definition

As mentioned earlier, kernels can be viewed as similarity measures. It is often natural
to define a similarity measure between two sequences, e.g., two documents or two bio-
logical sequences, as a function of the number of subsequences of some type that they
share. These subsequences could be for example n-gram sequences, gappy n-grams, or
substrings of any length. A sequence kernel is then typically defined as the sum of the
product of the counts of these common subsequences.

Similarity measures of this kind can typically be computed using weighted finite-
state transducers. This leads naturally to the following definition of a family of kernels
overs strings.

Definition 2. A kernel function K : Σ∗×Σ∗ → R is rational when there exists a weighted
transducer U such that K(x, y) = U(x, y) for all sequences x and y.

Thus, for a rational kernel defined by U , U(x, y) is the similarity measure between
two strings x and y.2

2.3. Algorithm

U(x, y) can be computed using the composition of weighted transducers [14,15]. Let
Mx be a trivial weighted transducer representing x, that is a transducer such that
Mx(x, x) = 1 and Mx(y, z) = 0 for y �= x or z �= x. Mx can be constructed from
a linear finite automaton representing x by augmenting each transition with an output
label identical to the input label and by setting all transition and final weights to one.
Similarly, we can construct a weighted transducer representing My . Then, by definition
of composition, (Mx ◦ U ◦ My)(x, y) = Mx(x, x)U(x, y)My(y, y) = U(x, y) and
(Mx ◦ U ◦ My)(z1, z2) = 0 for (z1, z2) �= (x, y). Thus,

∑
u,v(Mx ◦ U ◦ My)(u, v) =

U(x, y), that is the sum of the weights of all paths of Mx ◦ U ◦ My is exactly U(x, y).
This gives a two-step algorithm to compute K(x, y) = U(x, y): (a) use composi-

tion to compute N = Mx ◦ U ◦ My; (b) use a shortest-distance algorithm or forward-
backward algorithm to compute the sum of the weights of all paths of N . We can assume
that U does not contain any (ε, ε) cycle, that is a cycle with input ε and output ε. Other-
wise, an equivalent weighted transducer without ε-transitions could be constructed from
U by application of an ε-removal algorithm [17]. When U contains no ε-transition, N is
necessarily acyclic since Mx and My are acyclic, and the computation of the sum of the

2This definition can be generalized to the case of an arbitrary semiring [16].

C. Cortes and M. Mohri / Learning with Weighted Transducers 17



Figure 2. General count-based transducer T , for Σ = {a, b}. The figure illustrates the use of T in the special
case where the automaton X accepts only the string x = ab, to count the number of occurrences of x in an
input sequence such as bbabaabba.

weights of its paths can be done in linear time. Thus, the overall complexity of the com-
putation of a rational kernel using that algorithm is O(|U ||Mx||My|), where |U | remains
constant in the calculation of a large number of kernels. In the particular case of many
kernels used in practice, the complexity of the composition algorithm is in fact linear,
which reduces the total cost of the application of the algorithm to O(|U |+ |Mx|+ |My|).
A new and more general n-way composition algorithm can also be used to dramatically
improve the computational speed in other cases [18,19].

2.4. Properties

To guarantee the convergence of algorithms such as support vector machines, the ratio-
nal kernel K used must be positive definite symmetric. The following theorem gives a
general method for constructing a PDS rational kernel from any weighted tranducer.

Theorem 1 ([16]). Let T be an arbitrary weighted transducer, then U = T ◦T−1 defines
a PDS rational kernel.

In this construction, the weighted transducer T can be viewed as the mapping from
the input space X = Σ∗ to a high-dimensional feature space, compactly represented
by the output of T . The construction of U from T is straightforward and very efficient
since it requires only applying composition. Our inspection of the sequence kernels used
in computational biology, natural language processing, or other sequence learning tasks,
e.g., mismatch kernels [20], gappy n-gram kernels [21], locality-improved kernels [22],
convolutions kernels for strings [23], tree kernels [24], n-gram kernels [16], and moment
kernels [25], seem to show that they are all rational kernels of the form T ◦ T−1 [16].
In fact, we have conjectured that all PDS rational kernels are of this form and proven a
number of results favoring that thesis [16].

Standard weighted transducer operations can be used to combine simpler PDS ratio-
nal kernels to form more complex ones, as shown by the following theorem.

Theorem 2 ([16]). PDS rational kernels are closed under sum, product, and closure
operations.

3. Applications

As already pointed out, to the best of our knowledge, the sequence kernels used in prac-
tice are all special instances of PDS rational kernels. Here we will briefly describe a

C. Cortes and M. Mohri / Learning with Weighted Transducers18



general and important family of rational kernels, count-based kernels, and show how a
sequence kernel recently introduced in computational biology can be represented by as
a weighted transducer.

3.1. Count-based kernels

The definition of many sequence kernels relies on the counts of some subsequences in
the sequences x and y to compare. These subsequences can be of different nature, they
may be for example arbitrary substrings, n-grams, gappy n-grams, or subsequences of
ancestor sequences, where ancestor sequences are defined as sequences with a fixed num-
ber of mutations relative to the given sequence [20]. We will refer to such kernels as
count-based kernels. These sequence kernels can typically be conveniently represented
by weighted transducers and form rational kernels. This is because there exists a gen-
eral weighted transducer that can be used to count the number of occurrences of the
sequences described by an arbitrary regular expression.

Indeed, let X be an arbitrary finite automaton and thus representing an arbitrary
regular expression. Then, the transducer defined by Figure 2 can be used to count all
occurrences of the sequences accepted by X in any input sequence x. This is illustrated
in the special case where X represents the single sequence x = ab and for an input
sequence bbabaabba.

The loop at the first state of T maps input symbols to ε until a match with a sequence
in X is found. Then the sequence matched is mapped to itself and the remaining suffix
of the input sequence mapped to ε at the final state of T . In the case of the sequence
bbabaabba and for the particular X considered, there are two possible occurrences of ab
and thus two possible matches. The figure shows the alternative outputs generated by T .
Since two paths are generated, each with weight one, the total weight associated by T to
the input sequence is the sum two, which is the expected and correct count.

By theorem 1, transducer T can be used to construct a PDS rational kernel U =
T ◦ T−1. This gives a very general method for the definition and construction of count-
based sequence kernels. In fact, many sequence kernels successfully used in practice
coincide precisely with this construction. This includes in particular n-gram kernels or
gappy n-gram kernels.

3.2. Locality-improved kernel

A family of kernels was introduced by Zien et al. for the problem of recognition of trans-
lation initiation sites in computational biology. This problem consists of determining
whether a start codon position in a DNA sequence is a translation initiation site (TIS).

The locality-improved kernel introduced by [22] is based on matching scores over
windows of length 2l + 1. It is defined as follows.

Definition 3 ([22]). Let l and d be positive integers and wj , j ∈ [−l,+l] the weights
associated to a match at position j in a window of size 2l+1. Then, the locality-improved
kernel for two sequences x and y of length m is defined by

K(x, y) =
m∑

p=1

winp(x, y), with winp(x, y) =

⎛
⎝

+l∑
j=−l

wjmatchp+j(x, y)

⎞
⎠

d

. (7)

C. Cortes and M. Mohri / Learning with Weighted Transducers 19



0

a:a/1
a:b/1

1
a:a/1

5

a:b/1

2

a:a/1

4
a:b/1

6
a:a/1

7

a:b/1

3/1

a:a/(w1 + w2 + w3)^d

a:b/(w1 + w2)^d

a:a/(w1 + w3)^d

a:b/(w1)^d

a:a/1
a:b/1

a:a/(w2 + w3)^d

a:b/(w2)^d

a:b/(w3)^d

Figure 3. Fraction of the locality-improved kernel represented as a U = T ◦ T−1 rational kernel for the
alphabet Σ = {a, b} and l = 1. For the full transducer, all symmetric paths (obtained by exchanging a and b)
should be added.

This kernel can be naturally combined with polynomial kernels to form more com-
plex kernels and can be straightforwardly represented by a weighted transducer. Figure 3
shows the corresponding weighted transducer U = T ◦ T−1 for Σ = {a, b} and l = 1
for the input sequence x = aaa. The corresponding weighted transducer T has the same
topology as U , but the output label of all the transitions from state 0 to 3 with a mismatch
between input and output should instead be a special mismatch symbol, say z, and the
transition weight should be the square root of the weight in U .

The loops of state 0 and 3 allow for arbitrary prefixes and suffixes around a window
in which the mismatches are evaluated. U contains a unique path from state 0 to state 3
for each possible sequence of matches and mismatches. The weight of each sequence is
marked at the last transition and equals the sum of the weights of the matching symbols
taken to the power of d, the other transitions weights being one.

With this locality-improved kernel, Zien et al. obtain a 25% performance improve-
ment over previous results on a task with about 13,500 sequences of which 3,300 are
positive TIS examples and the rest are considered negative examples.

4. Conclusion

Weighted transducers give a general framework for the representation and computation
of sequence kernels. All sequence kernels used in natural language processing, compu-
tational biology, and other sequence-related tasks are special instances of rational ker-
nels. This has an important algorithmic advantage since a single general and efficient
algorithm can be used to compute such kernels. State-of-the-art implementations of the
general algorithms for the use of weighted transducers are available as part of the open-
source software library OpenFst [26] and the algorithms for their use as sequence kernels
exist as part of the open-source project OpenKernel library [27], freeing up the machine
learning practitioner to focus on designing effective kernels for the problem at hand. The
OpenKernel library interfaces with the popular software package LIBSVM [28] for easy
experimentation with novel PDS rational kernels for classification and regression tasks.

C. Cortes and M. Mohri / Learning with Weighted Transducers20



Any weighted transducer T can be used to define a PDS sequence kernel by com-
posing it with its inverse, and existing PDS rational kernels can be combined via stan-
dard rational operations to defined more complex PDS rational kernels. This has an im-
portant consequence for the design and improvement of sequence kernels. Furthermore,
the graphical representation of rational kernels makes it convenient to augment or mod-
ify them. For all these reasons, we believe that rational kernels constitute just the right
algorithmic and representational framework for sequence kernels. Furthermore, sample
points can be used to learn rational kernels themselves [29]. This helps optimally se-
lecting the specific rational kernel, or the proper transition weights, for the learning task
considered.

References

[1] Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,
23:2, 1997.

[2] Mehryar Mohri. Statistical natural language processing. In M. Lothaire, editor, Applied Combinatorics
on Words. Cambridge University Press, 2005.

[3] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Speech recognition with weighted finite-
state transducers. In Larry Rabiner and Fred Juang, editors, Handbook on speech processing and speech
communication, Part E: Speech recognition. Springer-Verlag, Heidelberg, Germany, 2008.

[4] Richard Sproat. A finite-state architecture for tokenization and grapheme-to-phoneme conversion in
multilingual text analysis. In Proceedings of the ACL SIGDAT Workshop, Dublin, Ireland. ACL, 1995.

[5] Cyril Allauzen, Mehryar Mohri, and Michael Riley. Statistical modeling for unit selection in speech
synthesis. In 42nd Meeting of the Association for Computational Linguistics (ACL 2004), Proceedings
of the Conference, Barcelona, Spain, July 2004.

[6] Thomas M. Breuel. The OCRopus open source OCR system. In Proceedings of IS&T/SPIE 20th Annual
Symposium, 2008.

[7] Jürgen Albert and Jarkko Kari. Digital image compression. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of weighted automata, EATCS Monographs on Theoretical Computer
Science. Springer, 2009.

[8] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge UK, 1998.

[9] Cyril Allauzen, Mehryar Mohri, and Ameet Talwalkar. Sequence kernels for predicting protein essen-
tiality. In Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML 2008),
Helsinki, Finland, July 2008.

[10] Jean Berstel. Transductions and Context-Free Languages. Teubner Studienbücher: Stuttgart, 1979.
[11] Samuel Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.
[12] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag:

New York, 1978.
[13] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5 in EATCS Monographs

on Theoretical Computer Science. Springer-Verlag, Berlin-New York, 1986.
[14] Fernando Pereira and Michael Riley. Finite State Language Processing, chapter Speech Recognition by

Composition of Weighted Finite Automata. The MIT Press, 1997.
[15] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted automata in text and speech

processing. In Proceedings of the 12th biennial European Conference on Artificial Intelligence (ECAI-
96), Workshop on Extended finite state models of language, Budapest, Hungary, 1996. John Wiley and
Sons, Chichester.

[16] Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational Kernels: Theory and Algorithms. Journal
of Machine Learning Research, 5:1035–1062, 2004.

[17] Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algorithms for Weighted
Transducers. International Journal of Foundations of Computer Science, 13(1):129–143, 2002.

[18] Cyril Allauzen and Mehryar Mohri. N-way composition of weighted finite-state transducers. Technical
Report TR2007-902, Courant Institute of Mathematical Sciences, New York University, August 2007.

C. Cortes and M. Mohri / Learning with Weighted Transducers 21



[19] Cyril Allauzen and Mehryar Mohri. 3-way composition of weighted finite-state transducers. In Pro-
ceedings of the 13th International Conference on Implementation and Application of Automata (CIAA
2008), volume 5148 of Lecture Notes in Computer Science, pages 262–273, San Francisco, California,
July 2008. Springer-Verlag, Heidelberg, Germany.

[20] Christina Leslie, Eleazar Eskin, Jason Weston, and William S. Noble. Mismatch String Kernels for SVM
Protein Classification. In NIPS 2002. MIT Press, 2003.

[21] Huma Lodhi, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text classification using string
kernels. In NIPS 2000, pages 563–569. MIT Press, 2001.

[22] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and KR. Müller. Engineering support vector
machine kernels that recognize translation initiation sites. Bioinformatics, 9(16):799–807, 2000.

[23] David Haussler. Convolution Kernels on Discrete Structures. Technical Report UCSC-CRL-99-10,
University of California at Santa Cruz, 1999.

[24] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In NIPS 14, Cambridge,
MA, 2002. MIT Press.

[25] Corinna Cortes and Mehryar Mohri. Moment Kernels for Regular Distributions. Machine Learning,
60(1-3):117–134, September 2005.

[26] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. OpenFst: a gen-
eral and efficient weighted finite-state transducer library. In Proceedings of the 12th International Con-
ference on Implementation and Application of Automata (CIAA 2007), volume 4783 of Lecture Notes
in Computer Science, pages 11–23, Prague, Czech Republic, July 2007. Springer-Verlag, Heidelberg,
Germany.

[27] Cyril Allauzen and Mehryar Mohri. OpenKernel Library, 2007. http://www. openkernel.org.
[28] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001. Software

available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
[29] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning sequence kernels. In Proceedings

of IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2008), (invited
lecture), Cancún, Mexico, October 2008.

C. Cortes and M. Mohri / Learning with Weighted Transducers22



Finite-State Machines for Mining Patterns

in Very Large Text Repositories

Wojciech SKUT

Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA
wwskut@gmail.com

Abstract. The emergence of WWW search engines since the 1990s has changed the

scale of many natural language processing applications. Text mining, information

extraction and related tasks can now be applied to tens of billions of documents,

which sets new efficiency standards for NLP algorithms. Finite-state machines are

an obvious choice of a formal framework for such applications. However, the scale

of the problem (size of the searchable corpus, number of patterns to be matched)

often poses a problem even to well-established finite-state string matching tech-

niques. In my presentation, I will focus on the experience gained in the imple-

mentation a finite-state matching library optimized for searching large amounts of

complex patterns in a WWW-scale repository of documents. Both algorithmic and

implementation-related aspects of the task will be discussed. The library is based

on OpenFST.

Keywords. search engines, text mining, finite-state machines, string matching,

complex patterns, OpenFST

The slides of this talk are available and linked to the FSMNLP 2008 program at

http://langtech.jrc.it/FSMNLP2008/m/program.html.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-23

23



This page intentionally left blank



Regular Papers 



This page intentionally left blank



The Kleene Language
for Weighted Finite-State Programming

Kenneth R. BEESLEY 1

Text Analytics, Business Objects, an SAP Company

Abstract. Kleene is a high-level programming language for building, manipulating
and testing weighted finite-state acceptors and transducers. It allows users to define
networks using regular expressions and right-linear phrase-structure grammars, and
it provides variables, functions and familiar control structures. Pre-edited Kleene
scripts can be run from the command line, and a graphical user interface is pro-
vided for interactive programming and testing. The Kleene parser is implemented
in JavaCC/JJTree, and the interpreter calls functions in the OpenFst library via the
Java Native Interface (JNI). The design, implementation, development status and
future plans for Kleene are described.

Keywords. Kleene, finite state programming language, OpenFst library

Introduction

Kleene is a programming language in the tradition of the AT&T Lextools [1],2 the
SFST-PL language [2],3 and the Xerox/PARC finite-state toolkit [3];4 all of which pro-
vide higher-level programming formalisms built on top of low-level finite-state libraries.
Kleene allows programmers to specify weighted finite-state networks, including ac-
ceptors that encode regular languages and two-level transducers that encode regular
relations, using both regular expressions and right-linear phrase-structure grammars.
The language provides variables and functions, plus familiar control structures such as
if-elsif-else statements and while loops.

The Java-language Kleene parser, implemented with JavaCC and JJTree [4],5 is
Unicode-capable and portable. Successfully parsed statements are reduced to abstract
syntax trees (ASTs); and the Java-language interpreter, implemented using the visitor
design pattern,6 interprets the ASTs by calling C++ functions in the OpenFst finite-state
library [5]7 via the Java Native Interface (JNI) [6,7].

1Business Objects, P.O. Box 540475, North Salt Lake, Utah 84054, USA; E-mail: ken.beesley@sap.com
2http://www.research.att.com/~alb/lextools/
3http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
4http://www.fsmbook.com
5https://javacc.dev.java.net
6http://en.wikipedia.org/wiki/Visitor_pattern
7A beta version of the OpenFst library (http://www.openfst.org) was first released 11 July 2007.

The OpenFst library, and additional C++ code that wraps the OpenFst functions so that they can be called from
Java, must be recompiled for each platform.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-27

27



The Kleene GUI, implemented with the Java Swing library, allows interactive cre-
ation, testing and graphic display of networks. The main application window, a Swing
JDesktopPane, encloses a Unicode-capable terminal window, into which Kleene state-
ments can be typed, and a symbol-table window that displays an icon for each defined
network. Right-clicking on an icon triggers a pop-up menu with commands to delete,
determinize, draw, etc. the associated network.

Like the OpenFst library on which it currently depends, Kleene will be kept free,
open-source and Apache-licensed.8 The paper continues with a description of the design
criteria for the Kleene language, the syntax, the current state of development, and plans
for the future.

1. Design Criteria

The following requirements and desiderata have guided the design and implementation
of Kleene.

1. The Kleene language must be compelling, easy to learn and well documented.
The syntax and semantics should always aim for maximum familiarity and “least
astonishment”.

2. Programmers must be able to run pre-edited scripts and type statements interac-
tively into a GUI.

3. Kleene will allow networks to be defined using both regular expressions and
right-linear phrase-structure grammars.

4. The syntax should follow, as far as is possible and appropriate, the familiar syn-
tax of Perl-like regular expressions. Non-regular features of Perl regular expres-
sions, such as back-references, will be excluded; and operators will be added to
denote weights, relations, subtraction, complementation and intersection, which
are lacking in Perl-like regular expressions.

5. The abstraction mechanisms will include variables, built-in functions and user-
defined functions.

6. The syntax will include rule-like abbreviations similar in function to the Xe-
rox/PARC Replace Rules [8,9,10,11,12] that denote regular relations and compile
into finite-state transducers. Such rules can be used to encode phonological and
orthographical alternations in morphological analyzer/generators and phoneme-
to-phone alternations in speech applications.

7. Unicode will be supported from the beginning, not only in data strings, but also
in Kleene identifiers and operators.

8. The implementation should be maximally portable.
9. The implementation should be maximally modular, allowing the writing of inter-

preters based on various finite-state libraries that might become available.

8http://www.apache.org/licenses/

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming28



2. Syntax

2.1. Regular Expressions

In Kleene, regular expressions are the primary way to specify finite-state networks. The
basic Kleene assignment statements have a regular expression on the right-hand side, e.g.

$myvar = (dog|cat|horse) s? ;
$yourvar = [A-Za-z] [A-Za-z0-9]* ;
$hisvar = ([A-Za-z]-[aeiouAEIOU])+ ;
$hervar = (bird|cow|elephant|pig) & (pig|ant|bird) ;
$ourvar = (dog):(chien) ◦ (chien):(Hund) ;
$theirvar = [a-z]+ ( a <0.91629> | b <0.51083> ) ;

2.1.1. Primary Regular Expressions

Primary regular expressions are recognized directly by the tokenizer and so are effec-
tively of highest precedence.

a b c simple alphabetic symbols
. (dot) matches any character
\* \+ \? \. literalized special characters
'[Noun]' '+Noun' single symbols with multi-character names
$myvar $foo names of variables denoting a network

2.1.2. Inherently Delimited Regular Expressions

The following regular expressions are syntactically complex but inherently delimited,
making them also of highest precedence.

[aeiou] [A-Za-z0-9] character sets (unions)
[^aeiou] [^A-Za-z0-9] complemented character sets
"dog" "+" "AT&T" double-quoted concatenations of symbols
<0.5> <0.01> weights
$&myfunction(args . . . ) call to a function returning a network
$@mynetarray[n] reference to an element of an array of networks

Kleene employs a system of sigils9 to distinguish identifiers like $abc from simple
concatenations of symbols like abc. A prefixed $ marks a variable name with a finite-
state network value; a prefixed $& marks the name of a function that returns a network
value; and a prefixed $@ marks the name of an array of networks. Note the distinction
between a single-quoted multi-character symbol like '[Noun]', which denotes a sin-
gle symbol with a multi-character print name, versus a double-quoted string like "dog",
which denotes the concatenation of the individual literal symbols between the quotes.
Double quoting is not needed for normal alphabetic symbols – the regular expression
"dog" is equivalent to dog, d o g, etc. – but is useful for literalizing special charac-

9http://en.wikipedia/org/wiki/Sigil_(computer_programming)

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming 29



ters, e.g. "+", and for surrounding strings that include a special character, e.g. "AT&T"
and "myfilename.txt".

2.1.3. Regular-Expression Operators

The following regular-expression operators are available, listed from high to low prece-
dence.

( ) parenthetical grouping circumfix
: crossproduct infix

* + ? {2} {2,4} {2,} {,4} iteration postfix
~ language complement/negation prefix
(no overt operator) concatenation juxtaposition
- subtraction infix
& intersection infix
| union infix
(various rule operators)
◦ or _o_ composition infix

2.1.4. Precedence

The relative precedence of :, ~, and the various postfix iteration operators could still be
debated, though there are precedents to follow.10 Currently, ~.* is equivalent to ~(.*)
and so denotes the empty language; a:b* is equivalent to (a:b)*, and ~a:b is equiv-
alent to ~(a:b).11

By long tradition, concatenation has higher precedence than union and intersection,
so one can write

$foo = dog|cat|mouse ;

to mean

$foo = (dog)|(cat)|(mouse) ;

Following other computer languages, & has slightly higher precedence than |.12 The
precedence of subtraction (-) relative to intersection (&) is still debatable, but it should
probably be higher than union (|). Rules are typically composed together, so composi-
tion is given lower precedence than the various operators used to construct rules.13

Unicode is embraced from the beginning in the Java/Swing GUI, and users are en-
couraged, though not required, to edit their script files using a Unicode-capable text edi-

10The precedence shown is that currently favored by Helmut Schmid (SFST), and it’s the relative precedence
that Lauri Karttunen has chosen for the PARC xfst code to be released with the second printing of the book
Finite State Morphology (private communications).

11Transducers are not closed under complementation, so ˜T, where T is a transducer, causes a runtime
exception in Kleene, much like division by zero in arithmetic expressions.

12Similarly in most other languages, && has slightly higher precedence than ||.
13The alternation-rule syntax is not described in the present paper.

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming30



tor.14 Unicode characters can also be indicated in the syntax using the familiar \uHHHH
and \UHHHHHHHH escape sequences, where each H is a hex digit 0-9, a-f or A-F.

2.1.5. Whitespace in Regular Expressions

Whitespace is ignored in regular expressions unless it is literalized. A space, for example,
can be literalized in three ways:

1. Putting the literalizing backslash directly before the space, i.e. \
2. Putting the space inside [. . .] or [^. . .], e.g. [ abc] matches a, b, c or a

literal space, or
3. Putting the space inside double quotes, e.g. " " and "John Smith"

This is similar to the way that whitespace is ignored in arithmetic expressions, and it is
like Perl regular expressions marked with the /x suffix.15

2.1.6. Denoting the Empty String

The empty (zero-length) string can be represented in various equivalent ways, including
the Unicode U+03F5 GREEK LUNATE EPSILON SYMBOL ε,16 the Unicode escape se-
quence \u03F5, the ASCII sequence _e_, an empty double-quoted string "", a? - a,
etc.

2.2. Abstraction Mechanisms

2.2.1. Variables

As explained above, variables having a network value are distinguished syntactically
with a $ sigil, and they can appear on the left-hand side of an assignment statement.

$foo = regularExpression ;

The regular expression can continue over any number of lines, and the assignment state-
ment is terminated with a semicolon. Once variables like $foo and $bar have been
bound to network values, they can appear as operands in subsequent regular expressions.

$foo = dog | cat | elephant | zebra ;
$bar = bat | dog | octopus | frog ;
$result = ($foo | $bar) - (elephant | bat) ;

In this example, the resulting network would encode the language consisting of the
strings “dog”, “cat”, “zebra”, “octopus” and “frog”. A reference to an unbound
variable in a regular expression causes a runtime error.

14Kleene has a Java parser, and so it is able, using normal Java features, to read a file in almost any known
encoding and convert it to Unicode. Unless told otherwise, Java assumes that a file being read is in the default
encoding of the operating system and will convert it to Unicode accordingly.

15There are similar options in Python and Java to allow you to insert whitespace inside regular expressions
to make them more readable.

16This Unicode character can be typed into the Kleene GUI, using standard Java Input Methods, including the
CodePoint Input Method, and into any Kleene script prepared with a Unicode-capable text editor. The Unicode
Standard specifies that the U+03F5 GREEK LUNATE EPSILON SYMBOL is for use in mathematical formulas,
like regular expressions, and is not to be used in normal Greek text, where the U+03B5 GREEK SMALL LETTER

EPSILON is appropriate.

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming 31



Because finite-state networks can get very large, copying is avoided. The following
sequence of instructions results in $var2 being an alias for $var1, referencing the same
network.

$var1 = a*b+[A-Za-z0-9]{3} ;
$var2 = $var1 ;

2.2.2. Built-in Functions

Rather than inventing and proliferating new regular-expression operators, the Kleene
philosophy is to give access to some operations via built-in functions, including

$&invert(regexp)
$&reverse(regexp)
$&inputside(regexp) or $&upperside(regexp)
$&outputside(regexp) or $&lowerside(regexp)
$&copy(regexp)

A function call that returns a network value is a Kleene regular expression and can,
just like a variable having a network value, appear as an operand inside a larger regular
expression.

2.2.3. User-defined Function Syntax

Users can also define and call their own functions. As a practical example, consider
Priority Union, which is defined as follows:

Let Q and R be transducers. The priority union of Q and R, giving input-side priority to Q,
returns the union of Q and R with the added restriction that if both Q and R share an input
string i, then the output transducer contains only the paths from Q that have i on the input
side.

Priority union with output-side priority is also potentially useful. In Kleene these func-
tions can be defined as

$&priority_union_input = $&lambda($q, $r) {
return $q | (~$&inputside($q) _o_ $r) ;

}

$&priority_union_output = $&lambda($q, $r) {
return $q | ($r _o_ ~$&outputside($q)) ;

}

or using an alternative, and probably friendlier, syntax:

$&priority_union_input($q, $r) = {
return $q | (~$&inputside($q) _o_ $r) ;

}

$&priority_union_output($q, $r) = {
return $q | ($r _o_ ~$&outputside($q)) ;

}

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming32



Priority union can be useful in morphology to override regular but incorrect forms
with their correct irregular forms. For example, assume that a network bound to
$productive_english has been productively generated to contain input<=>output
string pairs like the following (where [Verb] and [Past] are multi-character sym-
bols):

walk[Verb][Past] <=> walked

kick[Verb][Past] <=> kicked

think[Verb][Past] <=> thinked

go[Verb][Past] <=> goed

Incorrect forms like *thinked and *goed can be overridden by defining a smaller network
encoding the correct mappings and priority-unioning it with $productive_english.

$corrections = (
(dig):(dug)

| (go):(went)
| (say):(said)
| (think):(thought)
) ('[Verb]' '[Past]'):"" ;

$english = $&priority_union_input($corrections,
$productive_english) ;

Once defined, functions can be called directly in regular expressions and used in
the definition of yet other functions. For example, the normal composition of Q and
R is Q _o_ R (also typable as Q ◦ R, using the Unicode RING OPERATOR, U+2218);
and if the input-side language of Q is I, then the input-side language of Q _o_ R
may be a proper subset of I. That is, one or more of the original input strings of
Q may not be accepted by the composition. The Lenient Composition of transduc-
ers Q and R accepts exactly the same input language as Q. The following definition
of $&lenient_composition_input() is appropriate for the examples in Kart-
tunen’s regular formalization of Optimality Theory [13], where the $base transducer
encodes a lexicon, and the $filter transducer encodes an optimality rule or filter being
composed “underneath” the lexicon.

$&lenient_composition_input($base, $filter) = {
return $&priority_union_input($base _o_ $filter, $base) ;

}

When, conversely, the rule or filter is being composed “on top of” the lexicon,
and the desire is to preserve the output language of the lexicon, then the following
$&lenient_composition_output is appropriate.

$&lenient_composition_output($filter, $base) = {
return $&priority_union_output($filter _o_ $base, $base) ;

}

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming 33



2.2.4. Function Call Semantics

Kleene maintains its environment as a directed graph of frames, where each frame con-
tains a symbol table and both a dynamic link and a static link to other frames (or to null
at the root of the environment). When a function is called, a new frame is allocated for
its execution; the dynamic link of the new frame points back to the frame from which the
function was called, and the static link points back to the frame where the function was
defined.

The formal parameters of the function are bound, in the new frame’s local symbol
table, to the passed-in argument values,17 and any variables introduced in the body of the
function are also stored in the local symbol table. References to free (non-local) variables
are resolved through the static link, thus implementing lexical scope. When the function
terminates, it pushes the return value on the interpreter stack; then the calling frame,
pointed to by the dynamic pointer, is once again made the current frame.

This fairly standard environment design supports functions that call other functions,
functions that call themselves recursively, functions that themselves contain local def-
initions of functions, etc. Kleene also supports higher-order functions that return func-
tions, as in the following example. Note that the $&& sigil marks a function that returns
a function that returns a network value.

$&&append_suffix($suff) = {
return $&lambda($a) {

return $a $suff ;
}

}
$&append_ing = $&&append_suffix(ing) ;
$&append_espVend = $&&append_suffix(as|is|os|us|u|i) ;

$net1 = $&append_ing(walk|talk) ;
$net2 = $&append_espVend(pens|dir) ;

The function $&append_ing just concatenates ing to its network argument, so
$net1 will be set to a network that encodes the language containing “walking” and
“talking”. The function $&append_espVend is designed to model the suffixation
of Esperanto verb endings to verb roots, and $net2 is set to a network that encodes
the language containing “pensas”, “pensis”, “pensos”, “pensus”, “pensu”,
“pensi”, “diras”, “diris”, etc.

2.3. Right-linear Phrase-structure Grammars

While regular expressions are formally capable of describing any regular language or
regular relation, some linguistic phenomena – especially productive morphological com-
pounding and derivation – can be awkward to model this way. Kleene therefore pro-
vides right-linear phrase-structure grammars that are similar in semantics, if not in syn-
tax, to the Xerox/PARC lexc language [3]. While general phrase-structure grammars
are context-free, requiring a push-down stack to parse, and so go beyond regular power,
a right-linear (or left-linear) grammar is regular and so can be compiled into a finite-state
network.

17Finite-state networks are passed by reference.

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming34



A Kleene phrase-structure GRAMMAR is defined as a set of PRODUCTIONS, each
assigned to a variable with a $> sigil. Productions may include right-linear references to
themselves or to other productions, which might not yet be defined. The productions are
parsed immediately18 but are not evaluated until the entire grammar is built into a net-
work via a call to the built-in function $&start($>StartProduction), which takes one
production variable as its argument and treats it as the starting production of the whole
grammar. The following example models a fragment of Esperanto noun morphotactics,
including noun-root compounding.

$>Root = ( kat | hund | elefant | dom ) ( $>Root | $>AugDim ) ;
$>AugDim = ( eg | et )? $>Noun ;
$>Noun = o $>Plur ;
$>Plur = j? $>Case ;
$>Case = n? ;

$net = $&start($>Root) ;

The syntax on the right-hand side of productions is identical to regular-expression syntax,
but allowing right-linear references to productions of the form $>Name.

2.4. Arithmetic Expressions

While Kleene is designed primarily for creating and manipulating finite-state networks,
it does support arithmetic expressions, variables that hold arithmetic values, functions
that return arithmetic values, etc. Wherever a simple integer or float can appear in
Kleene syntax, including numbered iterations like a{2} and b{2,4}, and weights
like <0.1>, an arbitrarily complex arithmetic expression can appear, e.g. a{2+3},
b{2, #maxlength - 1} and <#defaultweight + .01>.19

The arguments passed to a function could be any mix of regular expressions and
arithmetic expressions, and one of the biggest challenges during Kleene development
was the distinguishing and proper tokenization/parsing of the two separate expression
types. For example, both use the plus sign as an operator, but in arithmetic expressions it
is a binary infix operator of fairly low precedence, e.g. 2+3, while in regular expressions
it is a unary postfix operator of fairly high precedence, e.g. ab+c. Distinguishing the
two expression types by inventing new operators – either for regular expressions or for
arithmetic expressions – was judged to be completely unacceptable; and forcing users
to surround regular expressions, or arithmetic expressions, with some kind of explicit
delimiters, such as the Perl slashes /. . . /, was deemed inelegant and undesirable.

The solution adopted was to define a systematic set of sigils starting with $ for
network-value variables and functions, and # for arithmetic-value variables and func-
tions. Parser lookahead distinguishes #a+#b as an arithmetic expression, involving ad-
dition, from $a+$b, which is a regular expression indicating the concatenation of a
Kleene-plussed network $a with network $b. Once the sigil system is mastered, users
can, in almost all cases, simply type familiar regular and arithmetic expressions in ap-
propriate places.

18The parsed productions are stored as ASTs in the symbol table.
19Internally, Kleene stores arithmetic values as either a Long or a Double object.

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming 35



The remaining problematic cases are expressions like 2 and 2+3, which start with
digits. Are they arithmetic expressions, having an integer or float value, or regular ex-
pressions, having a network value? The Kleene solution is to treat bare digits by default
as arithmetic expressions. To be interpreted as literal characters, and therefore regular
expressions, digits must be literalized in the usual Kleene ways:

• Using the prefix backslash literalizer: \2
• Surrounding them with double quotes: "2", or
• Putting them in square-bracketed expressions: [2] [^2] [0-9] [^0-9]

2.5. Other Statements

In addition to network-, arithmetic- and function-assignment statements, Kleene provides
if-elsif-then statements, while and until loops, iteration over array elements,
and a variety of “housekeeping” statements for input-output, executing pre-edited scripts,
retrieving information about networks, drawing networks, etc. For example, numbered
iteration could be implemented by defining the following functions (though Kleene al-
ready provides the convenient {n} postfix operator):

$&iterate_by_recursion($net, #count) = {
if (#count > 0) {

return $net $&iterate_by_recursion($net, #count - 1) ;
} else {

return "" ;
}

}

$&iterate_by_loop($net, #count) = {
$result = "" ;
while (#count > 0) {

$result = $result $net ;
#count = #count - 1 ;

}
return $result ;

}

3. Development Status

3.1. Current Status

At the time of writing, the following Kleene features are working:

• Interpretation of regular expressions and setting of variables
• Interpretation of arithmetic expressions and setting of variables
• Interpretation of right-linear phrase-structure grammars
• Definition and calling of functions that return network and arithmetic values
• Definition and calling of meta-functions that return functions
• Maintenance of identifier-value mappings in an environment of frames

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming36



• Automatic assignment of internal arc-label integers to syntactic symbols20

• Implementation of a Unicode-friendly XML language for textual representation of
networks21

Unicode is supported in Kleene to the extent that it is supported in Java and the Java
Swing library – which is unusually well – and users can install and use their own Unicode
fonts and Java Input Methods22 in their Java platforms. Some issues, including Unicode
normalization and the expansion of the Kleene tokenizer to allow any Unicode letter
character to appear in identifiers, still require some thought and work.

The Java wrapping of OpenFst functions and the GUI are well advanced, but not
complete. Kleene currently runs only on Apple OS X, but because Java is unusually
portable, and because OpenFst is also known to compile on Linux, a Linux port should
not be difficult.

All of the examples shown in this paper are working.

3.2. To Be Done

Major planned features remaining to be implemented include:

• Interpretation of alternation rules
• Implementation of arrays, iteration over array elements, functions that return ar-

rays, etc.
• Generalization of the interpreter, which currently handles only the default Tropical

Semiring, to handle multiple semirings
• Writing practical runtime code and APIs to allow Kleene-built FSTs to be inte-

grated easily into applications

Eventually, it is hoped to support graphical drag-and-drop programming of networks
within the GUI.

4. Conclusion

The Kleene language provides a high-level programming language for creating, manipu-
lating and testing weighted finite-state transducers. The current alpha implementation is
still under active development, and anything could change. A beta release is planned for
late 2008.

Like the OpenFst library on which it depends, Kleene will remain free, open-source
and Apache-licensed to encourage collaboration and wide usage.

20OpenFst automata store all arc labels as 32-bit integers. In Kleene, single symbols are automatically stored
using their official Unicode code point values, including supplementary characters; and multi-character sym-
bols are assigned an arbitrary code point value from a Unicode Private Use Area, starting with Plane 15. If
necessary, for automata using unusually large alphabets of multi-character symbols, code values beyond the
Unicode 21-bit range will be used, providing over 4 billion symbol distinctions.

21OpenFst still uses an ASCII-limited textual format inherited from AT&T (http://www.research.
att.com/~fsmtools/fsm/man4/fsm.5.html).

22http://javadesktop.org/articles/InputMethod/index.html

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming 37



5. Acknowledgements

I am indebted to a number of people: first, to the whole OpenFst team, and especially
Cyril Allauzen, for making the OpenFst library available and for providing patient expla-
nations and advice; second, to my bosses Michael Wiesner and George Chitouras at Busi-
ness Objects, an SAP Company, who appreciated the value of contributing to an open-
source project; and third, to all those who have gone out of their way to provide informa-
tion, help or encouragement, including Lauri Karttunen, André Kempe, Mike Wilkens,
Helmut Schmid, Mike Maxwell, Natasha Lloyd, Anssi Yli-Jyrä and Kemal Oflazer. I
have not always followed their advice, and any infelicities in the Kleene language and
GUI are my responsibility.

References

[1] Brian Roark and Richard Sproat. Computational Approaches to Morphology and Syntax. Oxford Sur-
veys in Syntax & Morphology. Oxford University Press, Oxford, 2007.

[2] Helmut Schmid. A programming language for finite state transducers. In FSMNLP’05, Helsinki, 2005.
[3] Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology. CSLI Publications, Palo Alto, CA,

2003.
[4] Tom Copeland. Generating Parsers with JavaCC. Centennial Books, Alexandria, VA, 2007.
[5] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. OpenFst: A

general and efficient weighted finite-state transducer library. In Proceedings of the Ninth International
Conference on Implementation and Application of Automata (CIAA 2007), volume 4783 of Lecture
Notes in Computer Science, pages 11–23. Springer, 2007.

[6] Rob Gordon. Essential JNI: Java Native Interface. Prentice Hall PTR, Upper Saddle River, NJ, 1998.
[7] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification. Addison-Wesley,

Reading, MA, 1999.
[8] Lauri Karttunen. The replace operator. In ACL’95, Cambridge, MA, 1995. cmp-lg/9504032.
[9] Lauri Karttunen and André Kempe. The parallel replacement operation in finite-state calculus.

Technical Report MLTT-021, Xerox Research Centre Europe, Grenoble, France, December 1995.
http://www.xrce.xerox.com/publis/mltt/mltttech.html.

[10] Lauri Karttunen. Directed replacement. In ACL’96, Santa Cruz, CA, 1996. cmp-lg/9606029.
[11] André Kempe and Lauri Karttunen. Parallel replacement in finite-state calculus. In COLING’96, Copen-

hagen, August 5–9 1996. cmp-lg/9607007.
[12] Mehryar Mohri and Richard Sproat. An efficient compiler for weighted rewrite rules. In ACL’96, Santa

Cruz, CA, 1996.
[13] Lauri Karttunen. The proper treatment of optimality in computational phonology. In FSMNLP’98.

International Workshop on Finite-State Methods in Natural Language Processing, Bilkent University,
Ankara, Turkey, June 29 1998. cmp-lg/9804002.

K.R. Beesley / The Kleene Language for Weighted Finite-State Programming38



Large-Scale
Statistical Machine Translation

with Weighted Finite State Transducers

Graeme BLACKWOOD, Adrià DE GISPERT, Jamie BRUNNING and
William BYRNE

Machine Intelligence Laboratory
Department of Engineering, Cambridge University

Trumpington Street, Cambridge, CB2 1PZ, U.K.
{gwb24,ad465,jjjb2,wjb31}@cam.ac.uk

Abstract. The Cambridge University Engineering Department phrase-based statis-
tical machine translation system follows a generative model of translation and is im-
plemented by the composition of component models of translation and movement
realised as Weighted Finite State Transducers. Our flexible architecture requires no
special purpose decoder and readily handles the large-scale natural language pro-
cessing demands of state-of-the-art machine translation systems. In this paper we
describe the CUED system’s participation in the NIST 2008 Arabic-English ma-
chine translation evaluation task.

Keywords. Statistical machine translation, weighted finite state transducers, large-
scale natural language processing, finite state grammars

Introduction

In the source-channel model of statistical machine translation [1], target sentences are
viewed as source sentences that have passed through a noisy communication channel
corrupting their surface form. The task of translation is to recover the source sentence that
generated the observed target. The search for the best source sentence S = s1, s2, . . . , sI

for a given target T = t1, t2, . . . , tJ is typically inverted and decomposed as

Ŝ = argmax
S

P (S|T) = argmax
S

P (T|S)P (S) , (1)

where P (T|S) is the translation probability, P (S) is the language model probability, and
the argmax denotes the search for the best translation S.

The Cambridge University Engineering Department statistical machine translation
system follows the Transducer Translation Model (TTM) [2,3], a phrase-based genera-
tive model of translation that applies a series of transformations specified by conditional
probability distributions and encoded as Weighted Finite State Transducers [4]. The main
advantages are modularity, which facilitates the development and evaluation of individ-
ual components, and implementation simplicity, which allows us to focus on modelling

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-39

39



issues rather than complex decoding and search algorithms. The TTM scales naturally
to very large data sets and no special-purpose decoder is required; by this we mean that
standard WFST operations such as weighted composition can be used to obtain the 1-best
translation or a lattice of alternative hypotheses. Finally, our system architecture readily
supports speech translation, in which input ASR lattices can be translated in the same
way as text [5].

1. The Transducer Translation Model

Under the Transducer Translation Model, the generation of target language sentence
T = tJ1 starts with the generation of a source language sentence S = sI

1 by the
source language model PG(sI

1). Next, the source language sentence is segmented
into phrases according to the unweighted uniform source phrasal segmentation model
PW (uK

1 ,K|sI
1). This source phrase sequence generates a reordered target language

phrase sequence according to the phrase translation and reordering model PR(xK
1 |uK

1 ).
Next, target language phrases are inserted into this sequence according to the insertion
model PΦ(vR

1 |xK
1 , uK

1 ). Finally, the sequence of reordered and inserted target language
phrases are transformed to word sequences tJ1 under the unweighted target phrasal seg-
mentation model PΩ(tJ1 |v

R
1 ). These component distributions together form a joint dis-

tribution over the source and target language sentences and their possible intermediate
phrase sequences as P (tJ1 , vR

1 , xK
1 , uK

1 , sI
1).

In translation under the generative model, we start with the target sentence T in
the foreign language and then search for the best source sentence Ŝ. Encoding each
distribution as a WFST leads to a model of translation as the series of compositions

L = G ◦ W ◦ R ◦ Φ ◦ Ω ◦ T , (2)

in which T is an acceptor for the target language word sequence and L is the word lattice
of source language translations obtained during decoding. There is a direct correspon-
dence between each distribution and the transducer in which it is realized (denoted by
the distribution subscripts). The most likely translation Ŝ is then the path in L with least
cost (i.e. the minimum negative log-likelihood in the tropical semiring).

1.1. Phrase Reordering Transducers

The TTM reordering model is implemented by means of a phrase jump transducer, typ-
ically combined through composition with the one-state phrase translation WFST. In
qualitative terms, this reordering model describes a jump sequence associated with each
admissible permutation of the phrases [2]. In practice, it takes input source phrase se-
quences and outputs their translations in both monotonic and non-monotonic order.

In the simplest reordering model, known as MJ1-Flat, two adjacent phrases are al-
lowed to swap positions with a fixed jump probability β1 that is determined empirically.
Figure 1 shows the WFST reordering transducer for the two phrases x1 and x2. This
simple model is effective since it significantly broadens the search space and, as source
phrases can be arbitrarily long, individual words may move quite far in translation. How-
ever, it makes no distinction as to which phrases are more likely to be reordered in trans-
lation. This problem can be addressed by defining a separate jump probability β1(vk, uk)

G. Blackwood et al. / Large-Scale Statistical Machine Translation40



0 1

x1 : x1/1 − β1

x2 : x2/1 − β1

x1 : x2/β1

x2 : x1/1

Figure 1. The MJ1-Flat reordering transducer for a sequence of two phrases “x1 x2” with a fixed jump
probability of β1.

for each phrase pair. The probabilities can be estimated from word alignments by ex-
amining adjacent phrase pairs and their orientation with respect to (vk, uk) and comput-
ing relative frequency estimates, in a similar fashion to Tillmann [6]. The actual WFST
implementation is analogous to MJ1-Flat, but a new state is required for each phrase
bigram, since the jump probability differs in each case.

1.2. Phrase Segmentation Transducers

In first-pass TTM translation all phrasal segmentations of a sentence are considered
equally likely. The segmentation transducers are therefore unweighted and simply pro-
vide a mapping between the words and phrases of source and target language sentences.
On the source side, the source language segmentation transducer W maps a source lan-
guage word string to a lattice of all possible phrasal segmentations using the phrases of
the phrase pair inventory. For example, if an acceptor for the source string “exhibition
of students returning from abroad” is composed with the source language segmentation
transducer, the result is the lattice of phrases shown in Figure 2. A similar segmentation
process is applied to the target language sentence using the target language segmenta-
tion transducer Ω. The resulting lattice of phrases is the input to the decoding process
in the TTM. Our flexible model architecture is such that additional inputs can be easily
incorporated. For example, it may be useful to include alternative Arabic morphological
analyses, variant Chinese character segmentations, or a lattice of recognition hypotheses
output by an ASR system.

1.3. Language Model Acceptor

The language model PG(sI
1) is encoded as weighted finite state acceptor G. The topol-

ogy of this acceptor is such that states encode histories and arcs specify the n-gram con-

0

1exhibition

2exhibition_of

of 3
of_students

students

4
returning

5returning_from 6

returning_from_abroad

from
from_abroad

abroad

Figure 2. Phrase lattice encoding all possible segmentations of the source language string “exhibition of stu-
dents returning from abroad” using only the phrases of the phrase pair inventory. The phrase label on each arc
shows the constituent words of the phrase.

G. Blackwood et al. / Large-Scale Statistical Machine Translation 41



ditional probability of the labelled word given the history, or the context-specific backoff
weight when there is no matching word. In first-pass translation we use the offline ap-
proximation in which backoff is implemented via epsilon transitions [7]. Prior to decod-
ing, a filtering procedure is used to generate individual sentence-specific WFST language
model acceptors for each sentence to be translated. This significantly improves decoding
efficiency and is possible because the words which might be postulated in translation
are determined by the target language input sentence and the contents of the phrase pair
inventory.

1.4. Finite State Grammars for Source Language Subsequences

It often happens that the system is presented with mixed text to translate, for example
ASCII characters appearing in Chinese or Arabic text, as in the following example taken
from a Chinese-to-English translation task consisting of mixed text extracted from web
pages:

The source text in such sentences should be ‘translated’ without change, i.e. it should
pass through the translation system intact. One solution is to segment the target sen-
tences, translate only the target language portions, and then to form a complete trans-
lation by concatenation. However, segmentation is not ideal since it prevents long-span
translation and language models from looking across segmentation boundaries. To avoid
this problem, a source language acceptor can be included which ensures that the desired
segments appear correctly in the translation. For example, suppose two source phrases
u1 and u2 are found in the target sentence. The acceptor would then accept sequences
V ∗ · u1 · V ∗ · u2 · V ∗, where V is the source language vocabulary. If degenerate trans-
lations for the source phrases are added to the translation and reordering transducer, this
acceptor can be included in the translation pipeline as the last step before composition
with the English language model. In this way all translations produced (including lat-
tices) have the desired subsequences in the correct order, and all translation scores are
based on long-span translation and language model likelihoods. This is a straightforward
method to impose many useful constraints in translation, such as ensuring parentheses
and quotes are correctly matched, names are correctly transliterated, etc.

1.5. Minimum Error Rate Training

Minimum error rate training under BLEU [8,9] can be used to adjust multiplicative scale
factors applied to the component transducers which together make up the TTM. Although
only a small number of parameters are adjusted - typically one parameter per component
model or distribution - MET can be very effective in tuning systems to domain-specific
development sets.

In the systems described here, MET is applied to adjust the lexical language model
scale factor, word and phrase insertion penalties, phrase reordering scale factor, phrase
insertion scale factor, u-to-v translation model scale factor, v-to-u translation model scale

G. Blackwood et al. / Large-Scale Statistical Machine Translation42



factor, and three phrase pair count features. The phrase-pair count features track whether
each phrase-pair occurred once, twice, or more than twice in the parallel text [10].

MET parameter search procedures as described by Och [9] are now widely used; the
only difficulty in apply them to WFSTs is to extract the contribution of each component
transducer to the overall translation log likelihood. For this, we use encoded transducers
as described by Roark et al. [2,11,12] and implemented in the OpenFST libraries [13].

2. Lattice Rescoring

This section describes lattice rescoring techniques applied to the translation output pro-
duced by the first-pass MET baseline system. Apart from MBR (section 2.4) which re-
quires n-best lists, these operations could be applied in first-pass translation; however,
we apply these techniques in rescoring subsequent to pruning of the first-pass lattices.

2.1. Large Language Model Rescoring

We apply a second-pass language model that is able to effectively utilise very large quan-
tities of monolingual training text. Large memory and considerable time is required for
the estimation of zero cutoff higher-order n-gram language models, typically necessitat-
ing partitioning of data and multiple rounds of paired interpolation to produce the final
model. An alternative is to build sentence-specific language models. Firstly, counts are
gathered for each training text and merged to form a single large counts file. The vocabu-
lary used during the counting process is determined by the set of English words covering
the phrases found in the parallel text. There are no cut-offs, so all observed n-grams are
included in the model. Sentence-specific counts are obtained by filtering according to the
vocabulary of English n-grams in each lattice. The resulting filtered counts are then used
to generate sentence-specific language models with “stupid backoff” smoothing [14] in
which n-gram scores are defined as

S(si|s
i−1
i−n+1) =

{
f(si

i−n+1
)

f(si−1

i−n+1
)

if f(si
i−n+1) > 0

αS(si|s
i−1
i−n+2) otherwise

(3)

The backoff weight α is the same for each order and the recursion ends with the unigram
maximum likelihood estimate.

2.2. Phrasal Segmentation Model Rescoring

Phrasal segmentation models define a mapping from the words of a sentence sI
1 to se-

quences of translatable phrases uK
1 . Sentences cannot be segmented arbitrarily: the space

of possible segmentations is constrained by the contents of the phrase table and contains
only those translatable phrases found in the parallel text. We define a probability distribu-
tion over phrase sequences and estimate the model parameters from naturally occurring
sequences of phrases in a large monolingual source-language training corpus. An order-
n phrasal segmentation model assigns a probability to a phrase sequence uK

1 according
to

G. Blackwood et al. / Large-Scale Statistical Machine Translation 43



P (uK
1 |K, sI

1) =

K∏
k=1

P (uk|u
k−1
1 ,K, sI

1) (4)

≈

{
C(K, sI

1)
∏K

k=1 P (uk|u
k−1
k−n+1) if uK

1 = sI
1

0 otherwise
(5)

with the additional constraint that each uk must be a phrase with a known translation. For
a fixed sI

1, the normalisation term C(K, sI
1) can be calculated. In translation, however,

the sI
1 are not fixed so we use the unnormalised likelihoods as scores. The phrase n-

gram parameters of Eq. (5) are estimated from the frequencies of occurrence of phrase
sequences in the training text. Standard discounting and context-dependent backoff [15]
are applied to smooth the maximum likelihood estimates.

The word lattice L produced during first-pass translation is composed with un-
weighted transducer W to obtain a lattice of phrases (L◦W ); this lattice contains phrase
sequences and translation scores consistent with the first-pass translation. We now wish
to apply the phrase segmentation model distribution of Eq. (5) to this phrase lattice. The
conditional probabilities and backoff structure are encoded as weighted finite state ac-
ceptor Ψ in the same way as for a regular word language model [7]. The phrasal seg-
mentation model acceptor is then composed with the phrase lattice and projected on the
input to obtain the rescored word lattice:

L′ = (L ◦ W ) ◦ Ψ . (6)

The most likely translation after phrasal segmentation model rescoring is given by the
path in L′ with least cost.

2.3. Model-1 Lattice-to-String Alignment Scores

IBM Model-1 is a simple model of word alignment used in parallel text alignment.
Model-1 is not powerful enough to be used alone for translation, but can be used to rank
competing translation hypotheses produced by more powerful systems. Introducing a
variable aj which denotes the alignment of tj in tJ1 to saj

in sI
1, the Model-1 alignment

distribution is

PM1(t
J
1 , aJ

1 , J |sI
1) = PL(J |I)

1

IJ

J∏
j=1

pT (tj |saj
) . (7)

The model is such that the maximum likelihood alignment

max
aJ
1

PM1(t
J
1 , aJ

1 , J |sI
1) , (8)

is readily found via dynamic programming. It is also straightforward to find, for a fixed
target sentence tJ1 , the most likely alignment of every translation hypothesis sI

1 in a lat-
tice L, i.e. to simultaneously find the best alignment of every lattice path to the target
string. We refer to this as Model-1 lattice-to-string alignment. Of course this could be
done by expanding the lattice into a list of distinct hypotheses and aligning each to the
target string; however lattice-to-string alignment is faster and retains the compact lattice

G. Blackwood et al. / Large-Scale Statistical Machine Translation44



representation of hypotheses. However, as discussed by Knight and Al-Onaizan [16], this
process cannot be implemented easily with WFSTs. In adding Model-1 alignment scores
to the TTM translation lattices, we therefore depart from the WFST formalism and add
the Model-1 likelihoods to the TTM lattice scores with non-WFST based lattice-to-string
alignment procedures.

2.4. Minimum Bayes Risk Decoding

The final step in translation is Minimum Bayes Risk decoding (MBR) which searches
for a hypothesis to minimise the expected loss of translation errors under loss functions
that measure translation performance. The rationale is to reconcile estimation criteria
(e.g. maximum likelihood) with translation criteria (e.g. BLEU). Since the goal is to
maximise the BLEU score, the loss is the negative sentence level BLEU score [17]. Exact
computation of statistics needed for BLEU cannot easily be done over lattices, or with
finite state approaches, so each translation lattice is expanded into a list of translation
hypotheses N with posterior scores, and the hypothesis is selected which has the least
risk relative to the collection of other hypotheses:

Ŝ = argmin
S∈N

∑
S′∈N

−BLEU(S′,S)P (S′|T) . (9)

3. System Development

We describe experiments on the NIST Arabic-English translation task. The development
set mt02-05-tune is formed from the odd numbered sentences of the NIST MT02 through
MT05 evaluation sets; the even numbered sentences form the validation set mt02-05-test.
Test performance is evaluated using the NIST subsets from the MT06 evaluation: mt06-
nist-nw for newswire data and mt06-nist-ng for newsgroup data. We also report results
for the NIST MT08 evaluation. Each set contains four references and BLEU scores are
computed for lower-case translations.

The TTM baseline system is trained using all of the available Arabic-English data
for the NIST MT08 evaluation. The Arabic text is first morphologically analysed with
MADA and words are segmented to separate prefixes [18]. In first-pass translation, de-
coding proceeds with a 4-gram language model estimated over the parallel text and a 965
million word subset of monolingual data from the English Gigaword Third Edition. Min-
imum error rate training under BLEU optimises the decoder feature weights using the
development set mt02-05-tune. In the second pass, a 5-gram zero-cutoff stupid-backoff
language model estimated using approximately 4.7 billion words of English newswire
text is used to rescore the first-pass lattices. The phrasal segmentation model parameters
are trained using a 1.8 billion word subset of the same monolingual training data used to
build the second-pass word language model. Further post-processing steps incorporate
the Model-1 lattice-to-string alignment scores and MBR.

G. Blackwood et al. / Large-Scale Statistical Machine Translation 45



Table 1. Arabic-English translation results (lower-cased BLEU / TER) for best performing system configura-
tion using phrase pair count features and β1 probabilities estimated from the alignments.

Method mt02-05-tune mt02-05-test mt06-nist-nw mt06-nist-ng mt08-nist

TTM+MET 50.9 / 42.8 50.3 / 43.3 48.1 / 44.3 37.5 / 53.5 43.1 / 49.5

+5g 53.5 / 41.8 52.4 / 42.4 49.6 / 43.9 39.0 / 54.0 43.7 / 49.3

+PSM 53.9 / 42.1 53.3 / 42.7 50.1 / 44.3 39.0 / 54.7 44.3 / 49.3

+MBR 54.0 / 41.7 53.7 / 42.2 51.0 / 43.9 39.4 / 54.1 45.0 / 48.9

3.1. Results and Discussion

Table 1 shows translation performance for each of the various development and evalua-
tion sets as measured by BLEU and TER1. All of the results in the table were obtained us-
ing the MJ1 reordering model with orientation probabilities estimated from alignments.
The 1-best output obtained from the lattices after minimum error rate training results
in the scores shown in the row labelled ‘TTM+MET’. These lattices are then rescored
by each of the post-processing techniques described in section 2, resulting in significant
improvements across all sets. While large gains of between 1.5 and 2.7 BLEU points
are observed after 5-gram rescoring (row labelled ‘+5g’), phrase segmentation model
rescoring results in more modest improvements (row labelled ‘+PSM’). However, these
gains are interesting since the models are trained on a subset of the same monolingual
data used to train the 5-gram word language model, suggesting that some degree of use-
ful complementary information has been captured by the phrasal segmentation models.
The final post-processing step (row labelled ‘+MBR’) shows the results obtained after
rescoring the 1000-best list for each sentence using minimum Bayes risk decoding.

In order to demonstrate the advantage of estimating the phrase-specific β1 reorder-
ing probabilities, Table 2 shows translation scores when a flat distribution over all phrase
pairs is applied, i.e. the MJ1-Flat reordering model described in section 1.1. These results
show that there is a degradation of around 0.4 BLEU points in the MET results, and this
degradation is seen throughout the subsequent rescoring steps. A more informed phrase
reordering model produces a higher quality MET lattice for rescoring. Therefore, we ex-
pect that further improvements in the reordering model will be complementary and bene-
fit even more from our large language model rescoring techniques. However, preliminary
experiments with a simplified MJ2 reordering did not yield significant improvements for
this Arabic-English translation task and so are not reported here.

Table 2. Arabic-English translation results (lower-cased BLEU / TER) without estimation of the β1 orientation
probabilities for the MJ1 reordering model (MJ1-Flat).

Method mt02-05-tune mt02-05-test

TTM+MET 50.4 / 43.3 50.0 / 43.8

+5g 53.0 / 42.2 52.2 / 42.8

+PSM 53.4 / 42.5 53.1 / 43.1

To conclude our analysis of the contribution of each system component, Table 3
shows results obtained when the phrase pair count features are not included in MET.
The phrase pair count features clearly contribute significantly to the generation of higher

1Full MT08 results are available at http://www.nist.gov/speech/tests/mt/2008/. It is worth noting that many
of the top entries make use of system combination; the results reported here are for single system translations.

G. Blackwood et al. / Large-Scale Statistical Machine Translation46



Table 3. Translation results (lower-cased BLEU / TER) without phrase pair count features. Two different
lattice rescoring orders are compared. On the left, Model-1 (MOD1) rescoring precedes 5-gram and PSM
rescoring. On the right, Model-1 rescoring is performed as the final step.

Method mt02-05-tune mt02-05-test Method mt02-05-tune mt02-05-test

TTM+MET 48.9 / 43.8 48.6 / 44.1 TTM+MET 48.9 / 43.8 48.6 / 44.1

+MOD1 50.5 / 42.5 50.4 / 43.0 +5g 51.5 / 42.2 51.5 / 42.7

+5g 52.2 / 41.6 52.1 / 42.3 +PSM 52.6 / 42.3 52.6 / 42.7

+PSM 52.9 / 41.9 52.6 / 42.6 +MOD1 53.0 / 41.8 52.6 / 42.5

quality first-pass lattices since there is a degradation of between 1.7 and 2.0 BLEU points
with respect to the baseline system.

Table 3 also compares the application of Model-1 rescoring at two different stages
in the translation pipeline. Model-1 rescoring proves especially beneficial when directly
rescoring the MET lattice (with an improvement of up to 1.8 BLEU points). However, if
Model-1 rescoring is applied after 5-gram and phrase segmentation model rescoring there
are no real improvements. Two conclusions may be drawn from this. Firstly, that each
of the rescoring techniques are a useful source of information when rescoring lattices,
and, secondly, applying these techniques sequentially to the same MET lattice does not
always provide gains. This suggests it is important to integrate these information sources
directly in minimum error rate training prior to generating the lattice.

3.2. Efficiency Considerations

Large-scale statistical machine translation is computationally intensive and an efficient
implementation is crucial. To tackle this, we carefully build separate WFSTs that only
include the model parameters relevant to each input sentence by prior inspection of input
phrases and the general phrase inventory. Using the MJ1 reordering model, the memory
required during decoding is less than ∼4Gb for most sentences in the reported tasks.

For the longest input sentences, which can exceed 100 words in length, memory
requirements may grow beyond this limit and this necessitates pruning. Several pruning
strategies may be used, such as standard cost-based pruning for the translation WFST
prior to composition with the language model.

However, experience shows that better results are achieved by selecting, for those
sentences with a number of states in the translation WFST (prior to language model
composition) above a certain threshold, only those phrase segmentations that match the
number of phrases in the minimum-number-of-phrases segmentation. This favours seg-
mentations with longer phrases and limits memory requirements without any significant
change in translation performance. For mt02-05-tune only 39 of the 2075 sentences are
affected.

Without further pruning, our system translates the mt02-05-tune set (2075 sentences,
∼60k words) in a total time of 420 minutes and this can be accomplished in very reason-
able time by parallelisation. Figure 3 shows translation time per input word as a function
of the sentence length.

As the graph shows, the longer the input sentence, the longer it takes to translate
each word. By applying our pruning strategy, we ensure that translation time does not
exceed an average rate of 0.43 seconds per word even for the longest sentences. However,
around 80% of the sentences are of 40 words or less in length and these are translated
with a much quicker rate of 0.30 seconds per word.

G. Blackwood et al. / Large-Scale Statistical Machine Translation 47



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  20  40  60  80  100

tr
an

sl
at

io
n 

tim
e 

pe
r 

w
or

d 
(s

)

sentence length (words)

Figure 3. Translation time per word as a function of sentence length for mt02-05-tune.

4. Summary and Future Work

We have described the Cambridge University Engineering Department statistical ma-
chine translation system that formulates translation as a series of transformations en-
coded in weighted finite state transducers and decodes using standard finite state oper-
ations and algorithms. The system is able to handle very large quantities of data effi-
ciently and effectively and achieves good performance on the 2008 NIST Arabic-English
machine translation task, even with the relatively simple MJ1 reordering model.

Future work will investigate whether larger and more consistent gains are possible
by integrating the phrasal segmentation models and Model-1 rescoring directly into the
MET baseline system. It is also interesting to consider more flexible phrase reordering
models by allowing jumps of more than one phrase, although this can lead to a very large
search space with many unnecessary hypotheses [2]. One possible solution is to only
allow such jumps for a particular list of phrase pairs observed to occur with long-range
reorderings in the parallel text from which the phrases are extracted.

Acknowledgements

This work was supported in part under the GALE program of the Defense Advanced
Research Projects Agency, Contract No. HR0011-06-C-0022.

References

[1] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The mathematics of
statistical machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311, 1994.

[2] Shankar Kumar and William Byrne. Local phrase reordering models for statistical machine translation.
In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural
Language Processing, pages 161–168, 2005.

[3] Shankar Kumar, Yonggang Deng, and William Byrne. A weighted finite state transducer translation
template model for statistical machine translation. Natural Language Engineering, 12(1):35–75, 2006.

[4] Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in speech recog-
nition. In Computer Speech and Language, volume 16, pages 69–88, 2002.

G. Blackwood et al. / Large-Scale Statistical Machine Translation48



[5] Lambert Mathias and William Byrne. Statistical phrase-based speech translation. In 2006 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 2006.

[6] Christoph Tillmann. A unigram orientation model for statistical machine translation. In HLT-NAACL
2004: Short Papers, pages 101–104, Boston, Massachusetts, USA, May 2 - May 7 2004. Association
for Computational Linguistics.

[7] Cyril Allauzen, Mehryar Mohri, and Brian Roark. Generalized algorithms for constructing statistical
language models. In Proceedings of the 41st Meeting of the Association for Computational Linguistics,
pages 557–564, 2003.

[8] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic evalu-
ation of machine translation. In Proceedings of the 40th Meeting of the Association for Computational
Linguistics, pages 311–318, Morristown, NJ, USA, 2001.

[9] Franz Josef Och. Minimum error rate training in statistical machine translation. In Proceedings of the
41st Meeting of the Association for Computational Linguistics, pages 160–167, Morristown, NJ, USA,
2003.

[10] Oliver Bender, Evgeny Matusov, Stefan Hahn, Sasa Hasan, Shahram Khadivi, and Hermann Ney. The
RWTH Arabic-to-English spoken language translation system. In Proceedings of the 2007 Automatic
Speech Understanding Workshop, pages 396–401, 2007.

[11] Brian Roark, Murat Saraclar, and Michael Collins. Discriminative n-gram language modeling. Computer
Speech and Language, 21(2):373–392, 2007.

[12] Lambert Mathias. Statistical Machine Translation and Automatic Speech Recognition under Uncer-
tainty. Dissertation, Johns Hopkins University, 2007.

[13] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. OpenFST: a
general and efficient weighted finite-state transducer library. In Proceedings of the 9th International
Conference on Implementation and Application of Automata, pages 11–23. Springer, 2007.

[14] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language models
in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages 858–867, 2007.

[15] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language mod-
eling. In Arivind Joshi and Martha Palmer, editors, Proceedings of the 34th Meeting of the Association
for Computational Linguistics, pages 310–318, San Francisco, 1996. Morgan Kaufmann Publishers.

[16] Kevin Knight and Yaser Al-Onaizan. Translation with finite-state devices. In AMTA ’98: Machine
Translation and the Information Soup: Third Conference of the Association for Machine Translation in
the Americas, pages 421–437, London, UK, 1998. Springer-Verlag.

[17] Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for statistical machine translation.
In HLT-NAACL 2004, Boston, Massachusetts, USA, May 2 - May 7 2004. Association for Computational
Linguistics.

[18] Nizar Habash and Owen Rambow. Arabic tokenization, part-of-speech tagging and morphological dis-
ambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 573–580, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics.

G. Blackwood et al. / Large-Scale Statistical Machine Translation 49



Proper Noun Recognition and
Classification Using Weighted Finite State

Transducers

Jörg DIDAKOWSKI a, Marko DROTSCHMANN a

a Berlin-Brandenburgische Akademie der Wissenschaften, Jägerstr. 22/23, 10117
Berlin, Germany

Abstract. This paper presents a new approach to proper noun recognition and clas-
sification in which the knowledge of ambiguities within morphological analyses is
used exhaustively in the analysis. Here a proper noun recognizer/classifier is de-
fined by proper noun context patterns on the one hand and by a filter that takes
the ambiguity information into account on the other hand. Furthermore, techniques
like a lemma based coreference resolution or the softening of the closed world as-
sumption made by the morphology are presented which improve the analysis. The
approach is implemented by weighted finite state transducers and tested within the
analysis system SynCoP via a hand-written grammar.

Keywords. information extraction, named entity recognition, finite state machines,
coreference resolution, tagging, constraints

Introduction

Proper noun recognition and classification is, as a subtask of named entity recognition
(NER), a fundamental task in information extraction (IE). Our interest in the proper noun
recognition and classification lies in the annotation of large German text corpora for ex-
ploitation purposes. In corpus linguistics exploitation can be facilitated by concordances
presenting a word in its different contexts. Here part-of-speech or deeper linguistic infor-
mation, for example syntactic functions, is used to restrict the set of concordance lines
(see [1]). A second way to exploit corpora are syntactic collocation databases where
semantic connections can be discovered by highly frequent co-occurrences of words in
special syntactic constructions (see [2] and [3]). To realize any of the mentioned tech-
niques the corpora have to be syntactically annotated. Furthermore, the annotation has to
be done fully automatically in the case of very large corpora where manual annotation is
not practicable any more.

In German as well as in English, there exist many problems which make the recog-
nition and classification of proper nouns difficult: One problem is caused by structural
ambiguity such as PP-attachment ambiguity and ambiguity of conjunction scope. An-
other problem is caused by semantic ambiguities in terms of metonymy where a proper
noun can belong to several proper noun classes. Furthermore, proper nouns are an open
class and very productive so that, in principal, every word in a general-language lexi-

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-50

50



con can become a proper noun (see [4]). In addition, in German some language specific
characteristics complicate the proper noun recognition in comparison to English: proper
nouns and common nouns can’t be distinguished by the uppercase letter. Moreover, the
free word order complicates the detection of the scope of proper nouns (see [5]).

This paper presents a method based on weighted finite state transducers which tackle
the problem of proper noun recognition in German. The approach is based on [6] where
proper noun recognition is treated as a disambiguation problem. Proper noun contexts
are marked by brackets and additionally tags are used to mark proper noun context parts.
In the approach information about the morphological ambiguity of proper nouns is used
in the analysis. If, for example, a proper noun is categorically unambiguous and if it has a
definite proper noun class it is in all probability a proper noun of the corresponding class.
By contrast, if a proper noun is ambiguous the reliability of being a proper noun depends
gradually on the ambiguity. In our approach the information about morphological ambi-
guity is also used in conjunction with human nouns, company nouns and location nouns
which indicate proper nouns. We present new techniques to handle this reliability infor-
mation in connection with contextual and coreferential information. Furthermore, in the
approach scope ambiguities and reliability of proper noun classification are covered by
linguistic criteria formalized by an idempotent semiring.

The paper is organized as follows: Section 1 gives basic definitions and notations.
Section 2 describes the used representation of the input and the analyses. In section 3
the basic idea of marking and classifying proper nouns is presented. After this, section
4 focuses on the techniques of writing a proper noun context grammar. The approach
is extended in section 5 by the softening of the closed world assumption made by the
morphology, in section 6 by coreference resolution and in section 7 by a global filter
which implements some generalizations. Finally, the approach is implemented and tested
with the analysis system SynCoP in section 8.

1. Definitions and Notations

In our approach analyses are generated and scored over an input by a WFST such
that they can be judged by linguistic criteria. A weighted finite state transducer T =
(Σ, Δ, Q, q0, F, E, λ, ρ) over a semiring S is an 8-tuple such that Σ is the finite input
alphabet, Δ is the finite output alphabet, Q is the finite set of states, q0 ∈ Q is the start
state, F ⊆ Q is the set of final states, E ⊆ Q × (Σ ∪ ε) × (Δ ∪ ε) × S × Q is the set
of transitions, λ is the initial weight and ρ : F �→ S is the final weight function mapping
final states to elements in S.

The input is represented as an acyclic finite state automaton. The application of an
analysis transducer (ANALYZER) is done by composition of the input (INPUT) in form
of an identity transducer with the analysis transducer. Then the second projection of the
resulting transducer is taken which contains the scored analyses (ANALYSIS):

ANALYSIS =def Range(INPUT.o.ANALYZER) (1)

Here the regular expression notation of [7] (slightly extended) is used.1

1See appendix for regular expression notation details. Here the precedence is defined top down. The distinc-
tion between the automaton A and the identity transducer that maps every string of A to itself is ignored.

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification 51



Scope ambiguities and the reliability of proper noun recognition and classification
are covered by linguistic criteria. With these criteria it is possible to compare analyses
by means of scores depending on the particular linguistic criterion. The linguistic criteria
are formalized by the notion of a semiring ([8]). Let S �= ∅ be a set and ⊕ (called
addition) and ⊗ (called multiplication) binary operations on S, then (S,⊕,⊗, 0̄, 1̄) is
called a semiring if (S,⊕, 0̄) is a commutative monoid, (S,⊗, 1̄) is a monoid and ⊗
distributes over ⊕. Linguistic criteria are represented by this structure. To judge analyses
via addition an additive idempotent semiring has to be used to create a partial order over
S. Thus a partial order is defined by (a ≤S b) ⇔ (a ⊕ b = a). Here a ≤S b means that
a is “better” than b with respect to linguistic criteria.

It will be necessary to judge analyses by more than one linguistic criterion; there-
fore, the criteria are ranked by preference. To model this the composition of idempotent
semirings is defined as follows ([8]): if a linguistic preference (S1,⊕1,⊗1, 0̄1, 1̄1) 
(S2,⊕2,⊗2, 0̄2, 1̄2)  ...  (Sn,⊕n,⊗n, 0̄n, 1̄n) is given and if for each semiring a par-
tial order is defined by ⊕, then the composition (S,⊕,⊗, 0̄, 1̄) = (S1,⊕1,⊗1, 0̄1, 1̄1) ◦
(S2,⊕2,⊗2, 0̄2, 1̄2) ◦ ... ◦ (Sn,⊕n,⊗n, 0̄n, 1̄n) is the vectorization of the individual
domains and of the operation ⊗. This corresponds to the crossproduct of semirings
(cf. [9]). The operation ⊕ which compares analyses is defined in a special way, if
(a1, a2, ..., an) ∈ S and (b1, b2, ..., bn) ∈ S are given:

(a1, a2, ..., an) ⊕ (b1, b2, ..., bn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1, a2, ..., an) if (a1, a2, ..., an) = (b1, b2, ..., bn)
(a1, a2, ..., an) if a1 = b1 and a2 = b2 and ... and ak−1 = bk−1

and ak ⊕k bk = ak

with k ≤ n and ak �= bk

(b1, b2, ..., bn) if a1 = b1 and a2 = b2 and ... and ak−1 = bk−1

and ak ⊕k bk = bk

with k ≤ n and ak �= bk

(2)

The resulting semiring is now idempotent as well and a partial order can be defined by
⊕.

Extracting the most likely analyses with respect to linguistic criteria in a WFST T
which is the result of the application of an analysis transducer is a classical best-path
problem. Weights along a path of T are combined by the abstract multiplication and
create costs. If several paths are in T their weight equals the abstract addition of weights
of the different paths, that means the “best" cost (see [10]). The most likely analyses are
simply represented by paths causing these “best" costs.

In the following examples the STTS (Stuttgart/Tübinger Tagset, a tagset for German)
is used.

2. Representation of the Input and the Analyses

In this section the representation of the input and the analyses are defined. The raw input
text is enriched with morphological information. Here the enriched input consists of se-
quences of word boundaries, lemmata and categories. Such sequences can be represented

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification52



compactly by an acyclic automaton and can generally be described by the following
regular expression:2

{@@}[{@}LEM CATEGORY]∗{@@} (3)

The tag {@@} surrounds the text, the tag {@} indicates a word boundary, the expression
LEM denotes all possible lemma forms and the expression CATEGORY denotes all pos-
sible categories. Such a text automaton contains all possible morphological readings of
a text which are usually highly ambiguous (cf. [11]). As a concrete example the regular
expression for the German sentence “Petra sieht die Stadt Burg.” (“Petra saw the city
Burg.”) is given. Here, for lack of space only one possible reading is covered and some
POS features like noun case or noun gender as well as the word boundary feature Case
for the word surface form are left out:

{@@}
{@ CAmb=no PnAmb=0 InAmb=-} Petra {NE Nametype=firstname}
{@ CAmb=no PnAmb=- InAmb=-} sehen {VVFIN}
{@ CAmb=yes PnAmb=- InAmb=-} die {ART}
{@ CAmb=no PnAmb=- InAmb=0} Stadt {NN SemClass=location}
{@ CAmb=yes PnAmb=4 InAmb=3} Burg {NN SemClass=location}
{@ CAmb=no PnAmb=- InAmb=-} . {SYMBOL Type=punct}
{@@}

(4)

In the example, the noun feature SemClass gives semantic information. With this in-
formation it can be decided whether a noun is a proper noun indicator or not and what
type of proper noun indicator a noun is (location noun, organization noun, person noun).
The proper noun feature Nametype gives information about the proper noun class (lo-
cation name, organization name, etc.) or about proper noun subclasses (first name, last
name). The tag {@} is defined as a complex category and its features contain several
kinds of information: The feature Case gives information about the surface form of the
specific word, whether it is upper or lower case, etc. The other features give information
about the ambiguity of the morphological analyses (here the feature value “-” stands for
undefined):

• CAmb: This feature gives information about whether the analysis is categorical
ambiguous (yes) or not (no).

• PnAmb: This feature gives information about the strength of ambiguity with re-
spect to proper nouns in a range from zero to five: 0) there are no relevant am-
biguities with respect to a proper noun; 1) an ambiguity exists within a proper
noun class (e.g. first name vs. last name); 2) an ambiguity exists between proper
noun classes; 3) an ambiguity exists between proper noun and proper noun in-
dicator (human noun, location noun or company noun); 4) an ambiguity exists
between proper noun and noun; 5) an ambiguity exists between proper noun and
a non-noun category.

• InAmb: This feature gives information about the strength of ambiguity with re-
spect to the proper noun indicators human noun, location noun and company noun
in a range from zero to four: 0) there are no relevant ambiguities with respect
to a proper noun indicator; 1) an ambiguity exists within proper noun indicator

2The curly brackets denote possibly underspecified categories. The features are defined with respect to an
inheritance hierarchy and are represented as transition labels. Underspecification is realized as the disjunction
of all maximal subtypes of a super type.

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification 53



classes (human, location or company); 2) an ambiguity exists between proper
noun indicator and other semantic noun classes; 3) an ambiguity exists between
proper noun indicator and proper noun; 4) an ambiguity exists between proper
noun indicator and a non-noun category.

The example sentence contains two proper nouns, the person name “Petra” and the loca-
tion name “Burg”. The word “Petra” is definitely a proper noun, because it is not categor-
ically ambiguous (CAmb=no). The word “Burg”, however, is categorically ambiguous
between a location noun and a proper noun. Therefore it receives the corresponding am-
biguity information (CAmb=yes PnAmb=4 InAmb=3). Via the proper noun indicator
“Stadt” the word “Burg” can be identified as a location noun:

{@@}
{PN}
{@} Petra {NE Nametype=firstname} {@FirstName Reli=4}
{/PN Class=person}
{@} sehen {VVFIN}
{PN}
{@} die {ART}
{@} Stadt {NN SemClass=geo} {@GeoNoun}
{@} Burg {NE Nametype=geoname} {@GeoName Reli=2}
{/PN Class=location}
{@} . {SYMBOL Type=punct}
{@@}

(5)

For the sake of readability the features of the word boundaries are left out in the exam-
ple analysis. The proper noun contexts are marked by the tags {PN} and {/PN}. Within
these contexts parts like proper nouns or proper noun indicators are marked by syntac-
tic/semantic tags (e.g. {@FirstName}, {@Geonoun}). Here the feature Reli gives
information about the reliability of the classification in a range from zero to five. Further-
more, the proper noun contexts are classified by their proper noun class via the feature
Class (e.g. location, person).

3. Marking of Proper Noun Contexts

The marking of proper noun contexts is treated as a chunking problem. We follow the
approach in [8], in which chunking is performed by the optional insertion operator. The
optional insertion operator is defined by the following regular expression, if GRAMMAR
denotes the proper noun contexts and if P and S denote the brackets:

GRAMMAR(→)P...S =def [?∗[0.x.P]GRAMMAR[0.x.S]]∗?∗ (6)

This operator optionally brackets the proper noun contexts specified by the regular ex-
pression GRAMMAR with the brackets P and S in all possible variations. This operator is
defined without any complementation operations. Thus, transductions can be performed
and tags can be inserted via epsilon.

Proper noun contexts should only be marked if a corresponding reliability is given.
Furthermore, analyses with the highest degree of reliability should be preferred. This
principle is formalized by the reliability optimization criterion. This criterion is formal-
ized by the max semiring (R ∪ {−∞}, max,+,−∞, 0). Here negative numbers are as-

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification54



signed to patterns to model gradual unreliability. Positive numbers are assigned to pat-
terns to model gradual reliability.

The linguistic criteria chunk inclusiveness and chunk connectedness are defined to
implement a longest match strategy.3 The criteria express that words should belong to
chunks and that words should form large chunks. The chunk connectedness criterion
and the chunk inclusiveness criterion are formalized separately by the tropical semiring
(R ∪ {∞}, min,+,∞, 0). The criteria are implemented by assigning negative numbers
to symbols within chunks on the one hand and by assigning positive numbers to bracket
pairs on the other hand.

All three of the mentioned linguistic criteria are ranked as follows: reliability op-
timization  chunk connectedness  chunk inclusiveness. The reliability optimization
criterion is ranked higher than the longest match criteria. That is, the longest match is
used only for extension disambiguation purposes. As the proper noun contexts should
only be marked if a corresponding reliability is given, the chunk connectedness crite-
rion is ranked higher than the chunk inclusiveness criterion. The ranking is achieved by
composition of idempotent semirings.

The optional insertion operator is now adjusted as follows:

GRAMMAR(→)P...S =def

[?∗[0.x.P][GRAMMAR.o.[?〈0, 0,−1〉]∗][0.x.S]〈0, 1, 0〉]∗?∗ (7)

The proper noun context chunkers are independently built for each proper noun class by
the optional insertion operator. Here, the proper noun classification is performed via the
chunk brackets. The several chunkers are combined by union. Then the star closure is ap-
plied. The chunkers compete with each other in this definition. So the analysis transducer
(ANALYZER) is defined by the following regular expression:

[[GRAMMAR1(→)P1_ S1]|
ANALYZER =def [GRAMMAR2(→)P2_ S2]|

...|
[GRAMMARn(→)Pn_ Sn]]∗

(8)

4. Writing a Grammar for Proper Noun Contexts

The patterns which describe proper noun contexts and which are used in the construc-
tion of the chunker are defined in terms of a grammar. The task of writing a grammar
is split up into two parts: 1) the design of patterns which describe all possible proper
noun contexts with all possible markings of parts (PATTERNS), 2) the design of a filter
which restrict and score the patterns (FILTER). Both parts, PATTERNS and FILTER,
are independently implemented and are combined by composition:

GRAMMAR =def PATTERNS.o.FILTER (9)

The patterns (PATTERNS) model possible proper noun contexts. Here, syntactic
and/or semantic tags are inserted to indicate the parts of the proper noun contexts

3The basic idea of implementing a longest match constraint using the weights of a WFST is presented in
[12].

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification 55



(@GeoName, @GeoNoun, etc.). In this phase the ambiguity information of the input is
ignored. The patterns are modeled as if the input is definite. An example regular expres-
sion for a simple person name pattern will be given:

HUMANNOUN=def

{@}LEM{NN SemClass=human}[0.x.{@HumanNoun}]
FIRSTNAME=def

{@}LEM{NE Type=firstname}[0.x.{@FirstName Reli=0}]
LASTNAME=def

{@}LEM{NE Type=lastname}[0.x.{@LastName Reli=0}]
PATTERN=def

HUMANNOUN FIRSTNAME∗ LASTNAME

(10)

Via the regular expression PATTERN occurrences of last names (LASTNAME) optionally
preceded by first names (FIRSTNAME) are marked if they are preceded by a human noun
(HUMANNOUN). Here the first names are labeled by the tag {@FirstName}, the last
name is labeled by the tag {@LastName} and the human noun is labeled by the tag
{@HumanNoun}; the tags are inserted via epsilon. Here the reliability of the labeling is
initialized by zero (Reli=0) which indicates potential proper nouns. Such patterns can
be combined by union.

The filter (FILTER) takes the word boundary information into account. Here the
filter restricts and scores the proper noun context patterns via the ambiguity information.
The filter can consist of several filters competing with each other. Thus, several filters
are combined by union. A filter is defined by constraints. A constraint can be used to
restrict patterns, to score patterns or to rewrite information. The constraints that restrict
patterns are implemented via the exist operator. It can be postulated that every proper
noun context pattern contains at least one specific pattern A: $A. In contrast, it can also be
postulated that all proper noun context patterns do not contain a specific pattern A: ∼ $A.
This means, it is possible to implement the necessity of a special degree of reliability
of proper noun recognition and classification. The constraints which score or rewrite
patterns are implemented by the score and rewrite operator, which is defined by the
following regular expression (cf. [8]):

A ⇒ω _ =def [∼ $[Dom(A)-[]]A〈ω, 0, 0〉]∗ ∼ $[Dom(A)-[]] (11)

Transductions defined by the regular expression A are performed locally on the proper
noun context patterns. Additionally scores can be assigned by ω with respect to the relia-
bility optimization criterion. To illustrate the different types of constraints some example
constraints will be given:

CONSTRAINT1 =def ∼ $[{@ PnAmb=5} LEM {NE}]
CONSTRAINT2 =def $[{@ PnAmb=0} LEM {NE}]
CONSTRAINT3 =def {@FirstName Reli=0:3} ⇒10 _

(12)

The constraint CONSTRAINT1 forbids proper nouns with an ambiguity degree of 5. The
constraint CONSTRAINT2 asks for a non-ambiguous core. Finally, via the constraint
CONSTRAINT3 the reliability information of the tag {@FirstName} is changed from
0 to 3 and the score 10 is assigned. Several constraints can be combined to a filter by
composition. Here the order of the constraints matter.

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification56



5. Softening the Closed World Assumption Made by the Morphology

For each word a morphology returns a set of possible analyses. Here some words are
analyzed as a proper noun, others are not. So the morphology prescribes whether a word
can be a proper noun or not. Via the morphology a closed world assumption is presumed.
But almost every word in a general-language lexicon can become a proper noun. There-
fore, it should be possible to change the morphological information. Thus, the definition
of a proper noun context grammar is extended by a POS expansion part (EXPANSION):

GRAMMAR =def EXPANSION.o.PATTERNS.o.FILTER (13)

Within the expansion part the non-NE POS tags of uppercase words are optionally
mapped to the NE tag. Furthermore, proper noun classes or proper noun subclasses are
optionally mapped to other proper noun classes or subclasses. Here the transformations
have several degrees of strength. That is to say, it is easier to transfer a proper noun class
into another than to transform a non-NE POS into a proper noun. The transformation
information can be used in the filter definition of a grammar.

We use the word boundary feature Trans to indicate the strength of transformation.
The degree of strength ranges from zero to five: 0) no transformation, 1) transform a
proper noun subclass into another proper noun subclass, 2) transform a proper noun class
into another proper noun class, 3) transform an unknown word into a proper noun, 4)
transform a noun into a proper noun, 5) transform all other POS into a proper noun.

The feature Trans is initialized with zero in the input. An example for an expansion
transducer which optionally transforms nouns into proper nouns is given below. Note
that only nouns were transformed which are not homographic to a proper noun:

EXPANSION =def

[?∗{@ PnAmb=- Trans=0:4}[{NN}.x.{NE}]]∗?∗ (14)

6. Lemma Based Coreference Resolution

Within newspaper texts proper nouns are usually introduced in some specific way (e.g.
via indicator nouns like president, city, company). After the introduction the proper
nouns can be used without any extra specifications. So, in some contexts proper nouns
can be detected very easily. In other contexts the detection is harder. We overcome this
problem by a coreference resolution: a lemma which is once classified as a sure proper
noun is a proper noun in the whole text.

In our approach we distinguish between potential and sure proper nouns; sure proper
nouns are used to support potential proper nouns by scores. More precisely, potential
proper nouns should not be marked at all without coreference support. For this purpose
we distinguish between a filter for sure proper nouns (filtersure) and for potential
proper nouns (filterpotential). Here filtersure is defined as in section 4 and defines
the reliability of classification of proper nouns. By contrast, filterpotential punishes
syntactic/semantic tags which mark proper nouns with the feature-value pair Reli=0
by a negative number with respect to the reliability optimization criterion. Note that the
potential proper nouns are initially marked by this feature-value pair. Thus, the marking
of the individual potential proper nouns is suppressed. Now the construction of a proper
noun context grammar is adjusted as follows:

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification 57



GRAMMAR =def EXPANSION .o. [[PATTERNS.o.FILTERsure]|
[PATTERNS.o.FILTERpotential]]

(15)

To extract the sure proper nouns an extraction transducer can be built. An example
for an extraction transducer for sure last names is given by the following regular expres-
sion:

EXTRACT_LASTNAME =def

[{@}.x.{@}]LEM[{NE}.x.{NE}]{@LastName Reli=1:0}
(16)

EXTRACTOR =def

[?:0]∗ EXTRACT_LASTNAME 〈1, 0, 0〉[?:0]∗ (17)

With this transducer all word information analyzed as sure last name with a reliability
of one are extracted from the analysis and scored by the weight 〈1, 0, 0〉. The reliability
information is rewritten to zero for mapping purposes. Such extraction transducers can
be built accordingly for other syntactic/semantic functions with other degrees of relia-
bility (here various scores can be assigned). The various extraction transducers can be
combined by union.

After the application of the analysis transducer all sure and potential proper nouns
are marked in the analysis. Now the analysis is split up into two variants via a best path
search: 1) the analysis contains the support of the best readings (ANALYSISbest), 2) the
analysis contains all scored readings (ANALYSISall). After the extraction of the sure
proper nouns, the potential proper nouns are supported via these sure proper nouns:

ANALYSIS =def

ANALYSISall & [?∗Range(ANALYSISbest.o.EXTRACTOR)]∗?∗ (18)

7. The Use of a Global Filter

Some generalities can be covered by a filter that globally works on the input and per-
forms special rewritings of information (e.g. rewritings of word boundary features). The
changed information can be used in the grammar. So, the analysis transducer is extended
by a global filter denoted by GLOBALFILTER:

ANALYZER’ =def GLOBALFILTER.o.ANALYZER (19)

In German function words or verbs etc. generally are only capitalized in the begin-
ning of a sentence. Here, homography to a proper noun can only occur in such positions.
This information should be integrated into the word border information. For this purpose
the word boundary feature SInit is defined. The feature indicates whether a word is
sentence initial (yes) or not (no). In the input the feature is initialized with no. When-
ever a potential sentence initial position is detected the following word border feature
SInit is changed to yes. In this connection, a global filter can be defined by a regular
expression as follows whereas the score and rewrite operator is used:

GLOBALFILTER =def

[{SYMBOL Type=punct}|{@@}]{@ SInit=no:yes} ⇒0 _
(20)

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification58



8. Testing and Results

The approach presented in this paper is implemented with the Syntactic Constraint Parser
(SynCoP), which is based on WFSTs (see also [8], [6] and [2]). SynCoP consists of a
grammar compiler, a grammar-driven parser, and a preprocessing module which com-
prises tokenizing and the recognition of multi-word units. The engine admits specifica-
tion of the parser along with the preprocessing module by means of a grammar written
in XML. Thus the engine can be easily adapted to individual conceptions of analysis.

The morphological analysis is performed by the TAGH morphology ([13]). The
TAGH morphology is a complete finite state morphology which analyses productive Ger-
man derivation and composition. It uses semantic noun classes taken from LexikoNet
[14] allowing the detection of indication nouns.

Our hand-written grammar covers person, location and organization name contexts.
We mark proper nouns, proper noun indicators, titles and similar name affixes such as
organization markers, and special types of verbs (for example communication verbs).
Multi-word units with respect to VIPs, company and geographical names are handled
in the preprocessing module. The Reli feature which marks the degree of reliability
of contexts and which helps improving the grammar was ignored during the evaluation
process.

To evaluate the grammar, a test corpus consisting of 100 annotated newspaper arti-
cles in the field of politics was used. The corpus contained 54,998 words (67,228 tokens
respectively) of which 3,068 proper nouns consisting of 3,938 words were annotated:
1214 of them were person names, 1009 were location names and 845 were organization
names. 5,224 words were analyzed by the TAGH morphology as a possible proper noun.
27.6% of them had an additional analysis as a non-noun category, 52.9% were ambiguous
between a proper noun and a noun and 12.8% were ambiguous between several proper
noun classes. In addition, 0.7% of the words could not be analyzed by the morphology.

The accuracy of the detection and classification of proper nouns seems quite promis-
ing. The precision approximately reaches the following values: 94% for person names,
93% for location names, 94% for organization names. The recall approximately reaches
the following values: 93% for person names, 84% for location names, 80% for orga-
nization names. The precision and recall values are comparable to other rule-based ap-
proaches (see [15] or [16]). The TAGH morphology has a broad coverage for political
texts. This leads to generally complete morphological analyses, especially with respect
to ambiguity, that the presented approach can use in order to improve the results. As the
morphology is able to handle compounds, semantic classes can be assigned to arbitrarily
complex words. This represents another advantage the approach can use to more reliably
recognize and classify proper nouns in German texts. Furthermore, the evaluation results
show that person names are more intensively introduced in the corpus, thus the recall is
that much better for this proper noun class.

9. Conclusion and Future Work

In this paper, a new method for proper noun recognition and classification, which is
implemented by weighted finite state transducers, has been presented. Via an excessive
use of ambiguity information, the inclusion of a lemma based coreference resolution and

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification 59



the softening of the closed world assumption made by the morphology quite promising
results are achieved.

We are planning to combine the proper noun recognition and classification with
a syntactic dependency parser implemented by SynCoP (see [8]) in the framework of
weighted finite state transducers. We hope that both parts benefit by this connection. Via
this combination, we aim to use the proper noun recognition and classification in the
construction of the German collocation database word profile ([2]). Here we are very
interested in the effects of this integration.

10. Appendix:Notations

∼A complement
$A contains (all strings containing at least one A)
A∗ Kleene star
A B concatenation
A | B union
A & B intersection
A .x. B crossproduct
A .o. B composition
Dom(A) the domain of a rational transduction
Range(A) the range of a rational transduction
{A feat1=val1x ...featn=valnx} category A with specified features
featx=valx1

:valx2
mapping of feature values

? sigma
?∗ sigma star
0 epsilon
[] the empty string language
〈ω〉 weight
[ and ] square brackets that group expressions

References

[1] Pasi Tapanainen and Timo Järvinen. Syntactic concordances. In Corpora Galore - Analyses and Tech-
niques in Describing English. Amsterdam/Atlanta:GA:Rodopi, 2000.

[2] Alexander Geyken, Jœrg Didakowski, and Alexander Siebert. Generation of word profiles on the basis
of a large balanced german corpus. In Proceedings of EURALEX 2008, 2008.

[3] A. Kilgarriff, P. Rychly, P. Smrz, and D. Tugwell. The sketch engine. In Proceedings of EURALEX
2004, pages 105–116, 2004.

[4] Hayssam Trabousli. A local grammar for proper names. Thesis University of Surrey, 2004.
[5] Christine Thielen. An approach to proper name tagging for german. In Proceedings of ACL SIGDAT-95,

1995.
[6] Jörg Didakowski, Alexander Geyken, and Thomas Hanneforth. Eigennamenerkennung zwischen mor-

phologischer analyse und part-of-speech tagging: ein automatentheoriebasierter ansatz. Zeitschrift für
Sprachwissenschaft 26, pages 157–186, 2007.

[7] Lauri Karttunen. The replace operator. In Proceedings of ACL-95, pages 16–23, 1995.
[8] Jœrg Didakowski. Syncop - combining syntactig tagging with chunking using weighted finite state

transducers. In Proceedings of FSMNLP 07, 2007.
[9] Udo Hebisch and Hanns J. Weinert. Halbringe. Stuttgart:Teubner, 1993.

[10] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. Languages and
Combinatorics, 7(3):321–350, 2002.

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification60



[11] Kimmo Koskenniemi. Finite-state parsing and disambiguation. In Proceedings of COLING-90, vol-
ume 2, pages 229–232, 1990.

[12] Thomas Hanneforth. Longest-match pattern matching with weighted finite state automata. In Proceed-
ings of FSMNLP 05, 2005.

[13] Alexander Geyken and Thomas Hanneforth. Tagh: a complete morphology for german based on
weighted finite state automaton. In Proceedings of FSMNLP 05, 2005.

[14] A. Geyken and N. Schrader. Lexikonet - a lexical database based on type and role hierarchies. In
Proceedings of LREC-06, 2006.

[15] G. Neumann and J. Piskorski. A shallow text processing core engine. Technical Report DFKI, 2002.
[16] M. Volk and S. Clematide. Learn - filter - apply - forget. mixed approaches to named entity recognition.

In NLDB’01, pages 153–163, 2001.

J. Didakowski and M. Drotschmann / Proper Noun Recognition and Classification 61



Finite-State Local Grammars for
Disambiguating Conjunctions in

Portuguese Proper Names

Samuel ELEUTÉRIO a,1 Elisabete RANCHHOD b,2

a Instituto Superior Técnico
b University of Lisbon

Abstract. Like common noun phrases, proper names contain ambiguous conjoined
phrases that make their delimitation and classification difficult in text. This pa-
per presents a finite-state approach to the disambiguation of Portuguese candidate
proper name strings containing the coordinating conjunction e (and). In such name
strings, the conjunction can denote a relation between two independent names, but
it can also be part of a multiword proper name. The coordination of multiword in-
dependent names may involve ellipsis of some lexical constituents, which causes
additional difficulties to proper name identification and classification.

Keywords. Portuguese named entity recognition, ambiguous proper names,
information extraction, finite-state grammar, local grammar, coordination and
ellipsis.

Introduction

This paper presents an experiment aiming to resolve ambiguity caused by the coordinat-
ing conjunction e (and) in Portuguese named entity recognition, and describes the heuris-
tics used to disambiguate candidate proper name strings containing that conjunction. We
are interested in naming expressions referring to entities as persons (given and family
names, titles, etc.), organizations (corporations, public and governmental institutions,
etc.) and locations (regions, countries, cities, mountains, rivers, etc.).

As well as in other Romance languages (see [1] for French, [2] for Spanish), in
Portuguese the formal criterion more operational for proper names, that distinguishes
them from common nouns, is the initial capital letter. In fact, in Portuguese texts, the use
of initial capitalized words in the interior of a sentence, i.e. in an unambiguous position,
typically indicates the presence of a proper name (or of part of a multiword proper name).
Although such criterion presents some difficulties, mainly due to case inconsistency3, in
this paper we assume that Portuguese names correspond to a word or a string of words

1Av. Rovisco Pais, 1000 Lisboa, Portugal. E-mail: sme at ist.utl.pt
2Faculdade de Letras da Universidade de Lisboa, Alameda da Universidade, 1600-214 Lisboa, Portugal.

E-mail: e_ranchhod at fl.ul.pt
3For instance, ministro (minister) can be capitalized or not in the same text: o ministro; o Ministro.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-62

62



initialized with a capital letter (e.g. Lisboa ‘Lisbon’; Hospital de Santa Maria ‘Saint
Mary’s Hospital’)4.

The challenging problem with candidate named entity strings is the correct delim-
itation and subsequent classification of entities [2]. In fact, a string of consecutive ini-
tial capitalized words – containing potentially functional words, such as determiners and
prepositions, or the coordinating conjunction e –, can represent either a single name or a
series of embedded or independent names, as illustrated by the examples in (1) and (2),
respectively:

(1) a assinatura do Acordo Geral sobre Tarifas e Comércio.
(the signing of the General Agreement on Tariffs and Trade)

(2) a vantagem de Barack Obama sobre Hillary Clinton e John Edwards.
(the advantage of Barack Obama over Hillary Clinton and John Edwards)

Despite their similar structure, example (1) corresponds to a single named entity (the
naming of a particular agreement) that contains a preposition (sobre ‘on’) and a conjunc-
tion (e ‘and’), while example (2) illustrates a discourse structure containing three inde-
pendent person names connected by a preposition and a conjunction. This means that, as
with common noun phrases, proper names exhibit structural ambiguity in prepositional
phrase attachment and in conjunction scope.

In this paper we are concerned with the disambiguation of proper name strings con-
taining the coordinating conjunction e. The ambiguity caused by this conjunction is not
negligible. Using simple algorithms, we could estimate that, in a journalistic corpus with
20,463 candidate names, the conjunction occurs 1038 times, which indicates that around
5% of the strings are ambiguous. This proportion is analogous to estimations reported
for English before [3], where in a sample of 545 candidate named entity strings, 31 con-
junctions were found. Determining the correct analysis of ambiguous strings with coor-
dinating conjunction is important for Portuguese Named Entity Recognition and Classi-
fication, and obviously for all applications that rely on named entity extraction.

1. Related Work and Motivation

For Portuguese, it has been observed [7] that the coordinating conjunction e may cause
structural ambiguity, gave some examples of that ambiguity, and mention that its reso-
lution would require deep syntactic parsing of the text. In the HAREM evaluation con-
test [8], the proportion of ambiguity and mistagging caused by the erroneous analysis
of name coordination have not been evaluated. We participated in the HAREM evalua-
tion, using a system that scored high, but was not capable of handling conjunction in an
effective way. The present paper describes the work developed since then on the topic.

For the purpose of this experiment we have considered four semantic classes of
proper names: PESSOA (person), names referring to people; LUGAR (location), ge-
ographical names referring to countries, cities, mountains, etc., and ORGANIZACAO
(organization), names denoting companies, governmental institutions, etc. These are the

4Whenever possible and appropriate, we give an approximate translation in English for our Portuguese
examples. We omit the translation for person names, and for those names whose spelling coincides largely with
that of the original language (e.g. Bonnie e Clyde ‘Bonnie and Clyde’).

S. Eleutério and E. Ranchhod / Finite-State Local Grammars 63



three main types of names, collectively known as “enamex” since the MUC-6 evaluation
(1995). The fourth category, DIVERSO, is a residual, semantically heterogeneous class
(“miscellaneous” in the CONLL conferences). It includes naming expressions for events,
artifacts, book and movie titles, etc.

2. Linguistic Description

Our concern is the correct delimitation and classification of Portuguese proper names in
strings that contain the coordinating conjunction e5. We have extracted from the corpus
all the proper name strings containing at least one and at most two conjunctions. The
linguistic analysis of such data let us distinguish two different values of the conjunction:
(i) the conjunction is a constituent of the name, i.e. the named entity contains “an internal
conjunction” [1], or (ii) the conjunction denotes a relation between two independent
names, i.e. the conjunction is name-external. As with common noun phrases [9], when
the conjunction links two multi-word independent names some name constituents can
be ellipted from one of the names. The ellipses (of part of a name) causes additional
difficulty to name identification and classification.

In next sections we describe and illustrate the main linguistic types of coordinated
name structures.

2.1. Internal Conjunction

We consider that the conjunction is name-internal if it is an inherent and distinctive el-
ement of the proper name. In Portuguese, the coordinating conjunction e can be an in-
ternal constituent of the four pre-defined semantic types of entities. A few examples of
proper names containing conjunctions follow:

- PESSOA: family names (Maria Brito e Cunha), artistic groups and bands (Chutos
e Pontapés; Despe & Siga),

- LUGAR: countries (São Tomé e Príncipe), streets containing person and geo-
graphical names (Rua Melo e Costa),

- ORGANIZACAO: institutions (Câmara de Comércio e Indústria ‘Chamber of
Commerce and Industry’), companies (Águas do Douro e Paiva),

- DIVERSO: mentions in texts to events, museums, books, operas, movies etc.
(Crime e Castigo ‘Crime and Punishment’, Tristão e Isolda ‘Tristan and Isolda’,
Bonnie e Clyde ‘ Bonnie and Clyde’).

In all these instances, proper names are multiword nouns, constituted of at least three
words, of which one is the lower case coordinating conjunction.

5The conjunction e can be represented by its variant spelling &, but this is rather infrequent in Portuguese.
For comparison, in our corpus, there are 20 forms &, against 1018 forms e. In all these occurrences, & is a
name-internal conjunction.

S. Eleutério and E. Ranchhod / Finite-State Local Grammars64



2.2. External Conjunction

A totally different and most frequent situation is that where the coordinating conjunction
is not part of the name, but it denotes a relation between two independent names. This is
the case illustrated by the example:

(3) O Chile, a Argentina, o Brasil e os Estados Unidos procuram
(Lit. The Chile, the Argentina, the Brazil and the United States seek)6

The conjunction appears at the end of an enumeration, linking the last two geograph-
ical names.

2.2.1. Ellipsis.

Coordination often involves ellipsis, which is a means of avoiding repetition [9]. For
example, the repetition of Carolina is avoided in:

(4) Carolina do Norte e do Sul
(North and South Caroline)

The ellipsis of Carolina before do Sul (i.e. in the second conjoined noun phrase)
leaves the second name lexically incomplete. Following [9], we will call this reduction
anaphoric ellipsis, since it implies the recuperation of information (a word, in this in-
stance) mentioned before in the discourse structure.

Ellipsis can involve the omission of a word that will be mentioned later in the dis-
course. For this reason, we will call that reduction cataphoric ellipsis. In the following
example, the family name Rocha, common to Andrée and Clara, is omitted after Andrée,
only appearing later, next to Clara:

(5) a mulher e a filha de Torga, Andrée e Clara Rocha
(the wife and the daughter of Torga, Andrée and Clara Rocha)

These few examples illustrate that the coordination of two proper names often in-
volves the removing of lexical items from one of them: in anaphoric ellipsis, the second
name is incomplete; in cataphoric ellipsis, on the contrary, it is the first name that is af-
fected by lexical reduction. In both types of ellipsis the missing words can be exactly
recovered (Carolina do Norte e Carolina do Sul, example (4); Andrée Rocha e Clara
Rocha, example (5)).

But in coordinated proper names the ellipted items need not be identical in all re-
spects:

(6) Câmaras Municipais de Braga e do Porto
(Municipalities of Braga and of Oporto)

Taking into consideration the real world, the interpretation of (6) is obviously that
only two municipalities are mentioned in the discourse, i.e. Câmara Municipal de Braga
and Câmara Municipal do Porto (Municipality of Braga and Municipality of Oporto).

6In Portuguese, some geographical names may be preceded by articles, that have gender and number inflec-
tion: o, a, os, as (the).

S. Eleutério and E. Ranchhod / Finite-State Local Grammars 65



What is missing in the second conjoined name of (6) is Câmara Municipal (and not
Câmaras Municipais). So, in situations like this one, the correct treatment of ellipsis
requires the reconstruction of two noun phrases and the identification of two singular
names: Câmara Municipal de Braga e Câmara Municipal do Porto (Municipality of
Braga and Municipality of Oporto).

The grammars that we have designed can handle ellipsis, but they are not totally
satisfactory. This is one of the topics that needs further improvement.

3. Data and Resources

The textual data were extracted from a general-purpose journalistic corpus: CETEM-
Público. This is a Portuguese untagged public corpus, consisting of excerpts of the Por-
tuguese daily newspaper Público that contains about 180 million words (for technical
information about the corpus, see [10]).

For the purpose of the work described here, a subcorpus (corpus from now on) with
594,709 tokens, of which 260,071 are words integrated into 11,600 sentences, was drawn
randomly from that large corpus.

Using a case-sensitive general tagger, based on a large-scale lexicon, developed pre-
viously [11], we identified in that corpus 20,463 candidate named entities, i.e. sequences
of at least two initial capitalized words7. We obtained 1038 instances of the conjunction:
1018 instances of the conjunction ‘e’ and 20 instances of its variant ‘&’.

We also permit strings to include lower case functional words, articles: o, a, os, as
(the) and prepositions: de (of), para (for), sobre (on), as well as some punctuation marks
(apostrophe, hyphen, comma, quotes). Articles, prepositions, apostrophes and hyphens
can be found inside Portuguese multiword names, in particular person and geographical
names:

(7) África do Sul (South Africa, lit. ’Africa of the South’)
(8) João d’Ávila (Person name)
(9) Ernesto de Melo e Castro (Person name)
(10) Trás-os-Montes (Portuguese region)

In the example (7) the preposition de (of) is contracted with an article (do = de+o).
The same preposition is truncated, and an apostrophe replaces the reduced vowel, in
example (8). The aristocratic, or aristocratic-like, family name of example (9), de Melo
e Castro, incorporates the preposition de and the conjunction e. In (10), Trás-os-Montes,
as well some other geographical (e.g. the city Dar-es-Salam) and organization names,
contains an internal hyphen linking the lexical constituents. A few complex names (i.e.
multiword names with nested names) can contain commas:

(11) Seminário de História Medieval, Moderna e Contemporânea
(Seminar in Medieval, Modern and Contemporary History)

In general, commas are found in independent name apposition, and, since the con-
junction represents the end of an enumeration, it can be used as an external evidence for

7In the present study, we have restricted ourselves to candidate named entity strings that contain a single
conjunction.

S. Eleutério and E. Ranchhod / Finite-State Local Grammars66



conjunction analysis. Brackets and quotes include named entities but they are not found
inside names.

We did not consider as candidate name entities capitalized words appearing after
a punctuation mark requiring capitalization, since most of them correspond to single
(i.e. not conjoin) uppercase initial words, the majority of which are articles and other
functional words.

For parsing and tagging proper names, in addition to the general tagger, we used
the following lexical, syntactic and semantic resources: a gazetteer comprising around
16,000 lexical entries in total, a list of 337 designators and a list of 380 trigger words
indicating or accompanying persons, organizations, locations, etc.; a set of finite-state
grammars (70), which use the lexical knowledge represented in the gazetteers, designator
and trigger word lists, and describe relevant local syntactic information.

The experiments were conducted using Unitex, a modular open source toolkit based
on finite-state technology [13].

In next paragraphs we describe in more details these data and resources.

3.1. Gazetteers.

Lexical entries are single and multiword person, location, organization and other proper
names. Some names with internal conjunction are included in these word lists (e.g. the
Portuguese surname Melo e Castro (Cf. example 10)). Lists of names used contain:

person: about 6,500 person names; location: about 5,500 major country, province,
state, city and town names; organization: about 3,000 company and governmental and
public institution names; diverse: about 1000 proper names mentioning gardens, bridges,
months, books, newspapers, etc.

The word lists have been extracted semi-automatically from texts and word lists
published on the Web, and enriched manually with linguistic features afterwards [11].
Linguistic attributes include PoS, usually Noun (N), morphological (when appropriate)
and semantic classification. For example, N+Geo+Gep means that the entry is a noun
(N), a geographical name (Geo) of subtype geo-political (Gep).

3.2. Designator and trigger word lists.

We distinguished between designators and trigger words. Designators are lower case
words found in the left or right context of a pre-defined pattern of initial capitalized
words that permit to include them in a class, even subclass, of proper names. For exam-
ple, província de (province of) and rio (river) may consistently allow geographical names
to be determined and included in the semantic class LUGAR (location): província de
Cabinda; rio Ganges. Nouns indicating human occupations (e.g. arquitecto-arquitecta
(‘architect’, masculine and feminine), professor-professora (professor) often precede
person names (professor Moniz Pereira). Designators are particularly useful to recognize
and classify foreign proper names not included in the gazetteers, but mentioned in jour-
nalistic texts (e.g. professor Donald Kettl; actriz (actress) Helen Mirren; armazéns (store)
Marks and Spencer).

Trigger words, in turn, are upper cased words that are included in multiword names
and permit, as designators do, the class of that names to be discovered. For example,
human titles (e.g. Sr., Eng., Prof., Ministro) are regularly upper cased words and ab-

S. Eleutério and E. Ranchhod / Finite-State Local Grammars 67



Figure 1. A graphical representation of a finite-state transducer that implements the rule P1 e P2.

breviations accompanying person names; Companhia de Seguros (Assurance Company),
Grupo Segurador (Assurance Group) and Instituto (Institute) are examples of trigger
words included in organization names (companies and institutions, respectively).

We took advantage of morphological features of Portuguese (in particular, singular,
plural) and have listed separately singular and plural designator and trigger words. A
designator in the plural before a string that contains two conjoined proper names is in
general an external evidence for two independent names: tenores José Carreras e Plácido
Domingo (tenors José Carreras and Plácido Domingo); ilhas Terceira e São Miguel
(islands Terceira and São Miguel), rios Ardila e Guadiana (rivers Ardila and Guadiana).

Designators and trigger words were manually collected by applying the dictionary of
proper names to texts, and looking at their context in those texts. Using Unitex facilities,
designators and trigger words were compiled into a finite-state recognizer to build and
tag proper names.

3.3. Finite-state local grammars.

Designators and trigger words are very helpful for finding names and for classifying them
semantically, but they are insufficient to handle accurately the conjunction’s ambiguity.

Based on linguistic analysis (see sections 3.1, 3.2.), we have written grammar rules
to handle the ambiguity. Such rules describe restricted patterns and constraints specific
to each class of coordinated proper names. There are 70 rules in total, of which 23 for
person, 15 for organization, 9 for location, and 23 for the semantically heterogeneous
group. The set of these context-dependent rules can be viewed as a local grammar [13]
for proper names. Local grammars capture typical patterns associated to designators and
trigger words, but they can also represent accurately dependencies between words, and
general syntactic relations (e.g. subject-verb relations), without applying to more power-
ful syntactic formalisms. They also make use of part of speech tags as well as of linguistic
information included in the gazetteers.

Local grammars can be efficiently compiled into finite state transducers [13], and
then be applied to texts to parse proper names. We compiled our grammars into FST
using Unitex tools.

Fig. 1 represents a finite-state transducer that implements a local rule (or a local
grammar [14]) that captures two independent coordinated person names.

The rule P1 e P2 recognizes two coordinated person names that are the subject of a
plural verb form (<V:p>8). The rule assumes that, in such conditions, the conjunction
is name-external. The rule is represented in a graph that references a person name sub-
grammar, PESS, i.e. the main graph calls the sub-graph PESS. This sub-graph is partially
represented in Fig. 2.

The sub-grammar PESS recognizes as a person name any noun encoded in the
gazetteers as <N+Pes>, which may be preceded by an adequate trigger word (TW_P1)

8Notice that the corpus has been previously tagged by a case-sensitive general tagger based on a compre-
hensive lexicon.

S. Eleutério and E. Ranchhod / Finite-State Local Grammars68



Figure 2. A finite automaton representing the sub-grammar PESS.

and followed by any string of uppercase words (MAJ); it also predicts that any string of
initial capitalized words preceded by a person trigger word is a person name.

In Fig. 1, the transducer outputs represent the sequences of tags that will be inserted
into the text. The results of running the rule P1 e P2 over the corpus are illustrated by
the examples:

(12) <PESS>Pinto Balsemão/<PESS> e <PESS> D. José Policarpo</PESS>

foram felicitados

(13) <PESS>João Paulo II</PESS> e <PESS>Fidel Castro</PESS>

trataram, com a formalidade

(14) <PESS>Cavaco Silva</PESS> e <PESS>António Guterres</PESS>

conseguiram, cada qual a

The collection of the seventy local grammars has been combined and compiled into
a single finite-sate transducer grammar, which was applied in one pass of the parser to
proper name processing.

4. Results and Evaluation

After the processing of the corpus, using Unitex and the linguistic knowledge described
in 4., the system produced a tagged version of the original text. In this annotated cor-
pus all the identified proper names, appearing in coordinated strings, were marked up
with SGML tags that specify their semantic class. For reminding, we have constituted
four semantic classes, tagged as: <PESS> for person names, <ORG> for organiza-
tions, <LUG> for locations, and <DIV> for other diverse semantic types of naming
expressions.

The annotation processing also took into account the conjunction type present in
the string (name-internal, name-external, elliptical construction). The tagged corpus was
automatically scored against the manual tagging of the same text performed by a lin-
guist, who identified 1023 proper names involving the conjunction (e and &). The overall
results of that evaluation are shown in Table 1.

Table 1 shows that, in our journalistic corpus, the more significant set is constituted
of independent proper names linked by the conjunction (80%). Of these only a small pro-
portion (1,5%) is affected by ellipsis. The contribution of the system to the analysis of the
nature of the conjunction is also illustrated. The system scored satisfactorily, except for
cataphoric ellipsis. However, the small number of instances of such constructions makes
the results statistically insignificant. On the other hand, ellipsis detection may be a non
trivial problem even for a human expert. Yet, these results indicate that more sophisti-
cated resources and more extensive data are needed for analyzing elliptic constructions
in an adequate manner. The best results are for name-internal conjunction.

S. Eleutério and E. Ranchhod / Finite-State Local Grammars 69



Table 1. Overall Precision and Recall Scores

Name Name External Conjunction

Internal With no Anaphoric Cataphoric Total

Conjunction Ellipsis Ellipsis Ellipsis

Manual 205 803 11 4 1023

Tags 180 720 9 1 910

Correct 172 607 9 1 789

Precision 0.96 0.84 1.00 1.00 0.86

Recall 0.84 0.76 0.82 0.25 0.77

F-measure 0.89 0.80 0.90 0.40 0.82

Table 2. Overall Scores of Semantic Analysis

Semantic Manual System annotation

Class Tagging Tags Correct Precision Recall F-measure

PESS 727 635 589 0.93 0.81 0.86

ORG 443 468 350 0.75 0.79 0.77

LUG 512 411 382 0.93 0.75 0.83

DIV 164 127 108 0.85 0.67 0.74

Total 1846 1641 1429 0.87 0.77 0.82

Table 3. Name-internal Conjunction Scores

Semantic Manual System annotation

Class Tagging Tags Correct Precision Recall F-measure

PESS 45 39 39 1.00 0.87 0.93

ORG 99 94 88 0.94 0.89 0.91

LUG 16 9 8 0.89 0.50 0.64

DIV 45 38 37 0.97 0.82 0.89

Total 205 180 172 0.96 0.84 0.89

The human annotator also included proper names into one of the four pre-defined
semantic classes. Table 2 shows the human analysis, and evaluates the results not only
for the system as a whole, but for each semantic class of names.

As a complementary view to conjunction analysis, we have examined in more details
the data involving name-internal conjunction. Table 3 shows the achieved scores for each
semantic class of proper names.

The F-measure is better than its value in Table 2. The fact that the conjunction variant
& (20 occurrences) is always internal to the name may contribute to this result.

5. Conclusion

In this work we have concentrated on the problem of the correct delimitation and classifi-
cation of Portuguese proper names in strings that contain the coordinating conjunction e

S. Eleutério and E. Ranchhod / Finite-State Local Grammars70



(and). Such strings are ambiguous, since the conjunction is either name-internal, i.e. it is
part of the proper name, or name-external, i.e. it denotes a relation between two names.

We have shown that the various types of ambiguity can be handled satisfactorily
using a small semantic lexicon and finite-state local grammars. Such local grammars do
not just capture typical patterns associated to proper names, but they can also describe
accurately dependencies between words, and local syntactic relations.

We have evaluated quantitatively our results against a manual tagging performed
by a linguist. Unsurprisingly, the results confirm that linguistic knowledge based rules
obtain better precision scores in comparison with the recall values.

In order to improve the work reported here, we believe it is necessary to further de-
velop the syntactic component, by incorporating new and more precise local grammars.

References

[1] D. Maurel, Les mots inconnus sont-ils des noms propres?, in: Actes des journées internationales
d’analyse statistique des données textuelles, Presses Universitaires de Louvain, Louvain (2004).

[2] S. Galicia-Haro and A. Gelbukh, Complex named entities in Spanish texts: Structures and properties, in:
S. Sekine and E. Ranchhod (Eds.), Named Entities: Recognition, classification and use, special issue of
Lingvisticae Investigationes, 30:1 (2007), 69-94.

[3] P. Mazur and R. Dale, Handling Conjunctions in Named Entities, in: S. Sekine and E. Ranchhod (Eds.),
Named Entities: Recognition, classification and use, special issue of Lingvisticae Investigationes, 30:1
(2007), 49-68.

[4] D. Nadeau and S. Sekine, A survey of named entity recognition and classification, in: S. Sekine and
E. Ranchhod (Eds.), Named Entities: Recognition, classification and use, special issue of Lingvisticae
Investigationes, 30:1 (2007), 3-26.

[5] L. Rau, Extracting Company Names from Text, in: Proceedings of the Seventh Conference on Artificial
Intelligence Applications of IEEE (1991).

[6] D. McDonald, Internal and External Evidence in the Identification and Semantic Categorization of
Proper Names, in: Proceedings of SIGLEX Workshop on Acquisition of Lexical Knowledge from Text
(1993).

[7] C. Mota, D. Santos and E. Ranchhod, Avaliação de reconhecimento de entidades mencionadas: princípio
de AREM, in: D. Santos (Ed.), Avaliação conjunta: um novo paradigma no processamento computa-
cional da língua portuguesa, IST-Press, Lisboa, 2007.

[8] D. Santos, N. Seco, N. Cardoso and R. Vilela, HAREM: an Advanced NER Evaluation Contest for
Portuguese, in: Proceedings of LREC (2006).

[9] R. Quirk, S. Greenbaum, S. Leech and J. Svartvik, A Grammar of Contemporary English, Longman
Group, Ltd., 1980.

[10] D. Santos and P. Rocha, Evaluating CETEMPúblico, a free resource for Portugues, in: Proceedings of
the 39th Annual Meeting of the Association for Computational Linguistics (2001).

[11] E. Ranchhod, C. Mota and P. Carvalho, Portuguese Large-scale Language Resources for NLP Applica-
tions, in: Proceedings of the IV Conference on Language Resources and Evaluation, LREC (2004).

[12] S. Paumier, Unitex 1.2. User Manual, in: http://www-igm.univ-mlv.fr/˜unitex/
[13] M. Gross, The Construction of Local Grammars, in: E. Roche and Y. Schabes (Eds.), Finite-State Lan-

guage Processing, The MIT Press, Cambridge, Massachusetts, 1997.
[14] M. Mohri, Local Grammar Algorithms, in: Inquiries into Words, Constaints, and Contexts. Festschrift

in Honour of Kimmo Koskenniemi on his 60th Birthday. CSLI Publications (2005).

S. Eleutério and E. Ranchhod / Finite-State Local Grammars 71



A Memory-efficient ε-Removal

Algorithm for Weighted Acyclic

Finite-State Automata

Thomas HANNEFORTH

Institut für Linguistik, Universität Potsdam

Abstract. Many NLP tasks based on finite-state automata create acyclic result au-

tomata which contain a lot of ε-transitions. We propose an refinement of an exist-

ing algorithm for ε-removal with a better memory consumption behavior in many

practical cases.

Keywords. Weighted finite-state automata, semirings, computational linguistics

Introduction

Many NLP tasks based on finite-state automata (FSA) create results which contain a lot

of ε-transitions. In most of the cases, the results are acyclic since the input is usually a

finite language like a set of sentences. The ε-transitions have to be removed due to speed

and memory efficiency reasons. Two examples should suffice to illustrate the problem:

N -gram counting [1] and weighted local grammar application [2,3].

Fig. 1 shows a toy corpus C as a weighted finite-state automaton (WFSA) over the

real semiring (cf. section 1.1), while fig. 2 exemplifies a bigram counter Counter2. The

�

����

�

��� �

�����

������

�
������

���� �

���

���
���

Figure 1. Corpus C as WFSA (the weights along a path labeled with x must be multiplied to compute the

number of occurrences of x in the corpus)

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-72

72



�

�����
�����
�����
�����
�����

�

�����

�����
�����
�����

�����

���

�����

�����
�����
�����

�����

�����
�����
�����
�����
�����

Figure 2. Bigram counter Counter2

composition of the two, followed by taking the 2nd projection (that is, taking the lower

tape) results in the weighted FSA shown in fig. 31.

Due to the non-determinism in the bigram counter (the transducer in fig. 2 can

choose in state 0 whether to stay in the loop and map prefixes of the input to ε or go

to state 1 and start counting a specific bigram), the result contains ε-subgraphs at the

beginning and at the end of each bigram counted. Since these ε-transitions prevent fur-

ther optimisations like determinisation and minimisation, their removal is an important

prerequisite of these further processing steps.

The second example is from the field of local grammar application. A local grammar

consists of a collection of ”interesting patterns” (for example noun phrase or named

entity patterns) which are applied to some input text. In many cases the part which is

matched by some rule in the local grammar is surrounded by brackets and the non-

matched parts are mapped to ε. Consider a rule2

a(b+) →ε [ . . . ] . (1)

Applied to an input I = acabbbac (again by composition followed by 2nd projection

and mapping all material outside the brackets to ε) this leads to the FSA shown in fig. 4.

Again, we find long ε-chains in the resulting FSA.

1The path 0 1 16 14 8 7 in fig. 3 accounts for the bigram bc found along the path 0 1 7 8 6 5 in fig. 1. The

bigram counter has chosen to map the a prefix and the ad suffix along this path to ε.
2The operator . . . is a symbolic placeholder for the pattern on the left hand side of the rule to be circumfixed

with the brackets (cf. [4]). The operator →ε means that input which remains unbracketed is mapped to ε.

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata 73



�

�
���

�

���

�

���

�

���

�������

��

�����

��

�����

��
�����

�

�����

������

�������

��

������

������

�������

�����

��

���

��

���

���

���

���

���

��

���

�

���

���

���

���

���

���

���

Figure 3. The counted bigrams Π2(C ◦ Counter2)

�

�

�

�

�

�� �� ��
��

�

�

��

�

���

�
�

���

��

�

��� ���
�

Figure 4. Result of the application of rule (1) to acabbbac

Mohri’s ε-removal algorithm

Mohri’s algorithm ([5], which is a generalisation of an algorithm presented in [6]:76 to

the weighted case) works in three steps, which are shown in table 1.

The mode of operation of the algorithm is depicted in fig. 5.

Mohri also discusses the special case of ε-removal if the ε-subgraph is acyclic. In

that case, the first two steps of the algorithm are actually interleaved: the states of the ε-

subgraph are processed in reverse topological order and the ε-paths of step 1 are reduced

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata74



1. For each state p compute the ε-distance to any other reachable state q. Then delete all ε-transitions from the

WFSA.

2. For each state pair p and q with ε-distance w and a single transition from q to r labeled with a ∈ Σ and

weight w′, add a transition from p to r with label a and weight w ⊗ w′ to the WFSA. If q is a final state,

p will also become a final state. If p already was a final state, the final weights of q and p are additively

combined.

3. Remove all non-reachable states and all their ingoing and outgoing transitions.

Table 1. Mohri’s ε-removal algorithm (cf. section 1 for notation)

�

������

������ ��� �

����� �

Figure 5. The core of Mohri’s ε-removal algorithm: whenever the ε-distance between states p and q is w and

a there is a single transition from q to r labeled with a and having weight w′, add a new a-transition from p to

r with combined weight w ⊗ w′. Note that p and q or q and r may denote the same state, even p = q = r is

possible.

� ������ �

�����

� �����

�������������������������

�����

������ �����

�����

Figure 6. ε-removal by processing the states in reverse topological order (weights are added here).

to single ε-transitions. Consider the example in fig. 6. The states are processed in the

order 3, 2, 1, 0. At each state p the ε-removal pattern of fig. 5 is applied and the a-

transitions, which accumulate the weight of the ε-transitions are “pulled” towards the

start state.

Both versions of the algorithm share an efficiency problem which also can be seen

in fig. 6: the algorithm attaches a lot of transitions to states (like 1 and 2) which be-

come unreachable after step 1 and are removed together with their outgoing transitions

in step 3. Only the dashed transition from state 0 to state 4 remains. In tasks like N -gram

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata 75



counting for big corpora and local grammar application for long input texts, this leads

to a growth in memory consumption which may prevent the successful application of

the algorithm. In section 2, we report some experiments in which we compare different

versions of ε-removal algorithms. Before that, section 1 will introduce an improvement

of the algorithm.

1. An improved algorithm

The idea to avoid adding transitions which do not contribute to the resulting FSA is

quite simple: add a data structure which registers the reachable states after step 1 of the

algorithm in table 1 and maintain it during step 2. Before we present the revised version

of the algorithm, some definitions and notational conventions are required. Let A =
〈Σ, Q, q0, F, E, ρ〉 be a weighted finite-state acceptor with alphabet Σ, state set Q, start

state q0, and set of final states F . The set of transitions E is a subset of Q×Σ×W×Q. W
is a set of weights being the carrier set of a semiring (see below). Given a transition t ∈ E
we denote with w[t] ∈ W the weight associated with t, with n[t] the destination state

of t and with l[t] ∈ Σ the label of t. We make use of a adjacency list representation, so

E[p] denotes the outgoing transitions of state p. The final weight function ρ is a function

mapping final states to weights.

A path between states p and q is a sequence of adjacent transitions leading from p
to q. In that case, we call q reachable from p. An ε-path is a path between p and q where

the concatenation of the labels along the path yields ε. In that case, we call q ε-reachable
from p. If a path between p and q is labeled with x �= ε, we say that q is Σ-reachable
from p. A state p is reachable when it is reachable from the start state q0.

The revised version of the ε-removal algorithm, restricted to acyclic WFSA, can

be found in table 2. The function collect-weights(A) in line 1 combines transitions

with similar source state, destination state and label by combining their weights (with

abstract addition). This step is not strictly necessary but potentially reduces the number

of transitions to consider. Since reachability means start state reachability, the algorithm

operates in normal (forward) topological sort order. The topological sort in line 2 ensures

that for every transition p → q the state number of q is strictly greater than the state

number of p. The acyclicity of the input FSA A guarantees that such an ordering is

always possible.

In line 3 we initialise the set of reachable states R with the reflexive and transitive

closure of the set q0 under the Σ− reachabilty relation. After that, R contains all states

which are reachable by regular symbols starting at q0.

Lines 4 to 23 constitute the main loop of the algorithm. All states p ∈ Q which have

outgoing ε-transitions are processed in ascending (that is topological) order. If p ∈ R
we apply the ε-removal pattern (cf. fig 5) to it: for each ε-reachable state p determine

the set of pairs 〈q, w〉, w being the ε-distance from p to q. This task is delegated to a

function compute-shortest-ε-distances and can be implemented in different ways

(see below). Then find a-transitions t (with a ∈ Σ) to states r in q′s adjacency list E[q]
and connect p and r with a transition t′ with l[t′] = l[t] and w[t′] = w ⊗ w[t]. Since p
was reachable, the same is now true for r, so we add r to a set R′. After that, the closure

of R′ under the reachability relation is computed and the resulting set is merged with R.

After the main loop, the function delete-ε-transitions in line 24 deletes all ε-

transitions from A. Finally, line 25 deletes all non-reachable states Q − R from A.

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata76



Require: An acyclic WFSA A = 〈Σ, Q, q0, F, E, ρ〉
Ensure: An equivalent ε-free WFSA A′
1: collect-weights(A)
2: topsort(A)
3: R ← Σ-reachable({q0})
4: for all p ∈ Q in ascending order do
5: if p ∈ R then
6: d ← compute-shortest-ε-distances(A, p)
7: R′ ← ∅
8: for all q with d[q] 
= 0 do
9: for all t ∈ E[q] with l[t] 
= ε do

10: E ← E ∪ 〈p, l[t], d[q] ⊗ w[t], n[t]〉
11: R′ ← R′ ∪ n[t]
12: end for
13: if q ∈ F then
14: if p ∈ F then
15: ρ(p) ← ρ(p) ⊕ (d[q] ⊗ ρ(q))
16: else
17: F ← F ∪ {p}
18: ρ(p) ← d[q] ⊗ ρ(q)
19: end if
20: end if
21: end for
22: R ← R ∪ Σ-reachable(R′)
23: end if
24: end for
25: delete-ε-transitions(A)
26: connect(A)
27: return A

Table 2. ε-removal algorithm with reachability constraint

1.1. Computing ε-distances

The ε-removal algorithm in table 2 relies on an auxiliary function which computes the

ε-distances. Before we come to that we need a suitable weight structure to quantify these

distances.

An algebraic structure 〈W,⊕,⊗, 0, 1〉 is a semiring [7] if it fulfills the following

conditions:

1. 〈W,⊕, 0〉 is a commutative monoid with 0 as the identity element for ⊕.

2. 〈W,⊗, 1〉 is a monoid with 1 as the identity element for ⊗.

3. ⊗ distributes over ⊕.

4. 0 is an annihilator for ⊗: ∀w ∈ W, w ⊗ 0 ⊗ w = 0.

A common instantiation of a semiring is the real semiring KR+ = 〈R+, +, ·, 0, 1〉 where

abstract addition and multiplication coincide with their non-abstract counterparts.

A path π is defined as a sequence of adjacent transitions. The weight w[π] of a path

π = t1t2 · · · tk is defined by w[t1] ⊗ w[t2] ⊗ · · · ⊗ w[tk]. Let Π(P, x, Q) be the set of

all paths with source state p ∈ P , destination state q ∈ Q and labeled with x ∈ Σ∗. The

ε-distance between p and q is defined as follows:

ε-dist(p, q) =

⊕
π∈Π({p},ε,{q})

w[π] (2)

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata 77



Thus, the ε-distance between states p and q might consist of several ε-paths whose

weights are additively combined.

Define a ε-subautomaton of A as a maximal (wrt ε-reachability) connected sub-

automaton of A with transitions only labeled with ε. While processing the input FSA

A in topological order we find a number of these ε-subautomata, since every state p
not being ε-reachable and having outgoing ε-transitions constitutes the start state of

a subautomaton. If the states of a ε-subautomaton rooted in p are also processed in

topological order, it is guaranteed by the path-relaxation property (cf. [8]:609f) that

compute-shortest-ε-distances(A, p) correctly computes the ε-distances for all states

q ∈ Q according to equation (2).

But the topologically ordered state subsequences of two ε-subautomata of A may be

interleaved with respect to the topologically ordered state sequence of A itself. Further-

more, a state can be part of more than a single ε-subautomaton. Consider the (already

topologically ordered) WSFA in fig. 7. There are two ε-subautomata, one rooted at state

1 with topologically ordered state sequence 1 3 4 5 and another rooted at state 2 with

sequence 2 4 5.

So, the problem is, how to compute the ε-distances efficiently, preferably by making

use of the already topologically ordered state sequence of the complete automaton. We

are aware of four solutions for that:

1. Use the topological order of the complete automaton to compute the ε-distances

in the ε-subautomata, eventually skipping states which are not part of the ε-

subautomaton currently under investigation.

2. Start a depth-first search from every start state of a ε-subautomaton, thereby con-

structing a topological order for the states in the subautomaton, which is pro-

cessed in a second pass to compute the distances.

3. Variant of 2: Cache already computed ε-distances thus avoiding recomputation.

4. Use a special queue discipline to make use of the topological sort order computed

in line 2 in table 2.

The last item 4. in the list above needs some elaboration. Since line 2 of the algorithm

in table 2 guarantees that the destination state of a transition is strictly greater than its

source state, we put the states into a priority queue ordered by state number. The ordering

of the state priority queue by state number ensures that all states in the ε-subautomaton

are processed in topological order. The test in line 6 avoids processing any state in the

subautomaton twice.

1.2. Correctness and complexity

Since the states of the WFSA A are visited in topological order – the same is true for

the states in the ε-subautomaton – all ε-distances are correctly computed. A state q for

which the test in line 6 fails – that is, q is not reachable from the start state q0 – cannot

become reachable later during the execution of the algorithm, since that would imply

the presence of back edges in the sense of [8]:546, which would entail a cyclic WFSA,

contrary to our assumption. To summarise, the algorithm doesn’t miss paths contributing

to the weighted language of the WFSA. For the language contributing paths, the proof in

[5]:Theorem 1 carries over.

The worst case time complexity of the algorithm is |Q| times the complexity of

the ε-distance computation step. This worst case would be a WFSA where for every

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata78



Require: A WFSA A = 〈Σ, Q, q0, F, E, ρ〉 and a source state p
Ensure: A vector d; d[s] contains for each state s reachable from p

the ε-distance between the two

1: S ← ∅
2: PQ ← ∅
3: enqueue(PQ, p)
4: while PQ 
= ∅ do
5: q ← dequeue(PQ)
6: if q /∈ S then
7: S ← S ∪ {q}
8: if q = p then
9: dq ← 1

10: else
11: dq ← d[q]
12: end if
13: for all t ∈ E[q] with l[t] = ε do
14: d[n[t]] ← d[n[t]] ⊕ (dq ⊗ w[t])
15: enqueue(PQ, n[t])
16: end for
17: end if
18: end while
19: return d

Table 3. compute-shortest-ε-distances(A, p)

�

������

�
�����

�
�����

������

�����

�����

������ ������

Figure 7. A WFSA with two ε-subautomata

state p all of p′s successor states in topological order were reachable by sequences of

alphabet symbols as well as by ε-paths. The complexity of the ε-distance computation is

in O(|Q|+|E|) if the topological order method (2. in the enumeration above) is used. The

strategy which uses a priority queue is in the complexity class O((|Q| log |Q|) + |E|).

2. Experiments

We implemented the algorithm with in the FSM<2.0> framework, a C++ template li-

brary which allows to use weighted finite-state machines with predefined or user-defined

semirings [9]. To compare different strategies for the computation of ε-distances, we

implemented methods 2. and 4. of the list in subsection 1.1 above. We compared these

two methods with an implementation of the algorithm proposed for acyclic FSAs in [5]

and exemplarily displayed in fig. 6. All algorithms were coded very carefully. We didn’t

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata 79



Total time Max. memory usage # transitions
(in s) (in MB) (before connect)

1. processing in reverse

topological order (cf.

fig. 6)

3.48 409 13,306,056

2. processing the ε-

subautomata in topo-

logical order

8.46 116 2,912,740

3. using a priority

queue (cf. table 3)

8.21 106 2,912,740

Table 4. Using the ε-removal algorithm with different ε-distance computation strategies

further investigate method 1. and 3. in the enumeration in section 1.1 since preliminary

tests with smaller input FSAs indicated that the caching strategy consumed an unreason-

able amount of memory, while the strategy, which skips states not part of the currently

processed ε-subautomaton needed too much time.

The point of origin for the experiments were the sentences of the Tiger treebank [10],

a German newspaper treebank with around 50.000 trees. Its sentences were compiled

into an optimised WFSA over the real semiring with 681,689 states and 730,175 transi-

tions. To this WFSA, a trigram counter similar to the one shown in fig. 2 was applied,

resulting in a WFSA with 2,724,212 states and 3,615,890 transitions, among the latter

were 1,429,530 ε-transitions. The out-degree, that is, the maximum number of outgoing

transitions for a state was 14,044, the size of the alphabet of both WFSAs was 89,418.

The following table shows the processing time, memory consumption and number of

transitions before the final connection step3 for the three ε-distance computation strate-

gies described above. Of course, the WFSA after ε-removal was the same in all cases: it

contained 2,045,059 states (681,686 of these final) and 2,185,500 transitions.

Not surprisingly, the acyclic version of Mohri’s algorithm is very fast4, since it only

requires a single traversion through the state sequence. But, 83.5 % of the added transi-

tions were useless, thus leading to the observed increase of memory usage. For input au-

tomata with a size of the next order of magnitude, the application of this version of the al-

gorithm may become unfeasible. This will especially become true for corpus processing

tasks like N -gram counting, since larger corpora entail bigger alphabet sizes, which in

turn lead to bigger out-degrees of states like q in fig. 5. If all these transitions are attached

to states which may be subject to deletion in the final connection step, superfluous, time

and space consuming computations are a matter of fact.

The two instantiations of the ε-removal algorithm with enforced reachability con-

straint behave almost equally. The priority queue version of table 4 is slightly better,

although it uses a queue with n log n complexity. In both cases, only 25 % of the

transitions must have been removed. This is unavoidable since there always may exist

states whose outgoing transitions become useless after deleting the ε-transitions leading

to them (for example, state 3 in fig. 6).

3All experiments were run on a system with Intel QuadCore 2.66 GHz CPU and 4 GB RAM. We used

float for the weights of the WFSA and int for states and symbols.
4Our implementation of the algorithm benefits significantly from the very fast underlying FSA representation

in the utilised software library, which is capable of adding/deleting over 10 million transitions per second.

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata80



3. Conclusion

We presented a memory efficient algorithm for removal of ε-transitions in acyclic,

weighted automata and conducted some experiments.

Acknowledgments I would like to thank Kay-Michael Würzner for very helpful com-

ments on an earlier version of this article.

References

[1] C. Allauzen, M. Mohri, and B. Roark. Generalized Algorithms for Constructing Statistical Language

Models. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics,

volume 41, pages 40–47. The Association for Computational Linguistics, 2003.

[2] M. Gross. The construction of local grammars. MIT Press, Cambridge, 1997.

[3] M. Mohri. Local grammar algorithms. CSLI Publications, Stanford, 2005.

[4] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI, 2003.

[5] M. Mohri. Generic epsilon-removal algorithm for weighted automata, volume 2088 of Lecture Notes in
Computer Science. Springer, Heidelberg, 2001.

[6] S. Sippu and E. Soisalon-Soininen. Parsing Theory, volume I: Languages and Parsing. Springer, 1988.

[7] W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of EATCS Monographs on
Theoretical Computer Science. Springer, 1986.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

Cambridge, MA, 2nd edition, 2001.

[9] T. Hanneforth. FSM<2.0> – C++ library for manipulating (weighted) finite automata. http://www.
ling.uni-potsdam.de/˜tom/fsm, 2004.

[10] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER treebank. In Proceedings of the
Workshop on Treebanks and Linguistic Theories, Sozopol, 2002.

T. Hanneforth / A Memory-Efficient ε-Removal Algorithm for Weighted Acyclic Finite-State Automata 81



Regular Expressions and Predicate Logic
in Finite-State Language Processing

Mans HULDEN
University of Arizona

Abstract. This paper proposes an extension to the formalism of regular expressions
with a form of predicate logic where quantified propositions apply to substrings.
The implementation hinges crucially on the manipulation of auxiliary symbols
which has been a common, though previously unsystematized practice in finite-
state language processing. We also apply the notation to give alternate compila-
tion methods for two-level grammars and various types of replacement rules found
in the literature, and show that, under a certain interpretation, two-level rules and
many types of replacement rules are equivalent.

Introduction

The popularity of finite-state natural language processing can probably be partly at-
tributed to the expansion of the the idiom of regular expressions—that is, the introduc-
tion of new regular expression operators that provide increasing layers of abstraction
upon simpler regular expressions in automaton and transducer construction. Instead of
designing finite-state automata or transducers manually, or even using a basic set of reg-
ular expression operators, the finite-state developer now has an array of flexible opera-
tions to choose from, including two-level rules, various flavors of rewrite rules, direc-
tional longest-match rules, context restriction rules, priority union, lenient composition,
etc [1,2].

Many of these operators are naturally defined in terms of simpler regular expressions—
for instance, many finite-state toolkits have a separate operator with the semantics of
“contains exactly one instance of a substring drawn from the language L,” L being an
arbitrary regular language. The same idea can of course be expressed through the more
cumbersome and less legible:

(Σ∗LΣ∗) − (Σ∗((Σ+LΣ∗ ∩ LΣ∗) ∪ (LΣ+ ∩ L))Σ∗) (1)

Unlike this example, a good many of the more advanced expressions—such as con-
textual rewriting, or directed replacement—are very difficult to define through basic
regular expressions. The common solution throughout the research and implementation
of these advanced regular expression operators has been the use of “auxiliary marker
symbols”—symbols that in the process of compiling complex statements are inserted
into a language, constrained, and finally removed.

For instance:

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-82

82



• [3] use “auxiliary brackets” to develop a rule compiler for two-level rules, where
a significant portion of the description of the method is devoted to complications
in compiling “overlapping” restriction rules.

• [4] make extensive use of “auxiliary brackets” which are inserted, whose pres-
ence is constrained, and which are then appropriately ignored in some contexts in
defining rewrite rules and two-level rules as regular relations.

• [5], [6], and [7] use various bracketing systems to define replacement, directed
replacement, and parallel replacement rules.

• [8] define a context restriction operator (⇒), as well as a more generalized con-
text restriction operator, through the use of a �-symbol, whose occurrence is con-
strained and which is then removed.

The possible drawbacks with this method, though very expressive, include the dif-
ficulty of post-design analysis of complex constructions, as well as verification of their
correctness. In light of these problems, it would be desirable to at least systematize the
notation, if not to abstract the entire construction method under a new notation where
the component parts would be easy to verify for semantic correctness, and which would
also be easily extended to allow the description and finite-state compilation of novel
expressions.

This paper presents such an abstraction of the technique of auxiliary symbol usage
in designing complex regular languages and relations. We find that, if defined in an ap-
propriate manner, a particular kind of abstraction of this technique is equivalent to a log-
ical notation where we can assert properties of strings in a systematic way that greatly
simplifies the process of defining the types of regular languages and relations pertinent
to natural language processing applications.

1. Notation

When speaking of regular languages, we denote alphabets with Δ, Γ, and Σ. We also
make use of the standard extended regular expression operators: union (X ∪Y), concate-
nation (XY), Kleene closure (X ∗), Kleene plus (X+), intersection (X ∩Y), complement
(¬X ), difference (X − Y), and asynchronous language product (X ‖ Y) (also called
shuffle product). We follow the convention that individual symbols are represented in
lower case, e.g. a, while arbitrary regular languages are calligraphic, e.g. A, and reserve
upper case letters to denote logical propositions, e.g. S(X ,Y). We also use the standard
logical quantifiers and connectives (∃x), (∀x), ¬, ∨, ∧, →, ↔.

2. Method

We will first outline the reasoning informally and more concretely, and later introduce
the notation more formally and generally.

Consider the effect of defining a language over an alphabet Δ = Σ ∪ Γ, where the
alphabet is divided into two parts Σ = {a, b} and Γ = {©} (our auxiliary alphabet),
such that it contains exactly one instance of ©, i.e. (Σ∗ © Σ∗), and then intersecting
this language with a language that contains the ©-symbol, and finally deleting the ©

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 83



symbol from the language. Let us call this auxiliary symbol removal operation Π(L). For
example:

Π((Σ∗ © Σ∗) ∩ (Δ∗ © aΔ∗)) (2)

Clearly, the end result in this example is the language over Σ∗ that contains at least
one a, i.e. another way of saying (Σ∗aΣ∗). However, laid out in this fashion, we can see
that separating the regular expression into two parts has brought about two independent
statements with different semantics: the first one, (Σ∗©Σ∗) simply asserts the existence
of exactly one symbol ©, while the second, (Δ∗©aΔ∗) asserts that there is a ©-symbol
which is followed by an a. Informally, the first part says “there exists exactly one position
called ©,” and the second part: “some position called © is followed by an a.”

In effect what we have achieved in intersecting these two statements and deleting the
©-symbol is a form of variable binding—the first regular expression being equivalent to
existential quantification of a position in a string, or the “existence of a substring,” and
the latter a proposition bound by the variable ©.

We can now expand the same idea, and replace the first part of the regular expres-
sion with (Σ∗

x©Σ∗
x©Σ∗) (for the sake of clarity in notation, let us replace the © with

x© in the auxiliary alphabet Δ, to make clear that our auxiliary symbol says something
about a letter variable which we shall call x). We are now defining the language over
Δ∗ that contains exactly two symbols x©. The purpose of the two x©-symbols is to de-
lineate two positions in a string x, the starting and the ending position (the usefulness
of this will become clear later). Let us call the combined effect of this regular expres-
sion and of removing the auxiliary symbols the regular expression equivalent of (∃x),
i.e. Π(Σ∗

x©Σ∗
x©Σ∗). In intersecting this language before removal of the auxiliary sym-

bols with any regular language ϕ (that may or may not contain x©) we can achieve a
propositional sentence (∃x)(ϕ).

To continue with this idea: what about the possible propositions in ϕ? In modelling
of the open statements ϕ, the simplest desirable proposition would be one with the se-
mantics that a substring is a member of some language L, i.e. x ∈ L. Over Δ∗ the regular
expression (Δ∗

x©L x©Δ∗) describes precisely this circumstance: “there exists a substring
x©L x©.” Another useful statement to have would be a kind of successor-of-relationship
S(t1, t2)—t1 is immediately succeeded by t2—where the terms could either be arbitrary
languages or variables. This translates naturally to (Δ∗t1t2Δ

∗), for example, S(x,A)
would be rendered as (Δ∗

x©Δ∗
x©AΔ∗).

Since we have seen that (∃x) in our still tentative logic over strings can be modelled
by Π(Σ∗

x©Σ∗
x©Σ∗), and since a universally quantified proposition (∀x)(ϕ) is equiva-

lent to ¬(∃x)¬(ϕ), the regular expression equivalent of a universally quantified state-
ment is:

(∀x)(ϕ) ≡ ¬Π((Σ∗
x©Σ∗

x©Σ∗) ∩ ¬(ϕ)) (3)

We are now in a position to put together a complete logical sentence. For example,
the sentence:

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing84



(∀x)(x ∈ A → S(x,B)) (4)

would describe the language where every instance of a member of language A is im-
mediately followed by a string from language B. In translating the open statements
to regular expressions, we make use of the conditional laws of statement logic, where
(P → Q) ⇔ (¬P ∨ Q), and we find the equivalent regular expression following the
above scheme:

(∀x) x ∈ A S(x,B)︷ ︸︸ ︷
¬Π

(
(Σ∗

x©Σ∗
x©Σ∗) ∩ ¬

(
¬

︷ ︸︸ ︷
(Δ∗

x©A x©Δ∗) ∪
︷ ︸︸ ︷
(Δ∗

x©Δ∗
x©BΔ∗)

))

2.1. Variables

So far we have only assumed propositions quantified by a single variable x. Naturally,
we will want to extend this to an arbitrary number of variables. This requires some book-
keeping on the part of the alphabets. Suppose we have a sentence:

(∀x)(∃y)(ϕ) (5)

Now, it will not do to define (∃y) as (Σ∗
y©Σ∗

y©Σ∗) for the simple reason that this
precludes the existence of x© symbols (as x© is not a symbol of Σ). So, with several
symbols, we need the ability to describe “any symbol in Δ except y©,” to ensure that
we allow other auxiliary symbols in the regular expression equivalent of (∃y). This is of
course easy to describe as a regular language (Δ − y©), and as a shorthand and to keep
the notation clean we shall say Δy signifies precisely this: any symbol in the alphabet Δ
except y©. Hence, a construction such as

(∀x)(∃y)(ϕ) = ¬(∃x)¬
(
(∃y)(ϕ)

)
(6)

becomes:

¬Π
(
(Δ∗

x x©Δ∗
x x©Δ∗

x) ∩ ¬Π
(
(Δ∗

y y©Δ∗
y y©Δ∗

y) ∩ (ϕ)
))

(7)

Until now, we have said little about the operation Π(L), except that it deletes the
symbols in our “variable alphabet” Γ from the language L.1 Again, in order to keep the
notation uncluttered, we shall define Π(L) as a dynamic operation, that also changes the
alphabet Γ, shrinking it by one symbol, which is the symbol that is currently being re-
moved. This operation is crucial for the possible language complements that need to be
taken in the process of eliminating several quantifiers. In the above example (7), for in-
stance, the innermost Π-operation deletes the symbol y© from the language and removes
the symbol y© from Γ, leading to that the following complement is taken with respect to

1From a formal language perspective, this is simply a substitution f(Γ) = ε, or, from an automaton per-
spective, a replacement of transitions containing symbols from Γ with ε-transitions.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 85



an alphabet Δ (recall that Δ = Γ ∪ Σ) that only contains one auxiliary { x©}. Likewise,
after the outermost Π operation, Δ = Σ, since all auxiliaries have now been purged from
the auxiliary alphabet. This operation could be described non-dynamically, but at the cost
of much lengthier expressions and without contributing to the clarity of the operation.

2.2. Propositions

We are naturally not restricted to the propositions developed so far—in fact any subset
of the language Δ∗ is a proposition.

Since a proposition, such as x ∈ L, i.e. (Δ∗
x©L x©Δ∗) may contain sublanguages

where no variable symbols occur—in this example L may be such a language—care
must be taken to ensure that other variables can freely occur within the regular expression
equivalent of the proposition. Hence, propositions should in general be augmented with
freely interspersed symbols from Γ, our marker alphabet. The proposition x ∈ L then
becomes (Δ∗

x©L x©Δ∗) ‖ Γ∗.2

For example, since we can now extend the notation with any proposition, we might
want to define S(t1, t2) as n-ary, instead of a two-place predicate (which will save
much ink and instantiation of variables in some constructions). It is easy to see that
S(t1, . . . , tn) ≡ (Δ∗t1 . . . tnΔ∗) ‖ Γ∗, where ti = xi©Δ∗

xi© if the term ti is a variable,
and simply Li if ti is a language constant. For example, S(L, x,R), then becomes:

(Δ∗L x©Δ∗
x©RΔ∗) ‖ Γ∗ (8)

2.3. Interim summary

We now have a construction method by which our proposed logical notation can be
systematically converted to regular expressions, and hence to finite-state automata.3 In
particular, new propositions can be introduced in a fairly straightforward way, and we
shall do so whenever needed in the upcoming examples. The basic construction together
with basic propositions is summarized in Table 1.

We can now proceed to tackle a selection of difficult regular language problems and
illustrate their solution through the notation developed here.

2This would of course be equivalent to (Δ∗ x©(L ‖ Γ∗) x©Δ∗), which may be more efficient to compile
because of less non-determinism in the intermediate results: if L contains no symbols from Γ, which should be
the case, then allowing symbols from Γ to freely occur within strings from L will not introduce nondeterminism
in the automaton construction. However, for the sake of generality, we will simply say that a proposition P

shall be implemented as above, with symbols from Γ occurring anywhere, i.e. P ‖ Γ∗.
3The overall approach is somewhat similar to classical methods of converting sentences if first-order logic

of one successor FO[<] and monadic second-order logic MSOL[S] to finite-state automata [9,10]. There are
two crucial differences, however: a) classical methods employ a joint alphabet of symbols and variables rep-
resented as vectors, while we entirely divorce the variable alphabet from our symbol alphabet, and b) we treat
variables semantically as denoting substrings with a beginning and an end, rather than integers representing
positions in a string. This approach, we believe, confers much more conciseness in notation, and the advantage
of a simple way of defining new predicates whenever necessary, as well as being compilable into automata
using existing operations of finite-state toolkits. [11] also develops a logical formalism based on the classical
methods mentioned above and applies it to language processing; however, this relies on a separate compiler
from MSOL[S]-logic, and requires that extra predicates be defined in terms of primitive propositions, rather
than allowing intermixing regular expressions and logical statements.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing86



Logical notation R.E. equivalent Notes

(∃x)(ϕ) ≡ Π
`
(Δ∗

x
x©Δ∗

x
x©Δ∗

x) ∩ (ϕ)
´

Δx = (Δ − x©)

(∀x)(ϕ) ≡ ¬Π
`
(Δ∗

x
x©Δ∗

x
x©Δ∗

x) ∩ ¬(ϕ)
´

x ∈ L ≡ (Δ∗ x©L x©Δ∗) ‖ Γ∗

S(t1, . . . , tn) ≡ (Δ∗t1 . . . tnΔ∗) ‖ Γ∗ ti = xi©Δ∗xi© if ti is a variable xi

x = y ≡ (Δ∗( x© ‖ y©)Δ∗( x© ‖ y©)Δ∗) ‖ Γ∗

Table 1. Table summarizing the logical notation and their the regular expression equivalents. We assume the
alphabets Γ and Σ, where Γ is the marker alphabet that contains the variable symbols under quantification,
such as x©, y©, etc. Collectively, the two alphabets together are denoted Δ, i.e. Δ = Γ ∪ Σ. The operation
Π(L) deletes the currently quantified variable symbol from L, and removes it from Γ.

2.4. An example construction

Returning to the the example construction of which a standard regular expression was
given in Eq. (1), that of a language that contains only one factor from some arbitrary
regular language L; in our logical notation, we could express this as:

(∃x)(x ∈ L ∧ (∀y)(y ∈ L → x = y)) (9)

Here we need a way to model the proposition x = y for some variables x and y.
This circumstance in captured by the language where both x© and y© markers share the
same positions (see table 1).

Again, using the fact that (P → Q) ⇐⇒ (¬P ∨ Q), and following the translation
method given we get the following regular expression:

Π
(
(Δ∗

x x©Δ∗
x x©Δ∗

x) ∩ (α ∩ ¬Π((Δ∗
y y©Δ∗

y y©Δ∗
y) ∩ ¬(¬β ∪ γ)))

)
(10)

where:

α = (Δ∗
x©L x©Δ∗) ‖ x©∗

β = (Δ∗
y©L y©Δ∗) ‖ ( x©∪ y©)∗

γ = (Δ∗( x© ‖ y©)Δ∗( x© ‖ y©)Δ∗) ‖ Γ∗

It should be noted that there is much room for optimization in this particular construction:
for instance, it is obvious that the shuffle product in unnecessary in α and partly so in γ,
etc., however, we represent them explicitly here to follow the construction method me-
chanically. In general, depending on the nature of the propositions and the formula, some
steps can be optimized or omitted to avoid unwanted nondeterminism in the intermediate
stages of automaton construction.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 87



3. Applications

3.1. Context restriction

Context restriction over arbitrary regular languages is an operation discussed in [12,8].
The notation is as follows:

A ⇒ B1 _ C1, . . . ,Bn _ Cn (11)

The intended semantics is that a context restriction statement of the format above
defines the language where every instance of a substring from the language A is sur-
rounded by some pair Bi and Ci. This language is quite challenging to capture through
standard regular expression operators, as seen in the solution given in [12].

The language of context restriction translates very naturally into a logical notation:
if x is a substring that is a member of language A, then x is the successor of a string from
B and a string from C is the successor of x. Employing the n-ary successor-of predicate
introduced earlier, this becomes:

(∀x)
(
x ∈ A →

(
S(B1, x, C1) ∨ . . . ∨ S(Bn, x, Cn)

))
(12)

and can be translated into a regular expression and a finite automaton exactly as described
above.

3.2. Two-level rules

A two level grammar defines a subset of the language Σ∗
f , where Σf is the set of feasible

pairs, defined in advance. The set Σ∗
f is constrained by the use of statements involving

four operators: a : b ⇒ l _ r (saying the symbol a : b is only permitted between l and
r), a : b ⇐ l _ r (which says a symbol a occurring between the languages l and r must
be realized as b), and a : b/ ⇐ l _ r (saying a : b is never allowed between l and r) [13].
The notation a : b ⇔ l _ r is a shorthand for the conjunction between the first two types
of rules.

The feasible pairs Σf are also assumed to include every symbol pair occurring in
some statement in the collection of grammar rules on the left-hand side.

Compiling a collection of such rules into a finite-state automaton (or transducer) is a
non-trivial task, particularly for right-arrow rules with multiple contexts. However, each
of the rule types are quite comfortably expressible in the logical notation proposed:

a : b ⇒ l _ r ≡ (∀x)(x ∈ a : b → S(l, x, r))

a : b ⇐ l _ r ≡ ¬(∃x)(x ∈ a : b ∧ S(l, x, r))
a : b / ⇐ l _ r ≡ ¬(∃x)(x ∈ a : b ∧ S(l, x, r))

There is the additional practice [3,2] that right-arrow rules with multiple contexts
are allowed, are separated by commas, and are interpreted disjunctively: i.e. one of the
contexts must hold for the symbol pair a : b to be legal. For right-arrow rules, this
prompts exactly the same solution as for context restriction above:

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing88



(∀x)(x ∈ a : b → S(l1, x, r1) ∨ . . . ∨ S(ln, x, rn)) (13)

For left-arrow rules and disjunctive multiple contexts, the logical specification is:

¬(∃x)
(
x ∈ a : b ∧ (S(l1, x, r1) ∨ . . . ∨ S(ln, x, rn))

)
(14)

that is, in every context li _ ri, a must be realized as b.
In essence, the above is a complete compilation algorithm and logical specification

for two-level rules, if translated to regular expressions through the method presented
above. The collection of individual rules are assumed to be intersected with each other
and the set of feasible pairs. Hence, we get that a two-level grammar G can be compiled
as:

G = Σ∗
f ∩ R

where R is the intersection of the individual rules compiled through the notation pre-
sented here.

3.3. String-to-string two-level rules vs. replacement rules

Many proposals have been put forth regarding the conversion of so-called phonological
rewrite rules into finite-state transducers. This includes [4], [7], [14], [6], inter alia. We
shall here consider the construction of transducers that implement “replacement rules,”
as defined in [2]. However, in order to simultaneously construct transducers and clearly
define the semantics of these replacement rules, we shall build them as an extension to
two-level rules and interpret them as two-level correspondence rules augmented with
specific conflict resolution strategies.

3.3.1. Replacement rules

[2] define a set of replacement rules of the format:

A op B dir L _ R

where op is one of -> (replace), @-> (replace leftmost, longest-match), @> (leftmost
shortest-match), and dir one of || (upper-side context), // (left context holds on lower
side, right on upper), \\ (left context holds on upper side, right on lower), \/ (both con-
texts hold on lower side). Replacement op may also be optional by surrounding it with
parentheses, e.g. (->). Multiple replacement rules may also apply in parallel, which is
indicated by separating the different rules with „, although in this case op and dir must
be identical for all parallel rules.4

4This is based on an observation from the reference implementation of these operators, xfst 2.10.9.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 89



The proximity between a replacement rule a -> b || l _ r and a two-level
rule a : b ⇔ l : _ r : has been noted by [5]. Also, an “optional” replacement rule
(->) seems to correspond somewhat to two-level right-arrow (⇒) rules. What stands
in the way of this analogy is that replacement rules are assumed to describe a relation
where the arguments are any regular language, while the two-level paradigm is restrict-
ing symbol-to-symbol correspondences. To bring these two formalisms closer together,
we shall therefore as a first step extend the two-level formalism to allow any regular
languages as arguments, and see that, under a certain interpretation, the formalisms of
parallel replacement rules and string-to-string two-level rules with a conflict resolution
strategy describe exactly the same relations. Through this approach we also give a clear
logical definition of the two using the formalism presented in this paper.

3.3.2. String-to-string two-level rules

In what follows, we shall assume the regular semantics of two-level rules, with the addi-
tion that in statements such as:

A : B op L _ R

where op is one of ⇔, ⇐, ⇒, A and B may be any regular language, while L and R may
be a correspondence between any two regular languages, i.e. L1 : L2. For example:

a+ : x ⇔ a : Σ∗ _ b : Σ∗

Also, we abandon the idea of constraining a set of feasible pairs, and replace this
with the notion of feasible string pairs, which is a subset of (Σ∗ × Σ∗), which includes
all single-symbol identity pairs, as well as every language pair A : B used in a two-level
rule, i.e. a grammar with a single rule like a : b+ ⇔ x : Σ _ x : Σ is a constraint over
the feasible string pairs (Id(Σ) ∪ a × b+)∗.5

3.3.3. Rule conflicts

As is well known for writers of two-level grammars, rules may conflict with each other
in the sense that one rule blocks the application of another rule, or two rules are mutually
contradictory. These are classifiable as both left-arrow conflicts and right-arrow conflicts.
An example of a left-arrow conflict, is given by the pair of rules:

a : b ⇐ l _ r a : c ⇐ l _ r

Obviously, there cannot exist a string that contains l followed by an a on the lexical
side, and r, where the a is realized as both b and c on the surface side. A right-arrow
conflict can be illustrated by the pair of rules:

a : b ⇒ l _ r a : b ⇒ c _ d

5See the appendix for a suggested encoding of regular relations as a regular language at the automaton level.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing90



Here, the two rules state that the pair a : b is only allowed in two different contexts:
l _ r and c _ d, in effect disallowing a : b everywhere.

For practical purposes, automatic conflict resolution has usually focused on two
strategies: either giving automatic precedence to one of two rules, or giving precedence
to the rule which is more ‘specific’ in its context specification (related to the notion called
‘disjunctive ordering’ in serial rewrite-rule phonology).

However, in generalizing two-level rules to arbitrary strings, there is the additional
possibility that a rule may be in conflict with itself.6 Consider the rule:

a+ : b ⇔ _ (15)

i.e., a+ may and must be realized as b everywhere. Two hypothetical string pairs that at
first glance may seem feasible are:

a a a a
b b b 0

However, both possibilities are ruled out: in the first case aa (a member of a+ is
corresponding to bb (not a member of the language b), and in the second case the latter a
(a member of a+) is realized as 0 (not a member of b). Hence, any input involving more
than one consecutive a has no feasible realization: the rule is in left-arrow conflict with
itself.

Also, consider the rule:

a+ : b ⇔ l : Σ∗ _ (16)

and the two pairs:

l a a l a a
l b a l b 0

Here, the leftmost correspondence is ruled out because a substring aa corresponds to
ba, while the rule says a+ must be realized as b everywhere. Similarly for the rightmost
case: the last a is a member of the language a+, but is realized as zero, not b.

Herein lies a crucial difference between the expected behavior of replacement rules:
a replacement rule

a+ -> b || l _ (17)

will accept both correspondences described. It seems a two-level formalism based on
string-to-string constraints becomes less useful than symbol-to-symbol constraints be-
cause of this stringency.

6Which is indeed also possible in symbol-to-symbol two-level rules, but only with epenthesis rules, i.e. rules
of the type 0 : a ⇐ l _ r. This and other epenthesis-related cases will be discussed in the appendix.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 91



If we wanted to pursue the analogy between replacement rules and string-to-string
two-level rules, there is also the possibility of writing replacement rules that apply in
“parallel,” e.g.

l a r -> l a l || _ „ a -> b || l _ r (18)

The way the parallel rules are defined, the two correspondences:

l a r l a r
l a l l b r

are allowed. However, for a similar set of two-level constraints

lar : lal ⇔ _ a : b ⇔ l : _ r :

neither one is allowed, since they are in mutual conflict.

3.3.4. Conflict resolution

The above data suggest a strategy for automatic conflict resolution to make string-based
two-level rules useable: if we would like to define transducers that always give some
output, regardless of the input, and, at the same time, not give certain rules arbitrary
precedence over others, the only feasible strategy is to have rules always yield to other
rules if they are in conflict. In the previous example, we will accept both lal and lbr as
outputs for the input lar, because in the two cases, rule 1 should yield to rule 2, and vice
versa, mutually.

In formalizing this using our logic notation, we want to say that a rule (left-arrow
or right-arrow) must hold, except if another rule permits a different correspondence in
parts of the same center. To this end, we shall need a new predicate in addition to the
ones already established: call this two-argument predicate OL (for ‘overlaps’), with the
semantics that a proposition OL(t1, t2) is true iff the positions of strings t1 and t2 share
at least one symbol:

x︷︸︸︷
· · · · · · ·

︸︷︷︸
y

We can now add a statement to the previous definition of (⇒) to illustrate this
method of conflict resolution:

A : B ⇒ L _ R ≡

(∀x)(x ∈ A : B → S(L, x,R) ∨ (∃y)(OL(x, y) ∧ y ∈ A : B ∧ S(L, y,R)))
(19)

that is, every A : B must be surrounded by L and R, except in the case that an A : B is
a substring of another A : B which in turn is surrounded by L and R.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing92



However, this only solves the case where a single rule may be in conflict with itself,
such as:

a+ : b ⇔ _

In general, we would like to enforce a right-arrow constraint only in the case that
there is no other rule applicable for a given substring of correspondences. Assume we
have a set of right-arrow rules {R1, . . . ,Rn} that consist of components Ai : Bi, Li,
Ri, and we want to express the idea that all right-arrow correspondence requirements
Ai : Bi must hold, except if some other correspondence (including one permitted by the
rule at hand itself) is legal within the same region Ai : Bi.

n∧
i=0

(∀xi)(xi ∈ Ai : Bi → S(Li, xi, Ri)

n∨
j=0

(∃yj)(OL(xi, yj) ∧ yj ∈ Aj : Bj ∧ S(Lj , yj , Rj)))

(20)

There is an equivalence between replacement rules of the directional type and two-
level string-to-string rules with the conflict resolution method, according to the following
pattern:

A -> B || L _ R A : B ⇔ L : Σ∗ _ R : Σ∗

A -> B // L _ R A : B ⇔ Σ∗ : L _ R : Σ∗

A -> B \\ L _ R A : B ⇔ L : Σ∗ _ Σ∗ : R
A -> B \/ L _ R A : B ⇔ Σ∗ : L _ Σ∗ : R

However, replacement rules are somewhat more restricted since contexts are only
specified on one side of a relation.

If we generalize and apply the same conflict resolution method to ⇐, the two for-
malisms become equivalent. That is, the formula (20) together with an identical con-
flict resolution-enhanced formula for ⇐ will produce transducers that function exactly as
parallel replacement rules. Right-arrow rules by themselves produce so-called optional
replacement rules (->).

3.4. Modes of application

There is additionally the type of replacement rule that is constrained by length-of-match
and direction (either left-to-right or right-to-left). So for instance, a leftmost longest-
match rule like:

a+ @-> x (21)

will map a to x, aa to x, etc [7].

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 93



Visualizing the “directionality” as either left-to-right or right-to-left conjures up a
procedural image of the string correspondence, which in a logical formalism is difficult
to approach. But there is a static way of looking at the formalism only in terms of string
correspondences. “Longest match” in a rule that constrains a pairing of A and B (perhaps
between L and R) clearly implies that a correspondence A : B may not occur if that same
string A : B starts at the position a longer string A : ¬B starts. That is, the configuration:

L A : ¬B R︷ ︸︸ ︷
· · · · · · ·

︷ ︸︸ ︷
· · · · · · ·

︷ ︸︸ ︷
· · · · · · ·

· · · · · · ·︸ ︷︷ ︸ · · · · ·︸ ︷︷ ︸ · · · · · · · · ·︸ ︷︷ ︸
L A : B R

should be disallowed. Returning to our original definition of a right-arrow rule (disre-
garding for the moment what was said previously about conflict resolution), we need to
restrict the right-arrow rule as follows:7

(∀x)(x ∈ A : B → S(L, x,R)∧¬(∃y)(y ∈ A : ¬B∧(xb = yb)∧(ye > xe)∧S(L, y, R)))
(22)

This defines the language where A : B is only allowed between L and R, but that
A : B is additionally disallowed in the circumstance described above: if there also exists
a substring y which starts where x starts, ends later than x and y could potentially be a
legal A : B correspondence, but is not.

The “leftmost” requirement is an additional constraint symmetrical to the longest-
match requirement: we also want to disallow an A : B whenever we can find an instance
of L A : ¬B R where the A : ¬B portion overlaps with the position at hand and that
begins earlier.

We therefore want to add the statement

¬(∃y)(y ∈ A : ¬B ∧ S(L, y,R) ∧ OLL(y, x)) (23)

where OLL(y,x) is a proposition “overlaps-to-the-left,” describing situations such as:8

· · · y© · · x© · · y© · · x© · ·

The cases of shortest-match and right-to-left directionality are entirely symmetrical:
in shortest-match we disallow an A : B that contains A : ¬B starting at the same
position, while right-to-left requires the proposition overlaps-to-the-right.

7We temporarily introduce two new propositions here; it is easy to see that (xs = ys), the substring x

begins where the substring y does, and (xe > ye), the substring x ends later than y can be constructed as a
regular expression over Δ—the former is the language where the first x© is adjacent to the first y©-symbol,
while the latter is the language where the second x© occurs later than the second y©-symbol (with at least one
symbol from Σ intervening).

8i.e. (Δ∗ y©Δ∗ x©Δ∗ y©Δ∗ x©Δ∗)—this also permits the situation where the two variables denote exactly
the same substring. This is a regular expression over simple strings, not correspondences. See the appendix on
how to modify this to handle correspondences in our encoding.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing94



Again, if we add the conflict resolution method outlined in the previous section to
these modifications of the right-arrow rule, the semantics of the collection of replacement
rules, parallel replacement rules as well as directed replacement are captured through the
notation here, and are directly compilable into finite-state automata/transducers.

4. Conclusion

We have presented an extension to the formalism of regular expressions, which we call
regular predicate logic. It systematizes the prevalent use of auxiliary symbols in defining
complicated languages in a way that is notationally clear and can be intermixed with
standard regular expressions. In particular, the propositions of our regular predicate logic
are freely extendable and it is assumed that one can take advantage of other finite-state
calculus operators in defining new predicates.

We have also demonstrated how the notation can be used to systematically define
other formalisms used in natural language processing applications; two-level rules and
replacement rules. We believe the new notation brings a level of transparency to the
definition of other complex regular expression operations.

It is interesting to note that [4], in defining what they call “if-P-then-S(L1,L2)”
(the language where every string from L1 is followed by some string from L2) as
¬(Σ∗L1¬(L2Σ

∗)), point out an intuition that the “double complementation in the def-
initions . . . and also in several other expressions . . . constitutes an idiom for expressing
universal quantification.” However, in our formalism it is the combination of a specific
type of use of auxiliary symbols together with a double negation that constitutes an id-
iom for universal quantification. The double negation (taken with respect to different al-
phabets) then becomes an artifact of the definition of universal quantification in terms of
existential quantification and the construct where variable binding is achieved through
intersection:

(∀x)(ϕ) ≡ ¬Π
(
(Δ∗

x x©Δ∗
x x©Δ∗

x) ∩ ¬(ϕ)
)

4.1. Further work

The examples given in this paper are in no way meant to be exhaustive of the potential
applications of the formalism. Examples of possible further work include:

• Investigation other formalisms in terms of the logical notation developed here.
For instance, [15] and [1] treat Optimality Theory fundamentally through insert-
ing violation markers, filtering them, and removing them. This can probably be
interpreted within the notation at hand, where different violations are treated as
different variables, which would yield a more static, logical description of OT.
This would probably require an introduction of limited second-order predication
together with a “cardinality” predicate (which would go beyond finite-state means
in the general case), in order to keep track of the number of violations of con-
straints.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 95



• Multi-tiered constraint systems could probably be described through the logical
notation developed here. In essence, the string generalization of two-level gram-
mars could probably by augmented from two to any number of tiers, where logi-
cal statements could be made within, between, and across tiers. This bears many
similarities to autosegmental theories of phonology.

• The formalism itself could possibly be used as a sole basis for constructing nat-
ural language morphological analyzers, either through a 2-level or n-level repre-
sentation.

5. Appendix

5.1. Multi-level encoding

In implementing string-to-string two-level rules and replacement rules, we have decided
to not directly encode the relations as transducers, but rather as an even-length regular
language (ΣΣ)∗ such that the odd numbered symbols represent the input and the even
numbered symbols the output. Additionally the alphabet contains a special symbol 0
which represents ε (very similar to the “hard zero” in classical two-level implementa-
tions). A language over (ΣΣ)∗ can trivially be converted into a finite-state transducer by
removing odd states in a path and creating symbol pairs from sequences, i.e. a sequence
ab would become a single transition a : b. Also, any string pair A : B mentioned in
a rule is arranged in such a way that the symbol 0 is padded to the end of whichever
the shorter string is to make an equal-length representation: (abc) : d becomes adb0c0,
etc. The initial “feasible language pairs” are then all doubled symbol sequences, in the
example above: (aa ∪ bb ∪ cc ∪ dd ∪ @@ ∪ adb0c0)∗, etc. The additional special sym-
bol sequence @@ signifies an identity pair for any symbol not explicitly included in the
alphabet through a left-hand side of a two-level rule.

Naturally, the logical compilation must be modified to accommodate the fact that
we are dealing with symbol sequences where the symbols come in pairs: i.e. we need to
also make sure the variable symbols occur at positions before even-numbered symbols
from Σ so that propositions that need to refer either to the input side or the output side
are consistent. Hence, (∃x) in this two-level encoding becomes:

((ΔxΔx)∗ x© x©(ΔxΔx)∗ x© x©(ΔxΔx)∗)

and similarly for encoding the propositions.

5.2. Epenthesis rules

Epenthesis rules, exemplified in two-level grammars through rules where the left-hand
side is 0 : a, or in replacement rules such as 0 -> a have a special status owing to the
fact that the empty string ε, from a formal point of view, occurs an unbounded number of
times within any string in a language. In fact, all approaches to treating such statements
need to make explicit decisions on the semantics of epenthesis rules. Replace rules (as
in [2]) come in two varieties: 0 -> L, and [..] -> L with different semantics. The
former is interpreted as an optional rule (inserting optionally the language L in the speci-

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing96



fied context), while the latter is an obligatory rule with the restriction that ε is interpreted
as occurring only and exactly once between each symbol in Σ∗. These are arbitrary de-
cisions motivated by the prevalence of epenthesis rules in phonology and the need to
model such patterns through finite-state means. Their behavior can be modelled readily
through the logic notation presented above.

References

[1] Dale Gerdemann and Gertjan van Noord. Approximation and exactness in finite state optimality theory.
In Alain Thériault, Jason Eisner, and Lauri Karttunen, editors, Proceedings of the Fifth Workshop of the
ACL Special Interest Group in Computational Phonology, 2000.

[2] Kenneth Beesley and Lauri Karttunen. Finite-State Morphology. . CSLI, Stanford, 2003.
[3] Lauri Karttunen, Kimmo Koskenniemi, and Ronald M. Kaplan. A compiler for two-level phonological

rules. In M. Dalrymple, R. Kaplan, L. Karttunen, K. Koskenniemi, S. Shaio, and M. Wescoat, editors,
Tools for Morphological Analysis. CSLI, Palo Alto, CA, 1987.

[4] Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331–378, 1994.

[5] Lauri Karttunen. The replace operator. In Emmanuel Roche and Yves Schabes, editors, Finite-State
Language Processing. MIT Press, 1997.

[6] Andre Kempe and Lauri Karttunen. Parallel replacement in finite state calculus. Proceedings of the 16th
conference on Computational linguistics, 2:622–627, 1996.

[7] Lauri Karttunen. Directed replacement. In Proceedings of the 34th conference on Association for
Computational Linguistics, pages 108–115, 1996.

[8] Anssi Yli-Jyrä and Kimmo Koskenniemi. Compiling contextual restrictions on strings into finite-state
automata. In The Eindhoven FASTAR Days Proceedings, 2004.

[9] J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für mathematische
Logic und Grundlagen der Mathematik, 6:66–92, 1960.

[10] C.C. Elgot. Decision problems of finite automata and related arithmetics. Trans. Amer. Math. Soc,
98:21–51, 1961.

[11] Nathan Vaillette. Logical specification of regular relations for nlp. Natural Language Engineering,
9(1):65–85, 2003.

[12] Anssi Yli-Jyrä. Describing syntax with star-free regular expressions. In 11th EACL 2003, Proceedings
of the Conference, pages 379–386, 2003.

[13] Kimmo Koskenniemi. Two-level morphology: A general computational model for word-form recog-
nition and production. Publication 11, University of Helsinki, Department of General Linguistics,
Helsinki, 1983.

[14] Mehryar Mohri and Richard Sproat. An efficient compiler for weighted rewrite rules. In Proceedings of
the 34th conference on Association for Computational Linguistics, pages 231–238, 1996.

[15] Lauri Karttunen. The proper treatment of optimality theory in computational phonology. In Finite-state
Methods in Natural Language Processing, pages 1–12, Ankara, 1998.

M. Hulden / Regular Expressions and Predicate Logic in Finite-State Language Processing 97



Making Finite-State Methods Applicable
to Languages Beyond Context-Freeness

via Multi-dimensional Trees

Anna KASPRZIK

University of Trier

Abstract. We provide a new term-like representation for multi-dimensional trees
as defined by Rogers [1,2] which establishes them as a direct generalization of clas-
sical trees. As a consequence these structures can be used as input for finite-state
applications based on classical term-based tree language theory. Via the correspon-
dence between string and tree languages these applications can then be conceived
to be able to process even some language classes beyond context-freeness.

Keywords. Finite-state methods, Multi-dimensional Trees, Regularization, Tree
Adjoining Grammar

Introduction

It is well known that string languages that are recognizable by finite-state automata, the
so-called regular languages, have a whole range of advantageous mathematical proper-
ties. However, due to the relatively restricted character of the latter, classes that lie be-
yond regularity are often more interesting for applications based on formal language the-
ory, even if the devices processing these languages (e.g., grammars or automata) are sig-
nificantly more complex. Obviously, it would be of considerable use if one could reunite
the advantages of regular and less restricted language classes by finding a way to handle
these processes via regular mechanisms without giving up any of the expressive power.

Several such regularization methods have indeed been formulated, and at least two
of them have been shown to be of use in the field of linguistics. A very prominent lin-
guistic application of formal language theory is the area of natural language processing,
i.e., conceiving the strings formed by a natural language as a formal language in order
to treat them automatically. Unfortunately, the study of certain phenomena (e.g., cross-
serial dependencies in Dutch or Swiss German) showed that some of these string sets are
not context-free. Joshi [3] claimed the least class of formal languages containing all nat-
ural language string sets to be situated between the context-free and the context-sensitive
languages, and named it the class of mildly context-sensitive languages. The string sets
generated by the grammar formalism defined by Joshi [3] himself, Tree Adjoining Gram-
mar, prototypically fulfil all the necessary conditions for this class. TAG is considered
the standard model for mild context-sensitivity and is the foundation of a considerable
amount of current work in applied computational linguistics.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-98

98



There are two methods of regularization for TAG (see [4]). Both methods are two-
step approaches, i.e., they transform a TAG into a regular device (grammar or automaton)
of some sort by representing its components in another shape and then reconstruct the
intended objects from the objects generated or licensed by these devices via a simple pro-
cess that can be carried out with regular means as well. One is based on an algebraic op-
eration called Lifting (see [5]) which could be described as a way to write terms in a form
that makes their internal structure more explicit, which, if the term is noted as a tree, has
the side effect that all inner nodes are turned into leaves and thus become rewritable by
substitution, which is a regular mechanism, and the other method (described by Rogers
[1,2]) makes use of an additional dimension in space by representing the components
of a TAG as three-dimensional trees which likewise has the consequence that all inner
nodes are turned into leaves and can be expanded by substitution.

The theoretical foundation of the second method are multi-dimensional trees, which
are structures built over tree domains of arbitrarily many dimensions. Just like ordi-
nary two-dimensional trees, every multi-dimensional tree has a string associated with
it, which is obtained by reducing the dimensions of the tree step by step to its leaves.
The classes of string languages associated with the recognizable multi-dimensional tree
languages ordered by number of dimensions form a (proper) infinite hierarchy prop-
erly contained in the context-sensitive class, with the classes of finite languages (as-
sociated with zero-dimensional point sets), regular languages (one-dimensional string
sets), context-free languages (two-dimensional tree sets, as for the classical definition)
and the mildly context-sensitive string languages generated by (non-strict) TAGs (three-
dimensional tree sets, see [1,2]) as the first four steps. According to Rogers [1], this
hierarchy coincides with Weir’s Control Language Hierarchy [6].

It follows from these correspondences that by processing recognizable higher-
dimensional descriptions of non-regular string languages instead of the string sets them-
selves, finite-state methods become applicable again, and with them all the advantages
and results pertaining to regularity. This can be a valuable insight in the area of natural
language processing, but also in other areas based on formal language theory, e.g., gram-
matical inference: For instance, just as Angluin’s learning algorithm for regular string
languages [7] has been adapted to regular tree languages [8,9], thereby making context-
free string languages learnable (wrt the underlying learning model), this algorithm can
be generalized to recognizable tree languages of arbitrarily many dimensions, making
even string languages beyond context-freeness learnable in polynomial time (see [10]).

However, before such applications founded on formal tree languages can be general-
ized to arbitrarily many dimensions, there is a missing link to be provided: Most of them
are not based on tree domains, as is Rogers’ definition of multi-dimensional trees, but on
the concept of trees as terms over a partitioned alphabet (the partitioning being induced
by rank in the traditional case). In this paper we will give a new term-like representa-
tion for multi-dimensional trees, along with an adapted definition of finite-state automata
for these structures, and prove the equivalence of the two notations. As a consequence
multi-dimensional trees can be seen and used as a direct generalization of classical trees,
and the full range of beneficial results for regular (tree) languages as known from formal
language theory in the spirit of the Chomsky Hierarchy can be exploited.

A. Kasprzik / Making Finite-State Methods Applicable to Languages 99



1. Preliminaries

We presuppose familiarity with classical formal language theory (see for example [11]).
We will give some basic notions regarding trees (see for example [12,13]).

A ranked alphabet is a finite set of symbols, each associated with a rank n ∈ N. By
Σn we denote the set of all symbols in Σ with rank n. Traditionally, every symbol has
a single rank, but it is just as possible to admit several ranks for one symbol, as long as
there is a maximal rank and the alphabet stays finite.

The set TΣ of all trees over Σ is defined inductively as the smallest set of expressions
such that f [t1, . . . , tn] ∈ TΣ for every f ∈ Σn and all t1, . . . , tn ∈ TΣ. t1, . . . , tn are
the direct subtrees of the tree. The set subtrees(t) consists of t itself and all subtrees of
its direct subtrees. A subset of TΣ is called a tree language.

Let � be a special symbol of rank 0 (leaf label). A tree c ∈ TΣ∪{�} in which �

occurs exactly once is called context, the set of all contexts over Σ is denoted by CΣ. For
c ∈ CΣ and s ∈ TΣ, c[[s]] denotes the tree obtained by substituting s for � in c. The
depth of c is the length of the path from the root to �.

A (total, deterministic) bottom-up finite-state tree automaton (fta) is a tuple A =
(Σ, Q, δ, F ) where Σ is the ranked input alphabet, Q is the finite set of states, δ is
the transition function assigning to every f ∈ Σn and all q1, . . . , qn ∈ Q a state
δ(q1 · · · qn, f) ∈ Q, and F ⊆ Q is the set of accepting states. The transition function
extends to trees: δ : TΣ −→ Q is defined such that if t = f [t1, . . . , tn] ∈ TΣ then δ(t) =
δ(δ(t1) · · · δ(tn), f). The language accepted by A is L(A) = {t ∈ TΣ|δ(t) ∈ F}. Such
a tree language is called regular.

It is well known that the Myhill-Nerode theorem carries over to regular tree lan-
guages: Let L ⊆ TΣ. Given two trees s, s′ ∈ TΣ, let s ∼L s′ iff for every c ∈ CΣ, either
both of c[[s]] and c[[s′]] are in L or none of them is. Obviously, ∼L is an equivalence
relation on TΣ. The equivalence class containing s ∈ TΣ is denoted by [s]L. The index of
L is the cardinality of {[s]L|s ∈ TΣ}. The Myhill-Nerode theorem states that L is regular
iff L is of finite index. It follows that for every fta A, L(A) is of finite index. Conversely,
if a tree language is of finite index, we can easily build an fta AL recognizing L, with the
states being the equivalence classes of L, F = {[s]L|s ∈ L}, and, given some f ∈ Σk

and states [s1]L, . . . , [sk]L, δL([s1]L, . . . , [sk]L, f) = [f [s1, . . . , sk]]L. Moreover, this
fta is the unique minimal fta recognizing L, up to a bijective renaming of states.

The Pumping lemma for regular tree languages (see [13] for a proof):

Lemma 1 For any regular tree language T ⊆ TΣ there is a number n ≥ 1 such that, if
t ∈ TΣ has height k ≥ n, then, for some s ∈ TΣ and p, q ∈ CΣ, t = q[[p[[s]]]] where p
has depth ≥ 1 and q[[p[[. . . p[[s]] . . .]]︸ ︷︷ ︸

k times

]] ∈ TΣ for all k ≥ 0.

To conclude this section we give a definition for the grammar formalism Tree Ad-
joining Grammar, which was designed under linguistic considerations by Joshi ([3]) and
was a main motivation for the study of multi-dimensional trees for Rogers. Rogers [1,2]
defines non-strict TAGs as follows:

Definition 1 A non-strict TAG is a pair 〈E, I〉 where E is a finite set of elementary trees
in which each node is associated with a label from some alphabet, an SA constraint (a
subset of E), and an OA constraint (Boolean valued). I ⊆ E is a distinguished non-
empty subset. Every elementary tree has a foot node.

A. Kasprzik / Making Finite-State Methods Applicable to Languages100



Figure 1. A TAG generating the (non-context-free) string language anbncndn.

In a TAG, new trees can be built by adjunction: A node in a tree is replaced by another
tree and the subtree formerly rooted at that node is attached to the foot node of the
inserted tree. OA constraints state if adjunction is required or not, and SA constraints
state which trees may be adjoined at that node.

Example 1 Let G = 〈{α, β}, {α}〉 be a TAG (over the alphabet {a, b, c, d, S}). α and
β are given in Figure 1. Constraints at all inner nodes and the foot node of β (the leaf
labeled with S̄) are: OA = 0 and SA = {β} for the ones without a bar, OA = 0 and
SA = ∅ for the ones labeled with ‘S̄’. The bar stands for null adjunction, no adjunction
is allowed at these nodes. G generates the (non-context-free) string language anbncndn

for n ≥ 0.

2. Multi-dimensional Trees and Automata

In this section we will introduce multi-dimensional trees and some related concepts as
presented by Rogers [1,2].

Starting from a definition of ordinary trees based on two-dimensional tree domains,
Rogers [1,2] generalizes the concept both downwards (to strings and points) and upwards
and defines labeled multi-dimensional trees based on a hierarchy of multi-dimensional
tree domains:

Definition 2 Let d1 be the class of all dth-order sequences of 1s: 01 := {1}, and d+11 is
the smallest set satisfying (i) 〈〉 ∈ d+11, and (ii) if 〈x1, . . . , xl〉 ∈

d+11 and y ∈ d1, then
〈x1, . . . , xl, y〉 ∈

d+11. Let T
0 := {∅, {1}} (point domains). A (d + 1)-dimensional tree

domain is a (finite) set of hereditarily prefix closed (d + 1)st-order sequences of 1s, i.e.,
T ∈ T

d+1 iff (‘·’ representing concatenation)

• T ⊆ d+11,
• ∀s, t ∈ d+11 : s · t ∈ T ⇒ s ∈ T,
• ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ T

d.

A Σ-labeled Td (d-dimensional tree) is a pair 〈T, τ〉) where T is a d-dimensional tree
domain and τ : T −→ Σ is an assignment of labels in the (non-partitioned) alphabet Σ
to nodes in T . We will denote the class of all Σ-labeled Td as T

d
Σ.

Every d-dimensional tree can be conceived to be built up from one or more d-
dimensional local trees, that is, trees of depth at most one in their major dimen-
sion. Each of these smaller trees consists of a root and an arbitrarily large (d − 1)-
dimensional “child tree” consisting of the root’s children (a formal definition of the

A. Kasprzik / Making Finite-State Methods Applicable to Languages 101



set T
d,loc
Σ of all local trees over some alphabet Σ would be for example T

d,loc
Σ =

{〈T, τ〉|〈T, τ〉 is a Σ-labeled Td, and ∀s ∈ T : |s| ≤ 1}). Local strings (i.e., one-
dimensional trees), for example, consist of a root and a point as its child tree. Local
two-dimensional trees consist of a root and a string. Local three-dimensional trees would
have a pyramidal form, with a two-dimensional tree as its base. There are also trivial lo-
cal trees (consisting of a single root), and even empty ones. Composite trees can be built
from local ones by identifying the root of one local tree with a node in the child tree of
another (and adapting the addresses in order to incorporate them into the newly created
tree domain). Figure 2 shows examples of local and composite trees for the first four steps
of the hierarchy (only some composite trees are labeled, and in the three-dimensional
case, only the addresses of nodes that do not appear in the rightmost local tree as well
are given, for clarity. εd denotes an empty sequence of order d).

Rogers [2] also defines automata for labeled Tds:

Definition 3 A Td automaton with finite state set Q and (non-ranked) alphabet Σ is a
finite set of triples Ad ⊆ Σ × Q × T

d−1
Q .

The interpretation of a triple 〈σ, q, T 〉 ∈ Ad is that if a node of a Td is labeled with σ and
T encodes the assignment of states to its children, then that node may be assigned state
q. A run of a Td automaton on a Σ-labeled Td T = 〈T, τ〉 is a mapping r : T −→ Q in
which each assignment is licensed by Ad. Note that this implies that a leaf labeled with
σ may be assigned state q only if there is a triple 〈σ, q, ∅〉 ∈ Ad, where ∅ is the empty
T(d − 1). If F ∈ Q is the set of accepting states, then the set of (finite) Σ-labeled Td
recognized by Ad is that set for which there is a run that assigns the root a state in F .

T1 automata correspond to finite-state automata for strings, i.e., they recognize the
regular languages. T2 automata correspond to (non-deterministic) finite-state automata
for trees, i.e., they recognize the regular tree languages.

Figure 2. Local and composite trees for d = 0, 1, 2, 3

A. Kasprzik / Making Finite-State Methods Applicable to Languages102



Figure 3. Ambiguity in the yield for d ≥ 3, resolved by marked foot nodes

One of the most important concepts in connection with multi-dimensional trees is
that of the yield of a tree. The yield of a two-dimensional tree is the string formed by its
leaf labels. In Rogers’ [2] words, it is a projection of the tree onto the next lower level,
i.e., its dimensions are reduced by one. Tds with d ≥ 3 have several yields, one for each
dimension that is taken away, down to the one-dimensional string yield. Note that when
taking the yield of a tree with d ≥ 3, some thought has to go into the question of how to
interweave the child trees of its local components to form a coherent (d−1)-dimensional
tree, since there are often several possibilities. Rogers solves this by introducing special
nodes called heads and defines them such that in the child tree of every local component
there is a unique path of heads leading from the root to a leaf. This leaf is called the foot
of the child tree and marks the splicing point, i.e., the point where the yield of the subtree
containing it should be connected to the remaining part of the overall yield. See [2] for
the exact definition.

As is well known, the class of the string yields of languages recognized by (two-
dimensional) finite-state tree automata are the context-free languages. The class of the
string yields of d-dimensional tree languages for d ≥ 3 are situated between the classes
of context-free and context-sensitive languages in the Chomsky Hierarchy, where for ev-
ery d the class of string yields of the d-dimensional tree languages is properly contained
in the next (i.e., for d + 1).

Via the yield operation, Rogers has established a link between T3s and TAGs by
proving the equivalence of T3 recognizing automata and non-strict TAGs:

Theorem 4 ([2]) A set of Σ-labeled two-dimensional trees is the yield of a recognizable
set of Σ-labeled T3 iff it is generated by a non-strict TAG.

The representation of a TAG as three-dimensional trees obviously constitutes a reg-
ularization: Trees are now constructed by adding local trees at the frontier of another tree
(see Figure 4), which is a regular process, instead of expanding nodes at the interior. As
follows from Theorem 4, the trees generated by the original TAG can be extracted from
the T3s using the yield operation.

A. Kasprzik / Making Finite-State Methods Applicable to Languages 103



Figure 4. Adjunction in TAG expressed via three-dimensional trees

Rogers conjectures that there may also be potential linguistic applications for struc-
tures of more than three dimensions, and gives an amelioration of the standard TAG
account of modifiers using four dimensions (see [1]).

In the next section we will introduce a new notation for multi-dimensional trees that
is a generalization of the one on which (classical) finite-state tree automata are based,
i.e., a representation that allows multi-dimensional trees to be noted as expressions over
a partitioned alphabet.

3. Multi-dimensional Trees as Terms

We will use finite d-dimensional tree labeling alphabets Σd where each symbol f ∈
Σd is associated with at least one unlabeled (d − 1)-dimensional tree t specifying the
admissible child structure for a root labeled with f (as before it is possible to admit
several, albeit finitely many, child structure trees for one symbol). To all intents and
purposes t can be given in any form suitable for trees, as long as it is compatible with
the existence of an empty tree, but for consistency’s sake we will use the definition of
multi-dimensional trees given below from here on and write t as an expression over a
special kind of “alphabet” containing just one symbol ρ for which any child structure is
admissible.

Let Σd
t for d ≥ 1 be the set of all symbols associated with t and Σ0 a set of con-

stant symbols. The set TΣd of all d-dimensional trees can then be defined inductively as
follows:

Definition 5 Let εd be the empty d-dimensional tree. Then

• TΣ0 := {ε0} ∪ Σ0, and
• for d ≥ 1: TΣd is the smallest set such that εd ∈ TΣd and f [t1, . . . , tn]t ∈ TΣd

for every f ∈ Σd
t , t ∈ T{ρ}d−1 , n the number of nodes in t, t1, . . . , tn ∈ TΣd and

t1, . . . , tn are rooted breadth-first in that order1 at the nodes of t.

Note how naturally this generalization comprises the concept of rank for labeling sym-
bols in two-dimensional trees: For every symbol f in Σ2

s for some string s, s encodes the
rank of f in its length, and specifies that the children of a node labeled with f should be
ordered linearly (as is normal in two-dimensional trees). For d ≥ 3 the term “rank” of
some symbol g ∈ Σd

t still makes sense if we indicate the number of nodes in t by it –

1This is an ad hoc settlement, any other spatial arrangement would do as well.

A. Kasprzik / Making Finite-State Methods Applicable to Languages104



this way most of the results for two-dimensional trees can be read directly as applying to
multi-dimensional trees in general.

For some tree tp = f [t1, . . . , tn]t with f ∈ Σd
t , t1, . . . , tn are the direct subtrees of

the tree, and the rest of the usual tree terminology can be applied in a similar manner.
Also, for some fixed d, let � be a special symbol associated with εd−1 (leaf label). A
tree c ∈ TΣd∪{�} in which � occurs exactly once is still called a context, and c[[s]] for
c ∈ CΣd and s ∈ TΣd is defined via substitution as before.

Our new notation is equivalent to the one by Rogers in the following sense: For
every recognizable set LR ⊆ T

d
Σ of d-dimensional trees over some alphabet Σ in Rogers’

notation there is a translation Φ : LR −→ TΣd characterized by:

• For d = 0: 〈∅, ∅〉 �→ ε0 and, for some a ∈ Σ, 〈{1}, {1 �→ a}〉 �→ a.
• For d ≥ 1: 〈∅, ∅〉 �→ εd, 〈{〈〉}, {〈〉 �→ a}〉 �→ a for some a ∈ Σ, and, for some

f ∈ Σ, 〈{〈〉} ∪ Tx, {〈〉 �→ f} ∪ τx〉 �→ f [Φ(〈T1, τ1〉), . . . , Φ(〈Tn, τn〉)]t with
t = Φ(〈Tt, τt〉) where Tt is the set of first elements of the members of Tx and τt

is the unique function τt : Tt −→ {ρ}, and Ti = {z|〈ai〉 · z ∈ Tx} for 1 ≤ i ≤ n
where ai is the ith element in the sequence obtained by ordering the members of
Tt inductively by length. τi is defined by τi(z) = τx(〈ai〉 · z).

Σd is obtained as follows: For each term tp ∈ Φ(LR) and each subterm f [t1, . . . , tn]t of
tp, f ∈ Σd

t . We have restricted ourselves to recognizable sets of trees (i.e., that are built
from a finite set of local trees) because otherwise Σd may be infinite, which is due to
the fact that Rogers uses non-partitioned labeling alphabets so that in theory arbitrarily
many roots labeled with the same symbol can have completely different child structures.

For every set LN ⊆ TΣd of d-dimensional trees in the notation given above there is
a translation Ψ : LN −→ T

d
Σ characterized by the following (the construction of Σ from

Σd is trivial):

• For d = 0: ε0 �→ 〈∅, ∅〉 and, for a ∈ Σ0, a �→ 〈{1}, {1 �→ a}〉.
• For d ≥ 1: εd �→ 〈∅, ∅〉, a �→ 〈{〈〉}, {〈〉 �→ a〉} for some a ∈ Σd

εd−1 , and,
for some f ∈ Σd

s , f [s1, . . . , sm]s �→ 〈{〈〉} ∪ Ty, {〈〉 �→ f} ∪ τy〉 where Ty =⋃
1≤i≤m, x∈Si

〈bi〉 ·x with 〈Si, σi〉 = Ψ(si) for all i with 1 ≤ i ≤ m and 〈Ss, σs〉 =

Ψ(s) and bi is the ith element in the sequence obtained by ordering the elements
of Ss inductively by length. τy is defined by τy(〈bi〉 · z) = σi(z).

Both translations traverse the input structure recursively, which includes, for every
symbol, a recursion through the tree specifying the admissible child structure for that
symbol, which in turn entails recursions through the dimensions down to zero (as the
child structure tree is translated, too).

We will show the equivalence of the two notations by proving that Ψ(Φ(tp)) = tp
for all tp ∈ L1 for some arbitrary recognizable L1 ⊆ T

d
Σ and Φ(Ψ(tq)) = tq for all

tq ∈ L2 for some arbitrary L2 ⊆ TΣd for corresponding alphabets Σ and Σd.

1. Ψ(Φ(tp)) = tp for all tp ∈ L1: For d = 0 this is clear. We will prove the claim for
d ≥ 1 by induction on the depth of tp. For depth 0 (tp = 〈∅, ∅〉) and 1 (tp = a for some
a ∈ Σ) this is also clear. Assume that the claim holds for all d1 < d and all d-dimensional
trees with depth k for some k ≥ 0. Assume that tp = 〈{〈〉} ∪ Tx, {〈〉 �→ f} ∪ τx〉 for
some f ∈ Σ has depth k + 1.

A. Kasprzik / Making Finite-State Methods Applicable to Languages 105



tp = 〈{〈〉} ∪ {〈a1〉} · T1 ∪ . . . ∪ {〈an〉} · Tn, {〈〉 �→ f} ∪
⋃

z∈T1

(〈a1〉 · z �→ τ1(z)) ∪ . . . ∪
⋃

z∈Tn

(〈an〉 · z �→ τn(z))〉

(definition of Tx and τx, with Ti, τi, ai defined as above)

Ψ(Φ(tp)) = 〈{〈〉} ∪ 〈b1〉 · S1 ∪ . . . ∪ 〈bm〉 · Sm, {〈〉 �→ f} ∪
⋃

z∈S1

(〈b1〉 · z �→ σ1(z)) ∪ . . . ∪
⋃

z∈Sm

(〈bm〉 · z �→ σm(z))〉

(definition of Ty and τy , with Si, σi, bi defined as above)

Ψ(Φ(tp)) = Ψ(f [Φ(〈T1, τ1〉), . . . ,Φ(〈Tn, τn〉)]Φ(〈Tt,τt〉)) (definition of Φ).

By the induction hypothesis we know that 〈Ss, σs〉 = Ψ(s) = Ψ(Φ(〈Tt, τt〉)) = 〈Tt, τt〉
and consequently n = m and ai = bi for all 1 ≤ i ≤ n,m. In the same way we
know that 〈Si, σi〉 = Ψ(Φ(〈Ti, τi〉)) = 〈Ti, τi〉 for all i with 1 ≤ i ≤ n,m, and thus
Ψ(Φ(tp)) = tp. �

2. Φ(Ψ(tq)) = tq for all tq ∈ L2: Again, for d = 0 this is clear. We will prove the claim
for d ≥ 1 by induction on the depth of tq. For depth 0 (tq = εd) and 1 (tq = a for
some a ∈ Σd

εd−1 ) this is also clear. Assume that the claim holds for all d1 < d and all
d-dimensional trees with depth k for some k ≥ 0. Assume that tq = f [s1, . . . , sm]s for
some f ∈ Σd

s has depth k + 1.

Φ(Ψ(tq)) = Φ(〈{〈〉} ∪ {〈b1〉} · S1 ∪ . . . ∪ {〈bm〉} · Sm, {〈〉 �→ f} ∪
⋃

z∈S1

(〈b1〉 · z �→ σ1(z)) ∪ . . . ∪
⋃

z∈Sm

(〈bm〉 · z �→ σm(z))〉)

(definition of Ty and τy , with Si, σi, bi defined as above)

= f [Φ(〈T1, τ1〉), . . . ,Φ(〈Tn, τn〉)]Φ(〈Tt,τt〉) (definition of Φ).

We know, by the relevant definitions, that 〈Tt, τt〉 = 〈{b1, . . . , bm}, {b1 �→ ρ, . . . , bm �→
ρ}〉 = Ψ(s) and thus Φ(〈Tt, τt〉) = Φ(Ψ(s)) = s by the induction hypothesis, which
also implies m = n. By the same reflection, 〈Ti, τi〉 = 〈{z|〈bi〉 · z ∈ {〈b1〉} · S1 ∪ . . . ∪
{〈bm〉} ·Sm},

⋃
z∈Si

(〈bi〉 · z �→ σi(z))〉 = Ψ(si) and Φ(〈Ti, τi〉) = Φ(Ψ(si)) = si for all

i with 1 ≤ i ≤ n,m. This concludes the proof. �

We can now represent automata for multi-dimensional trees as a direct generaliza-
tion of classical finite-state tree automata:

Definition 6 A (total, deterministic) finite-state d-dimensional tree automaton is a 4-
tuple Ad = (Σd, Q, δ, F ) with input alphabet Σd, finite set of states Q, set of accepting
states F ⊆ Q and transition function δ with δ(t(q1, . . . , qn), f) ∈ Q for every f ∈ Σd

t ,
t ∈ T{ρ}d−1 , where t(q1, . . . , qn) encodes the assignment of states to the nodes of t
(t(q1, . . . , qn) is isomorphic to t and its nodes are labeled with q1, . . . , qn breadth-first
in that order if Q is taken as a partitioned alphabet associating every symbol with all
the child structures it occurs with in δ). The function δ extends to d-dimensional trees:
δ : TΣd −→ Q is defined such that if tp = f [t1, . . . , tn]t ∈ TΣd for t ∈ T{ρ}d−1 then

A. Kasprzik / Making Finite-State Methods Applicable to Languages106



δ(tp) = δ(t(δ(t1), . . . , δ(tn)), f). The set of trees accepted by Ad is L(Ad) = {tp ∈
TΣd |δ(tp) ∈ F}.

The equivalence between this definition and the one by Rogers [2] is easy to see: For two
corresponding automata Ad = (Σd, Q, δ, F ) and Ad

R ⊆ ΣR×QR×T
d−1
QR

with the set of
accepting states FR in the two notations the set of states Q and QR and accepting states
F and FR coincide, the construction of ΣR from Σd is trivial, and Σd is constructed
from Ad

R as follows: f ∈ Σd
t for all triples 〈f, q, t0〉 ∈ Ad

R, where t = Φ(〈T0, τ0+〉)
for t0 = 〈T0, τ0〉 and τ0+ is the unique function τ0+ : T0 −→ {ρ}. Most importantly,
there is a one-to-one correspondence between the elements of Ad

R and δ: Every triple
〈f, q, t0〉 ∈ Ad

R can be translated to an assignment δ(Ψ(t0), f) = q of Ad, and every
assignment δ(t(q1, . . . , qn), f) = q of Ad to a triple 〈f, q,Φ(t(q1, . . . , qn))〉 ∈ Ad

R.
From this and from the identical state sets it follows that L(Ad

R) = Ψ(L(Ad)) and
L(Ad) = Φ(L(Ad

R)).
With the term representation and the adapted definitions of contexts and automata

given in this section, results pertaining to the class of regular string or tree languages
as for instance the Myhill-Nerode theorem or the Pumping lemma (see Section 1) and
all their consequences (like the existence of a unique minimal finite-state automaton Ad

L

recognizing L for every recognizable d-dimensional tree language L) carry over directly
to multi-dimensional trees.

Finally, we will define a yield function for multi-dimensional trees in the new no-
tation. As for d ≥ 3 the yield is not unambiguous (see Figure 3), the structures have to
be enriched with additional information. Assume that, for d ≥ 2, in every tree tp ∈ TΣd

every labeling symbol f ∈ Σd is indexed with a set S ⊆ {2, . . . , d}. If x ∈ S then we
call a node labeled by fS a foot node for the (x − 1)-dimensional yield of tp. For every
subtree tq of tp the distribution of these foot nodes must fulfil certain conditions:

(1) If tq has depth 0 the index set in its root label must contain d, otherwise
tq = fS [t1, . . . , tn]t with f ∈ Σd

t , S ⊆ {2, . . . , d}, and t1, . . . , tn ∈ TΣd must
have exactly one direct subtree ti ∈ {t1, . . . , tn} whose root labeling symbol is
indexed with a set containing d and ti is attached to a leaf in t. In both cases, we
will refer to that root as the d-dimensional foot node of tq.

(2) The foot nodes are distributed in such a way that for every n-dimensional yield
of tp with n < d, condition (1) is fulfilled as well.

For d ≥ 2, the direct yield of a tree tp ∈ TΣd is then defined recursively as

ydd−1(tp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εd−1 for tp = εd,

aS for tp = aS with a ∈ Σd
εd−1 and S ⊆ {2, . . . , d},

optp
(t1) for tp = fS [t1, . . . , tn]t with t1, . . . , tn ∈ TΣd , f ∈ Σd

t ,

t �= εd−1, and S ⊆ {2, . . . , d},

where optp
(ti) for ti ∈ {t1, . . . , tn} is defined as the (d − 1)-dimensional tree

that is obtained by replacing the d-dimensional foot node of ti in ydd−1(ti) by
eR[optp

(tj), . . . , optp
(tk)]tx

, where eR with e ∈ Σd and R ⊆ {2, . . . , d} is the label of
the foot node, tx is the (d − 2)-dimensional child structure of the node at which ti is
attached in t and tj , . . . , tk are the direct subtrees of tp that are attached (breadth-first in
that order) at the nodes of tx.

A. Kasprzik / Making Finite-State Methods Applicable to Languages 107



ρ

ρ

ρ ρ

ρ

t2

ρ

ρρ

ρ

t1 f

f

g

b

b
g

f

b

f

f

g

a

a

g

a

b

a

f
f

a

g

ba

f

b

g

ta tb

tc

h{3}

h

Figure 5. Example 2

The result ydd−1(tp) is a (d−1)-dimensional tree over an alphabet Σd−1 containing
at least all the node labels in ydd−1(tp), each associated at least with the child structures
it occurs with. Obviously, the string yield of a d-dimensional tree for d ≥ 2 can be
obtained by taking the direct yield d − 1 times.

Example 2 defines an automaton A3
ww recognizing a three-dimensional tree lan-

guage whose set of string yields yd1(L(A3
ww)) is Lww = {ww|w ∈ {a, b}+}:

Example 2 A3
ww = (Σ3, {qa, qb, qg, qy, qz, qf , qx}, δ, {qf}) where Σ3 = {a, b, f, g,

h{3}} with a, b, f, g, h{3} ∈ Σ3
ε2 and f ∈ Σ3

t1
for t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0 ]ρ[]

ε0
]ρ[ρ[]

ε0 ]ρ

and f ∈ Σ3
t2

for t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 , ρ[]ε1 ]ρ[ρ[]
ε0 ]ρ ]ρ[ρ[]

ε0 ]ρ . (Note that in Σ3 only index
sets containing 3 have been given, as the distribution of foot nodes for the string yield is
never ambiguous). δ is defined as follows:

δ(ε2, a) = qa δ(t1(qg, qa, qz, qa)) = qf

δ(ε2, b) = qb δ(t1(qg, qb, qz, qb)) = qf

δ(ε2, f) = qz δ(t2(qg, qa, qz, qy, qa)) = qz

δ(ε2, g) = qg δ(t2(qg, qb, qz, qy, qb)) = qz

δ(ε2, h{3}) = qy

and δ(t0, x) = qx for all other admissible t0 and all symbols x ∈ Σ3. Figure 5 shows t1
and t2, three trees ta, tb, tc ∈ L(A3

ww) in the middle, and the two-dimensional yield for
tc, whose one-dimensional yield is the string abab.

4. Conclusion

We have provided a new, term-like representation for multi-dimensional trees which
establishes them as a direct generalization of classical trees. As a consequence multi-
dimensional trees can now be used as an input for (slightly adapted) finite-state applica-
tions based on classical formal (tree) language theory, for example in the areas of gram-
matical inference (shown in [10]) or natural language processing. Via the concept of the
yield of a multi-dimensional tree this also means that these applications can now be con-
ceived to be able to process even some language classes that lie beyond context-freeness.

A. Kasprzik / Making Finite-State Methods Applicable to Languages108



Due to lack of space we have not furnished the full possible system of concepts
linked to recognizable multi-dimensional tree languages, but of course further notions
such as regular grammars can be formulated for these structures as well. Also, various re-
sults can be ameliorated such as a less complex-looking, regular version of the Pumping
lemma for the string languages generated by TAGs [14] relying on the correspondence
to three-dimensional trees (see Section 2).

Another interesting project we propose for the near future would be to check whether
any implementations of known finite-state applications based on formal tree languages
can be adapted to multi-dimensional trees, or even if with this generalization new imple-
mentations have become possible.

References

[1] J. Rogers. Syntactic structures as multi-dimensional trees. Research on Language and Computation,
1:265–305, 2003.

[2] J. Rogers. wMSO theories as grammar formalisms. Theoretical Computer Science, 293:291–320, 2003.
[3] A.K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to provide reasonable

structural description. In D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language Processing.
Cambridge University Press, 1985.

[4] A. Kasprzik. Two equivalent regularizations of tree adjoining grammars. Technical Report 08-1, Uni-
versity of Trier, 2008. Available on: http://www.mathematik.uni-trier.de/tf/08_01.
pdf.

[5] F. Morawietz. Two-step approaches to natural language formalisms. Studies in Generative Grammar,
64, 2003.

[6] D.J. Weir. A geometric hierarchy beyond context-free languages. Theoretical Computer Science,
104(2):235–261, 1992.

[7] D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation,
75(2):87–106, 1987.

[8] Y. Sakakibara. Learning context-free grammars from structural data in polynomial time. Theoretical
Computer Science, 76(2–3):223–242, 1990.

[9] F. Drewes and J. Högberg. Learning a regular tree language from a teacher. In Z. Ésik and Z. Fülöp,
editors, Developments in Language Theory 2003, volume 2710 of LNCS, pages 279–291. Springer,
2003.

[10] A. Kasprzik. A learning algorithm for multi-dimensional trees, or: Learning beyond context-freeness.
Technical Report 08-2, University of Trier, 2008. Available on: www.mathematik.uni-trier.
de/tf/08_02.pdf.

[11] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages, and computation. Addison-
Wesley, 1979.

[12] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/
tata, 2005. release October, 12th 2007.

[13] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 1, pages 1–68. Springer, 1997.

[14] K. Vijayashanker. A Study of Tree-Adjoining Grammars. PhD thesis, University of Pennsylvania, 1987.

A. Kasprzik / Making Finite-State Methods Applicable to Languages 109



Transducer Minimization and Information
Compression for NooJ Dictionaries

Slim MESFAR and Max SILBERZTEIN

LASELDI, Université de Franche-Comté, Besancon, France

Abstract. In this paper, we describe the use of an incremental construction method
of minimal, acyclic, deterministic FST. The approach consists in constructing a
transducer in a single step by adding new strings one by one and minimizing the
resultant automaton incrementally. Then, we present a new method to encode the
morphological information associated with the dictionary entries. The new encod-
ing unifies a large number of word forms’ analyses, thus reducing the number of
terminal states of the dictionary’s FST, that triggers a more efficient minimization
process. Finally, we present experimental results on the FST that represents the
Arabic dictionary.

Keywords. Automata compression, sequential minimization, electronic dictionaries,
NooJ

Introduction

Finite-State automata (FSA) are used in a variety of Natural Language Processing (NLP)
applications. In particular, they provide efficient storage and retrieval of finite sets of
strings over a finite alphabet, and thus can be used to represent the vocabulary of a lan-
guage. Finite-State Transducers (FSTs)1 allow users to associate each element of a vo-
cabulary with some information, such as morpho-syntactic information (POS - Part Of
Speech, Gender, Number, etc.), syntactic and semantic information (e.g. transitive, Hu-
man, etc.), or more complex, such as the term’s translation in other languages, a set of
synonymous expressions, etc. The purpose of a lexical analysis of a text is to map tokens
that occur in texts into a vocabulary, usually described in a dictionary. In most languages,
tokens are inflected and/or derived word forms that need to be associated with the cor-
responding lexeme (dictionary entry) and some linguistic information. Thus, transduc-
ers are well adapted to perform automatic lexical analyses. FSA can be easily extended
into FSTs to produce information associated with the accepted tokens: the output of the
transducer is simply affixed to the corresponding accepting states2 of the FSA. But then,
special encoding techniques are necessary to represent the sets of information produced
by the FST. Since these transducers can be represented very efficiently and are associated
with linear lookup methods, we are using them to represent dictionaries within the lin-

1In automata theory, they are also called Mealy automata [1].
2An accepting state (also called terminal state) is the final state of a recognized word form. It’s usually

represented by a double circle (see Figure 1).

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-110

110



guistic platform NooJ3. Especially, deterministic acyclic ones (i.e. Deterministic Acyclic
Finite State Transducers = DAFST) are of particular interest for NLP applications. DAF-
STs representing dictionaries can be constructed in various ways; works presented in [2],
[3], [4] and [5] present a good reference of the algorithms used to process vocabularies
with FSA.

1. Related Work

In this section, we present a chronological taxonomy of the various algorithms for deter-
ministic acyclic finite state automata construction. This taxonomy is, partially, described
in [1] and [6]:

• In the early-1990s, Revuz derived the first linear DAFSA4 minimization algo-
rithms [7] and [8]. The primary algorithm presented by Revuz uses an ordering
of the words to quickly compress the endings of the words within the dictionary.

• By the mid-1990s, several groups were working independently on incremental
algorithms - most of which are the same or very similar.

• In 1996, B. W. and R. E. Watson derived an incremental algorithm. Unlike many
of the other derivations of related algorithms, their algorithm provides facilities
for removing words from the language accepted by the automaton, while main-
taining minimality.

• Also in 1996 - 1997, Daciuk independently derived the generalized incremental
algorithm. In addition, Daciuk derived a new incremental algorithm which adds
the words in lexicographic order. Simultaneously, Mihov had also derived the
sorted algorithm. Daciuk and Mihov went on to publish the algorithms in their
dissertations as [2] and [9], respectively.

• Independently in 1997, in the field of verification, Holzmann and Puri [10] dis-
covered a restricted form of the algorithm, in which all words accepted by the
automaton have the same length.

• In 1998, B. W. Watson sketched the semi-incremental algorithm in [11].
• In 2000, Revuz presented essentially the generalized algorithm [12]; though he

also sketched word deletion algorithms similar to those previously derived by B.
Watson and R. Watson.

• In 2001, Graña et al. summarized some of the current results and made improve-
ments to several of the algorithms [3].

• Next, in 2002, the generalized algorithm was straightforwardly extended by Car-
rasco and Forcada to handle cyclic automata [13].

• In [14], B. W. Watson gave a fast and simple incremental algorithm based upon
Brzozowski’s minimization algorithm.

• Recently, in 2007, L. Tounsi and al. [15] noticed that even using an incremental
construction, it was not enough to have a reduced automaton to represent elec-
tronic dictionaries. They proposed the introduction of a compression method for

3NooJ is a linguistic development environment that can be used to build large-coverage formalization of lan-
guages (from the alphabetical to the semantic level), as well as a corpus processor that can apply sophisticated
queries to texts (e.g. look for noun phrases followed by a date). NooJ is freeware and can be downloaded from
http://www.nooj4nlp.net.

4DAFSA : Deterministic Acyclic Finite State Automata.

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression 111



minimized automata. To reduce the memory used by an automaton, a search for
repetitive structures, sub-automata, was performed.

The first NooJ engine used a traditional method to obtain a minimal transducer by first
creating a deterministic (not minimal) transducer for the dictionary and then minimizing
it using an efficient algorithm. The first stage was usually performed by building a trie,
for which linear-time minimization algorithms are associated. Transducer minimization
algorithms are quite efficient in terms of the size of their input (the trie): NooJ’s algo-
rithm used memory and time requirements that are linear in terms of the number of states
in the input trie. Unfortunately, even such linear performance is not sufficient when the
trie is much larger than the available physical memory. For instance, the Hungarian dic-
tionary, which contains over 50,000 entries, produces a 130+ million word form trie that
contained over 100 million states (each state requires 10 bytes in average). Some effort
towards decreasing the memory requirement has been made; such as those done by Re-
vuz [16] and Daciuk [8]. This paper presents a way to reduce these intermediate mem-
ory requirements and decrease the total construction time by constructing the minimal
dictionary incrementally (word by word, maintaining an invariant of minimality), thus
avoiding ever having to construct the trie in memory.

2. Incremental construction of NooJ automata

The Myhill-Nerode theorem [1] states that among the many deterministic automata that
accept a given language, there is a unique automaton (up to isomorphism) that has a
minimal number of states. This is called the minimal deterministic automaton of the
language. An incremental minimization of a DAFSA means that every time a word is
added to the automaton, it is minimized. This could lead to modifications of the parts of
the automaton that had previously been minimized. A list of operations has to be done
every time a word is added:

• Search for the common prefix in the automaton.
• Follow the common prefix unless confluence states5 encountered.
• Remove the last state from the Register6 R.
• Clone7 all states in the common prefix from the first confluence state.
• Create path for the suffix, mark the final state.
• Starting from the final state towards the start state, either put states from the path

in R, or replace them with equivalent ones. If preceding state is in R, remove it
from R. Stop when no more changes occur.

We notice that:

• If there are no confluence states in the common prefix, we have to simply append
the word suffix to the last common state.

• If there are confluence states in the common prefix, appending another transition
to the last state in the path would accidentally add more words than desired (see
Figure 1).

5A confluence state is a state that is target of more than one incoming transition.
6Register R : the set of states with unique right language −→

L (cf. definition in the 8th footnote).
7Cloning a state is creating a new state that has outgoing transitions with the same labels and to the same

destinations states as the given one.

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression112



Figure 1. The result of blindly adding the word cows to a minimized dictionary (appearing to the left) contain-
ing rats and cats. The rightmost dictionary accidentally contains rows as well. The lower dictionary is correct;
state 2 had to be cloned.

• The previous states in the prefix path may need to be changed, because the right
languages8−→L of those states may have changed; we must recalculate the equiva-
lence relation for all states on the path of the new word.

• To check if q ≡ q’ (q is equivalent to q’), we only check if both are final or non-
final, and if their suites of transitions are identical (the same number, labels and
targets).

Minimizing the automaton, on-the-fly, could change the equivalence classes of some
states each time a word is added. Before constructing a new state in the dictionary, we
first determine if it would be included in the equivalence class of a pre-existing state.
In addition, we might need to change the equivalence classes of previously constructed
states since their languages might have changed. This leads to an incremental construc-
tion algorithm. In the Figure 1, we develop the example discussed in [17].

However, processing complex queries with NooJ requires complex information to be
associated with each word of a vocabulary [18]. If we wish to perform a syntactic parsing
of each sentence of a text, we need to associate each word with its lemma (base form
or stem), its syntactic category (Noun, Verb, etc.), its morphological attributes (Number,
Gender, Tense, etc.), syntactic and semantic information such as a verb’s number and
type of complements, a predicative noun’s list of support verb, translations, etc. NooJ’s
linguistic units are recognized by looking up dictionaries, using morphological gram-
mars to parse word forms as well as using syntactic grammars to parse phrases. Each of
the recognized/matching sequence of the text is then associated with a complex string of
information codes: its lemma, its syntactic category (e.g. Noun), inflectional codes (e.g.
masculine, plural, Past Participle, etc.), syntactic codes (e.g. "transitive verb"), distribu-
tional codes (e.g. "Human noun") and semantic domains (e.g. "medical term").

For instance, here are three typical analyses of three word forms:

8The right language of a state q, −→L (q), is the set of all strings, over the alphabet, on a path starting from the
state q and reaching any final state of the automaton.

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression 113



Figure 2. The result of adding the three words (rats, cats and cows) with the associated set of information.
The resulting FSA looks like a trie.

• rats: rat,N+Animal+p
• cats: cat,N+Animal+p
• cows: cow,N+Animal+p

Note that these three word forms are associated with the same information string (Noun,
Animal, Plural) but their lemmas are different: "rat" for "rats", "cat" for "cats" and "cow"
for "cows". Adding these word forms, associated with their information, in an automa-
ton could generate the following FSA that looks like a trie since these different analyses
would lead to different transitions (see Figure 2). As we add more and more precise in-
formation for each dictionary’s entry, even using an incremental construction algorithm,
the required compilation memory grows, the FSA’s minimization is less and less effi-
cient, and the resulting FSA looks more and more like a trie (see Figure 2), which makes
the size of the resulting dictionary too big to be processed by current PCs especially for
certain languages such as Arabic or Hungarian. Therefore, we need to explore new ap-
proaches to ensure that the minimization can fully be applied, even as the information
becomes more and more precise. In order to unify these three analyses, we replace each
lemma with a morphological command based on use of the deletion operator with the
special code 〈B〉 (for "Backspace") that computes it from the word form. In other words,
in order to compute the lemma "cat" from the word form "cats", we delete the last let-
ter of the entry which corresponds to the command "〈B〉". This encoding allows us to
associate the three word forms "cats", "rats" and "cows" with a unique analysis:

• rats: 〈B〉,N+Animal+p
• cats: 〈B〉,N+Animal+p
• cows: 〈B〉,N+Animal+p

Thanks to this encoding, a large number of word forms can be associated with the same
exact analysis9. As all analyses are stored in a hash table, the size of the resulting hash
table is reduced significantly, and, more importantly, a large number of input strings such
as "cats" and "cows" lead to a small number of common terminal states, that triggers a
very efficient minimization process (see Figure 3).

9More complex inflectional paradigms can be processed with this method:

• helped, suffered, turned ... could be analyzed as 〈B2〉 : delete 2 letters from the inflected form to get the
lemma: turned ⇒ turn ;

• men, women could be analyzed as 〈B2〉an : delete the two last letters from the inflected form, and then
add "an", e.g. women ⇒ wom ⇒ woman.

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression114



Figure 3. The result of adding the three words (rats, cats and cows) using a compression function for related
set of information. Note hat the suffix "s" produces a single information string for added word forms.

Figure 4. The result of adding the two words (distrusting, dismounting) with the associated set of information.
The resulting FST is a trie.

This solution works very well when the difference between word forms and their
lemma is located only in their suffix, which is the case for English and Romance Lan-
guages. NooJ can also be used to formalize prefixations. For instance, a NooJ dictionary
can be used to produce the negative gerundive form (Gerundive+Neg) of a predicative
verb (V+Pred) such as the following analyses:

• distrusting: trust,V+Pred+Gerundive+Neg
• dismounting: mount,V+Pred+Gerundive+Neg

If we use the previous algorithm to compute the lexeme (e.g. trust) from the word form
(distrustring), we get the following encoding:

• distrusting: 〈B11〉trust,V+Pred+Gerundive+Neg
• dismounting: 〈B11〉mount,V+Pred+Gerundive+Neg

In consequence, the two word forms "distrusting" and "dismounting" (as well as a large
number of word forms, such as "disrespecting", "disregarding", etc.) will have to be
analyzed differently, even though their analyses are very similar (see Figure 4). This
encoding uses the 〈B〉 operator (delete last letter) to compute the common prefix of the
word form and the lemma. Then, it concatenates the resulting prefix with the remaining
suffix of the lemma. For instance, to link the word form "had" to its lemma "have",
it computes the command "〈B〉ve": delete the last letter of the word form, then add
the suffix "ve". This algorithm is well adapted to languages for which inflectional and
derivational morphology is performed by adding suffixes to lemmas, such as English
and Romance languages. However, it produces poor results for other languages, such as
Dutch and German (see for instance in [2] how J. Daciuk needed to add two operators
to deal with specific cases in these languages). For Semitic languages such as Arabic
and Hebrew, where basic inflectional and derivational rules modify prefixes and infixes
massively, we need a more generalized approach, (see Section 5). As a consequence,

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression 115



Forms Analysis Morphological operations

distrusting, 〈B3〉 〈LW 〉 〈S3〉 Delete the 3 last characters, move to beg.

dismounting of word, then delete 3 next letters

Table 1. A unified morphological analysis

Figure 5. Prefix in a deterministic minimal FSA.

NooJ’s dictionaries for these languages were represented by FSTs that were largely tries:
the standard minimization process could not do much to prevent the FST to grow out of
control. We needed a new method to link word forms to their lemmas.

3. A new encoding routine

NooJ formalizes inflectional and derivational paradigms by means of Finite-State Trans-
ducers (FSTs), entered either via NooJ’s FST graphical editor, or via two-tape regular
expressions. FSTs’ inputs are strings of letters and morphological operators; their out-
puts represent the linguistic analysis of the word forms that are produced. NooJ provides
a dozen of morphological operators other than 〈B〉, including the following ones:

• 〈L〉 : move left,
• 〈R〉 : move right,
• 〈D〉 : duplicate current letter,
• 〈S〉 : remove accent on the current letter,
• etc.

NooJ’s morphological engine uses these operators to perform transformations inside
strings. They can be associated with two argument types; either a number (e.g. 〈L3〉: go
left 3 times) or a "W" (e.g. 〈LW 〉: go to beginning of word). These commands oper-
ate on a stack: each of them runs in constant time. Thus, they can link a lemma to its
corresponding forms in linear time.

We propose a new encoding routine that computes a series of NooJ’s morphological
operators (and no longer only 〈B〉) to automatically encode each word form’s analysis.

The word forms of Table 1 are then analyzed in a unified way. The resulting FST is
represented in Figure 5.

The new analysis can be shared by many word forms, hence these word forms lead
to a common terminal state in the dictionary’s FST, which in turn triggers a very effi-
cient minimization process. Moreover, the hash table that stores all different analyses is
reduced in size. The algorithm key is computing the series of operators that computes the
lemma from each word form, and essentially "compressing" it. In order to compute the
new analysis automatically, we recursively compute all the common affixes between the

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression116



word form and its lemma. The resulting encoding string uses the four morphological op-
erators 〈L〉, 〈R〉, 〈S〉 and 〈B〉. This method is described in Algorithm CompressLemma
below:

Algorithm 1 CompressLemma
Input:string Entry, string Lemma
Output: string Transform

if Entry is a prefix of Lemma then
//mange, manger ⇒ "r";
return Lemma’s prefix;

else if Lemma is a prefix of Entry then
//mangerons, manger ⇒ 〈B3〉;
return "〈B” + (length − of − Entry′s − suffix) + ”〉";

else
returnRecCompression("〈LW 〉",Entry,Lemma) ;
// cf. Appendix A; disrespecting,respect ⇒ ” 〈B3〉 〈LW 〉 〈S3〉";

end if

The CompressLemma method locates recursively the longest common substring
between the word form and its corresponding lemma10. It uses a dynamic program-
ming technique11, with a complexity of © (n · m) where n and m are respectively the
word form and lemma lengths; therefore the main algorithm runs in © (n · m · log(n)).
The dynamic programming method used within the LongestCommonSubstring (LCS)
function is used to avoid traditional solving routines checking, for each of the m starting
points of Lemma, for the longest common string starting at each of the n starting points
of entry; in that case, the checks could attend a total of ©

(
m2 · n

)
time. Within the

LongestCommonSubstring method, we first find the longest common suffix for all pairs
of prefixes of both strings. We define Li,j a matrix containing the maximum length of
common strings that end at Lemma[i] and Entry[j].

Next,

if Lemma[i] = Entry[j] then
Li,j := 1 + Li−1,j−1

else
Li,j := 0

end if
Then, the maximal of these longest common suffixes of possible prefixes must be

the longest common substrings of Lemma and Entry.

LCS(Entry, Lemma) := max
1≤i≤m,1≤i≤m

Li,j

10Actually, we simplify the result of CompressLemma if it ends with a delete operator (〈S〉). For example,
we rewrite "〈LW 〉 〈S3〉 〈R4〉 〈S3〉" with "〈B3〉 〈LW 〉 〈S3〉"; note that both commands are equivalent.

11Dynamic programming technique was originally introduced in the 1940s by Richard Bellman to describe
the process of solving problems exhibiting the properties of overlapping subproblems and optimal substructures
that takes much less time than naïve methods.

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression 117



Dictionary Verbs Deverbals Nouns

Number of word forms 1,290,795 1,443,327 280,267

Number of analyses with: Original encoding 1,090,516 1,221,277 18,869

new encoding 53,814 69,007 10,489

Compression rate 95.1% 94.3% 44.4%

Table 2. Experiments on Arabic dictionaries.

This algorithm runs in © (n · m) time and memory. To reduce the memory usage of
this implementation, we keep only the last and current row of the Li,j table to save mem-
ory © (min(n,m)) instead of © (n · m). The optimized version, including the memory
usage reduction is proposed in Appendix B.
Although algorithm CompressLemma was designed to solve the prefixation problem, it
turns out to be very well adapted to the problem of letter substitutions. For instance, in
French, when conjugating the verb "semer", the first vowel "e" is replaced with the ac-
centuated letter "è" to produce the form "sème". NooJ’s original algorithm encodes the
analysis of the word form as:

sème [〈B3〉 emer] ⇒ semer
whereas the new algorithm produces the following analysis:

sème [r〈LW 〉 〈R〉 〈S〉 e] ⇒ semer
While more complex to read, the new analysis unifies a large number of verb conjugation
paradigms: (gèle ⇒ geler), (lève ⇒ lever), (mène ⇒ mener), (pèse ⇒ peser), (sème ⇒
semer), etc. In practice, even dictionaries for Romance languages benefit enormously
from the new algorithm.

4. Experiments

The new incremental minimization algorithm and new encoding method are combined
together to carry out some performance measurements. While this combination has been
successfully used for every language processed in NooJ, the most spectacular results have
been obtained with Hungarian: the dictionary that contains 130+ million entries is stored
into a 5-million state FST. Arabic makes a heavy use of prefixes: for instance, from the
lexical entry "kataba" (to write), we get 122 word forms, including the following ones:

• "áakotubu" (I write) ⇒ 〈B〉 〈LW 〉 〈S2〉 〈R〉 a 〈S〉 〈R〉 a 〈S〉 〈R〉 a

• "yakotubaāni" (They write[dual]) ⇒ 〈B3〉 〈LW 〉 〈S2〉 〈R〉 a 〈S〉 〈R〉 a 〈S〉
• "katabaā" (They wrote [dual]) ⇒ 〈B〉

Comparing the old and the new algorithm for Arabic, we get the Table 2. Compiling
NooJ’s dictionaries with the new algorithms - incremental construction and dynamic in-
formation compression - has not taken significantly more time than before. For instance,
the full Arabic dictionary (3,014,389 entries) compiles in 4 minutes on a 3.2 Ghz Pen-
tium PC, 2 GB RAM, which is more than adequate for a typical NooJ use (dictionaries
are usually recompiled once every few weeks).

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression118



5. Conclusion

In this paper, we have presented a new incremental minimization algorithm that replaces
the traditional two-steps method - trie construction + minimization - used to build mor-
phological lexicon by NooJ v1.x. The key of the new algorithm, which constructs the
minimized FST sequentially, is a new encoding technique that links prefixed and suffixed
forms to their lemma in a unified way. The new encoding boosts the minimization of the
resulting FST, which leads to very compact dictionaries, even for languages that have a
"heavy" morphology, such as Hungarian and Arabic.

References

[1] J.D. Ullman and J.E. Hopcroft. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, MA, 1979.

[2] J. Daciuk. Incremental construction of finite-state automata and transducers, and their use in the natural
language processing. PhD thesis, Technical University of Gdańsk, Poland, 1998.

[3] J. Graña, F.M. Barcala, and M.A. Alonso. Compilation methods of minimal acyclic finite-state automata
for large dictionaries. In B.W. Watson and D. Wood, editors, Proceedings of CIAA’2001, pages 116–129,
Pretoria, South Africa, 2001.

[4] B.W. Watson. A taxonomy of algorithms for constructing minimal acyclic deterministic finite automata.
South African Computer Journal, 27:12–17, 2001.

[5] B.W. Watson. A new algorithm for construction of minimal acyclic dfas. Science of Computer Pro-
gramming, pages 81–97, 2003.

[6] B.W. Watson. An incremental dfa minimization algorithm. In L. Karttunen, K. Koskenniemi, and G. van
Noord, editors, Proceedings of the 2nd International Workshop on Finite State Methods in Natural
Language Processing, Helsinki, Finland, 2001.

[7] S. Mihov and D. Maurel. Direct construction of minimal acyclic subsequential transducers. In D. Wood
and S. Yu, editors, Proceedings of CIAA’2000 conference, pages 217–229, London, Canada, 2000.

[8] D. Revuz. Dictionnaires et lexiques: méthodes et algorithmes. Ph.D. Thesis LITP 91.44, Institut Blaise
Pascal, Paris, France, 1991.

[9] S. Mihov. Direct building of minimal automaton for given list. PhD thesis, Bulgarian Academy of
Science, 1999.

[10] G.J. Holzmann and A. Puri. A minimized automaton representation of reachable states. Software Tools
Technol. Transfer, 3, 1998.

[11] B.W. Watson. A fast new semi-incremental algorithm for the construction of minimal acyclic dfas. In
D. Wood and D. Maurel, editors, Proceedings of CIAA’98 conference, pages 91–98, Rouen, France,
1998.

[12] D. Revuz. Dynamic acyclic minimal automaton. In D. Wood and S. Yu, editors, Proceedings of
CIAA’2000 conference, pages 226–232, London, Canada, 2000.

[13] R.C. Carrasco and M.L. Forcada. Incremental construction and maintenance of minimal finite-state
automata. Computational Linguistics, 28:207–216, 2002.

[14] B.W. Watson. A fast and simple algorithm for constructing minimal acyclic deterministic finite au-
tomata. Universal Computer Science, 2000.

[15] L. Tounsi. Sous-automates à nombre fini d’état: Application à la compression de dictionnaires électron-
iques. PhD thesis, Université François Rabelais, Tours, France, 2007.

[16] J. Daciuk. Experiments with automata compression. In D. Wood and S. Yu, editors, Proceedings of
CIAA’2000 conference, pages 113–119, London, Canada, 2000.

[17] J. Daciuk, S. Mihov, B.W. Watson, and R.E. Watson. Incremental construction of minimal acyclic finite
state automata. Computational Linguistics, 26:3–16, 2000.

[18] M. Silberztein. NooJ’s dictionaries. In Proceedings of LTC 2005, Poznan, Poland, 2005.

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression 119



Appendix A

LongestSub ← LongestCommonSubstring(Entry, Lemma);
indEntry ← indexofLongestSubinEntry;
indLemma ← indexofLongestSubinLemma;
if indEntry != 0 and indLemma != 0 then

LeftIndEntry ← LeftcontextofLongestSubinEntry;
LeftIndLemma ← LeftcontextofLongestSubinLemma;
Transform ← RecCompression(Transform,LeftInEntry, LeftInLemma);
Tranform+ = ” 〈R” + (length − of − LongestSub) + ”〉 ”;
RightIndEntry ← RightcontextofLongestSubinEntry;
RightIndLemma ← RightcontextofLongestSubinLemma;
Transform ← RecCompression(Transform,RightInEntry,RightInLemma);

else if indEntry != 0 and indLemma = 0 then
Tranform+ = ” 〈S” + (indEntry) + ”〉 ”;
Tranform+ = ” 〈R” + (length − of − LongestSub) + ”〉 ”;
RightIndEntry ← RightcontextofLongestSubinEntry;
RightIndLemma ← RightcontextofLongestSubinLemma;
Transform ← RecCompression(Transform,RightInEntry,RightInLemma);

else if indEntry = 0 and indLemma != 0 then
Tranform+ = Lemma.Substring(0, indLemma);
Tranform+ = ” 〈R” + (length − of − LongestSub) + ”〉 ”;
RightIndEntry ← RightcontextofLongestSubinEntry;
RightIndLemma ← RightcontextofLongestSubinLemma;
Transform ← RecCompression(Transform,RightInEntry,RightInLemma);

end if
return (Transform)

Algorithm 2 RecCompression : Compression method used by Algorithm Com-
pressLemma
Input:string Entry, string Lemma, string Transform
Output: string Transform

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression120



Appendix B

Algorithm 3 LongestCommonSubstring: Longest common substring search method
used by Algorithm RecCompression
Input:string Entry, string Lemma
Output: string LCS

n ← Entry.length;
m ← Lemma.length;
ArraySize ← Min(n,m);
firstRow = array(0..ArraySize);
secondRow = array(0..ArraySize);
maxLen ← 0;
LCS ← ””; /* LCS = Longest common substring*/
for i = 0 to n do

for j = 2 to m do
if Entry[i]= Lemma[j] then

secondRow[j] ← firstRow[j − 1] + 1;
if SecondRow[j] > maxlen then

maxlen ← SecondRow[j];
LCS ← "";

else if SecondRow[j] = maxlen then
LCS += Entry[i-maxlen+1..i];

end if
else

/* Entry[i]= Lemma[j]*/
secondRow[j] ← 0;

end if
end for
firstRow ← secondRow;

end for
return (LCS)

S. Mesfar and M. Silberztein / Transducer Minimization and Information Compression 121



Representing and Combining Calendar

Information by Using Finite-State

Transducers

Jyrki NIEMI and Kimmo KOSKENNIEMI

Department of General Linguistics, University of Helsinki, Finland
e-mail: {jyrki.niemi, kimmo.koskenniemi}@helsinki.fi

Abstract. This paper elaborates a model for representing various types of semantic

calendar expressions (SCEs), which correspond to the disambiguated intensional

meanings of natural-language calendar phrases. The model uses finite-state trans-

ducers (FSTs) to mark denoted periods of time on a set of timelines also represented

as an FST. In addition to an overview of the model, the paper presents methods to

combine the periods marked on two timeline FSTs into a single timeline FST and to

adjust the granularity and span of time of a timeline FST. The paper also discusses

advantages and limitations of the model.

Keywords. temporal representation, calendar information, semantic calendar

expressions, timeline, finite-state transducers

Introduction

Temporal information, such as calendars and schedules, is involved in many aspects of

human life. The information may range from simple dates or times of day to more com-

plex specifications; for example, a course might take place at 6–8 pm every Monday

in March and April, except on Easter Monday. Such information is also used in many

computer-based applications, which may present the information to a user, make com-

putations based on it and exchange it with other applications.

Numerous models and representations have been developed for temporal informa-

tion in various fields of study, from computational linguistics to temporal databases. This

paper elaborates the model proposed in [1]. The model represents various types of se-
mantic calendar expressions (SCEs) by using finite-state transducers (FSTs) that bracket

periods of time on a set of timelines also represented as an FST. An SCE typically

corresponds to the disambiguated intensional meaning of a natural-language calendar
phrase.1 This bracketing FST model can be used for temporal reasoning, in particular,

for finding the common periods of time denoted by two SCEs or timeline FSTs, for ex-

ample, to query an event database or to find the common free periods of several people

for a meeting.

1We use the terms semantic calendar expression and calendar phrase to correspond to semantic term repre-
sentation and calendar expression, respectively, in [1].

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-122

122



Text

Natural-language calendar phrase

Semantic calendar expression (SCE)

Base timeline FST

Bracketing FST sequence

FST 1 FST 2 . . . FST n

Timeline FST 1Timeline FST 2

Timeline FST 3

Timeline FST 4 Final timeline FST

External source

Timeline FST library

Graphical calendar

Calendar phrase extraction

Generating Parsing

Compilation

Applying

Output Output Applying OutputApplying

Combining

Analysis

Retrieval

Retrieval

Visualization

Applications

Denotation
extraction

Figure 1. A conceptual overview of the levels of representation in the bracketing FST model

In addition to a well-understood theoretical basis, motivations for a finite-state repre-

sentation and methods include the ability to treat efficiently periodicity and certain kinds

of sparse sets of sets common in calendar information.

The main contribution of this paper is a method to combine directly the periods of

time denoted by two (or more) timeline FSTs into a single timeline FST, which can be

further operated on (Section 2). This is useful in applications using timeline FSTs pre-

constructed from SCEs, such as in finding the common free periods in several calendars,

each represented by a timeline FST. The timeline FSTs to be combined should have the

same granularity and span, so we also present ways to adjust these (Section 3). Fur-

thermore, a timeline FST can be compressed to retain only the information necessary to

represent the denoted periods of time (Section 4). The paper also provides an overview

of the bracketing FST model (Section 1), discusses its advantages (Section 5) and lim-

itations (Section 6), briefly reviews some related work (Section 7) and concludes with

discussion and some directions for further work (Section 8).

1. The Bracketing FST Model

Figure 1 provides a conceptual overview of the various levels of representation related

to the bracketing FST model and the relationships or conversions between them. The

primary levels are a semantic calendar expression (SCE), the corresponding sequence

of bracketing FSTs and a timeline FST representing the denotation of the SCE. The

path from an SCE to the final timeline FST has been implemented (illustrated with solid

arrows in the figure).

1.1. Semantic Calendar Expressions (SCEs)

We assume semantic calendar expressions (SCEs) as the starting point for the bracketing

FST model. An SCE typically corresponds to the disambiguated intensional meaning of

a natural-language calendar phrase, a possibly complex noun or prepositional phrase.

However, SCEs can also represent meanings seldom expressed in natural language. The

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information 123



Table 1. Examples of SCE constructs and the corresponding calendar phrases

Construct SCE example Calendar phrase

Calendar period may; fri; y2008 May; Friday; 2008

Generic period calday; calyear (calendar) day; (calendar) year

Common part intersect (aug, y2008) August 2008

Interval interval (may, jun) May to June

List union (mon, fri, sun) Monday, Friday and Sunday

Exception except3 (h08, mon, h09) 8 am, except Mondays 9 am

Anchored nth_following (3, fri, easter) the third Friday following Easter

Consecutiveness n_consecutive (2, sun) two consecutive Sundays

Parity even_within (tue, calmonth) even Tuesdays of the month

Ordinal every_nth_within (3, fri, calyear) every third Friday of the year

Containment containing (calmonth, easter) months with Easter

Quantified n_within_each (1, mon, may) any Monday in every May

Anaphoric following (calmonth, then) the following month

Deictic containing (calday, now) today

model does not reflect temporal information corresponding to verb tense and aspect or

general temporal relations, for example.

An SCE may denote a specific period of time, such as 22 August 2008, or a set of

periods, such as (the union of) all Mondays. SCEs of the latter kind often correspond

to underspecified calendar phrases, in this case, Monday. The denotation of an SCE is

well-defined and unambiguous on a given timeline.

Types of SCE constructs implemented in the bracketing FST model are listed in

Table 1, along with the corresponding calendar phrases. Most SCE constructs can be

combined with each other. For example, the SCE corresponding to January and March
2008 (in the sense January 2008 and March 2008) is intersect (union (jan, mar), y2008),
where jan, mar and y2008 correspond to every January, every March and the year 2008,

respectively.

SCEs could be used as the primary representation of temporal information in an ap-

plication. As an SCE is typically structurally close to the corresponding natural-language

calendar phrase, a generation component could be used to generate the latter from the

former if a natural-language presentation is needed.

If the source of temporal information is a running text, calendar phrases need to

be first extracted from it and then converted to corresponding SCEs by a parser. Such

conversion would be complicated by the various kinds of ambiguity and vagueness often

present in natural-language calendar phrases. For example, a week may denote a calendar

week from Monday to Sunday (or from Sunday to Saturday), any seven consecutive

days or perhaps any combination of possibly disconnected periods of time whose total

duration amounts to a week. The ambiguities could be avoided by presenting calendar

phrases in a restricted language representing an unambiguous meaning, straightforward

to convert to an SCE.

1.2. Timeline FSTs

The bracketing FST model represents time as a finite timeline string, consisting of be-

gin and end brackets of calendar periods. The denotation of an SCE is represented by

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information124



delimiting with marker brackets the denoted periods on a timeline string. As the denota-

tion may consist of several mutually exclusive alternatives, it is represented as an acyclic

FST. Each string defined by the timeline FST represents an alternative timeline with one

of the denotations marked.

A base timeline FST defines a single timeline string with no denotations marked,

consisting of brackets and labels for calendar periods, from years down to the granularity

required. The SCE to be represented is analysed to determine the granularity and span

of time required for the timeline. The following is a simplified unmarked timeline string

for the year 2008 at month level (spaces separate symbols):

[y y2008 [m Jan ]m [m Feb ]m [m Mar ]m [m Apr ]m . . . [m Dec ]m ]y

To obtain the denotation of an SCE s, a base timeline FST T b is composed with

a bracketing FST (sequence) Bs representing s. Bs effectively inserts indexed marker

brackets (ε:{in . . . ε:}in) into the appropriate places in the timeline string(s) defined by

the timeline FST. The result T s = T b ◦Bs is a timeline FST with the denotation of s
marked in its lower language. The marker brackets are represented as transductions from

the empty string ε so that a timeline FST can be used to insert the brackets to another

timeline, as in combining two timeline FSTs.

A bracketing FST for a calendar period marks the calendar periods in question,

whereas one corresponding to an SCE operation inserts new marker brackets based on

those corresponding to the operands on the input timeline FST. The following timeline

corresponds to union (jan, mar) (January and March):

[y y2008 ε:{i3 ε:{i1 [m Jan ]m ε:}i1 ε:}i3 [m Feb ]m ε:{i3 ε:{i2 [m Mar ]m ε:}i2 ε:}i3
[m Apr ]m . . . [m Dec ]m ]y

First, January has been marked with brackets i1 and March with i2. Then the union oper-

ation has marked with i3 each period marked with either i1 or i2.2 The brackets i3 delimit

the denotation of the whole expression.

To make a timeline FST smaller, the brackets inserted by the intermediate bracketing

FSTs could be removed after an operation has operated on them. However, retaining at

least some of the brackets could be useful in certain applications. For example, different

brackets might mark different events in a calendar, and a user may want to know what

events a calendar query result contains.

A timeline FST with the denotation of an SCE marked can be reused without limits

in applications. It could represent complex information on service availability or one or

more events with alternative realizations. To find events taking place at a certain time,

the time would be marked by the corresponding bracketing FST to the timeline FST of

events, followed by an intersection. Alternatively, the denotations of two timeline FSTs

can be combined directly by using standard FST operations, as presented in Section 2.

It would be useful to be able to extract the denotation from a timeline FST and to

represent it again as an SCE, which in turn could be generated to a natural-language

calendar phrase. However, we expect finding a compact and natural SCE for a denotation

marked on a timeline FST to be complicated in general.

2A sequence of adjacent brackets, such as ]m ε:}i2 ε:}i3, refers to the same point of time.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information 125



Su {Mo} Tu Su {Mo} Tu Su {Mo} Tu

Figure 2. A timeline FST for the SCE mon denoting all Mondays; “{Mo}” denotes a marked Monday

Su

{Mo}

Mo Tu Su

{Mo}

Mo Tu Su

{Mo}

Tu Su Mo Tu Su Mo Tu

Figure 3. A timeline FST for the SCE any_n (1, mon) denoting any single Monday

1.3. Collective and Distributive Representation of SCEs

The bracketing FST model uses two types of representation for periods of time in time-

line FSTs: in the collective representation, several different periods of time are marked

on a single timeline string, whereas in the distributive representation, the timeline FST

defines alternative timelines for different periods. We treat the representations and their

relation to quantified SCEs in more detail in [2].

In the collective representation, a timeline FST defines a single timeline string,

which may represent several periods of time, or equivalently, a single, possibly discon-

nected period of time. For example, the SCE mon denoting all Mondays is represented

by having each Monday marked on a single timeline, as illustrated by the simplified

timeline FST in Figure 2.3

A single timeline is insufficient for an SCE denoting possibly overlapping periods,

such as any three Mondays, or an indefinite period which can be chosen from several

alternatives, such as any (single) Monday. Marking all periods of three Mondays on a

single timeline would in effect mark every Monday.

For such denotations, we use the distributive representation, in which a timeline FST

defines a separate, alternative timeline string for each alternative denotation of the SCE.

For example, the SCE any_n (1, mon) denoting any (single) Monday is represented as a

timeline FST defining a set of timelines, each of which has one Monday marked, so that

the timelines together cover all Mondays (Figure 3). Each alternative timeline may still

contain several non-overlapping periods, as in any three Mondays (any_n (3, mon)).
The collective representation of periods of time is the primary one in the bracketing

FST model. Accordingly, the SCE corresponding to the unquantified Monday is the same

as that for every Monday (mon). In natural language, Monday is typically underspeci-

fied and refers to the nearest preceding or following Monday relevant in the context. A

practical reason for preferring the collective representation is that it is easy for a brack-

eting FST to split a single timeline with every Monday marked to a set of alternative

timelines, each with only one of them marked, whereas the converse operation is more

complicated. The primacy of the collective representation makes the model better suited

to some applications than to others, as discussed in Section 8.

3The transitions in the figures represent a number of states and transitions between them in the actual timeline

FST, as the representation of each day consists of the calendar day brackets, symbols for the day of the week

and day of the month, and possibly hours and even finer granularities inside.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information126



1.4. Bracketing FSTs

An SCE is compiled to a sequence of bracketing FSTs via a sequence of compositions

of regular (relation) expressions (REs). This sequence corresponds to a postfix represen-

tation of the SCE, which makes the conversion straightforward in general. The REs are

represented using macros with arguments specifying the marker brackets to operate on

or the label of the calendar periods to mark. After expanding the macros, the REs are

compiled to the corresponding bracketing FSTs.

To obtain the marked timeline in Section 1.2, the SCE union (jan, mar) is converted

to the RE macro sequence

mon(Jan, i1)◦mon(Mar, i2)◦union(i1, i2, i3).

The last argument of each macro indicates the brackets it inserts. The bracketing FST

union(i1, i2, i3) marks each January and March with brackets i3.4

Besides union for representing lists, two other basic operations in the model are in-

tersection and interval. Intersection is used to combine periods of time of different gran-

ularities: intersect (jan, y2008) corresponds to January 2008. The corresponding brack-

eting FST marks all periods that are inside both of the brackets denoting the arguments:

a January inside the year 2008. Intersection is also used to find the common periods of

time denoted by two SCEs. Interval represents a period of time with a specified begin-

ning and ending period: interval (jan, mar) denotes all intervals from the beginning of a

January to the end of the closest following March, the usual denotation of January to
March.

2. Combining Timeline FSTs

As an alternative to applying bracketing FSTs to timeline FSTs, the denotations of two

(or more) timeline FSTs of the same span and granularity can be combined directly by

using common FST operations. The combined timeline FST contains the marker brackets

of both the source timeline FSTs, and they can be operated on with bracketing FSTs

corresponding to SCE operations, such as intersection.

When combining two timeline FSTs T 1 and T 2, the marker brackets on them need

to be represented as transductions ε:{in and ε:}in. Let T 1 have marker brackets with index

i1 and T 2 with i2. To obtain a timeline FST T 3 with both types of marker brackets in the

correct places, we first insert arbitrary marker brackets i1 in T 2 with an insertion opera-

tion ([3], p. 5), resulting in T 2′ . In effect, we allow ({i1∪ }i1)∗ between any symbols and

at the very beginning and end.5 T 2′ is not a well-formed timeline FST, as it may contain

unpaired marker brackets. We then compose T 1 with T 2′ : T 3 = T 1 ◦ (T 2 � ({i1∪ }i1))
(� denotes insertion). This effectively retains only those brackets i1 in T 2′ that also exist

in T 1. A combination of more than two timeline FSTs can be treated as a sequence of

combinations of two timeline FSTs. The method can also be extended fairly straightfor-

wardly to timeline FSTs containing marker brackets with several different indices.6

4Union marks each January and March on the same timeline.
5We would not need the multiple consecutive begin or end marker brackets allowed by the insertion opera-

tion, but they do not affect the result, either.
6If the two timeline FSTs contain marker brackets with identical indices, the conflicting ones must be re-

placed by unique ones.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information 127



We illustrate the principle with a greatly simplified timeline with symbols only for

the days of the week and marker brackets. In T 2′ , i∗ abbreviates ({i1∪ }i1)∗. For illustra-

tion, the corresponding symbols on each timeline are aligned.

T 1 = M ε:{i1 Tu W ε:}i1 Th F ε:{i1 Sa Su ε:}i1
T 2 = M Tu W Th ε:{i2 F Sa ε:}i2 Su
T 2′ = i∗ M i∗ Tu i∗ W i∗ Th i∗ ε:{i2 i∗ F i∗ Sa i∗ ε:}i2 i∗ Su i∗
T 3 = M ε:{i1 Tu W ε:}i1 Th ε:{i2 F ε:{i1 Sa ε:}i2 Su ε:}i1

An intersection of i1 and i2 on T 3 would now mark the Saturday as the result.

Although the same effect can be obtained by adding marker brackets with bracketing

FSTs derived from SCEs, being able to combine two timeline FSTs is an advantage in

certain applications or situations. The timeline FSTs may represent possibly complex

and relatively static periods of time, and constructing them might have taken a significant

amount of time, so it may be more efficient to combine the timeline FSTs directly than to

apply the corresponding bracketing FSTs to the other timeline FST. The timeline FSTs

might also originate from different sources, and the underlying SCEs or bracketing FSTs

might not be available. Moreover, a timeline FST could be based on periods of time

marked in a visual calendar application, requiring an additional step to construct the

corresponding bracketing FSTs or an SCE.

The ability to combine timeline FSTs also makes possible a library of predefined

periods of time, for example, for holidays that are culture-specific or difficult to compute

compositionally, such as Easter. Whenever an SCE refers to Easter, the timeline FST

for Easter is combined with the timeline FST constructed by bracketing FSTs. The two

approaches can thus be intermixed.

3. Adjusting the Span and Granularity of a Timeline FST

As the timeline FSTs to be combined must have the same span and granularity, this in-

formation has to be recorded for each timeline FST. This can be done fairly straight-

forwardly in the component converting SCEs to bracketing FSTs. If the spans or granu-

larities of two timeline FSTs to be combined are different, the shorter timeline must be

extended and the coarser one refined appropriately.

To combine timeline FSTs T 1 and T 2 covering a different span of time, they both

are first prefixed and suffixed with any number of any symbols allowed on a timeline

except marker brackets (denoted Σ{}): T ′
i = Σ{}

∗ . T i . Σ{}
∗. The timeline FSTs T ′

1 and

T ′
2 are then combined as described above. However, if the original timelines do not

overlap, the combined timeline FST contains alternative paths for both T 1 preceding

T 2 and vice versa. To retain only the correct order, we compose an unmarked reference

timeline FST T Ref of the appropriate span and granularity with the combined timeline

FST: T 3 = T Ref ◦T ′
1 ◦ (T ′

2 � ({i1∪ }i1)).
Timeline FSTs T 1 and T 2 with different granularities can be combined if we first

allow any number of any symbols of the finer granularities between any symbols in

the coarser-grained one.7 This can be achieved with the insertion operation. If T 1 is

the coarser-grained timeline FST, the complete combination operation would be T 3 =
(T 1 �Σ{})◦ (T 2 � ({i1∪ }i1)).

7In practice, it suffices to have Σ{}
∗ between any symbols of the coarser timeline.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information128



4. Compressing and Expanding a Timeline FST

The periods of time marked on a timeline FST often cover only a small part of the whole

timeline. It would thus make sense to remove the parts of the timeline unnecessary for

the denotation, effectively compressing the timeline. This could be useful in particular in

exchanging timeline FSTs between applications. It could also make it slightly easier to

verbalize the denoted periods of time.

We compress a timeline by removing each calendar period (its begin and end bracket

and content) that does not contain marker brackets and that is not immediately preceded

by an opening marker bracket or immediately followed by a closing one. Such unnec-

essary periods are removed from the coarsest to the finest granularity of the timeline.8

For example, the timeline in Section 1.2 representing January and March 2008 can be

compressed to the following:

[y y2008 ε:{i3 [m Jan ]m ε:}i3 ε:{i3 [m Mar ]m ε:}i3 ]y

In order to be combined with other timeline FSTs or to be used as a base timeline

FST on which bracketing FSTs can operate, a compressed timeline FST must be ex-

panded again to contain all the removed calendar period brackets and symbols. To re-

tain the denotation, the expansion of the above timeline may not insert anything between

ε:{i3 and [m or ]m and ε:}i3, nor any new month brackets between the existing ones. Let

Σ{ denote the set of opening marker brackets, Σ} the set of closing marker brackets, ΣG
the period brackets ([G and ]G) and other symbols for the granularity G, and t a tempo-

rary symbol. Granularity G can then be expanded with the following sequence of replace

operations:9

(ε 1→ t)◦ (t → ε ‖Σ{ _ [G)◦ (t → ε ‖ ]G _ Σ})◦ (t → ε ‖ [G . (Σ\ ]G)∗_)◦ (t → ΣG
∗).

This is repeated for each granularity G from years down to the desired granularity of the

timeline. A reference timeline FST is then composed with the result, which effectively

inserts the marker brackets into the reference timeline FST.

5. Advantages of the Bracketing FST Model

The bracketing FST model and finite-state methods in general have a number of advan-

tages in representing SCEs and calendar information. In general, if an SCE can be com-

piled to a sequence of bracketing FSTs, its denotation can be computed and represented

as a timeline FST. Finite-state methods also provide a natural way to represent cycles

and repetition typical of calendar information.

A timeline FST provides a compact representation for certain kinds of sets of sets.

For example, on a timeline of one year, (any) five days a year corresponds to
(

365
5

)
, or

more than 5×1010, different alternative timelines, each with a different combination of

five days, but the corresponding timeline FST is only about eleven times as large as that

8Weeks cannot be removed similarly, since removing a week would also remove the beginning or ending

bracket of a month or a year occurring within the week.

9The first replace operation ε 1→ t is restricted so that it inserts only a single t between each two symbols in

the source string.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information 129



for a single day. Each state in this timeline FST encodes the number of marked days that

far but not the exact days.

A timeline FST can encode a set of alternative timelines. In contrast, a logic pro-

gramming approach would typically return one alternative at a time and backtrack to find

the next one. In some applications that may be preferable, in particular if the result set

would be very large, whereas in others we might want to enumerate all the alternatives.

Once constructed, an FST can be reused. For example, an application may make

different queries to a timeline FST or directly combine two timeline FSTs and operate

on them.10 In contrast, a typical logic programming approach might interpret the source

expression anew for each new query.

6. Limitations of the Bracketing FST Model

FSTs are a simple model of computation, and the bracketing FST model shares the lim-

itations of finite-state methods, including the inefficiency of some constructions and the

limited calculation ability.

Although the finite-state representation is often relatively efficient, it has its limita-

tions. Even if the final timeline FST corresponding to an SCE were representable, con-

structing it might consume too much space and time to be practically feasible. In the

worst case, the size of the result of a composition of FSTs may be the product of the sizes

of the composed FSTs, and even if the size of the result were reasonable, computing the

composition may be intractable. An example is the bracketing FST sequence represent-

ing the meaning a period of two days, a period of three days and a period of four days,
not overlapping.

FSTs can count and perform arithmetic operations only if limited to a finite and

relatively small set of numbers. The complexity of the required FSTs increases with the

set of numbers, as each case has to be enumerated separately. In practice, the counting

ability is sufficient for typical calendar information. Counting the number of marked

periods or computing their duration beyond a fixed limit would require a simple external

facility.

SCEs referring to a fixed number of periods, such as n_consecutive (10, calday) (ten
consecutive days), are represented by concatenating the same basic RE (or bracketing

FST) the specified number of times. The power notation Rn of many RE formalisms is

only an abbreviation for n REs R concatenated.

Because of the inability to count in a general manner, meanings referring to equiv-

alences of different kinds must be represented by enumerating each possibility. For ex-

ample, the meaning the same day of the week every week would have to be represented

as every Monday or every Tuesday or . . . or every Sunday. The same holds for meanings

involving equality of length, such as 5–10 days a month, each month the same number
of days.

Some features of calendars involve complex computations. For example, although

it might be possible to calculate the date of Easter with finite-state methods, it would be

very awkward and tedious. However, in the applications we envisage for the model, it

would suffice to use precomputed dates for Easter.

10Although making queries using intersection effectively constructs a modified timeline FST, it need not be

completely reconstructed.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information130



7. Related Work

Temporal representation and reasoning have been widely studied in various fields for

different purposes. Finite-state representations of temporal information include regular

expressions for checking the validity of dates by Karttunen et al. [4] and the represen-

tation of events combined with temporal information by Fernando [5]. However, they

are rather different in purpose from the bracketing FST model. We now briefly describe

some research that is related to the bracketing FST model in purpose or coverage, though

not in representation.

Endriss [6] proposes Temporal Expression Language (TEL) for representing and

reasoning with temporal expressions in appointment negotiation dialogues in the Verb-

mobil project [7]. A TEL expression ultimately denotes a single, connected period of

time, but underspecification is represented as a set of possible periods. A prototype of

TEL was implemented in Prolog. Endriss notes that a major reason for the inefficiency of

the prototype was representing (underspecified) periods of time as lists of intervals and

intersecting such lists ([6], p. 150).

Han and Lavie [8] propose Time Calculus for Natural Language (TCNL) for repre-

senting and reasoning with temporal expressions and chains of them in text. TCNL treats

temporal focus and underspecification. Reasoning is implemented as temporal constraint

satisfaction; it can be used in such applications as anchoring temporal expressions in text

on the basis of a chain of expressions referring to each other. Although solving general

temporal constraint satisfaction problems is NP-complete, many types of problems can

be solved in polynomial time.

The Calendar Logic of Ohlbach and Gabbay [9] is a propositional temporal logic in

which operations can refer to points or periods of time represented symbolically. It can

encode the meaning of various types of natural-language expressions involving temporal

information and events. The satisfiability of a Calendar Logic formula can be decided

by translating it to propositional logic, which may increase its size exponentially, or by

using a tableau system.

The CTTN system (Computational Treatment of Temporal Notions) of Ohlbach [10]

is used to model periodic temporal notions, from timetables and conference dates to

whole calendar systems. CTTN represents different kinds of time points and intervals,

including fuzzy ones, along with partitionings of a timeline. Operations on these no-

tions include fuzzy set operations and interval relations. CTTN has its own functional

specification language GeTS for defining temporal notions. CTTN can model real-world

temporal phenomena from leap seconds and time zones to the historical succession of

calendar systems.

TimeML [11] is a markup language for marking events and temporal expressions

and relations in text. In contrast to SCEs, TimeML often represents the explicit denota-

tion of a temporal expression instead of its intensional meaning. Dale and Mazur [12]

propose within the TimeML framework a representation that retains the underspecifica-

tion of such expressions as Monday. Their representation is based on attribute-value ma-

trices but they also provide a compact encoding as an extension of the ISO date and time

format.

OWL-Time [13] is an ontology for representing temporal information on the Web

in particular. The ontology can be represented in first-order predicate logic. It can rep-

resent the meaning of various kinds of temporal expressions, including repeated events

(disconnected periods) using temporal aggregates [14].

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information 131



8. Discussion and Further Work

We think that directly combining the calendar information marked on two timeline FSTs

would be useful in such applications as finding common free periods in the calendars of

several people. The ability to reuse and operate on preconstructed timeline FSTs would

appear an advantage of the bracketing FST model. Calendar information could be ex-

changed between applications as compressed timelines.

Although the bracketing FST model can represent a number of different calendar

information constructs, some fairly common ones remain untreated. We think that it

would be important to be able to represent at least a useful subset of durations. In general,

a duration, such as 40 hours, might be composed of an arbitrary number of arbitrarily

short periods of time, so in practice, it cannot be represented by marking all possible

alternatives on a set of timelines. Also untreated are shifting constructs, such as five
months after 10–16 June, interpreted as the period of 10–16 June shifted five months

forward.

Calendar information in general can be very complex and impossible to represent

exactly or naturally with finite-state methods. However, we should try to find a reason-

able set of operations for representing the meaning of most calendar phrases in relevant

application domains. Some constructs might be treated in the conversion process from

an SCE to a bracketing FST sequence.

The collective representation is well suited for representing a single set of periods

of time (or equivalently, a single disconnected period) denoting the times provided for a

service or available for an activity, from which a user can choose one or more. Instead

of a single solution, a timeline FST represents a set of periods suitable for a purpose,

whereas a typical logic programming approach might also in this case enumerate the

available periods, though one at a time. Applications that could use the collective repre-

sentation include querying an event calendar to find an event at a specified time, making

an appointment to a service, given certain free periods of time, and scheduling a time for

a meeting among a number of people with their respective calendars.

In contrast, the distributive representation is required when a user would like to find

a period or set of periods among many that fulfill certain criteria, such as the possible

working hours during a week. The distributive representation effectively represents all

the different sets of periods of time fulfilling the criteria, instead of only one, as typically

requested. Even though a timeline FST can represent certain types of large sets of periods

relatively compactly, constructing such timeline FSTs by a composition of bracketing

FSTs may be too inefficient. In such applications, a Prolog-style approach returning only

one solution, and more only by request, would in general be more efficient.

In summary, we think that the bracketing FST model is a promising representation

for the semantics of many types of calendar phrases represented as SCEs. Being able to

find the common periods of time denoted by two SCEs or the corresponding timeline

FSTs could be useful in various applications. However, to be usable in practice, the model

needs further work both on widening its coverage and on improving its performance.

Moreover, practical applications would benefit from a component to parse a (restricted)

natural-language calendar phrase to an SCE and another one to generate the former from

the latter.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information132



Acknowledgements

This paper represents independent work by the first author based on the suggestions of the

second author. The work was funded by the Graduate School of Language Technology

in Finland. We thank the anonymous reviewers for their valuable comments. We are also

grateful to Anssi Yli-Jyrä for pointing out how to convert a distributive representation to

a collective one.

References

[1] Jyrki Niemi and Kimmo Koskenniemi. Representing calendar expressions with finite-state transducers

that bracket periods of time on a hierarchical timeline. In Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muis-

chnek, and Mare Koit, editors, Proceedings of the 16th Nordic Conference of Computational Linguistics
NODALIDA-2007, pages 355–362, Tartu, Estonia, 2007. University of Tartu.

[2] Jyrki Niemi and Kimmo Koskenniemi. Quantification and implication in semantic calendar expressions

represented with finite-state transducers. In 22nd International Conference on Computational Linguis-
tics (Coling 2008): Companion volume: Posters and Demonstrations, pages 69–72, Manchester, UK,

August 2008. Coling 2008 Organizing Committee.

[3] Helmut Schmid. SFST manual. ftp://ftp.ims.uni-stuttgart.de/pub/corpora/SFST/ SFST-Manual.pdf,

September 2007.

[4] L[auri] Karttunen, J[ean]-P[ierre] Chanod, G[regory] Grefenstette, and A[nne] Schiller. Regular expres-

sions for language engineering. Natural Language Engineering, 2(4):305–328, December 1996.

[5] Tim Fernando. A finite-state approach to events in natural language semantics. Journal of Logic and
Computation, 14(1):79–92, 2004.

[6] Ulrich Endriss. Zeitliche Ausdrücke in Terminvereinbarungsdialogen: Repräsentation und Inferenz.

Diplomarbeit, Technische Universität Berlin, Fachbereich Informatik, June 1998.

[7] Wolfgang Wahlster, editor. Verbmobil: Foundations of Speech-to-Speech Translation. Artificial Intelli-

gence. Springer, Berlin, 2000.

[8] Benjamin Han and Alon Lavie. A framework for resolution of time in natural language. ACM Transac-
tions on Asian Language Information Processing (TALIP), 3(1):11–32, March 2004.

[9] Hans Jürgen Ohlbach and Dov Gabbay. Calendar logic. Journal of Applied Non-classical Logics,

8(4):291–324, 1998.

[10] Hans Jürgen Ohlbach. Computational treatment of temporal notions: The CTTN-system. In Frank

Schilder, Graham Katz, and James Pustejovsky, editors, Annotating, Extracting and Reasoning about
Time and Events, volume 4795 of Lecture Notes in Computer Science, pages 72–87. Springer, 2007.

[11] Roser Saurí, Jessica Littman, Bob Knippen, Robert Gaizauskas, Andrea Setzer, and

James Pustejovsky. TimeML annotation guidelines, version 1.2.1. http://timeml.org/site/

publications/timeMLdocs/annguide_1.2.1.pdf, January 2006.

[12] Robert Dale and Paweł Mazur. The semantic representation of temporal expressions in text. In

Mehmet A. Orgun and John Thornton, editors, Australian Conference on Artificial Intelligence, volume

4830 of Lecture Notes in Computer Science, pages 435–444. Springer, 2007.

[13] Jerry R. Hobbs and Feng Pan. An ontology of time for the semantic web. ACM Transactions on Asian
Language Information Processing (TALIP), 3(1):66–85, March 2004.

[14] Feng Pan and Jerry R. Hobbs. Temporal aggregates in OWL-Time. In Proceedings of the 18th Inter-
national Florida Artificial Intelligence Research Society Conference (FLAIRS-2005), pages 560–565,

Clearwater Beach, Florida, 2005. AAAI Press.

J. Niemi and K. Koskenniemi / Representing and Combining Calendar Information 133



Optimality Theory and Vector Semirings1

Wolfgang SEEKER, Daniel QUERNHEIM

Institut für Linguistik, Universität Potsdam
Karl-Liebknecht-Str. 24–25, D-14476 Golm

seeker@ling.uni-potsdam.de
Daniel.Quernheim@uni-potsdam.de

Abstract. As [1] and [2] have shown, some applications of Optimality Theory
can be modelled using finite state algebra provided that the constraints are regular.
However, their approaches suffered from an upper bound on the number of con-
straint violations. We present a method to construct finite state transducers which
can handle an arbitrary number of constraint violations using a variant of the trop-
ical semiring as its weighting structure. In general, any Optimality Theory system
whose constraints can be represented by regular relations, can be modelled this
way. Unlike [3], who used roughly the same idea, we can show, that this can be
achieved by using only the standard (weighted) automaton algebra.

Keywords. Semiring, Optimality Theory, Weighted Finite State Algebra

Introduction

Optimality Theory (OT) has been a popular framework since it was first developed in
the early 1990s by [4], modelling phenomena in phonology, syntax and other linguis-
tic disciplines. The computational complexity of OT itself has been shown to be within
the finite state domain ([1]), while the complexity of a particular OT system depends
on the constraints that are assumed. One problem in earlier analyses was how to han-
dle multiple constraint violations ([2]). This has been addressed by using weighted fi-
nite automata ([5,6,3]), though these proposals were not fully formalized and introduced
specially-designed algorithms instead of making use of well-known properties of finite
state algebra.

In this paper, we present a formal account of OT and the closely-related Harmonic
Grammar and introduce what we call the tropical vector semiring which allows us to
model OT with plain finite state algebra without the need for ad hoc algorithms. Subse-
quently, we illustrate our proposal with the implementation of an OT analysis of assimi-
lation phenomena in Dutch.

1For our implementation, we used FSM<2.0> by Thomas Hanneforth, which can be downloaded
from http://www.ling.uni-potsdam.de/˜tom/fsm/. We would like to thank four anonymous
reviewers for valuable feedback.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-134

134



1. Preliminaries

In this section we will briefly review the notions of semirings and weighted finite state
automata and give a formal definition of Harmonic Grammar and Optimality Theory.

1.1. Semirings and Weighted Automata

Weighted automata differ from their unweighted counterparts in that their transitions
contain weights in addition to the usual alphabet symbols. In order to allow for the var-
ious operations that are defined for weighted automata, the used weight set must have
the algebraic structure of a semiring. As is shown in [7], cleverly designed weighted au-
tomata can even be used to recognize clearly context free languages. Weighted automata
are indeed a more general device than unweighted automata, since every unweighted
automaton can be represented by a weighted automaton that uses the so called boolean
semiring as its weighting structure. A semiring is defined in the following way (cf. [8]):

Definition 1. A right semiring is a 5-tuple 〈K,⊕,⊗, 0, 1〉, where

1. 〈K,⊕, 0〉 is a commutative monoid with 0 as its identity element,
2. 〈K,⊗, 1〉 is a monoid with 1 as its identity element,
3. ⊗ right distributes over ⊕: ∀a, b, c ∈ K, (a ⊗ b) ⊕ c = (a ⊗ c) ⊕ (b ⊗ c),
4. 0 is an annihilator for ⊗: ∀a ∈ K, a ⊗ 0 = 0 ⊗ a = 0.

A left semiring is defined likewise by replacing right with left distributivity. A semiring,
that fulfills both conditions is simply called semiring. If the second monoid is commuta-
tive as well, the semiring is called a commutative semiring. This is an important feature
in real applications, since intersection and hence composition is defined for weighted
automata only if their weighting structure is a commutative semiring2. An often used
semiring is the so called tropical semiring 〈R,min,+,∞, 0〉, that computes the minimal
weight for a given input.

A weighted finite automaton over the semiring K is defined as the 7-tuple A =
〈Σ, Q, I, F,E, λ, ρ〉, with Σ as its alphabet, Q as the set of states, I ⊆ Q as the set of
start states, F ⊆ Q as the set of final states, E ⊆ Q×Σ×K×Q as the set of transitions,
λ : I → K as the initial weight function and ρ : F → K as the final weight function. A
path π = e1 . . . en in A is an element of E∗ with consecutive transitions. The weight of
a path w[π] = w[e1]⊗ · · ·⊗w[en] is then the ⊗-product of the weights of its constituent
transitions. The output weight of a given string x applied to the automaton A is defined
as follows, where Π(x) is the set of paths, that are labeled with x, s[π] ∈ I is the source
state of π and t[π] ∈ F is the target state of π:

Definition 2. A · x =
⊕

π∈Π(x)

λ(s[π]) ⊗ w[π] ⊗ ρ(t[π])

If the set of paths for x is empty, its weight is defined as 0. Paths with weight 0 are
usually seen as non existent in the automaton3. This definition can easily be extended to
weighted ε-automata and transducers.

2This restriction holds only for non trivially weighted automata, that is, automata which contain weights
different from 1.

3This is a problem for the proposed constructions in [7], if one tries to map certain paths of an automaton to
a weight, that is simultaneously the 0 of the weighting semiring.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings 135



1.2. Harmonic Grammar and Optimality Theory

The framework of Optimality Theory (OT) was introduced by [4] as a further develop-
ment of Harmonic Grammar (HG, [9]), which resulted from research in neural networks.
OT is widely used in phonology, syntax and other subdisciplines of linguistics. The basic
ideas behind OT and HG are the notions of the ‘richness of the base’ and ‘constraint
violability’. This means that there is a generating function which maps an input to an
unrestricted number of candidates (which do not necessarily have anything in common
with the input). These candidates are then evaluated using a set of constraints which are
either ranked (OT) or weighted (HG). Ideally, constraints are the same for all languages.
Cross-linguistic variation is then explained by different rankings/weightings.

While in OT every constraint only leaves the candidates with the least number of vi-
olations, multiple violations of lower-weighted constraints can outrank higher-weighted
constraints in HG. If, for instance, you have two constraints weighted 2 and 1, a candi-
date that violates the latter three times (score: 3) will be inferior to one that violates only
the former once (score: 2). In an OT system with seperately ranked constraints, this is
not possible.

There has been a lot of research on the computational properties of OT. It has been
shown by [1], [2] and others that an OT system can be modelled using finite state algebra
provided the constraints can be expressed by regular operations. In order to model un-
limited constraint violations, one has to equip these automata with a weighting structure
([6,5,3]). Most of the work so far has focused on this, leaving aside the issue of how the
actual constraint automata look. In the following, we will provide some examples as well
as general implementation instructions, using only finite state algebra.

Let us now come to a more formal description of OT and HG. OT has been well
formalized by [10], but we will take a slightly different approach here, formalizing
HG first and developing a formalization of OT based on this. Both theories are closely
related in that they have the same basic structure, consisting of a generator function
GEN and an evaluating function EVAL which makes use of a finite constraint sequence
C = (C1, C2, . . . Cn).

GEN is a function mapping the input on an unrestricted number of candidates. In
order for it to be as general as possible, we have it operate on the closure of two given
alphabets Σ and Θ (e.g. the set of phonemes and the set of phones):

GEN : Σ∗ → 2Θ∗

Every constraint Cn is a function mapping the input4 and a candidate to a natural number
signifying the number of violations:

Cn : Σ∗ × Θ∗ → N

To keep track of the weights in HG, we further define the function w : N → R which
maps every n to the weight of the corresponding constraint Cn. For OT, this is trivially
1 for every constraint.

4Whether a constraint actually refers to the input or not marks the difference between markedness constraints
(which penalize dispreferred structures) and faithfulness constraints (which demand for some correspondence
between input and output). We will discuss how to unify them later.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings136



The evaluating function is what differentiates OT from HG. We define the function
EVALHG : Σ∗ × Θ∗ → R that marks candidates in the following way:

EVALHG(in, z) =

n∑
i=1

Ci(in, z) · w(i)

In order to determine the optimal candidate, the one with the lowest value of EVALHG

has to be found, that is:

BEST(in) = argmin
z∈Gen(in)

EVALHG(in, z) = argmin
z∈Gen(in)

n∑
i=1

Ci(in, z) · w(i)

It is obvious that the latter formula is an instantiation of definition 2 where the abstract
multiplication ⊗ is the sum and the abstract addition ⊕ is the min operation, with λ and ρ
being the identity element of ⊗. In fact, this weighting structure is the tropical semiring.

It is easy to see that an OT system with only one allowed violation per constraint
can be imitated by a HG that weights constraints sufficiently far apart, e.g. in powers of
2. However, when multiple violations are allowed, this is not possible anymore, because
for every pair of weights 〈a, b〉 for the constraints A,B there would be a number of
violations c which can make B outrank A. For OT, a vector of constraint violations has to
be constructed by EVALOT, so that the values of individual constraint violations cannot
interfere with each other:

EVALOT(in, z) = 〈C1(in, z), C2(in, z), . . . Cn(in, z)〉.

We want to mention that OT can be seen as a vector of trivial Harmonic Grammars of
one constraint each, each yielding a result for every candidate. Given that OT can have
equally ranked constraints, this would mean Harmonic Grammars of more constraints
that are weighted the same. This way, one could even create grammars of independent
systems of differently ranked constraints, an idea that (to our knowledge) hasn’t been
explored yet.

In order to have an ordering on violation markings, the vector result of EVALOT has
to be interpreted lexicographically; that means just as in OT a candidate loses to another
one if it has more violations for the first constraint they differ in, the vectors are compared
item by item. The next section will give the formalization of the underlying algebra.

2. The Tropical Vector Semiring

As mentioned before, a strict ordering of constraints cannot be achieved by a weighting
structure that simply computes the sum of all weights (i.e. constraint violations). There-
fore we define the support set of the weighting structure to be the set of vectors, where ev-
ery dimension of the vector keeps track of a certain constraint. Adding two weights then
means to sum the individual values in the same dimensions, which is of course simple
vector addition. Thus, an output candidate of the OT system is weighted by a vector that
represents in each dimension the number of violations for the corresponding constraint.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings 137



Definition 3. The tropical vector semiring 〈Nd
0 ∪ {−→∞},min,+,−→∞,

−→
0 〉 is a 5-tuple,

where

1. its support set Nd
0 is the set of vectors with a fixed dimension d,

2. ⊕ is the minimum operation returning the smaller one of two given vectors.
3. ⊗ is vector addition, which is defined as pairwise addition of its components:

−→a +
−→
b =

⎛
⎜⎝

a1

...
an

⎞
⎟⎠ +

⎛
⎜⎝

b1

...
bn

⎞
⎟⎠ =

⎛
⎜⎝

a1 + b1

...
an + bn

⎞
⎟⎠,

4. 0 is the infinite vector −→∞, that has in every dimension an infinite value,
5. 1 is the null vector

−→
0 .

The minimum operation is supposed to determine the smaller one of two given vectors,
where the meaning of smaller differs from the usual meaning of being shorter than the
other vector. We impose a strict partial order on the support set (i.e. the set of vectors) by
ranking the dimensions of a vector:

−→a <
−→
b

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

false if −→a =
−→
b

true if a1 < b1

false if b1 < a1⎛
⎜⎝

a2

...
an

⎞
⎟⎠ <

⎛
⎜⎝

b2

...
bn

⎞
⎟⎠ if a1 = b1

The minimum operation is defined as follows:

−→a min
−→
b

def
=

⎧⎪⎨
⎪⎩

−→a if −→a <
−→
b

−→
b if

−→
b < −→a

−→a otherwise

Thus, a vector will be smaller than another one, if it has a smaller value in the first
dimension they differ in. In the case of two completely equal vectors, we arbitrarily define
the operation to return the first one. With this feature we can represent an unrestricted
number of constraint violations for a single constraint and obey the constraint ranking at
the same time.

It is easy to show that 〈Nd
0 ∪ {−→∞},min,−→∞〉 and 〈Nd

0 ∪ {−→∞},+,
−→
0 〉 are both com-

mutative monoids. The ⊕ operation is by definition idempotent. Moreover, the following
monotony property for the ⊗ operation (vector addition) holds:

∀−→a ,
−→
b : ∀−→c �= −→∞ : −→a <

−→
b implies −→a + −→c <

−→
b + −→c

This is due to the fact that component-wise addition of natural numbers preserves
monotony for every component.5 This allows for the following proof of right distributiv-

5One reviewer has pointed out that distributivity would be lost when allowing for ∞ as a component:“`
1

2

´
⊕

`
2

1

´”
⊗

`
∞

1

´
=

`
∞

3

´
, but

“`
1

2

´
⊗

`
∞

1

´”
⊕

“`
2

1

´
⊗

`
∞

1

´”
=

`
∞

2

´
. That is why we restrict compo-

nents to natural numbers (with the obvious exception of the infinite vector). Thus, the number of constraint
violations in OT may be unbounded, but not infinite.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings138



ity (left distributivity can be proven analogously):

(
−→a ⊕

−→
b

)
⊗−→c = (−→a ⊗−→c ) ⊕

(−→
b ⊗−→c

)

Proof. If −→c = −→∞, the result is −→∞. If −→a =
−→
b , the result is −→a ⊗−→c . If they are unequal,

without loss of generality (since the min operation is commutative) assume that
−→a <

−→
b . Then −→a ⊕

−→
b = −→a min

−→
b = −→a , which gives:

(
−→a ⊕

−→
b

)
⊗−→c = −→a ⊗−→c

Due to monotony, we know that −→a + −→c <
−→
b + −→c , which yields:

(−→a ⊗−→c ) ⊕
(−→

b ⊗−→c
)

= −→a ⊗−→c

qed.

The tropical vector semiring is therefore commutative, idempotent and bounded and al-
lows for the intersection and composition of weighted finite state acceptors and trans-
ducers.

[11] has achieved a similar result by composing several semirings and then redefine
the ⊕-operation in order to work globally on the composite semiring. In his formalisa-
tion, the support set of the resulting semiring is interpreted as a set of tuples with arity of
the number of composed semirings.

3. The Model

One advantage of modelling OT with finite state machines is the possibility to compile
the whole system into one monolithical transducer, as has been already pointed out in
[3]. Since every part of the system is represented by a finite state transducer (or some
identity transduction of an underlying automaton), the composition (◦) of the individual
parts will give us a single transducer for the whole system (cf. [12]).

Definition 4. OT-transducer (OTt)

GEN

◦
EVAL

◦
Postprocessing

The problem of finding the optimal candidate for a given input is therefore the problem
of finding the best path in the OTt for the input. In the tropical vector semiring, the
best path is defined as the path with the smallest vector, with the vector representing the
violations of this candidate. This problem can also be seen as a search problem in vector
space and this could be another application for the tropical vector semiring.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings 139



Definition 5. Finding the optimal candidate

BEST(input) = best path( ID(input) ◦ OTt )

One difficulty of modelling OT with finite state tools is the definition of a special class of
faithfulness constraints, namely those which require some kind of identity between input
and output. Since it is not possible to link two positions on different tapes of a transducer
(alignment problem), the identity of input and output is hard to test. One possible way
of addressing this is to use a special symbol different from epsilon to mark deletion or
epenthesis, so that optimization algorithms, that for example remove or push epsilons,
cannot destroy the correspondence. These transducers meet the same length condition
(see [12]).

However, we want to propose another solution to this problem. In order to establish
a correspondence between input and output segments, we lift the content of the lower
tape onto the upper tape and mark it with a special symbol ($). An input-output pair from
the language of the OTt is then no longer represented by a two taped transducer, but is
now an automaton, that has some sort of complex symbols on its tape6. The advantage
of this approach is the direct applicability of our constraints, which we model by regu-
lar relations, that reweight $ in the context of constraint violations. With this notation,
every (regular) faithfulness constraint can be modelled in the same way as markedness
constraints. Example 1 shows the Dutch word eetbar /etbar/ 7 that was mapped by GEN

on the candidate edbar. The . marks syllable boundaries and the curly brackets enclose
prosodic words.

Example 1.

{(e$e)(d$t)}.{(b$b)(a$a)(r$r)}

To model epenthesis and deletion as well, GEN has to introduce segments of the form
([Phone]$) for deletion and ($[Phone]) for epenthesis, where the output or in-
put symbol is the empty word. A constraint like MAX-IO(no deletion) or DEP-IO(no
epenthesis, see e.g. [13]) would then punish sequences of $) or ($.

4. Implementation

4.1. Data: Dutch Assimilation

The OT analysis we will use as an example models assimilation in Dutch and was devel-
oped by [14]. Additional test data was drawn from [13].

Dutch exhibits final devoicing as in baard [ba:rt] ‘beard’. Additionally, obstruents
assimilate when words are derived (e.g. by compounding, examples from [13]): stropdas
[-bd-] ‘tie’, diepzee [-ps-] ‘deep-sea’. As can be seen, there is progressive assimilation as
well as regressive assimilation, for which the following patterns can be observed:

6This idea is also used in transducer optimization algorithms, that encode the symbol pairs of a transition
in one complex symbol forming thus an automaton. These automata can then be minimized and afterwards
decoded in order to get back the improved transducer.

7This is supposed to be an underlying representation; vowel length is omitted for the sake of simplification.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings140



Example 2. Dutch assimilation data ([13])

1. voiceless stop + voiced stop: regressive (zakdoek [-gd-] ‘handkerchief’)
2. voiced stop + voiceless stop: regressive (bloedkoraal [-tk-] ‘red coral’)
3. voiceless fricative + voiced stop: regressive (lafbek [-vb-] ‘coward’)
4. voiced fricative + voiceless stop: regressive (hooxtij /-Gt-/ [-kt-] ‘heyday’)
5. voiceless stop + voiced fricative: progressive (haartzeer [-ts-] ‘heartache’)
6. voiceless fricative + voiced fricative: progressive (straafzaak [-fs-] ‘trial’)
7. voiced stop + voiced fricative: both become voiceless (handvat [-tf-] ‘handle’)
8. voiced fricative + voiced fricative: both become voiceless (hoogvlakte /-Gf-/ [-xf-]

‘plateau’)

Some generalizations can be drawn from this data: First, when words are compounded,
the segments at the boundary always share the same voice feature. Second, stops in the
onset always keep their voice feature and always assimilate their neighbouring segment.
Third, there seems to be a general dispreference of voice at the end of the prosodic word
which is in correspondence with general devoicing in Dutch. From this we can deduce
three constraints (due to [14]) which give an account of the data:

Definition 6. S-IDENT: Adjacent obstruents are identical in voicing.

Definition 7. IDENT-PWOS: Stops in onset position of Prosodic Words should be
faithful to underlying laryngeal specification.

Definition 8. *[+VOICE]}ω: Prosodic Word-final obstruents are voiceless.

From example 2.1 we know that S-IDENT dominates *[+VOICE]}ω, because otherwise,
we’d expect [-kd-]. How is IDENT-PWOS ranked with respect to them? If it was dom-
inated by *[+VOICE]}ω, in example 2.3 a candidate with [-fp-] would be better ceteris
paribus. No ranking between S-IDENT and IDENT-PWOS can be deduced; following
[14] we will therefore assume them to be at the same level. A tableau for the input etbar
/etbar/ [-db-] ‘edible’ is given in table 1.

Table 1. OT tableau for /{et}.{bar}/

/{et}.{bar}/ S-IDENT IDENT-PWOS *[+VOICE]}ω

a. ☞ [ed.bar] ∗

b. [et.bar] ∗!

c. [ed.par] ∗! ∗ ∗

d. [et.par] ∗!

Some remarks have to be made about this tableau. First, we assume that the input is
already supplied with a structure that at least indicates prosodic words and syllables. In
practice, the generator function would introduce arbitrary structures from which other
constraints would pick the adequate ones; but this would only complicate our analysis
unnecessarily. Second, we use rougher approximations of the phonetic realisations than
[14] do, since this is sufficient for present purposes. Third, the constraints so far are not
sufficient to exclude unwanted candidates like [eg.bar] and even [eg.ber] which would
incur the exact same constraint violations as the winning candidate [ed.bar]. We therefore
add the following constraints to our analysis (from [13]):

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings 141



Definition 9. IDENT-IO(PLACE): The specification for place of articulation of an input
segment must be preserved in its output correspondent.

Definition 10. IDENT-IO: Corresponding segments are exactly the same in input and
output.

We rank IDENT-IO(PLACE) highest and IDENT-IO lowest to obtain the tableau shown
in table 2. Our example does not use epenthesis or deletion for it would complicate the
constraint set even more.

Table 2. OT tableau for /{et}.{bar}/

/{et}.{bar}/ IDENT-IO(PLACE) S-IDENT IDENT-PWOS *[+VOICE]}ω IDENT-IO

a. ☞ ed.bar ∗ ∗

b. eg.bar ∗! ∗ ∗

4.2. The GEN Function as Regular Relation

Since the GEN function is supposed to generate all possible candidates for a given in-
put, we want to define it as unrestricted as possible. Finite state automata are capable
of representing infinite languages and are therefore a natural way to represent the pos-
sibly infinite set of candidates generated by GEN. In many cases, however, GEN can be
restricted in a way that leads to a finite, but still complete set of reasonable candidates.
In our Dutch example, GEN has to generate all possible substitutions of consonants, that
can appear at syllable boundaries. But still, to avoid an oversimplified GEN function, we
define it as the set of pairs of phonemes, i.e. the crossproduct of the set of phonemes with
itself8.

Definition 11. GEN

[Phone] @-> \( ... $[Phone]\)

This regular expression compiles to a transducer that uses longest match to enclose every
member of the set of phones with a ( on the left side and $[Phone]) on the right
side (see [15]). The double occurrence of [Phone] thereby models the crossproduct
[Phone]×[Phone]. This definition of GEN is thus very general, but produces a lot of
unnecessary and unreasonable candidates. The two constraints IDENT-IO(PLACE) and
IDENT-IO will help us with that. In addition to the generation of the candidate set, the
GEN function introduces the previously described notation, that enables us to model
faithfulness constraints. In order to dispose of this at the end of the evaluation process, we
also need a postprocessing step to delete the input material together with the additional
symbols from the output tape of the OTt. This is simply an obligatory replacement rule
mapping the unwanted material to the empty word.

8Square brackets indicate natural classes of phonemes, e.g. [CUnvoi] = {p,t,k,f,x,s}, which can also be
achieved by the intersection of classes representing individual features: [Consonant] & [Unvoiced].
They are distinctive subsets of the alphabet of the automaton.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings142



Definition 12. Postprocessing

obligatory: ( \([Phone]$ | \) ) -> [<epsilon>]

4.3. The EVAL Function as Regular Relation

According to the ranking of the five specified constraints, we need a dimension of 4 for
the weighting semiring structure. We need only 4 dimensions, because two constraints
are at the same level of the ranking, which means that they share a dimension in their
weight vectors. The vector weights will be shown between angle brackets with their di-
mensions seperated by ;. The individual constraints are modelled as obligatory replace-
ment rules, that reweight the $ in the given contexts. Since they are applied obligatorily,
there has to be done at least one complementation during compilation in order to achieve
robustness. This is unfortunately unavoidable and a grammar engineer has to be careful
not to formulate constraints that increase the complexity of the whole system.

IDENT-IO(PLACE). This faithfulness constraint is introduced to restrict the output of
GEN to a more reasonable set of candidates. This is also the reason why we rank this
constraint highest in the constraint hierarchy. This constraint requires the identity of
input-output-pairs in their articulation place feature and thus allows only for voice fea-
ture changes at a certain segment in the input. We model this by composing a set of trans-
ducers9 that each implement this constraint for a pair of phonemes differing only in their
voice feature. We define PoA = {[Dental],[Velar], ...} as the set of natural
classes of places of articulation. The ampersand symbolizes the intersection between two
regular expressions, whereas ◦ marks the composition.

©
α∈PoA

$->$<1;0;0;0> /[Obstruent]&α _ [Phone]-([Obstruent]&α)

S-IDENT. This markedness constraint punishes candidates with adjacent obstruents that
don’t have the same value in their voice feature. We compose two expressions, one for
each sequence of a voiced and an unvoiced consonant. The /i operator permits the ex-
pression to ignore the appearance of a specified set of symbols, here any of the boundary
symbols {{,},.} (see [12] for the ignore operator).

$->$<0;1;0;0>/_([CVoi]\)\([Phone]$[CUnvoi]\))/i[Boundary]
$->$<0;1;0;0>/_([CUnvoi]\)\([Phone]$[CVoi]\))/i[Boundary]

IDENT-PWOS. This faithfulness constraint ensures identity in the voice feature of stops
between input and output segments in the onset of a prosodic word. Like above we
achieve this by composing two expressions:

$->$<0;1;0;0>/
{(\([Phone]$[Consonant]\))*\([CVoi]&[Stop]
_
[CUnvoi]&[Stop]

9The individual transducers are represented by Kaplan&Kay-style replacement rules, which have the general
form of φ → ψ/λ ρ (cf. [12,16]). Its meaning can be stated by ’Replace φ by ψ in the left context λ and the
right context ρ’. Every component φ, ψ, λ, ρ has to be a regular expression itself, where every component can
possibly denote the empty word but only ψ can be weighted.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings 143



$->$<0;1;0;0>/
{(\([Phone]$[Consonant]\))*\([CUnvoi]&[Stop]
_
[CVoi]&[Stop]

*[+VOICE]}ω. This markedness constraint punishes candidates with voiced consonants
that appear at the end of a prosodic word.10

$->$<0;0;1;0> / _ [CVoi]\)\}

IDENT-IO. This faithfulness constraint requires identity between corresponding seg-
ments of input and output. We compose a set of transducers, which each reweight $ in
contexts of non-identical in- and output symbols.

©
α∈[Phone]

$->$<0;0;0;1> / α _ ([Phone]-α)

The EVAL function itself is then the composition of the outlined transducers representing
the individual constraints of this OT system.

5. Conclusion

By using regular operations only, we have shown that Optimality Theory in general can
be modelled by weighted finite-state algebra with the restriction, of course, that the con-
straints have to be expressible by regular relations. Particularly, the system can handle
an arbitrary number of constraint violations, and we don’t need purpose-built algorithms
for evaluation and compilation of the system. Since the tropical vector semiring is a
natural generalisation of the common tropical semiring, we can imagine that the same
generalisation applied to other semirings could unlock new fields of application.

In our work, we have chosen an algebraic approach because it helped us to get a
grip on the problem without getting lost in thousands of states and transitions. Therefore,
we want to emphasize – in the tradition of Kaplan & Kay – the usefulness and hence
importance of a higher-level approach to this class of phenomena that abstracts away
from the specific automaton, focusing on the languages and their algebra.

10This constraint models the Dutch final devoicing as a side effect.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings144



References

[1] Robert Frank and Giorgio Satta. Optimality theory and the generative complexity of constraint violabil-
ity. Computational Linguistics, 24(2):307–315, June 1998.

[2] Lauri Karttunen. The proper treatment of optimality in computational phonology. In Kemal Oflazer and
Lauri Karttunen, editors, Finite State Methods in Natural Language Processing, pages 1–12, Ankara,
Turkey, July 1998. Bilkent University.

[3] Jason Riggle. Generation, recognition, and learning in finite state Optimality Theory. PhD thesis,
University of California, Los Angeles, 2004.

[4] Alan Prince and Paul Smolensky. Optimality Theory: Constraint interaction in generative grammar.
Manuscript, Rutgers University and University of Colorado at Boulder. Available at http://roa.
rutgers.edu/files/537-0802/537-0802-PRINCE-0-0.PDF, 1993.

[5] T. Mark Ellison. Phonological derivation in optimality theory. In Proceedings of the 15th conference
on Computational linguistics, pages 1007–1013, Morristown, NJ, USA, 1994. Association for Compu-
tational Linguistics.

[6] Jason Eisner. Efficient generation in primitive Optimality Theory. In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 313–320, Madrid, July 1997.

[7] Corinna Cortes and Mehryar Mohri. Context-free recognition with weighted automata. Grammars,
3(2/3):133–150, 2000.

[8] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 12 in EATCS Monographs
on Theoretical Computer Science. Springer, 1988.

[9] Géraldine Legendre, Yoshiro Miyata, and Paul Smolensky. Harmonic grammar: A formal multi-level
connectionist theory of linguistic well-formedness: An application. Technical Report CU-CS-464-90,
Department of Computer Science and Institute of Cognitive Science, University of Colorado, Boulder,
1990.

[10] Jonas Kuhn. Formal and Computational Aspects of Optimality-theoretic Syntax. PhD thesis, Institut für
maschinelle Sprachverarbeitung, Universität Stuttgart, 2001.

[11] Joerg Didakowski. Syncop – combining syntactic tagging with chunking using weighted finite state
transducers. In Proceedings of Finite State Methods and Natural Language Processing (FSMNLP 07),
2007.

[12] Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331–378, September 1994.

[13] René Kager. Optimality Theory. Cambridge University Press, Cambridge, 1999.
[14] Janet Grijzenhout and Martin Krämer. Final devoicing and voicing assimilation in dutch derivation and

cliticization. Working Paper 106, SFB 282, Heinrich-Heine-Universität Düsseldorf, 1998.
[15] Lauri Karttunen. Directed replacement. In Arivind Joshi and Martha Palmer, editors, Proceedings of the

Thirty-Fourth Annual Meeting of the Association for Computational Linguistics, pages 108–115, San
Francisco, 1996. Morgan Kaufmann Publishers.

[16] Lauri Karttunen. The replace operator. In Meeting of the Association for Computational Linguistics,
pages 16–23, 1995.

W. Seeker and D. Quernheim / Optimality Theory and Vector Semirings 145



A Compression Method for Natural
Language Automata

Lamia Tounsi, Béatrice Bouchou, Denis Maurel

Université François Rabelais Tours, LI
lamia.tounsi@computing.dcu.ie

{beatrice.bouchou, denis.maurel}@univ-tours.fr

Abstract. This paper deals with Finite State Automata used in Natural Language
Processing to represent very large dictionaries. We present a method for an impor-
tant operation applied to these automata, the compression with quick access. Our
proposal is to factorize subautomata other than those representing common prefixes
or suffixes. Our algorithm uses a DAWG of subautomata to iteratively choose the
best substructure to factorize. The linear time accepting complexity is kept in the
resulting compact automaton. Experiments performed on ten automata are reported.

Keywords. Automaton, Compression, DAWG, Greedy Algorithm, Electronic
Dictionaries.

Introduction

A standard way to represent natural language dictionaries is the use of Finite State Au-
tomata FSA due to the high speed access (successful look up is performed in time pro-
portional to the length of word and unsuccessful search is stopped as soon as there is no
transition that continues the word). It is important to minimize the size of such huge data
structures, while preserving their access time advantage. This task has been extensively
studied. The most quite basic proposal has been to build a trie, where identical prefixes
of different words are factorized. The trie can also be compressed [1]. Minimizing deter-
ministic finite state automata leads to better space savings because identical suffixes are
also factorized [2] , [3], [4]. In addition, space savings can be achieved by optimizing the
physical storage method as shown in [5].
In all of these approaches, identical parts that are neither prefix nor suffix still appear
several times in the automaton. In [1] a quadratic method of trie compaction is presented,
that involves coding the automaton so that not only common prefixes or suffixes are
shared, but also common internal patterns. The procedure consists of a Ziv Lempel com-
pression of a trie represented as a linked list.
The method proposed in this paper is linear, it is applied to deterministic FSA, which
can be minimal or not. It proceeds in two main steps, which are independent from each
other:
- A lossless compression at the internal data representation level.
- A greedy algorithm to factorize repeated identical parts inside the automaton ([6] uses
close method for large strings, as DNA...).

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-146

146



This algorithm iteratively chooses the best factorization to reduce the size of the original
automaton. The heuristic used for this choice is based on information computed from
the automaton and stored in a data structure similar to a Directed Acyclic Word Graph
DAWG1. At the beginning of the algorithm, we apply to the original automaton a reduc-
ing process similar to the one presented in [10] in order to detect all its sequential or
parallel subautomata; and we store these subautomata in the DAWG structure. At each
iteration step, the DAWG indicates the best candidate subautomaton to factorize. Then,
factorization is performed in the automaton and the DAWG structure is incrementally
updated.
Notice that the DAWG structure used for factorization can be seen as an index of se-
quences and parallels occurring in the automaton. In the same way as automatic indexa-
tion of text draws up a list of all its words (each word with all its positions), this kind of
DAWG represents a list of substructures with their positions inside the automaton. Infor-
mation such as type (sequence or parallel), size, frequency and number of transitions are
also stored in this DAWG.
The paper is organized as follows: we first give the intuition of the lossless internal rep-
resentation compression on the one hand, and of the sequences and parallels’ recognition
on the other hand. In Section 2 we present the adapted DAWG structure, and in Section 3
we show how it is used for factorization. We analyze in Section 4 the experimental results
of the compression-factorization process and the accessibility features on the resulting
compressed structure.

1. Internal representation, sequences and parallels

In this paper, we deal with (possibly minimized) acyclic deterministic finite automata
with an end marker A = < Σ, Q, δ, qi, qf >, where Σ is the alphabet, Q is the finite set
of states, δ is the transition function (δ: Q × Σ → Q), qi is the initial state (qi∈ Q) and
qf is the final state (qf ∈ Q).
An automaton A is represented in memory by the list of its output transitions, each tran-
sition t being associated with three data: (i) a binary flag indicating whether t is the first
transition of the current state, (ii) the label of t and (iii) the address of the target state.
In Figure 1 we show such a list of transitions and the finite automaton it represents (# is
the end character). Notice that transitions are organized according to the height of their
initial state q (the size of the longest path linking q to qf ).

We apply a coding of transitions using a constant size unit, as follows:
(i) binary flag: 1 bit; (ii) label: the minimum number of bits necessary to encode the
alphabet, Sizealphabet = log2(|Σ|); (iii) address of target state: the minimum number
of bits necessary to encode the biggest value V alMax used as target state identifier,
Sizeaddress = log2 (V alMax + 1 ).
Variable size compression techniques would have not been efficient in our context be-
cause data are numerous and different from each others, which would lead to a corre-
spondence table that is too large in the compressed files. We have checked this result
by applying Huffman coding. We also choose absolute addressing because a dictionary
contains short words that require big address jumps, so relative addressing would not be
interesting.

1A special form of minimal deterministic automaton built to recognize and analyze repetitions in a text, or
to develop a complete index over a text [7], [8], [9].

L. Tounsi et al. / A Compression Method for Natural Language Automata 147



We can easily rebuild the initial automaton from the compressed representation due to
the following information (these information are added as a header to the compressed
file): (i) number of transitions, (ii) Sizealphabet and (iii) Sizeaddress. This operation is
not so simple for other compressions (such as LZW [1]).

Figure 1. Initial automaton

This coding method is close to the first one used by Daciuk [5]. He also uses a function
that returns the number of bytes needed to store all the arguments in order to compute
the size of the automaton in bits.
Our experiments were carried out on several automata representing dictionaries, the av-
erage compression ratio for the tested automata is around 72%-74%, see Table 3. For
instance, the size of the french automaton in text format is 2 178 Ko, this size decreases
to 563 Ko using our compression method (binary encoding).

The other way to decrease the size of the automaton is to reduce its number of states
and transitions, by factorizing repeated internal substructures. To this aim, we have first
developed algorithms to detect substructures of any shape [11] and our experimental
results have shown that, in natural language dictionaries, the frequent substructures are
almost transition sequences.
An efficient way to detect all sequences in an automaton is to apply the reduction process
presented in [12], whose principles are as follows :
while there is a transitions sequence or a set of parallel transitions between two states,
(i) replace each longest transition sequence with one transition having a new label; (ii)
replace each set of parallel transitions between two states with one transition having a
new label.

0#119
19s018
0#117
19n116
16i115
17n114
15t013
15p112
15r011
15�110
14a19
12u08
12a17
10a16
9m15
5o14
4r03
6m02

r
�

a

m

#nip

t

u

a

�

#
s

namo

r

7�11

L. Tounsi et al. / A Compression Method for Natural Language Automata148



In other words, the sequences are jammed (resp. parallel are flattened) by one transition
with a new label. New labels correspond to symbols in an extended alphabet, that must
be stored in memory. Figure 2 shows the reduced automaton of Figure 1 and its extended
alphabet. Figure’s 2 table includes the regular expressions for the external alphabet sym-
bol (labels), e.g. "‘13 parallel 5 6"’ is "a|u" and "‘sequence 10 9"’ is "i.n".

Obviously, reducing all substructures as in our example is not interesting for space sav-
ing. Indeed, the factorization of a sequence or a parallel occurring once extends the al-
phabet, without reducing any occurrence. Thus it increases the storage size.
In order to reduce the storage size, it is essential to choose the right substructures to
factorize: this can be achieved if we can compare features related to substructures, such
as their size and their frequency.

16
11

12

21 12

Alphabet
Initial alphabet Extended alphabet
1 � 13 Parallel 5 6
2 m 14 Parallel 7 8
3 r 15 Parallel 1 3
4 o 16 Sequence 3 4 2 5 9
5 a 17 Sequence 1 13 14

1 1 16 3 6 u 18 Sequence 2 5 15
2 0 21 5 7 p 19 Sequence 10 9
3 1 11 5 8 t 20 Parallel 17 18
4 0 12 0 9 n 21 Sequence 20 19
5 1 12 0 10 i

11 s
12 #

Figure 2. Reduced Automaton

An efficient way to get this information is to build the Directed Acyclic Word Graph
(DAWG) of all sequences (and parallels) found. Indeed, the DAWG is a (space-
efficient) data structure to treat and analyze repetitions in a text [7], [8].

2. Indexation

Precisely, the DAWG is the smallest finite state automaton that recognizes all suffixes
of a given string [7], [13], [8]. It is constructed in linear time with respect to the size of
the given string. This structure allows to compute the number of subwords in a word, the
longest repeated subword, etc.
In [9], Mehryar Mohri adds new information to the DAWG in order to use it as an
index. More precisely, he associates with each state p of the DAWG a list of integers
representing the positions of the words recognized at p. So, when a word is red in the
DAWG, all its positions in the input text can be obtained directly from the list of num-

L. Tounsi et al. / A Compression Method for Natural Language Automata 149



bers associated with the reached state.

In our context, as we want to factorize common substructures in a given automaton, it
is useful to keep in the DAWG their positions in the automaton. That is why we start
from Mohri’s proposal and we adapt it. The DAWG is built by considering sequences
and parallels (found in the automaton) as words.

The following steps describe the adaptation for sequences :
1. Convert input data: Consecutive sequences of transitions detected in the automaton
are converted into words by sequencing consecutive transition labels (in the order of
transitions).
2. Do not consider final state mark: In our context each state of the DAWG, final or not,
is interesting because it recognizes a list of suffix and/or infix of the original sequence,
so, we don’t use a mark to denote if a state is final or not.
3. Use double index: we associate with p a double index to represent the positions (i) in
the automaton and (ii) in the sequence itself.

In addition, the adaptation for parallels is as follows :
All parallel transitions between two nodes are converted into words by sequencing tran-
sitions labels in a given order. Remember that the purpose is to detect all identical paral-
lels in the automaton. For this reason, an additional processing is necessary to generate
all subparallels of these "parallel" words: for each "parallel" word, we must involve 2n−2

words, where n is the number of transitions in parallel.
For instance for the "parallel" word "abcde", we build a DAWG from the following list:
"ae", "abe", "ace", "ade", "abce", "abde", "acde" and "abcde".

Example 1
Let S1=ccdbaab, S2=baab and S3=ccdb be 3 sequences detected in an automaton A.
Assume that S1 occurs 4 times in A, S2 appears once more in A (i.e. outside S1) and S3

happens twice more in A. In other words S2 appears 5 times in A and S3 6 times. Figure
3 presents the DAWG of S1, S2 and S3.

5

1 2 3 4 6 8 9 10 11 12 13

7

b

a

c

a a b

a

b

c

d

d

d b a a b

Figure 3. DAWG(S1, S2, S3)

L. Tounsi et al. / A Compression Method for Natural Language Automata150



Each state p of the DAWG in Figure 3 is associated to an index representing the posi-
tions of all subsequences of S1, S2 and S3 recognized at p. This index indicates also the
frequency of the subsequences.

Indexes are as follows:
Index(1)=∅ Index(8)=S1{2}, S3{2}
Index(2)=S1{4, 7}, S2{1, 4}, S3{3} Index(9)=S1{3}, S3{3}
Index(3)=S1{5}, S2{2} Index(10)=S1{4}, S3{4}
Index(4)=S1{6}, S2{3} Index(11)=S1{5}
Index(5)=S1{5, 6}, S2{2, 3} Index(12)=S1{6}
Index(6)=S1{7}, S2{4} Index(13)=S1{7}
Index(7)=S1{1, 2}, S3{1, 2}

For instance, the state 4 recognizes two subsequences ’aa’ and ’baa’ and its index shows
that these subsequences occur once in S1 and once in S2. The subsequence ’aa’ appears
in position 5 inside S1 (6 − |aa| + 1) and in position 2 inside S2 (3 − |aa| + 1); the
subsequence ’baa’ appears in position 4 inside S1 (6 − |baa| + 1) and at the beginning
of S2 (3 − |baa| + 1).

3. Factorization

In order to reduce the size of storage, it is essential to choose the best substructures to
factorize. Our process uses a function called profit and noted Δ, to compute for each
substructure i) the memory space saved by removing all its occurrences from the original
automaton and ii) the memory consumed by extending the size of the alphabet to repre-
sent it.
The difference between these two sizes indicates whether it is advantageous to reduce
this substructure or not. So, the best substructures to factorize is the one that maxi-
mizes Δ.

Example 2
Consider again Example 1. Assume that the alphabet can be extended to a maximum of
8 characters and the automaton A contains less than 128 transitions. Thus, 11 bits are
necessary to represent one transition (binary flag: 1 bit, label: 3 bits and target address:
7 bits).
If we factorize a substructure of L transitions and frequency F then we save F ∗ (L −
1) ∗ 11 bits (L − 1 because we replace the substructure by one transition in A).
In this example, the size of a substructure is necessarily less than 8 (S3 is the longuest
substructure and |S3|=7), so 3 bits are necessary to store it and 3 ∗ L bits are used for
the list of labels. Finally 3 + 3L bits are consumed, so:

Profit = F *(L - 1) * 11 - 3 - 3L bits

L. Tounsi et al. / A Compression Method for Natural Language Automata 151



- If we factorize 4 S1 and 2 S3 in A : Profit = 291 bits.
- If we factorize 5 S2 and 6 ccd in A : Profit = 292 bits.
- If we factorize 5 S2 and 4 ccd and 2 S3 in A : Profit = 277 bits.
- If we factorize 5 aab and 6 S3 in A : Profit = 183 bits.

Several scenarios are possible and each one leads to a different profit. Indeed, with each
state p in the DAWG is associated one or more substructures with their associated profit.
As we aim to have a light process, we apply a first heuristic to decrease the number
of possibilities which consists of giving the advantage to the longest substructures. So,
with each state p in the DAWG we associate the profit of the factorization of its longest
substructure. The size of the longest substructure at p is given by the depth of p.

Our approach uses a greedy algorithm to compress an automaton : the general idea is to
make at each step the best local choice, without backtracking, with the hope of finding
the best global compression.
Algorithm 1 computes the set of substructures chosen for compression, noted CSA. For
each element of CSA it uses a unique label α (from the extended alphabet) to represent
it in A. Algorithm 1 starts by running a depth first exploration of A to compute the set of
substructures (sequence or parallel transitions), noted SA. Then, it builds the DAWG
of SA, computes Δ and selects the state q that maximizes Δ to compress its longest
subsequence. More precisely, at each iteration, the chosen subsequence is removed from
the DAWG, replaced by α in A and SA, and new subsequences containing α are added
in the DAWG. Algorithm 1 stops when there is no more attractive state in the DAWG
or when the alphabet is full (no more available new label).

Algorithm 1 Compression input/output: A- output: CSA

Let SA be the set of subautomata (sequences or parallels) : SA ← ∅;
Let CSA be the set of factorized substructures : CSA ← ∅;
Compute the set SA from A and generate DAWG from SA;
Select from DAWG a state q that gives the most attractive space saving; /*using Δ*/
while DAWG contains at least one attractive q and the alphabet is not full do

Let w be the longest path in DAWG ending at q and let α be a new character;
Add w to CSA;
Jam w with α in A;
Update DAWG and SA; /* add new elements containing α*/
Select from DAWG a state q that gives the most attractive space savings;

end while

To factorize a substructure w updates the initial automaton and the DAWG. When w is
removed from the DAWG we also remove all indexes that refer to w. We delete a state
p from the DAWG when its index becomes empty.
If w is included in another longer sequence w′, then its factorization induces to create a
new sequence where w is replaced by α in w′. More precisely, the proposed algorithm
performs optimal insertion to a minimal DAWG, which means that after any insertion the
DAWG remains minimal. The time required to add a new sequence is O(n) with respect

L. Tounsi et al. / A Compression Method for Natural Language Automata152



to the size of the DAWG. Repetitive insertions construct minimal deterministic DAWG
incrementally and each sequence insertion traverses only a limited portion of the graph.
Finally no additional minimization operation is required [14].

4. Experimental Results

4.1. Experiments on compression

We have implemented our algorithms in C language, using a PC with a Pentium 4,
4.80GHZ and 512 MB of RAM. We have performed tests on ten FSA representing NLP
dictionaries. These dictionaries are very large so the size of these automata remains large,
in spite of the minimization.
We distinguish two kinds of dictionaries :
- Category 1 : the entries of these dictionaries are formatted using the DELA formal-
ism [15]
- Category 2: the entries of these dictionaries are collected from the web (newspapers)
and contain numbers and special characters such as the @ ? ! . , etc.

Table 3 presents a selection of relevant values concerning experiments conduced on these
automata once minimized: for instance the dictionary of French (DELAF Fr) contains
637 282 words and uses 71 characters, its automaton has 67 995 states and 177 465 tran-
sitions. The size of this automaton in text format is 2 178 KB.
Using the binary encoding allows to decrease the size to 563 KB. Using our compression
algorithm reduces this size to 529 KB while extending the alphabet to 128 characters.

Dictionary Initial automaton Compressed automaton

Words Initial Transitions States Initial binary Compression Size

alphabet size(KB) encoding (KB) (KB) alphabet

Category 1

DELAF Fr 637 282 71 177 465 67 995 2 178 563 529 128

DELAF En 282 338 47 252 664 116 848 3 081 801 735 256

DELAF Sr 1 214 417 52 193 668 61 383 2 340 591 585 128

DELAF De 3 713 121 89 335 284 14 2795 4 133 1 105 1 036 256

Cities Fr 35 391 75 95 589 61240 1108 291 222 2 048

Poly En 320 424 31 717 112 435940 8 963 2451 1 761 1 024

Category 2

Web Fr 236 057 43 298 117 101 837 3 560 946 935 128

Web Bg 191 738 43 270 495 113 678 2 503 638 610 128

Web Hu 165 073 42 209 209 85 661 3 235 858 757 128

Web Pt 398 839 49 538 697 214 992 6 510 1 776 1 653 128

Table 3. Automata compression

Table 3 shows that on average, the compression algorithm reduces the size of an automa-
ton by 75% compared to its size in text format and it reduces the size of an automaton
by 10% compared to its size when the binary encoding is applied.
We note that, in general, the most efficient factorizations use short alphabet ( 7 to 8 bits ).
However, the dictionary of polylexical words in english reaches its best compression
ratio using 10 bits.
The dictionary of French city names needs 11 bits to reach its best compression ratio.

L. Tounsi et al. / A Compression Method for Natural Language Automata 153



Indeed, the compression algorithm reduces the size by 80% compared to the automaton
in text format and by 24% compared to the automaton only binary coded. This means
that the amount of repeated strings that are neither prefixes nor suffixes is high for this
automaton.

The choice of substructures to factorize depends on the size and the frequency of these
substructures inside the automaton, but may be also on their position occurrences. The
heuristic used may be changed: for instance it can be interesting not to factorize the
longest sequence recognized at a state of the DAWG, or not to factorize all its occur-
rences inside the automaton in order to be able to anticipate some possible combinations
of factorization.

Table 3 is a selection of results. We have performed numerous tests by varying parame-
ters such as the size of alphabet, the order of coding and factorizing, or different format
of input data, for instance:
i) non-minimal automaton,
ii) dictionary in text format,
iii) for further experimentation, we have reversed the words of dictionaries and we have
processed again the algorithm for the three variants (minimal automaton, non-minimal
automaton, dictionary in text format).
The results proved that compression is not necessarily more efficient when it is applied to
formats different from a minimal FSA. Applying Algorithm 1 to non-minimal automata
is efficient for automata of category 2 (Web Fr, Bg and Pt) and processing Algorithm 1
directly to dictionaries in text format (lexicon) is suitable for the two following dictio-
naries:
- Web Pt : first, we have applied Algorithm 1 to the lexicon of web Pt, then we have built
the minimal automaton of the compressed lexicon, the resulting size is 1 600 KB (3%
better than the size presented in Table 3).
- French cities: we have performed the same process and we have got a resulting size
equal to 67 KB; this method improves by 70% the size of the compresed French cities
automaton presented in Table 3 (222 KB). We have analyzed the factorized substructures
and we have detected many common substrings in the names of French cities such as
Saint, Bourg, etc.
Also, reversing words is not suitable for automata compression with one exception for
the automaton of polylexical English whose size is 3% smaller than the size presented in
Table 3 with this method.

These results can be compared to those presented in [5], where several compression
methods for finite states automata representing morphological dictionaries are analyzed.
The author uses pointers and tables to represent these automata, and he applies various
compression techniques to code data, such as sharing the same space for some parts of
the automaton, eliminating transitions counters, changing the order of some transitions,
etc. In particular, our experiments lead to the same conclusion: there is no one efficient
method for automata compression, it depends highly on the input data.

In [1] the authors represent and store natural language data using tries. Once a trie is
generated, it is transformed into a linked list before being compressed by the method of

L. Tounsi et al. / A Compression Method for Natural Language Automata154



Ziv and Lempel. The search of similar structures uses tree suffixes (or a table of suffixes).
In comparison with our work, the compression ratio obtained on DELAF French is better
because they recognize and merge more substructures than us. On the other hand, their
method is quadratic while our process is linear.

4.2. Management of Compressed Automata

Our compression method addresses a special case of the problem presented by Kalin
Georgiev in [16], in that paper, he states that such a factorization preserves FSA struc-
ture. Moreover, this compression keeps an automaton’s properties valid:
Our data structure does not change, our compression preserves FSA structure. Indeed,
we factorize only the substructures that can be replaced by one transition in the original
automaton. The compressed automaton is also deterministic, minimal, etc. if the origi-
nal automaton is. Notice also that our method allows compression only if the language
recognized does not change. Consequently, we can safely and easily use and manage
compressed automata: read, write, update, etc.

Let A be a compressed automaton and w a word. Note that the alphabet of A is composed
of i) initial alphabet which contains all the initial characters and ii) extended alphabet
which lists all the chosen factorized substructures.

As A is deterministic, we can check if w belongs to A by finding a successful path
through the compressed automaton (from qi to qf ). For each step, we compare labels
of outgoing transitions from the current state, noted p, with the current character of w,
noted wi. We cross immediately p if wi belongs to its initial alphabet else we check if wi

is the first character of a sequence or is included in a parallel structure of the extended
alphabet.
More precisely, i) when wi is the first character of a sequence of length �, then
wi · · ·wi+�−1 must exactly correspond to the characters of the sequence. ii) As parallels
are represented in memory as sequences, when wi is a character of a parallel structure,
we should check it with all the others characters. To speed up the search, it is helpful to
order the characters of a parallel (for example, using the alphabetic order).
The same process is applied when a sequence includes another sequence, or a parallel.

Compressed automaton vs. uncompressed automaton
We have compared the time elapsed for rebuilding the French dictionary (637 283 words)
i) from an automaton compressed by Algorithm 1 and ii) from an initial automaton. The
results show that the time necessary to rebuild all words from the original automaton is
0.7s and it takes 0.1s more to do it from the compressed automaton.

L. Tounsi et al. / A Compression Method for Natural Language Automata 155



Updating compressed automaton
The following incremental updates are possible in a compressed automaton A :
- Delete a word w ∈ L(A):
Assume that w induces the path qi, q1, · · · qn, qf in A. The three following cases are
possible :
1. q1, · · · , qn are not divergent2 and not convergent, so deleting w removes all the states
q1, · · · , qn from A.
2. q1, · · · , qn are not convergent but can be divergent, so deleting w removes all the suc-
cessive states starting from the last divergent state.
3. q1, · · · , qn are convergent (at least one state is convergent), so to delete only w, and
not the other words that share the path q1, · · · , qn with w inside the automaton, we first
deminimize the automaton for that path q1, · · · , qn (make it non-minimal), then we can
delete w as case 1 or case 2.

- Add a word w /∈ L(A):
This insertion must keep A deterministic, the two following cases are possible:
1. when any outgoing transition of qi is labeled with the first character of w (initial or
extended alphabet), then a new path composed of not divergent and not convergent states
is added to A using its initial or extended alphabet.
2. when a starter segment of w is recognized in A and ends at a state p ∈ A, then i) this
segment is deminimized in A using the initial alphabet then ii) A is completed from p by
a sequence of not convergent and not divergent states to represent the rest of w.

As presented, we can easily add or delete a word from a compressed automaton but these
updates can’t always preserve the compression, for instance, the addition of a list a words
can reveal new substructures to reduce, in this case, executing again Algorithm 1 can be
useful.

Conclusion

In this paper, we have presented a compression algorithm for automata that represent
dictionaries, while keeping their fast access advantage. The linear time accepting com-
plexity is kept in the resulting compact automaton. This algorithm iteratively chooses the
best factorization to reduce the size of the original automaton. The heuristic used for this
choice is based on information stored in a DAWG. This DAWG is built from automaton’s
substructures, more precisely from sequences and parallels transitions. These substruc-
tures are discovered using a reducing process similar to the one in [12] and [10].
As shown in the experimental results, our proposal is adaptable for each automaton. The
parameters to adapt are those of the internal coding, such as the size of alphabet, or the
structure of the input automaton, or the heuristic used to choose which substructure to
factorize at each step. Moreover, we have considered sequences (and parallels) transitions
because they are the most frequent in automata representing dictionaries. Future work is
to extend our proposal for any kind of substructure, provided that it can be replaced by
one transition.

2A divergent (resp. convergent) state is a state with more than one outgoing (resp. incoming) transition.

L. Tounsi et al. / A Compression Method for Natural Language Automata156



Acknowledgments

The authors thank Prof. Franz Guenthner, Prof. Éric Laporte, Prof. Jacques Savoy and
Prof. Dus̆ko Vitas for free use of their dictionaries.

References

[1] S. Ristov and E. Laporte. Ziv Lempel compression of huge natural language data tries using suffix
arrays. Journal of Discrete Algorithms, pages 241–256, 1999.

[2] S. Mihov. Direct construction of minimal acyclic finite states automata. Annuaire de l’Université de
Sofia St. Kl. Ohridski, 91(1), 1998.

[3] J. Daciuk. Incremental Construction of Finite-State Automata and Transducers, and their Use in the
Natural Language Processing. PhD thesis, Technical University of Gdansk, Poland, 1998.

[4] B. W. Watson. A new algorithm for the construction of minimal acyclic dfas. Science of Computer
Programming, 48(2–3):81–97, 2003.

[5] J. Daciuk. Experiments with automata compression. In CIAA 2000, volume 2088 of LNCS, pages
105–112, 2000.

[6] A. Apostolico and S. Lonardi. Off-line compression by greedy textual substitution. Proc. IEEE,
88(11):1733–1744, 2000.

[7] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas. The smallest automaton
recognizing the subwords of a text. Theorical Computer Science, 40:31–55, 1985.

[8] M. Crochemore and R. Verin. On compact directed acyclic word graphs. In J. Mycielski, G. Rozen-
berg, and A. Salomaa, editors, Structures in Logic and Computer Science, LNCS 1261, pages 192–211.
Springer-Verlag, 1997.

[9] M. Mohri. On some applications of finite-state automata theory to natural language processing. Natural
Language Engineering, 2:1–20, 1996.

[10] N.D. Beijer, B. Watson, and D. Kourie. Stretching and jamming of automata. In RSA 2003 SAICSIT,
pages 198–207, 2003.

[11] L. Tounsi. Sous-automates à nombre fini d’états. Application à la compression de dictionnaires élec-
troniques. PhD thesis, Université François Rabelais Tours, France, 2007.

[12] J. Valdes, R.A. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs. SIAM J. Comput.,
11(2):298–313, 1982.

[13] A. Blumer, J. Blumer, D. Haussler, R.M. McConnell, and A. Ehrenfeucht. Complete inverted files for
efficient text retrieval and analysis. J. ACM, 34(3):578–595, 1987.

[14] K. Sgarbas, N. Fakotakis, and G. Kokkinakis. Optimal insertion in deterministic DAWGs. Theoretical
Computer Science, 301:103–117, 2003.

[15] B. Courtois and M. Silberztein. Dictionnaires électroniques du français. Langues française, 87:11–22,
1990.

[16] K. Georgiev. Compression of minimal acyclic deterministic FSAs preserving the linear accepting com-
plexity. In Workshop FSTAS 2007, pages 7–13, Bulgaria, 2007.

L. Tounsi et al. / A Compression Method for Natural Language Automata 157



Event Extraction for Italian Using
a Cascade of Finite-State Grammars

Vanni ZAVARELLA, Hristo TANEV 1 and Jakub PISKORSKI

Joint Research Centre of the European Commission, Ispra, Italy

Abstract. This paper reports on our experience of adapting a real-world live event
extraction system based on a cascade of finite-state extraction grammars to the pro-
cessing of a new language, namely Italian. The real-time event extraction process-
ing chain and the pattern specification language are briefly presented. The major
part of the paper focuses on the creation of event extraction grammars and related
resources for English and their adaptation for extracting events in Italian news ar-
ticles. Some interesting phenomena which complicate the event extraction task for
Italian are pinpointed and the results of the evaluation are presented. In particular,
we compared two versions of the system for Italian, one based on surface-level pat-
terns and a hybrid one, which integrates slightly more linguistically sophisticated
patterns for covering a rich variety of morphological and syntactic constructions in
Italian.

Keywords. event extraction, finite-state grammars, Italian

Introduction

The task of event extraction is to automatically identify events in free text and to derive
detailed information about them, ideally identifying Who did what to whom, when, with
what methods, where and possibly why. Automatically extracting events is a higher-level
information extraction (IE) task which is not trivial due to the complexity of natural lan-
guage and due to the fact that a full event description is usually scattered over several
sentences and articles. Although a considerable amount of work on automatic extraction
of events has been reported [1,2,3], it still appears to be a lesser studied area in compar-
ison to the somewhat easier tasks of named-entity and relation extraction. The research
in this area was pushed forward by the Message Understanding Conferences2 and by the
ACE3 (Automatic Content Extraction) program.

This paper reports on our experience of adapting an existing real-world live event
extraction system based on a cascade of finite-state grammars, to the processing of a new
language, namely Italian. This system has been developed for automatically detecting vi-
olent and natural disaster events from online news. It has been integrated in Europe Me-
dia Monitor (EMM) [4], a web-based news aggregation system that collects about 50000
news articles from 1500 sources in 43 languages each day. There are certain require-

1Corresponding Author: Hristo Tanev, e-mail: Hristo.Tanev@jrc.it
2http://www.itl.nist.gov/iaui/894.02/related/projects/muc
3http://projects.ldc.upenn.edu/ace

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-158

158



ments for a real-time event extraction engine imposed by such a large-scale news aggre-
gation engine, which have to be met in order to guarantee robustness and a fast linguistic
resource development cycle. In particular, the following requirements are paramount:

(a) efficient processing of large amount of news articles on a daily basis
(b) ease in maintenance of existing resources by non-linguists and non-experts
(c) extensibility to new languages within a short time period.

In order to meet the first requirement, an efficient IE-oriented grammar formalism
has been developed. As for the two others, a linguistically lightweight approach has been
applied, which heavily utilizes clustered news. In particular, only a small fraction of each
text is processed, and solely simple, easily maintainable and to a large extent language-
independent linear patterns are used instead of grammars involving more linguistic so-
phistication as reported elsewhere, e.g., in [5]. The main focus of the paper is on the
development of event extraction grammars and related resources for English and their
adaptation and modification for Italian. Some interesting phenomena of Italian which
complicate the event extraction task are pinpointed. To our best knowledge this is the
first attempt towards event extraction for Italian from online news.

This paper is structured as follows. First, in Section 1 the real-time event extraction
processing chain is described. Section 2 introduces the pattern specification formalism.
Next, Section 3 addresses the development of the event extraction grammar for English.
Subsequently, Section 4 elaborates on adapting existing resources to extract events from
Italian news. The results of the evaluation are presented in Section 5. Finally, a summary
is given in Section 6.

1. Real-Time Event Extraction Process

First, news articles are gathered by dedicated software for electronic media monitoring,
namely the EMM system [4], which regularly (every 10 minutes) checks for updates of
news articles across multiple sites. Secondly, the input data is geo-tagged, categorized
and grouped into news clusters, ideally including documents on one topic. For each such
cluster the core event extraction engine tries to detect only the main event, analyzing all
documents in the cluster, and to produce a frame, whose main slots are: date and loca-
tion, number of killed, injured and kidnapped people, actors, and type of event. Initially,
each article in a given cluster is linguistically pre-processed in order to produce a more
abstract representation of the text. This encompasses: fine-grained tokenization, sentence
splitting, morphological analysis and domain-specific lexicon lookup.

Once texts are grouped into clusters and linguistically preprocessed, a cascade of
simple finite-state grammars is applied on each article within a cluster for detection of
small-scale structures (e.g., unnamed and named person groups, numbers, person names,
etc.) and for assembling them into partial event descriptions. The extraction grammars
at each level are matched only against the first sentence and the title of each article. By
processing only the top sentence and the title, the system is more likely to capture facts
about the most important event in the cluster and at the same time it avoids capturing
some prior events, which are frequently mentioned in news articles in the context of the
main event. Since the information about events is often scattered over different articles,
the final step consists of performing cross-article cluster-level information fusion, i.e.,

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 159



we aggregate and validate information extracted locally from each single article in the
same cluster. In particular, victim counting, semantic role disambiguation and event type
classification are performed at this stage of processing.

The event extraction engine is triggered every 10 minutes on a clustering system
that has a 4-hour sliding window in order to keep up-to-date with most recent events.
The subsequent sections focus on the pattern specification language and creating extrac-
tion grammars. For the details on news data gathering, clustering, geo-tagging, informa-
tion fusion and visualization please refer to [6,7]. The linguistic preprocessing tools are
described in [8].

2. Extraction Pattern Specification Language

In order to guarantee vast amount of textual data to be processed in real time, Ex-
PRESS [9], an efficient extraction pattern engine has been developed. A grammar in the
underlying formalism consists of so called pattern-action rules. The left-hand side (LHS)
of a rule (the recognition part) is a regular expression over flat feature structures (FFS),
i.e., non-recursive typed feature structures (TFS) without structure sharing, where fea-
tures are string-valued and types are not ordered in a hierarchy like in unification-based
grammars. The right-hand side (RHS) of a rule (action part) constitutes a list of FFS,
which is returned in case the LHS pattern is matched. On the LHS of a rule variables
can be tailored to the string-valued attributes in order to facilitate information transport
into the RHS, etc. Further, functional operators (FO) are allowed on the RHSs for: (a)
forming slot values, (b) establishing contact with the ‘outer world’, and (c) specifying
boolean-valued predicates.4 Rules can be associated with multiple actions, i.e., produc-
ing multiple annotations (possibly nested) for a given text fragment. Finally, grammars
can be cascaded and arbitrary processing resources can be integrated at any level of the
cascade. The following pattern for matching events, where person groups are injured,
illustrates the syntax.

injury-event :> ((person-group & [NAME: #name1, NUMBER: #num1]):injured1
token & [SURFACE: "and"]
(person-group & [NAME: #name2, NUMBER: #num2]):injured2
injured-phrase & [FORM: "passive"]

):event
-> injured1: victim & [NAME: #name1, NUMBER: #num1],

injured2: victim & [NAME: #name2, NUMBER: #num2],
event: injury & [VICTIM: #name, NUMBER: #count],

& #name = Concatenate(#name1,"and",#name2)
& #count = EstimateNumber(#num1," ",#num2).

This pattern matches a sequence consisting of: a person group (structure of type
person-group), a conjunction ‘and’, another person group (the victim), followed by
a phrase in passive form (structure of type injured-phrase), which triggers an in-
jury event.5 The symbol & links a name of the FFS’s type with a list of constraints (in
the form of attribute-value pairs) which have to be fulfilled. The variables #name1 and
#name2 establish bindings to the names of both person groups involved in the event.
Analogously, #num1 and #num2 establish bindings to the numbers of persons involved.
Further, there are three labels on the LHS (injured1, injured2, and event) which

4New FOs can be added through implementing an appropriate programming interface.
5This pattern would match the text ‘Five terrorists and two civilians were wounded.’

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars160



specify the start/end position of the annotation actions specified on the RHS. The first
two actions on the RHS produce two FFSs of the type victim, where the value of
NAME and NUMBER slots are created through accessing the variables #name1, #name2,
#num1 and #num2 on the LHS resp. Finally, the third action (event) produces an FFS
of type injury. The value of the VICTIM attribute is computed via a call to a FO
Concatenate(), which simply concatenates it’s arguments, whereas the value of the
NUMBER slot is computed by ‘normalization’ of number expressions tailored to #num1
and #num2 resp. and summing them up (a call to EstimateNumber()).

Although the pattern specification language might appear less powerful than other
IE-oriented formalisms, e.g., XTDL [10] or JAPE [11], it has two major advantages
over the others: (a) grammar rules are easier to write by non-linguists (e.g., unification
turns to be less intuitive for them) and non-programmers (e.g., JAPE allows code to be
written on RHS of rules), and (b) grammars can be processed significantly faster. An
overview of the formalism, grammar compilation and run-time performance comparison
with other formalisms is given in [9].

3. Event Extraction Grammars for English

There are two different approaches to building event extraction grammars: (a) the com-
plexity of the language is represented at the level of lexical descriptions where each word
in the lexicon is provided with a rich set of semantic and syntactic features ([5,12]), (b)
the complexity of the language is represented through different, mostly linear, patterns
in the grammar, which rely on superficial or less sophisticated linguistic features [13].

Providing rich lexical descriptions like verb sub-categorization frames in [5] or on-
tologies in [12] requires a linguistic expertise, on the other hand more shallow lexical
descriptions will result in more patterns to encode the necessary linguistic knowledge.
However, superficial patterns are closer to the text data. We believe that their creation is
more intuitive and easier for non-experts than building ontologies or sub-categorization
frames. Writing such patterns is easier for languages like English with strict word-order
and simple morphology. Therefore, we followed this approach for creating the English
event extraction grammar.

This grammar in its current version consists of two subgrammars. The first-level sub-
grammar contains patterns for recognition of named entities (e.g., person names), num-
bers, quantifiers, simple chunks representing unnamed (e.g., five civilians) and named
person groups (e.g., thousands of Iraqis). As an example consider the following rule for
detecting mentions of person groups.

person-group :> ((gazetteer & [GTYPE: "numeral", SURFACE: #quant, AMOUNT: #num])
(gazetteer & [GTYPE: "person-modifier"])?
(gazetteer & [GTYPE: "person-group-proper-noun", SURFACE: #name1])
(gazetteer & [GTYPE: "person-group-proper-noun", SURFACE: #name2])):name

-> name: person-group & [QUANTIFIER: #quant, AMOUNT: #num,
TYPE: "UNNAMED", NAME: #name],

& #name = Concatenate(#name1,#name2).

This rule matches noun phrases (NP), which refer to people by mentioning their national-
ities, religion or political group they belong to, e.g. three young Chinese, one Iraqi Mus-
lim. The words and phrases which fall in the category person-group-proper-noun,
numeral and person-modifier (e.g. young) are listed in a domain-specific lexi-
con (gazetteer). In this way the grammar rules are being kept language independent, i.e.,

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 161



rules can be applied to languages other than English, provided that language-specific
dictionaries back up the grammar. Through abstracting from surface forms in the rules
themselves the size of the grammars can be kept relatively low and any modifica-
tions boil down to extending the lexica, which makes the development for non-experts
straightforward. Further, the first-level grammar does not rely on morphological informa-
tion and uses approximately 40 fine-grained token types (e.g., word-with-hyphen,
word-with-apostrophe, all-capital-letters), which are to a large extent
language-independent. To sum up, the majority of the first-level grammar rules used for
English is language independent. Clearly, some of them might not be applicable for other
languages due to the differences in syntactic structure, but they are intuitively easily
modifiable in order to tackle other languages.

The second-level subgrammar consists of patterns for extracting partial information
on events: actors, victims, etc. Since the event extraction system is intended to process
news articles which refer to crisis-related events, the second-level grammar models only
domain-specific language constructions. Moreover, the system processes news clusters
which contain articles about the same topic from many sources, which refer to the same
event description with different linguistic expressions. This redundancy mitigates the ef-
fect of phenomena like anaphora, ellipsis and complex syntax. Consequently, the system
processes only the first sentence and the title of each article, where the main facts are
summarized in a straightforward manner, usually without using coreference, subordinate
sentences and structurally complex phrases. Therefore, the second-level grammar mod-
els solely simple syntactic constructions by using 1/2-slot extraction patterns like the
ones below. The role assignments are given in brackets.

[A] PER-GRP <DEAD> "were killed" [F] PER <DEAD> "was shot by" PER <PERPETRATOR>
[B] {PER | PER-GRP} <DEAD> "may have perished" [G] "police nabbed" PER <ARRESTED>
[C] PER-GRP <DEAD> "dead" [H] PER <KIDNAPPED> "has been taken hostage"
[D] PER <WOUNDED> "was found injured" [I] PER <RELEASED> "was released"
[E] PER <PERPETRATOR> "has opened fire on" [J] PER-GROUP <DISPLACED> "fled their homes"

These patterns are similar in spirit to the ones used in AutoSlog [14]. For their creation
a blend of machine learning and knowledge-based techniques has been applied. In par-
ticular, the learning phase exploits clustered news, which intuitively guarantees good
precision. For details see [15].

The fact that in English the word ordering is more strict and the morphology is sim-
pler than in other languages contributes also to the coverage and accuracy of the patterns,
which encode non-sophisticated event-description phrases. Consider as an example an
article about bank robbery, published by BBC on 16 May 2008 with the following title
and first sentence resp.

Eight dead in Philippines (1)

At least eight people have been shot dead during a bank robbery in the
Philippines

(2)

As for the title (1) the pattern {PERSON | PERSON-GROUP} <DEAD> "dead"
will be triggered, where PERSON-GROUP matches eight. In the first sentence of the ar-
ticle (2), the pattern PERSON-GROUP <DEAD> "have been shot dead" is trig-
gered, where PERSON-GROUP matches at least eight people. The rest of the article pro-
ceeds with more details on the victims and the committed crime:

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars162



Seven of the victims were employees of the bank in the town of Cabuya,
south of Manila, and one was a security guard, police said. Their bodies
were discovered when the bank failed to open on time in the morning.
Police said two security guards were missing and were suspected of
involvement in the robbery...

(3)

A proper analysis of this fragment would require to tackle more complex phenom-
ena, e.g., in order to recognize a security guard as one of the victims, a correct resolution
of ‘one’ in ‘one was a security guard’ is indispensable. Further, a syntactic analysis is
needed to capture the subject relation between two security guards and the phrase were
suspected of involvement, which may be used to introduce suspected perpetrators. How-
ever, our system discards the text, which goes beyond the first sentence for the following
reasons: (a) handling the aforementioned language phenomena is hard and might require
knowledge-intensive processing, (b) the crucial information we seek for is included in
the title or first sentence, and (c) if some relevant information has not been captured from
one article in the cluster we might extract it from other article in the same cluster.

In order to keep the grammar concise and as much as possible language indepen-
dent, all surface-level linear patterns are represented as pattern types, which indicate the
position of the pattern with respect to the slot to be filled (left or right). To be more pre-
cise, all patterns are stored in a domain-specific lexicon (applied prior to grammar appli-
cation), where surface patterns are associated with their type, the event-specific semantic
role assigned to the entity which fills the slot (e.g., DEAD, PERPETRATOR) and the num-
ber of the phrase which may fill the slot (e.g., plural). For instance, the surface pattern
"shot to death" for recognizing dead victims as a result of shooting, is encoded
as:

shot to death [TYPE: right-context-sg-and-pl, SURFACE: "shot to death", SLOTTYPE: DEAD]

The value of the TYPE attribute indicates that the pattern is on the right from its slot
(right-context), which can be filled by a phrase which refers to one or more hu-
mans (sg-and-pl). The event-specific semantic role, assigned to each NP filling the
slot is DEAD. Through such an encoding of the event-triggering linear pattern, the pat-
terns [A], [B] and [C] from the example above are merged into one:

dead-person :> person-group
gazetteer & [TYPE: right-context-sg-and-pl SLOT: dead] -> ...

We have found about 3000 event-triggering surface patterns for English. Due to the strict
word order and simple morphology, pattern variants were generated easily.

4. Adapting Grammars to Italian

In the process of adapting our extraction grammar to languages belonging to different
language groups, such as Italian, we faced a number of issues.

4.1. Tokenization and Morphological Analysis

At the level of linguistic preprocessing, while some language-specific fine tuning was re-
quired, namely on punctuation marks and diacritics, the language independent tokenizer

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 163



built for English proved to be to a large extent adaptable to Italian. However, the main
shortcomings on its deployment on Italian text was that, in that language, the phonetic
phenomenon of elision causes a very productive use of the apostrophe to string together
consecutive words (e.g. dello aviatore (of the aviator) becomes dell’aviatore, etc.) re-
sulting in ‘internally apostrophized tokens’ which clearly cannot be listed in the mor-
phological dictionary. We solved this problem keeping the English tokenization process
as it is, and then deploying a language-specific component in the morphology, which
fires upon failure of simple lexicon look-up. In short, it first tries to split the whole token
on the apostrophe occurrence (keeping the apostrophe in the left subtoken) and perform
lexicon lookups on the two resulting subtokens. If it fails on either of them, it uses a
small set of heuristic rules to guess some basic morphological information of one based
on information about the other, like in the sample rules below:

[a] Sp U --> Sp N (e.g. "dell’aviatore")
[b] U N#1#2 --> A#1#2 N#1#2 (e.g. "prim’ordine" ("first order"))

Here, [a] states that if an ‘unknown’ subtoken (U) is preceded by a subtoken, which
constitutes a ‘shortened’ preposition, then it is labeled as a Noun (N); analogously (in
[b]), if an unknown subtoken precedes one which has a noun interpretation, then it is
labeled as an adjective (A), with the agreed values (variables #1 and #2) for number and
gender, respectively. It is important to note that we use MULTEXT [16] dictionaries for
performing morphological analysis, mainly due to the fact that MULTEXT tags are uni-
form for all languages. We have extended the original MULTEXT dictionary for Italian
with circa 7000 entries relevant for the domain of violence and disasters.

4.2. Extraction Patterns

For developing a first release of the Italian event extraction system we followed the orig-
inal pure surface-level pattern approach. The baseline performance of this version was
promising. Nonetheless, performance analysis showed several drawbacks on applying
surface patterns on Italian text. First, relative inflectional richness of Romance languages
compared to English gives rise to morphological variation along dimensions such as
Gender, Number, Person, like in the following set of patterns, capturing a DEAD role,
filling the person entity on their left:

PERSON <DEAD> e stato ucciso
[has been killed/was killed, masculine, singular]

PERSON <DEAD> e stata uccisa
[has been killed/was killed, feminine, singular]

PERSON-GROUP <DEAD> sono stati uccisi
[has been killed/was killed, masculine, plural]

Together with lexical variation, inflection can give rise to a high number of com-
binations at the level of word forms. This suggests to generalize the extraction patterns
using morphological features, rather than relying on the surface level only.

Secondly, Italian verb phrases describing events show some additional structural
complexity at the linear level due to the encoding of some essential information on the
event, like the ‘means’ or ‘instruments’ of a killing act, in prepositional phrases, as op-
posed to English which typically uses lexical content of the main verb itself to convey
such information. This is clearly shown in these sample excerpts from Italian and En-

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars164



glish articles from cross-lingual clusters about the same event returned by the EMM news
aggregation system:

excite-news Monday, May 19, 2008 10:43:00 AM CEST (ANSA) -
MANILA, 19 MAG - Un uomo ha crivellato a colpi di mitra alcune
case di Calamba, una citta’ vicino Manila, uccidendo otto persone....

(4)

cnn Monday, May 19, 2008 5:58:00 AM CEST A man strafed several
houses during a shooting spree early Monday in a town south of Manila,
killing eight people and wounding six others...

(5)

Aligned constructions in bold carry approximately the same meaning, but they structure
it in a very different way, with the Italian being more verbose. Moreover, Italian more
frequently allows adverbial modification in certain positions within verb phrases, and we
noticed that this often blocked the triggering of (otherwise recurrent) linear patterns, like
in the following text:

tg5 Saturday, February 02, 2007 08:19:00 AM CEST Due donne ital-
iane sono state barbaramente uccise a colpi di pietra sull’isola di
Sal, nell’arcipelago di Capo Verde. La drammatica testimonianza della
loro amica Agnese, miracolosamente sopravvissuta e ricoverata in stato
di choc. (Two Italian women were barbarically stoned to death on Sal
island...)

(6)

Our prospective solution for these shortcomings follows a strategy consisting of
keeping the second-level rules as language independent as possible, dealing with lan-
guage specific phenomena in the first-level subgrammar. In this view, second-level sub-
grammar rules are simple, based mainly on positional relations of the extraction patterns
with respect to recognized person entities. However, this implies that we should capture
productivity and linear complexity within the extraction patterns themselves, and this in
turn makes it less feasible to encode extraction patterns as simple domain-specific lexi-
con entries. Consequently, we started a partial re-engineering of the grammar resources
for Italian. Extraction patterns (surface level patterns) were converted from the level
of domain-specific lexicon entries into first-level grammar rules; the RHS structures of
these rules encode at least the same information as the current surface patterns, and LHSs
rely on both surface and morphological information. In our morphological dictionary we
extend the MULTEXT annotation of each domain-specific verb and noun with a seman-
tic attribute SEM, which encodes the semantic role which this verb or noun introduces
and the corresponding syntactic position. In such a way, we can generalize on verbs and
nouns with similar semantics. To see how all this works, consider how the following set
of patterns is converted into the single rule (rule1):

PERSON <DEAD> e stato ucciso
[was killed, masculine, singular]

PERSON-GROUP <DEAD> sono rimasti uccisi
[were killed, masculine, plural]

PERSON-GROUP <DEAD> sono state barbaramente uccise
[were barbarically killed, feminine, plural]

PERSON-GROUP <DEAD> sono stati uccisi a pugnalate
[were stabbed to death, masculine, plural]

PERSON-GROUP <DEAD> sono stati freddati a colpi di mitra
[were shot to death using a machine gun, masculine, plural]

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 165



rule1 :> (verb & [BASE:"essere", TYPE:"a", VFORM:"i", TENSE:"p", NUMBER:#num1]
(verb & [BASE:"essere", TYPE:"a", VFORM:"p", TENSE:"s",

GENDER:#gen1, NUMBER:#num2]
| verb & [BASE:"rimanere", TYPE:"m", VFORM:"p", TENSE:"s",

GENDER:#gen1, NUMBER:#num2])
(adverb)?
(verb & [VFORM:"p", TENSE:"s", GENDER:#gen2,

NUMBER:#num3, SEM:"dead-obj"])
(adverb)?
((adposition & [BASE:"a"]

| (adposition & [BASE:"con"]
determiner))

(noun [SEM:"weapon-stroke"]
| (noun & [BASE:"colpo"]

adposition & [BASE:"di"]
noun & [SEM:"weapon"])))? ): passive-construction

-> passive-construction: pattern & [PTYPE:right-context-violence-event-sg-pl,
SLOTTYPE:DEAD, NONUM:false,
NUM:#num1, GEN:#gen1],

& equal(#num1,#num2,#num3),
& equal(#gen1,#gen2).

Here morphological generalization on the patterns is achieved using FFSs instead of sur-
face forms. As an example, the auxiliary verb group for the passive form in Italian is
expressed through constraints on the base form (it must be an ‘essere’ verb), type (‘a’
for auxiliary), form (‘i’ for indicative), and tense (‘p’ for past), followed by a past par-
ticiple of ‘essere’ or ‘rimanere’ and so on, while some other features like NUMBER are
assigned variables for agreement check, etc. Lexical variation is captured by restricting
the event-triggering verbs to the class of the ones with dead-obj value for their SEM
attribute, that is verbs which introduce a DEAD role as the filler of their object position.
In our simplified linear grammar, this is equivalent to saying that they can appear in
right-context-violence-event patterns of the passive form, like in the rule
above, or in ‘left-context’ patterns of the active form. Below is an example of generaliz-
ing ’left-context’ patterns with the grammar rule rule2.

uccide {PERSON | PERSON-GROUP} <DEAD>
[kills]

hanno barbaramente ucciso {PERSON | PERSON-GROUP} <DEAD>
[have barbarically killed]

assassinato {PERSON | PERSON-GROUP} <DEAD>
[has assassinated]

rule2 :> ((verb & [BASE:"avere", TYPE:"a", VFORM:"i", TENSE:"p", NUMBER:#num1])?
(adverb)?
verb & [VFORM:"p", TENSE:"s", SEM:"dead-obj"]
(adverb)?
((adposition & [BASE:"a"]

| (adposition & [BASE:"con"]
determiner))

(noun [SEM:"weapon-stroke"]
| (noun & [BASE:"colpo"]

adposition & [BASE:"di"]
noun & [SEM:"weapon"])))? ) : active-construction

-> active-construction: pattern & [PTYPE:left-context-violence-event-sg-pl,
SLOTTYPE:DEAD, NONUM: false, NUMBER:#num1].

An analogous generalisation might be achieved for nominal patterns, annotating event-
related nouns for the ROLE they introduce at the right of their pattern as SEM:dead-obj.
Here is a sample list of such patterns followed by a rule (rule3), which generalizes
them:

morte di {PERSON | PERSON-GROUP} <DEAD>
[death of]

morte improvisa dei PERSON-GROUP <DEAD>
[sudden death of the, masculine, plural]

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars166



morte delle PERSON-GROUP <DEAD>
[death of the, feminine, plural]

omicidio della {PERSON | PERSON-GROUP} <DEAD>
[homicide of the, feminine, plural]

strage di PERSON-GROUP <DEAD>
[slaughter of]

rule3 :> ((noun & [SEM:"dead-obj"])
(adjective)?
adposition & [BASE: di, GENDER:#gen, NUMBER:#num]) : nominal-pattern

-> nominal-pattern: pattern & [PTYPE:left-context-violence-event-sg-pl,
SLOTTYPE:DEAD, NONUM: FALSE,
NUMBER:#num, GEN:#gen].

Achieving a higher degree of generalization by using more linguistically-sophisticated
rules comes at the cost of introducing some complications at the level of more language
specific linguistic resources. Nonetheless, we emphasize two points. First, several of the
generalizations on extraction patterns are language independent, particularly within the
same language family. For example, the last rule shown above is portable to French,
while it runs only slightly different for English. That means, provided that an analogous
annotation of morphological resources is available, the rule approach reduces human
work in the process of extension to new languages. Most importantly, the described ap-
proach to generalization is meant to capture linguistic regularities in expressing domain-
specific semantic roles, rather than capturing generic syntactic structure. For instance,
the optional subpattern at the end of rule1 and rule2 is combined with a suitable
dictionary annotation for domain-specific semantic categories in order to capture how an
‘instrument’ or ‘means’ role of a violent act can be expressed in a class of varying prepo-
sitional phrases. Namely, SEM:"weapon" is used to label nouns referring to weapons,
while SEM:"weapon-stroke" is a rather language-specific class of morphologically
derived nouns referring to stroke produced with a weapon (‘pugnale’ (stab) becomes
‘pugnalata’ in Italian).

The application of the subgrammar for extracting the event-triggering phrases (e.g.,
the rules rule1, rule2 and rule3), is applied in parallel with the named entity gram-
mar since no overlapping should occur on text between the two classes of patterns.

Notice also that in some of the rules (e.g., in rule1) we do perform an agreement
check (a call to equal FO). Agreement information might help disambiguate some am-
biguous constructions in relatively inflection-rich languages like Italian. For instance,
without an agreement in the following sentence the positional relation between the right
pattern assassinato and the complex person group phrase tre guardie del corpo di J.F.
Kennedy would trigger a second-level rule, which erroneously extracts an event descrip-
tion about the killing of J.F.K.’s bodyguards.

tre guardie del corpo di J.F. Kennedy, assassinato a Dallas... (three
bodyguards of J.F. Kennedy, assassinated in Dallas... )

(7)

However, in this case the longest match strategy on person group extraction is blocked
because of NUMBER information incompatibility with the extraction pattern, so the sys-
tem can discard the uncorrect DEAD role extraction and back off to the person name
J.F. Kennedy (the correct interpretation). Agreement check is virtually attainable also
within the surface approach by suitable, manual annotation of lexical resources. In a
morphology-based approach, though, agreement-related information is much more nat-

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 167



Table 1. Comparison of the baseline and hybrid system

Dead Injured Actor Arrested

BL LR BL LR BL LR BL LR

P 0.82 0.91 0.66 0.77 0 0.66 0.83 0.70

R 0.48 0.84 0.15 0.53 0 0.25 0.55 0.66

F1 0.60 0.87 0.24 0.62 0 0.36 0.66 0.67

urally passed up to output structures from the phrase’s head component (e.g. from the
main verb in rule2). This allows rules for person entity and extraction pattern recog-
nition to keep naturally enforcing agreement constraints while covering more and more
structurally complex constructions.

We carried out a first evaluation of the performance improvement resulting from the
grammar restructuring required by adapting of surface level pattern approach to Italian.

5. Evaluation

In order to evaluate the coverage and accuracy of the Italian event extraction system, we
gathered test data by downloading EMM article clusters during 4 consecutive days in
July, 2008. The final evaluation corpus contained 213 clusters, only a part of which were
about violent event stories. While this procedure guarantees real world data, it suffers
from data sparseness problems, as some of the roles may not be instantiated in text, due
to the relatively small corpus size. That was the case in our experiment for KIDNAPPED
and RELEASED roles, which therefore we did not report in the final evaluation. On this
corpus, we ran both the baseline version of the system, namely the one based on linear
patterns, and a hybrid version containing the more abstract rules together with a subset
of highly irregular linear patterns, which were not converted into more abstract rules.
The rationale for this is that we deploy abstract rules in order to deal with productive,
structurally complex language constructions, while backing off to surface level patterns
to cover more idiomatic constructs. We denote the baseline and hybrid system with BL
and LR respectively. Table 1 shows a comparative evaluation of the two Italian event
extraction systems. In particular, we measured Precision (P), Recall (R) and F-measure
for each role.

Evaluation was done separately for each role, and the data was collected cluster by
cluster. Namely, for each cluster of articles we record whether it contains a reference to
the filler of a specific role; then we record whether the system detected any filler what-
soever for that role, and finally, we record a correct detection if the role filler description
returned equals at least one of the descriptions occurring in the cluster.

The main performance gain we could observe was clearly in recall. A thorough anal-
ysis revealed that it was mainly due to morphological abstraction and the productivity
achieved through more abstract patterns. In particular, one case was interesting. ACTOR
role fillers are usually the hardest to be extracted from Italian text, as their relationship
with the main event verb is either to be derived through deep semantic or even prag-
matic inferences, or extracted through complex two-slot patterns. The following two text
samples from the evaluation corpus illustrate examples of extracted and non-extracted
ACTOR role instances.

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars168



35enne ucciso a coltellate da tre uomini nel ravennate
(35 years old stabbed to death by three men in Ravenna area ...)

(8)

Andrea Tartari, 35enne bolognese, e stato accoltellato a Ravenna du-
rante un diverbio con tre giovani appoggiati alla sua auto
(Andrea Tartari, 35 years old from Bologna, was stabbed in Ravenna
during a quarrel with three young men leaning...)

(9)

In the latter case, extracting tre giovani (the three young men) as ACTOR of the
stabbing event would depend on inferring the stabbing itself as being the outcome of the
‘quarreling’ event, which is hard to perform for a shallow information extraction system.
In the former case the hybrid system managed to capture the ACTOR by triggering a two-
slot extraction pattern, while the baseline system failed. As can be seen from example
8, the Italian language tends to place the information about the means of a killing event
between the verb and the ACTOR; this is done in such a productive way, that it cannot
be expressed in a list of surface-level patterns. On the other hand, structure-based rules,
together with a proper semantic annotation of the lexicon succeed to recognize such
constructions.

Precision gain was smaller. In one particular case a deterioration in precision could
be observed, namely in the case of the ARRESTED role. Analysing the cases which
contributed to the deterioration of the precision showed the possible risk on the shift
towards an approach based on morphological abstraction. In the following text snippet
from the corpus, the Italian word form giustizia has a noun reading (justice), and a verb
reading (to execute, 3rd person present indicative). This word is a member of the verb
class allowed in patterns for extracting the DEAD role. Consequently, the system wrongly
extracted the proper name Angelino Alfano as a victim.

Il ministro della Giustizia Angelino Alfano ha commemorato stamane a
Palermo...
(The minister of Justice Angelino Alfano commemorated this morning
in Palermo...)

(10)

Given that our system does not perform any word sense disambiguation, it cannot get rid
of contextually irrelevant morphological descriptions sometimes produced by the gram-
mar application. Clearly, such ambiguities could be resolved by applying some filtering
mechanism (e.g., additional lexicon annotation and/or using some heuristics), which is
not currently being deployed.

Finally, in a number of cases, numerals which are part of temporal expressions are
mistakenly captured as quantity expressions in active patterns, e.g., in:

un commando terrorista ha rapito due giorni fa un giornalista italiano...
(a terrorist commando kidnapped two days ago an Italian journalist...)

(11)

the system extracted due (two) as kidnapping victim description. Temporal expressions
are quite pervasive in event descriptions as they encode a crucial semantic dimension,
and in Italian they tend to be more freely located in text. In order to alleviate the afore-
mentioned problem, we currently apply some structural patterns to detect unambiguous
temporal expressions, which helps in resolving ambiguities like the aforementioned one.
Structural complexity and productivity of temporal expressions makes it hard to list them
as surface level patterns.

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 169



We also compared the performance of the English event extraction system with the
Italian system based on linguistic rules on two news corpora in English and Italian down-
loaded at the same time from EMM. There was some overlapping in the topics in the
two languages, however the news were quite different in general. Therefore, an accurate
comparison between the English and Italian systems was not possible. However, it is
worthwhile to mention that for the role DEAD the English system achieved F1 of 0.9 and
the Italian achieved nearly the same result, namely 0.87.

6. Conclusions

We reported on the process of adapting an existing real-time event extraction engine for
English based on a cascade of finite-state grammars to processing Italian news articles.6

We utilize an IE-oriented efficient finite-state formalism, which was sufficient to encode
extraction grammars for detecting events from real-world news since hard-to-tackle lin-
guistic phenomena can be discarded by approaching event extraction in a cluster-centric
manner. Moreover, the pattern formalism turned out to be more amenable for non-linguist
grammar writers than other ones we tested. Although from the scientific point of view
the work presented in this paper might not be considered as very novel, we strongly be-
lieve that some of our somewhat technical-in-nature observations and solutions might
constitute interesting guidelines and hints for solving and coping with similar tasks in a
multilingual text processing environment, which processes a vast amount of textual data
in real time.

The English event extraction system presented here relies mainly on a multilingual
named entity recognition grammar and a language-specific dictionary of surface-level
event extraction patterns, whose encoding does not require expert linguistic knowledge.
However, more abstract grammar rules are necessary for a better coverage of Italian,
because of the free word order and morphological richness of this language.

Consequently, we designed a slightly more linguistically sophisticated Italian ex-
traction grammar, which covers a rich variety of morphological and syntactic construc-
tions. Nevertheless, we try to keep the linguistic descriptions as simple as possible and
at the same time reduce the effort for engineers maintaining the system. In particular,
we achieve this by: (i) providing a higher, grammar layer, which is weakly language-
dependent, and (ii) improving the maintainability by separating the domain-lexica from
the grammar rules, where the domain-specific lexica constitute the only resource, which
is the subject of potential modification by the system users (e.g., adapting to a new do-
main, enriching the coverage of the lexica).

Our experiment demonstrated that the linguistically more sophisticated grammar
improves significantly the performance of the event extraction system for Italian. We
believe that the Italian grammar can be adapted with its current structure to other
Romance languages straightforwardly. The live event extraction system for Italian
is publicly accessible at: http://press.jrc.it/geo?type=event&format
=html&language=it. For the English version change the value of the language
attribute to en.

6We would like to thank Bruno Pouliquen for providing invaluable resources for Italian. Further, we are also
indebted to Ralf Steinberger and Jonathan Brett Crawley for supporting our work with many comments and
suggestions. The presented work could not have been possible without the work done by Martin Atkinson, Erik
van der Goot and many other EMM collegues.

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars170



References

[1] N. Ashish, D. Appelt, D. Freitag, and D. Zelenko. Proceedings of the Workshop on Event Extraction
and Synthesis, held in conjunction with the AAAI 2006 conference, Menlo Park, California, USA. 2006.

[2] R. Grishman, S. Huttunen, and R. Yangarber. Real-time Event Extraction for Infectious Disease Out-
breaks. In Proceedings of HLT 2002, San Diego, USA, 2002.

[3] G. King and W. Lowe. An Automated Information Extraction Tool For International Conflict Data with
Performance as Good as Human Coders: A Rare Events Evaluation Design. International Organization,
57:617–642, 2003.

[4] C. Best, E. van der Goot, K. Blackler, T. Garcia, and D. Horby. Europe Media Monitor. Technical
Report EUR 22173 EN, European Commission., 2005.

[5] C. Aone and M. Santacruz. REES: A Large-Scale Relation and Event Extraction System. In Proceedings
of ANLP 2000, 2000.

[6] H. Tanev, J. Piskorski, and M. Atkinson. Real-Time News Event Extraction for Global Crisis Monitor-
ing. In E. Kapetanios, V. Sugumaran, and M. Spilipoulou, editors, Proceedings of NLDB 2008, pages
207–218. LNCS 5039, Springer, 2008.

[7] J. Piskorski, H. Tanev, M. Atkinson, and E. Van der Goot. Cluster-Centric Approach to News Event
Extraction. In Proceedings of the 6th International Conference on Multimedia & Network Information
Systems, Wrocław, Poland, 2008.

[8] J. Piskorski. CORLEONE – Core Linguistic Entity Online Extraction. Technical report 23393 EN, Joint
Research Center of the European Commission, Ispra, Italy, 2008.

[9] J. Piskorski. ExPRESS – Extraction Pattern Recognition Engine and Specification Suite. In Pro-
ceedings of the International Workshop Finite-State Methods and Natural language Processing 2007
(FSMNLP’2007), Potsdam, Germany, 2007.

[10] W. Drożdżyński, Krieger. H.-U., J. Piskorski, U. Schäfer, and F. Xu. Shallow Processing with Unification
and Typed Feature Structures — Foundations and Applications. Künstliche Intelligenz, 2004(1):17–23,
2004.

[11] H. Cunningham, D. Maynard, and V. Tablan. JAPE: a Java Annotation Patterns Engine (Second Edition).
Technical Report, CS–00–10, University of Sheffield, Department of Computer Science, 2000.

[12] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Goranov. Towards Semantic Web
Information Extraction. In Proceedings of ISWC, Sundial Resort, Florida, USA, 2003.

[13] R. Yangarber and R. Grishman. Machine Learning of Extraction Patterns from Un-annotated Corpora. In
Proceedings of the 14th European Conference on Artificial Intelligence: Workshop on Machine Learn-
ing for Information Extraction, Berlin, Germany, 2000.

[14] E. Riloff. Automatically Constructing a Dictionary for Information Extraction Tasks. In Proceedings of
the 11th National Conference on Artificial Intelligence, 1993.

[15] H. Tanev and P. Oezden-Wennerberg. Learning to Populate an Ontology of Violent Events. In Fogelman-
Soulie, F. and Perrotta, D. and Piskorski, J. and Steinberger, R., editor, Mining Massive Data Sets for
Security. IOS Press, 2008.

[16] T. Erjavec. MULTEXT - East Morphosyntactic Specifications. URL: http://nl.ijs.si/ME/V3/msd/html/,
2004.

V. Zavarella et al. / Event Extraction for Italian Using a Cascade of Finite-State Grammars 171



This page intentionally left blank



Short Papers 



This page intentionally left blank



Finite State Models
for the Generation of Large Corpora

of Natural Language Texts

Domenico CANTONE, Salvatore CRISTOFARO, Simone FARO and
Emanuele GIAQUINTA

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | cristofaro | faro | giaquinta}@dmi.unict.it

Abstract. Natural languages are probably one of the most common type of input
for text processing algorithms. Therefore, it is often desirable to have a large train-
ing/testing set of input of this kind, especially when dealing with algorithms tuned
for natural language texts. In many cases the problem due to the lack of big corpus
of natural language texts can be solved by simply concatenating a set of collected
texts, even with heterogeneous contexts and by different authors.

In this note we present a preliminary study on a finite state model for text gener-
ation which maintains statistical and structural characteristics of natural language
texts, i.e., Zipf’s law and inverse-rank power law, thus providing a very good ap-
proximation for testing purposes.

Keywords. finite state model, automaton, natural language generation, language
identification, text processing.

Introduction

Natural languages are probably one of the most common type of input for text processing
algorithms. Therefore, it is often desirable to have a large training/testing set of input
of this kind, especially when dealing with algorithms tuned for natural language texts.
The problem in creating good corpora is that often natural language texts are too short
with respect to the dimension required to test effectively the goodness of text processing
algorithms, such as string matching and compression algorithms. This is, for instance, the
case of the well-known Canterbury Corpus [1], used for testing lossless data compression
algorithms, which contains natural language texts with a relative small dimension of
not more than 500Kb. The only exception is the “King James Version of the Bible”
(approximately 3, 85Mb) contained in the Large Corpus [1]. On the other hand corpora of
non-textual data contain test files with dimensions up to 3Mb (like the Protein Corpus [2]
and the Silesia Corpus [3]), while testing on random texts is often performed on buffers
of dimension 10Mb [4] and 20Mb [5].

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-175

175



In many cases the problem due to the lack of big corpus of natural language texts
can be solved by simply concatenating a set of collected texts, even with heterogeneous
contexts and by different authors. This is the case, for example, of The Linguistic Data
Consortium (http://www.ldc.upenn.edu), an open consortium of universities which cre-
ates, collects and distributes speech and text databases and other resources for research
and development purposes.

However, in this context, the task of being able to automatically generate texts which
maintain properties of real texts is appealing. In this note we present a preliminary study
on a finite state model for text generation which maintains statistical and structural char-
acteristics of natural language texts, i.e., Zipf’s law [6] and inverse-rank power law [7],
thus providing a very good approximation for testing purposes.

1. Preliminaries

Before entering into details, we review a bit of notations and terminology. A string S of
length m > 0 is represented as a finite array S[0 ..m − 1]. The length of S is denoted
with |S|, i.e, |S| = m. By S[i] we denote the (i + 1)-st character of S, for 0 ≤ i < m.
Likewise, by S[i .. j] we denote the substring of S contained between the (i + 1)-st and
the (j + 1)-st characters of S, for 0 ≤ i ≤ j < m.

A FINITE STATE AUTOMATON is a quintuple A = (Q, p0, F,Σ, δ), where Q is the
set of states of the automaton, p0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states, Σ is the alphabet of characters labeling transitions, and δ is a partial function from
Q × Σ to Q, called the transition function. If δ(p, c) is not defined for a state p ∈ Q
and a character c ∈ Σ, we say that δ(p, c) is an empty transition and write δ(p, c) =⊥.
Moreover, for all c ∈ Σ we put δ(⊥, c) = ⊥.

In contrast with what can be observed in random texts with a uniform character
distribution, it turns out that some naturally occurring phenomena in natural language
texts obey a power-law distribution.

Zipf’s law (cf.[6]), named after the Harvard linguistic professor George Kingsley
Zipf (1902-1950), is one of the most interesting applications of the power-law to natural
languages. In particular, Zipf’s law connects the rank of a word in a natural language
text with its relative frequency on the text itself as follows: given a text T , Zipf’s law
states that, with a very good approximation, the relative frequency of a word is inversely
proportional to its rank. More formally, if R is the number of different words in T , then
the relative frequency f(r) of a word with rank r in T is approximated by expression (1)
shown below:

(1) f(r) "
1

r ln(1.78R)
, (2) f(r) "

(R − i + 1)k

∑R

j=1 jk
.

Figure 1 presents the relative frequencies of words in a random text buffer, with a uni-
form distribution of characters (Figure 1.A) and in a natural language text “Hamlet” (Fig-
ure 1.B) and their approximations with the Zipf’s law. In contrast with the natural lan-
guage text, we can observe that the relative frequency of words in the random text does
not follow a Zipf’s law.

D. Cantone et al. / Finite State Models176



 0.0001

 0.001

 0.01

 1  10  100  1000

w
or

d 
fr

eq
ue

nc
y

word rank

(A) log-log scale plot of the frequency of words

real data
Zipf‘s law

 0.0001

 0.001

 0.01

 1  10  100  1000

w
or

d 
fr

eq
ue

nc
y

word rank

(B) log-log scale plot of the frequency of words

real data
Zipf‘s law

Figure 1. The relative frequencies of words in a random text buffer (A) and in a natural language text (B),
and their approximations with Zipf’s law. The text buffer in (A) has been generated randomly with a uniform
distribution of characters (n = 200000, σ = 50). The natural language text in (B) derives from the English
drama “Hamlet” (n = 174073, σ = 65).

Recently, in [7] a similar characterization has been reported for the frequencies of
characters in natural language texts. Such distribution model gives a very good approxi-
mation of the relative frequency function of characters in terms of their rank both in nat-
ural language dictionaries and texts. The model is based on the following inverse-rank
power-law of degree k, which states that if R is the number of different characters in T ,
then the relative frequency f(r) of the character with rank r in T is approximated by the
above expression (2), for a degree k ∈ R whose value is to be determined experimentally
(usually k ranges in the closed interval [3 .. 10]).

2. The Finite State Model

The model adopted in this note is a Deterministic Probabilistic Finite Automaton
(DPFA) [8,9], called Extended q-Gram Model [2], which inherits the statistical structure
of the string used for its construction (see below). The q-Grams automata are equivalent
to a class of DPFA known as stochastic k-testable automata [10].

The DPFAs are models which are generative in nature. This is in contrast with the
standard definition of automata in the conventional (non-probabilistic) formal language
theory, where strings are generated by grammars, whereas the automata are the accepting
devices. Thus, if S is a natural language string, then a DPFA for S can be used to
generate random texts which maintain the peculiar characteristics of S itself. The q-Gram
Model for a string S is constructed by extracting all q-grams of the string S, for some
fixed q > 0, and by carrying the statistical relationships between overlapping q-grams.

To begin with, let S be a string and let Σ be its alphabet. Given a positive integer
q, with q ≤ |S|, we define a q-gram of S as a substring w of S of length q, i.e., w =
S[i .. i+q−1], for some 0 ≤ i ≤ |S|−q. We denote with Gq(S) the set of all q-grams of
S. We define also an occurrence function ρ

S
which associates to each nonempty string

w over Σ the number of its occurrences in S, namely:

ρ
S
(w) = |{i : 0 ≤ i ≤ |S| − |w| and S[i .. i + |w| − 1] = w}| .1

1Notice that 0 < ρ
S
(w) ≤ |S| − q + 1, for each q-gram w of S.

D. Cantone et al. / Finite State Models 177



aa

ba ab

•a

ac

bc

da

cc

•db•

c•
(c, 1)

(a, 0.33)

(b, 0.33)

(c, 0.33)

(a, 1)

(•, 0.2)

(a, 0.6)

(c, 0.2)

(b, 1)

(c, 0.5)

(•, 0.5)

(c, 1)

(•, 1)

(d, 1)

(a, 1)

(b, 1)

(A)

a

b

c

d

•

(0.125)

(b, 0.625)

(c, 0.25)

(c, 0.2)

(a, 0.6)

(•, 0.2)

(0.5)
(•, 0.5)

(a, 1)

(d, 0.66)

(a, 0.33)

(B)

Figure 2. (A) The 2-GA for the string S = abaac • dabab • abacc • dabcc, where Σ = {a, b, c, d, •} and
Σsep = {•}. Each transition δ(w, c) of the automaton is labeled with the pair (c, ϕ(w, c)), where c is the
character which performs the transition and ϕ(w, c) is the relative frequency of the transition. (B) The 1-GA
for the string S = abaac • dabab • abacc • dabcc.

A standard natural language text can be seen as a sequence of words separated by
special symbols such as punctation marks, numbers, blanks, etc. Thus, we assume that
there is a distinguished set Σsep ⊆ Σ containing such symbols, used as separators be-
tween different words.

Given a value q, with 0 < q < |S|, the q-Gram Automaton (q-GA for short)
for the string S is formally defined as the probabilistic finite state automaton A =

(Q, p0, F,Σ, δ, ϕ), where

1. Q is the set of all q-grams of S, i.e., Q = Gq(S);
2. p0 is the initial state, defined as the first q-gram of S, i.e. p0 = S[0 .. q − 1];
3. F is the set of final states, defined as F = {w ∈ Q | w[q − 1] ∈ Σsep};
4. δ is the transition function defined, for each w ∈ Gq(S) and a ∈ Σ, by

δ(w, a) =

{
w[1 .. q − 1].a if w[1 .. q − 1].a ∈ Gq(S)
⊥ otherwise,

5. ϕ : (Q × Σ) → R is a map which associates to each transition of the automaton
its relative frequency. The map ϕ is formally defined by

ϕ(w, a) =

⎧⎨
⎩

ρ
S
(w.a)∑

c∈Σ ρ
S
(w.c)

if δ(w, a) �= ⊥

0 otherwise,

for each w ∈ Gq(S) and a ∈ Σ.

See Figure 2 for a pictorial illustration. The construction of the q-GA for a string S

of length n takes O(n + |Σ|q+1)-time and requires O(|Σ|q+1)-space, where Σ is the
alphabet of the string S.

D. Cantone et al. / Finite State Models178



3. Text Generation

In this section we present a simple algorithm for generating random texts by means of
the finite state model described above. Then we present experimental evidence that the
random texts so generated obey Zipf’s law and the inverse-rank power law, namely they
enjoy the structural and statistical characteristics of natural language texts.

RANDOM-TRANSITION(A,Σ, w)

1. r ← random(0, 1]
2. π ← 0
3. j ← 1
4. while π < r do
5. π ← π + ϕ(w, cj)
6. j ← j + 1
7. return cj

GENERATOR(S,A, q, Σ, n)

1. w ← S[0 .. q − 1]
2. T [0 .. q − 1] ← w

3. i ← q

4. while i < n do
5. c ← RANDOM-TRANSITION(A, Σ, w)
6. T [i] ← c

7. w ← δ(w, c)
8. i ← i + 1
9. return T

The algorithm GENERATOR given above takes as input a string S, the
q-GA A for the string S, a dimension q, the alphabet Σ, and the length n of the output
text buffer T . We assume that the alphabet Σ is an ordered finite alphabet, so that we can
write Σ = {c1, c2, . . . , cσ}, with |Σ| = σ. The algorithm starts its transitions from the
initial state w = S[0 .. q−1]. Thus the first q characters of the output text T will be equal
to the first q characters of S. Then it performs a loop until n characters have been in-
serted in T . More precisely, at each iteration, it uses the last q-gram of T , w, to compute
the subsequent character c to be inserted. In particular c is selected randomly among all
possible transitions δ(w, c) in the q-GA, according to their frequencies ϕ(w, c) (proce-
dure RANDOM-TRANSITION). Then w is updated to δ(w, c). Clearly the GENERATOR

algorithm takes O(n)-time for computing a text buffer of length n.

The following table lists some files containing random texts (output files), all of
dimension 2Mb, generated by the algorithm described above from natural language texts
(source files) of different sizes and languages, with grams dimension q = 2. Each file is
accessible via a URL of the form

http://www.ippari.unict.it/faro/fsmnlp08/file_name.txt.

text language source file output file
Hamlet (W. Shakespeare) English ham.txt (176Kb) hamg3.txt
La Divina Commedia (D. Aligheri) Italian div.txt (549Kb) divg3.txt
De la Terre à la Lune (J. Verne) French terlun.txt (335Kb) terlung3.txt
Don Quijote (M. Cervantes) Spanish quijote.txt (2, 04Mb) quijoteg3.txt
English dictionary (151.160 entries) English endict.txt (1, 47Mb) endictg3.txt
Words beginning with w (328 words) English wwords.txt (2, 24Kb) wwordsg3.txt
Italian dictionary (277.313 entries) Italian itdict.txt (3, 13Mb) itdictg3.txt
World Fact Book (Canterbury Corpus) English world192.txt (2, 35Mb) world192g3.txt
The Bible (Canterbury Corpus) English bible.txt (3, 85Mb) bibleg3.txt

Below are presented three examples of random texts, of length n ≥ 100, generated
by the algorithm described above from strings S1, S2, and S3 with grams dimensions
q ∈ {1, 2}.

Example 1. S1 =“abaac dabab abacc dabcc” (this is the string used in Figure 2):

D. Cantone et al. / Finite State Models 179



(q=1) ab daababab ab ababcc abacc dabab dababc dababacccccc abababababaacc dabababab
dababcc ab dab dababa

(q=2) ababcc dab ab abacc dabcc dabac dabaac dabcc dab abaacc dabac dabac dabab abcc dab
abacc dabacc dabc

Example 2. S2 = concatenation of the 328 different words of length 6 of the English dictionary, beginning
with the letter w:

(q=1) we warif wolviter w wices whofeshs wadeddd wommmpier wilads waxeathaveshs wally war
wind wis waldooup

(q=2) waffy wra winne wifer wiper whoolver woo wafed weekly wagong whing wincern weaker wrer
woolver woren

Example 3. S3 = concatenation of the 1389 different words of length 6 of the Italian dictionary, beginning
with the letter a

(q=1) aro acca agnfi ac ara ara alito andereatealbiannna arga aloniacci affi arma ale aluca atsiti affe
(q=2) abbaggia azoiolo apone amperemia abdulsa assi annomie arreso agrai amarpo aucideraspio

aliata apta

Observe that texts generated by the 1-GAs contain words which are not closely
related with the structure of the source string. Short words like “ab” in Example 1, “w”
in Example 2, and “ac” in Example 3, appear in the generated texts together with quite
long words like “abababababaacc” (in Example 1), “waxeathaveshs” (in Example 2) and
“andereatealbiannna” (in Example 3). Moreover, strings containing long sequences of a
same character, like “dababacccccc” (in Example 1) and “wommmpier” (in Example 2)
can occur. Instead, the length of the words generated by the 2-GAs are very close to the
length of the words in the source string and anomalies due to character repetitions are
not present.

Figure 3 shows the relative frequencies of characters and words in two different
text buffers of dimension 2Mb, generated from 2-GAs for two different natural language
texts. Observe that for both text buffers the relative frequencies of characters are well
approximated by an inverse-rank power law, of degree 4.7 and 5.9, while the relative
frequency of words follows closely a Zipf’s law.

4. Conclusion and Plans for Future Works

In this note we have presented a preliminary study of a finite state model for generat-
ing random text buffers with the same structure of natural language texts. The model
can be used to generate large corpora of data for testing text processing algorithms for
data-compression and pattern-matching. We intend to investigate further applications of
the Extended q-Gram Model in automatic music generation, for creating original mu-
sic pieces from input scores, and in the field of image precessing for automatic texture
generation.

Another major application field which we intend to investigate relates to the Lan-
guage Identification problem, which has applications in many areas such as in spelling
and grammar correction, in database search engine, etc. For instance, given a q-GA
A = (Q, p0, F,Σ, δ, ϕ) and an input string w of length m, we can associate to w a simi-
larity coefficient value, Γ

A
(w), computed as the average relative frequency of transitions

D. Cantone et al. / Finite State Models180



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10  20  30  40  50

fr
eq

ue
nc

y 
of

 c
ha

ra
ct

er
s

rank of characters

(A) linear plot of the frequency of characters

real data
inverse-rank law

 0.0001

 0.001

 0.01

 1  10  100  1000

w
or

d 
fr

eq
ue

nc
y

word rank

(B) log-log scale plot of the frequency of words

real data
Zipf‘s law

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10  20  30  40  50

fr
eq

ue
nc

y 
of

 c
ha

ra
ct

er
s

rank of characters

(C) linear plot of the frequency of characters

real data
inverse-rank law

 0.0001

 0.001

 0.01

 1  10  100  1000
w

or
d 

fr
eq

ue
nc

y

word rank

(D) log-log scale plot of the frequency of words

real data
Zipf‘s law

Figure 3. The relative frequencies of characters (A-C) and words (B-D) in two different randomly text
buffers of dimension 2MB, generated from two 2-GA, and their approximations with the inverse-rank
power law and Zipf’s law, respectively. The text buffer in (A-B) comes from the English drama “Hamlet”
(n = 174073, σ = 65). The text buffer in (C-D) comes from the Italian poem “La Divina Commedia”
(n = 548159, σ = 62).

(w[i .. i + q − 1], w[q]), for 0 ≤ i < |w| − q. A similar application, based on Markov
Models, has been presented in [11].

Then the language identification problem can be addressed by parsing the input
string with different q-GAs constructed over different natural language texts and tak-
ing the language which leads to the higher similarity coefficient value. Figure 4(A-B)
presents the similarity coefficient values obtained by parsing a set of English and Italian
words with 2-GAs constructed over three different natural language dictionaries whereas
Figure 4(C) presents the similarity coefficient values for a set of English, Italian and
French proverbs.

References

[1] A. Ross and T. Bell. The Canterbury Corpus. University of Canterbury, New Zeland, 1997. http:
//corspus.canterbury.ac.nz.

[2] C. G. Nevill-Manning and I. H. Witten. Protein is incompressible. In Data Compression Conference,
pages 257–266, 1999. http://data-compression.info/Corpora/ProteinCorpus.

[3] S. Deorowicz. Silesia Corpus. Silesian University of Technology, Poland, 2003. http://
data-compression.info/Corpora/SilesiaCorpus.

[4] C. Allauzen, M. Crochemore, and M. Ranot. Factor oracle: a new structure for pattern matching. In
Theory and Practice of Informatics, volume 1725 of LNCS, pages 291–306, Milovy, Czech Republic,
1999.

[5] D. Cantone and S. Faro. Fast-search algorithms: New efficient variants of the boyer-moore pattern
matching algorithm. In Experimental and Efficient Algorithms: Second International Workshop, WEA
2003, Ascona, Switzerland, May 26-28, 2003. Proceedings, volume 2647 of Lecture Notes in Computer
Science, pages 622–. Springer Berlin, 2003.

D. Cantone et al. / Finite State Models 181



(A) words Italian English German
airships 0.0279 0.1323 0.0576
beautiful 0.0989 0.1355 0.1022
cetrioli 0.1391 0.1000 0.0610
crazed 0.0362 0.2346 0.0378
cucumbers 0.0821 0.1871 −
dirigibili 0.2186 0.1360 0.0949
equazioni 0.4025 − −
hydrophily − 0.3123 −
idrofilo 0.1550 0.0963 0.0536
impazzivo 0.1947 − 0.0691
inno 0.4825 0.1958 0.1793
meravigliosi 0.2221 0.0965 0.1035
none 0.2018 0.2063 0.1039
piuolo 0.1296 − −

(B) words Italian English German
quadrato 0.3313 0.2491 0.2223
quaglia 0.4088 0.2565 −
quando 0.4598 0.2687 0.2894
quantizzammo 0.4086 0.1884 0.1915
raggi 0.2519 0.1027 0.0639
spokes 0.0938 0.2067 0.1360
spring 0.0851 0.2559 0.1900
stare 0.1795 0.0903 0.1377
stars 0.1002 0.2112 0.1209
state 0.2354 0.1738 0.1564
testamenti 0.2631 0.1519 0.1451
trentesimo 0.2327 0.1168 0.1483
why − 0.1159 −
wills 0.0994 0.2656 0.1713

(C) sentences italian english french
A buon cavallo non manca sella 0.2189 − −
A buon intenditor poche parole 0.2275 − −
A picture is worth a thousand words − 0.2132 −
A tavola non si invecchia 0.2630 − −
A word to the wise is sufficient − 0.2409 −
Action speak louder than words − 0.2276 −
Buon sangue non mente 0.2492 − −
Chi domanda cio che non dovrebbe, ode cio che non vorrebbe 0.2755 − −
Chi dorme d’agosto, dorme a suo costo 0.1837 − −
Hard words break no words − 0.1870 −
Il faut tourner sa langue sept fois dans sa bouche avant de parle − − 0.2604
In the land of the blind, the one eyed man is king − 0.3012 −
La parole est d’argent, mais le silence est d’or − − 0.2185
Le parole sono femmine e i fatti sono maschi 0.1822 − −
Nel mezzo del cammin di nostra vita 0.2672 − −
The cat will mew and dog will have its day − 0.2882 −
To be or not to be, that is the problem − 0.3282 −

Figure 4. (A-B) The similarity coefficient values for a set of words over the Italian, English and German
dictionaries. The symbol “−” indicates that the word is not recognized by the automaton. (C) The similarity
coefficient values for a set of English, Italian and French proverbs. The sentences have been tested with three
2-GAs constructed over three different natural language texts: the English drama “Hamlet” by William Shake-
speare; the Italian poem “La Divina Commedia” by Dante Alighieri; the French novel “De la Terre à la Lune”
by Jules Verne.

[6] G. K. Zipf. Selective Studies and the Principle of Relative Frequency in Language, volume 23. Harvard
University Press, Cambridge, MA, 1932.

[7] D. Cantone and S. Faro. On the frequency of characters in natural language texts. In Proc. of the 3rd

AMAST Workshop on Language Processing, AMILP 2003, pages 10–24, 2003.
[8] A. Paz. Introduction to Probabilistic Automata. Academic Press, New York, NY, 1971.
[9] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and R.C. Carrasco. Probabilistic finite state

automata – part I and II. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7):1013–
1039, July 2005.

[10] P. García and E. Vidal. Inference of K-testable languages in the strict sense and applications to syntactic
pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):920–925,
1990.

[11] T. Dunning. Statistical identification of language. Technical Report CRL MCCS-94-273, Computing
Research Lab, New Mexico State University, 1994.

D. Cantone et al. / Finite State Models182



CroMo – Morphological Analysis for

Standard Croatian and its Synchronic and

Diachronic Dialects and Variants1

Damir ĆAVAR a,2, Ivo-Pavao JAZBEC b and Tomislav STOJANOV b

a University of Zadar, Linguistics Dept., Croatia
b Institute of Croatian Language and Linguistics, Zagreb, Croatia

Abstract. CroMo is a finite state transducer that combines three major function-

alities into one high-performance monolithic machine for morphological segmen-

tation, annotation, and lemmatization. It is designed to be flexible, extensible, and

applicable to any language that allows for purely morphotactic modeling on the

lexical level of morphological structure. While it minimizes the development cycle

of the morphology, its annotation schema maximizes interoperability by using a

direct mapping from the GOLD ontology of linguistic concepts and features. The

use of standardized ontology based annototains provides advanced possibilities for

a DL-based post-processing of the annotated output.

Keywords. Croatian, Finite State Transducer, Morphology

Introduction

Quantitative and qualitative information about morphological properties of languages is

hard to come by. For many languages information as for example contained in CELEX

[1] is not available. For many research questions, most of the available information about

distributional properties of morphemes and their feature makeup is not sufficient.

Corpus annotations tend to be lexeme and word-form oriented, providing part-of-

speech (PoS) tags for tokens in the corpus, rather than segmentation of word-forms into

morphemes and allomorphs with their particular feature annotation. The notion of mor-
phological information is used inconsistently in the literature, e.g. associated with lex-

eme and PoS information only. The documented Croatian morphological lexicon [2] for

example does not provide information about the morphological structure and specific

feature annotations of single morphemes, but rather word-forms and lexemes with PoS-

annotation.

1Thanks to Thomas Hanneforth, Adrian Thurston, and Darko Veberič for their comments and help, and to

our colleagues at the IHJJ for lexical material and linguistic advice, as well as several anonymous reviewers

for helpful hints and comments.
2Corresponding Author: University of Zadar, Linguistics Dept., Obala kralja Petra Krešimira IV. 2, 23000

Zadar, Croatia; E-mail: dcavar@unizd.hr.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-183

183



Table 1. Morphological parse example

token popijemo

parse

po pije mo

stem suffix

prefix root inflectional

aspect verb 1st

perfective transitive plural

On the other hand, specific research questions, require detailed morphological anal-

yses of lexical tokens in a corpus. In our particular case, the Croatian Language Corpus

[3], as one of our major data sources needs to be annotated for subsequent analysis.

Our understanding of a morphological lexicon and morphological corpus annotation

includes parsed lexemes on the morphological level, with annotations and explicit feature

bundles associated with each single morpheme or allomorph, as shown in table 1 for the

word popijemo (Croatian, “to drink (up)”).

In the first step we do not require hierarchical tree structure for morpheme relations,

although it might be useful to reveal scope ambiguities of semantic properties. Thus the

parses are just linear segmentations that include a quasi-hierarchical dependency with

for example the prefix and root being contained in the stem, as shown in table 1. We

are interested in all possible parses that lead to a complete analysis of a morphological

complex word, i.e. all ambiguities. We do not intend to dissambiguate those at this stage.

Textual data from Croatian synchronic and diachronic dialects and variants is prob-

lematic, since e.g. different orthography standards have been and are still used. Look-

ing at diachronic data another problem is that the lexical environment is not static, with

lexical items emerging and disappearing, their semantic properties changing etc. Lexi-

cal changes occurred, some might have affected the morphological makeup of individual

word-forms (including changes in paradigms), some might be related to different feature

bundles associated with them.

Since various domains of lexical and morphological properties and features in our

particular case are still subject to ongoing research, the set of features is necessarily

open and unspecified from the outset. We expect in particular semantic properties, new

feature types that result from linguistic conceptual necessities, or marking of linguistic

origin and cultural background to emerge during future studies, i.e. the annotations of

morphemes should be extensible.

Once the morphological segmentation is available, the generation of lemmata (lex-

ical base-forms) can be achieved by appending the canonical inflectional suffix to the

identified base, and potentially applying the necessary allomorphic change to the root.

Furthermore, for establishing associations of word-forms to semantic fields, i.e. identi-

fying the semantic root of a complex word-form, the lemma of the root provides a useful

additional annotation information. For most Slavic and Germanic languages the right-

most root in a word-form is the semantic head of a complex morpheme. Thus, the root-

lemma is generated by picking the rightmost root morpheme and append to it the canon-

ical inflectional suffix. We annotate individual word forms for both lemma types, i.e. the

root- and the base-lemma. The latter is achieved by inclusion of all prefixes in the lemma

formation rule that are part of the morphological base.

The technical realization of the described annotator appears to be feasible, with

a very simple, and nevertheless efficient technical solution, i.e. finite state transducers

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian184



[4,5]. In the following we describe the algorithmic specification of CroMo, the mor-

phological parser, annotator and lemmatizer, developed for the Croatian standard, and

synchronic and diachronic variants.

1. Previous approaches

Finite state methods for computational modeling of natural language morphology are

wide-spread and well understood. Various commercial and open-source FSA-based de-

velopment environments, libraries and tools exist for modeling of natural language mor-

phology. A detailed discussion of their properties and application for various languages

would be beyond the scope of this article. Some overview can be found in recent lit-

erature, e.g. [6,7,8], further links to literature and implementations can be found in the

context of the OpenFst library [9].

For Croatian there are various descriptions of the formalization and computational

modeling of morphology in terms of finite state methods [10,11]. However, an imple-

mented testable application is not available.

Some solutions that have been implemented for example for German come close

to the system requirements specified above. The SMOR [12] and Morphisto [13] sys-

tems partially represent such a type of computational morphology application. An almost

complete overlap of features and properties can be found in the implementation of the

German morphology as described in the TAGH [14] system.

2. FST for morphological segmentation

For various reasons, we decide to stick to the approach and implementation strategy of

TAGH, while we apply our own experimental libraries and development environment.3

Following the TAGH-approach [14], we model Croatian morphology by referring exclu-

sively to morphotactic regularities, using morpheme and allomorph sets and regular mor-

phological rules, such that a deterministic finite state transducer (FST) can be generated.

The initial modeling step is to group morphemes, identifying those on the basis of

(a.) morphemes having the same feature specification, and (b.) being subject to the same

morphological rules.

In CroMo each morpheme group represents one deterministic and acyclic finite state

transducer (DFST). The design is similar to the Mealy [15] or Moore machine [16].

Every morpheme DFST emits on entry a tuple of the byte-offset in the input string, and

the feature bundle that is associated with the DFSA path. In every final state the DFST

emits the same tuple. This way morphemes are marked with a start and end index, as well

as the corresponding feature bundle, representing the desired annotation. The following

graph shows a simplified example of an acyclic DFST for verbal roots and for example

aspectual prefixes:

3The automata and grammar definitions we use are compatible with several existing systems and libraries.

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian 185



The verbal inflectional paradigm is organized in the same way. Since the model is

based on purely morphotactic distributional regularities, potential phonological phenom-

ena are expressed using exclusively allomorphic variations. The following graph shows

a simplified network for verbal suffixes:

Once all morphemes are grouped into DFSTs, and the appropriate emission symbols

(the annotations) are assigned to each entry and final state of the DFST, each morpheme

group is assigned an arbitrary variable name, which is used in the definition of rules. A

rule that makes use of the automata above could be defined as follows:

vAspectPref* . vAtiRoots . vInflSuf

This rule describes the concatenation of the verbal root DFST with the DFST for

the verbal inflectional paradigm, using common regular expression notation. In this case

we use the regular expression syntax as defined for the Ragel [17] state machine com-

piler. Additionally, the prefixes are defined as optional and potentially recursive prefixes

concatenated with the verbal root DFST. This definition generates a cyclic4 deterministic

transducer.

Such a DFST emits a tuple containing the byte-offset and the corresponding annota-

tion symbols at the initial state, and at each morpheme boundary (former initial and final

states of the sub-DFSTs).

4Cyclicality in this particular case leads to more compact automata. In principle, the depth of recursion

of such prefixes could be limited (empirically and formally), and formalized using the appropriate regular

expression syntax.

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian186



Using this approach, all lexical classes are defined as complex (potentially cyclic)

DFSTs, and combined, together with the closed class items, as one monolithic DFST.

The advantage of such a representation is not only that the resulting morphological

representation is compressed, but also that it is processed in linear time, with the identi-

fication of morpheme boundaries and corresponding feature bundles being restricted by

contextual rules.

In order to cope with morphological ambiguity, this approach is extended. In prin-

ciple there are two major approaches to deal with ambiguity, either one has to allow for

non-deterministic automata (two different transitions with the same input emit a different

output tuple), or ambiguity is mapped on the emission of multiple annotation tuples. In

the case of CroMo, the latter option is used in the modeling. Every emission is a tuple

of length 0 to n, such that e.g. orthographically ambiguous nominal suffixes like a (gen-

itive singular or plural) are modeled as a single transition in a DFST with the final state

emitting two annotation tuples that contain the specific case and number features.

2.1. Interoperability and annotation standard

Current language resources face a serious problem, related to issues of interoperability

and annotation compatibility. Various different tag-sets are used for particular languages,

and some of those tend not to be straight-forward compatible. In the same way, linguistic

annotation tools do not necessarily make use of some standardized tag-set, and such a

tag-set actually does not even exist.

For our purposes here we decided to offer maximal interoperability in the result-

ing corpus annotation, as well as in the annotation tool as such, one that is maximally

compatible with existing tag-sets, as language specific as necessary, and at the same

time maximally extensible. The General Ontology for Linguistic Description (GOLD)

[18,19,20] was originally envisioned as a solution to the problem of resolving disparate
markup schemes for linguistic data. GOLD specifies basic linguistic concepts and their

interrelations, and can be used, to a certain extent, as a description logic for linguistic

annotation.

We make use of three core concept classes in GOLD, and the necessary sub-

concepts, i.e. MorphoSemanticProperty, MorphosyntacticProperty, and LinguisticEx-

pression. The concepts defined therein relate to the notions that are expected to be emit-

ted by CroMo, i.e. morphological properties of morphemes (e.g. prefix, suffix, root),

morpho-syntactic properties (e.g. case, number), and morpho-semantic properties (e.g.

aspect, mood, tense).

By using the labels for concepts as defined in GOLD, we should be able to main-

tain maximal compatibility with other existing tag-sets. While the logic of GOLD would

burden a morphological parsing algorithm, the reference to the concepts doesn’t seem

problematic. Representing the concepts as pure emission strings associated to the emis-

sion states, as discussed above, might decrease memory and performance benefits of a

DFST-based analyzer. To maximize the performance, the GOLD-concepts and relations

are mapped on a bit-vector. Encoding of the relevant concepts can be achieved with bit-

vectors of less than 64 bit.

The mapping defines constants that correspond to bit-masks that are pre-compiled

into the DFST. The bit-mask for example for Genitive might be defined as one that

corresponds to set first and second bits of the terminal-class bit-field, plus the corre-

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian 187



sponding bits that indicate that the sub-class CaseProperty is set, as well as the bit

for the corresponding top-node class MorphosyntacticProperty, as shown in the

following graphic:

top-node concept

sub-class

terminal-classes

In a limited way, via definitions of constants and mapping of linguistic annotation in

the morpheme dictionaries, one can maintain implicatures and inheritance relations, as

defined in the ontology, via bit-vector representations and appropriate bit-masks.

For the morphological analyzer this does not imply any additional processing load,

i.e. the emission tuples consist of bit-vectors in form of 4-byte numerical integer values.

Converting the emission tuples (i.e. individual bit-vectors) into literal string representa-

tions can be achieved efficiently, once an input string is analyzed completely.

2.2. Implementation

CroMo consists of two sets of code-bases. The first component converts a lexical base

into a formal automaton definition. The second compiles together with the automaton

definitions into a binary application.

The lexical base is kept either in database tables, spreadsheets, or textual form. The

different formats allow us to maintain a minimally invasive lexical coding approach. Lin-

guists or lexicologists are not required to learn a formal language for DFST definitions.

Furthermore, they are free to use their individual way of annotation, being guided by

GOLD concepts, but free to define their own, should these not be part of GOLD. CroMo

provides guidelines for the data-format, but also the possibility to use individual scripts

for data conversion and annotation mappings.

The individual morpheme lists, annotations and rule definitions are compiled into

Ragel [17] automata definitions, as described above. Besides rules that are related to

concrete morpheme lists and the corresponding DFSTs, there are also guessing rules that

define general properties of nouns, verbs and adjectives. The features that are used, be

they specified in GOLD or not, are mapped on bit-vectors, and C-header files with the

constant literal and bit-vector mask definitions are generated.

Ragel generates a monolithic DFST as C-code, using highly efficient C-jump code

(goto-statements), as well as a DOT-file for visualization of the resulting automaton

(using e.g. Graphviz5). The generated code is wrapped in a C++ class that handles input

and output, and controls the program logic.

In the current version the generation of the root- and the base-lemma is encoded in

the emission bit-vector. One byte is reserved to mark the reverse offset for string con-

catenation, while two bytes are reserved to point to an element in a string array with the

corresponding string that needs to be appended. The form čitamo would be associated

5See http://www.graphviz.org/ for details.

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian188

http://www.graphviz.org/


with an offset of -2 and a corresponding suffix ti. This solution doesn’t match the gen-

eral paradigm, and is just temporary. In the next release the output characters of the cor-

responding lemma will be integrated in the emission of the transducer, associated with

each single transition. Thus every emission will be a tuple that contains tuples of output

characters and optional annotation bit-vectors.

CroMo expects a token list as input. Tokens are processed sequentially. For each

token, all emitted tuples are collected in a stack. Only matching start- and end-tuples

are returned, if there are compatible sub-morpheme analyses that span over the complete

input token length.

The significant implementation features that differentiate CroMo from other solu-

tions, are that the code-base is platform independent and open-source, based on free and

open tools like GCC and Ragel. Furthermore, the fact that doesn’t transcode the lexical

base or the input words, it can be based on any encoding, even mixed encodings. The

processing is purely binary (i.e. byte-oriented).

The extension of the morphological base is kept trivial, along the lines of the require-

ments specified above, i.e. the necessity to be able to add newly identified morphemes or

paradigms from diachronic and synchronic variants.

3. Evaluation

The evaluation version of CroMo contains approx. 120,000 morphemes in its morpheme-

base, using UTF-8 character encoding. The number of strings it can recognize is infinite,

due to cyclic sub-automata. Unknown word-forms can be analyzed due to incorporated

guessing rules.

For the following evaluation results we used a 2.4 GHz 64-bit Dual-Core CPU. In

the evaluation version only a single core is used during runtime of the FST, while both

CPU cores are used during compilation.

Compilation of the morphology requires min. 4 GB of RAM using GCC 4.2. This

is expected due to the monolithic architecture, and since the Ragel-generated C-code of

the transducer gets very large. The compilation process takes less than 5 minutes, using

both CPU cores. The resulting binary footprint is less than 5 MB of size.

The final automaton consists of approx. 150,000 transitions and 25,000 states.

We selected randomly 10,000 tokens with an average morpheme length of 2.5 mor-

phemes. CroMo processes in average approx. 50,000 tokens per second (real 10,000 to-

kens per 150 millisec.), including runtime instantiation in memory, mapping of the anal-

ysis bit-vectors to the corresponding string representations, generation of lemmata, and

output redirection to a log-file. An extension of the morpheme base has no significant

impact on memory instantiation time, neither on the runtime behavior. The memory in-

stantiation can be marginalized for a large processing sample.

CroMo doesn’t implement transitional or emission-probabilities, due to missing

quantitative information from training data. Once an annotated corpus is available, these

weights can trivially be implemented as additional weights in the emission tuple.

A relevant evaluation result is the coefficient of the ratio between all and relevant

emissions, i.e. the percentage of relevant (possible) morpheme analyses and all gen-

erated ones. Due to certain limitations, we did not perform such an evaluation, nei-

ther a recall evaluation on a predefined evaluation corpus. The results of these eval-

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian 189



uations, together with the source code, will be made available on CroMo’s web site

http://personal.unizd.hr/~dcavar/CroMo/.

References

[1] Gavin Burnage. CELEX - A guide for users. Technical report, Centre for Lexical Information, University

of Nijmegen, Nijmegen, 1990.

[2] Antoi Oliver and Marko Tadić. Enlarging the croatian morphological lexicon by automatic lexical ac-

quisition from raw corpora. In Proceedings of LREC 2004, volume IV, pages 1259–1262, Lisbon, May

2004. ELRA.

[3] Dunja Brozović-Rončević and Damir Ćavar. Hrvatska jezična riznica kao podloga jezičnim i jez-

ičnopovijesnim istraživanjima hrvatskoga jezika. In Vidjeti Ohrid, editor, Hrvatska sveučilišna naklada,

pages 173–186, Zagreb, 2008. Hrvatsko filološko društvo.

[4] Jean Berstel. Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart, 1979.

[5] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages. EaTCS Monographs on

Theoretical Computer Science. Springer-Verlag, Berlin, December 1988.

[6] Richard Sproat. A Computational Theory of Writing Systems. AT&T Bell Laboratories, New Jersey,

July 2000.

[7] Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology. CSLI Publications, Stanford, April

2003.

[8] Brian Roark and Richard Sproat. Computational Approaches to Syntax and Morphology. Oxford Uni-

versity Press, Oxford, 2007.

[9] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. OpenFst: A gen-

eral and efficient weighted finite-state transducer library. In Proceedings of the Ninth International Con-
ference on Implementation and Application of Automata, (CIAA 2007), pages 11–23. Springer-Verlag,

2007.

[10] Marko Tadić. Računalna obradba morfologije hrvatskoga književnog jezika. PhD thesis, Filozofski

fakultet Sveučilišta u Zagrebu, Zagreb, Croatia, 1994.

[11] Vjera Lopina. Strojna obrada imenične morfologije u pisanome hrvatskom jeziku. Master’s thesis,

Centar za postdiplomske studije Dubrovnik, Dubrovnik, October 1999.

[12] Helmut Schmid, Arne Fitschen, and Ulrich Heid. SMOR: A German computational morphology cov-

ering derivation, composition, and inflection. In Proceedings of the IVth International Conference on
Language Resources and Evaluation (LREC 2004), pages 1263–1266, Lisbon, Portugal, 2004.

[13] Andrea Zielinski and Christian Simon. Morphisto – an open-source morphological analyzer for German.

In Proceedings of FSMNLP 2008, Ispra, Italy, September 2008.

[14] Alexander Geyken and Thomas Hanneforth. TAGH: A complete morphology for german based on

weighted finite state automata. In Anssi Yli-Jyrä, Lauri Karttunen, and Juhani Karhumäki, editors,

FSMNLP 2005, volume 4002 of Lecture Notes in Artificial Intelligence, pages 55–66. Springer, Septem-

ber 2005.

[15] George H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal,
34(5):1045—1079, September 1955.

[16] Paul E. Black. Dictionary of algorithms and data structures. Online publication: U.S. National

Institute of Standards and Technology, Available from http://www.nist.gov/dads/HTML/
mooreMachine.html, December 2004.

[17] Adrian D. Thurston. Parsing computer languages with an automaton compiled from a single regular

expression. In 11th International Conference on Implementation and Application of Automata (CIAA
2006), volume 4094 of Lecture Notes in Computer Science, pages 285–286, Taipei, Taiwan, August

2006.

[18] Scott O. Farrar and D. Terence Langendoen. A linguistic ontology for the semantic web. Glot Interna-
tional, 7(3):1–4, March 2003.

[19] Scott O. Farrar, William D. Lewis, and D. Terence Langendoen. A common ontology for linguistic

concepts. In N. Ide and C. Welty, editors, Semantic Web Meets Language Resources: Papers from the
AAAI Workshop, pages 11–16, Menlo Park, CA, 2002. AAAI Press.

[20] Scott O. Farrar. An Ontology for Linguistics on the Semantic Web. PhD thesis, The University of

Arizona, Tucson, Arizona, 2003.

D. Ćavar et al. / CroMo – Morphological Analysis for Standard Croatian190

http://personal.unizd.hr/~dcavar/CroMo/
http://www.nist.gov/dads/HTML/mooreMachine.html
http://www.nist.gov/dads/HTML/mooreMachine.html


Forest FIRE and FIRE Wood: Tools for
Tree Automata and Tree Algorithms

Loek CLEOPHAS a,1

a Software Engineering & Technology Group,
Department of Mathematics and Computer Science,

Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. Pattern matching, acceptance, and parsing algorithms on node-labeled,
ordered, ranked trees (‘tree algorithms’) are important for applications such as in-
struction selection and tree transformation/term rewriting. Many such algorithms
have been developed. They often are based on results from such algorithms on
words or generalizations thereof using finite (tree) automata. Regrettably no coher-
ent, extensive toolkit of such algorithms and automata existed, complicating their
use.

Our toolkit FOREST FIRE contains many such algorithms and automata con-
structions. It is accompanied by the graphical user interface (GUI) FIRE WOOD.
The toolkit and GUI provide a useful environment for experimenting with and com-
paring the algorithms. In this tool paper we give an overview of the toolkit and GUI,
their context and design rationale, and mention some results obtained with them.

Keywords. tree automata, tree algorithms, toolkit, GUI, instruction selection

Introduction

Pattern matching, acceptance, and parsing algorithms (‘tree algorithms’) are important
for applications such as instruction selection and tree transformation/term rewriting. In
instruction selection for example, an intermediate representation tree for a program frag-
ment needs to be covered using tree patterns, each of which corresponds to a CPU in-
struction. (For example, tree pattern +(Ri, c) might correspond to instruction ADD
Ri, c—the addition of constant c to the value in register Ri. A cover of an intermedi-
ate representation tree using such patterns then yields an instruction sequence for the
program fragment.)

Many tree algorithms (on node-labeled, ordered, ranked trees) appeared in the lit-
erature [1,2,3,4,5,6,7,8,9,10,11,12,13]. They are usually based on results from such al-
gorithms on words or generalizations thereof, but are often scattered over the literature
and lacking reference to the underlying theory. A few good overview works exist, but
they are focused on theory instead of algorithms [14,15,16]. Together with the lack of a
coherent and extensive toolkit, this complicated comparison of and choice among them.

1E-mail: loek@loekcleophas.com.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-191

191



TABASCO [17,18] was therefor applied to the domain of tree algorithms. TABAS-
CO (TAxonomy-BAsed Software COnstruction) is a domain modeling and domain en-
gineering method for algorithmic domains. It brings order to and increases accessibility
of a specific domain by taxonomizing algorithms and creating a domain specific toolkit
based on the resulting taxonomy.

A literature survey is first performed to find algorithms from a domain. A taxon-
omy is then constructed, forming a domain model by classifying algorithms—both from
the literature or based on variations of those from the literature—according to essential
details, somewhat similar to a biological taxonomy.

By indicating commonalities and differences between the various algorithms, a tax-
onomy simplifies the design of a coherent toolkit. High-level design choices are guided
by the taxonomy structure, while language constructs to implement smaller design parts
can be chosen using standard design techniques. Furthermore, the taxonomy presentation
of algorithms helps in implementing them.

Our taxonomies for tree acceptance and tree pattern matching are presented in [19,
Chapters 5 and 6]. The two problems are related and algorithms solving them involve
related algorithmic ingredients. The commonalities lead to similarities between the tax-
onomies constructed.

The similarities were used in the taxonomy-based toolkit design and implementation
of FOREST FIRE. It contains three kinds of components: tree acceptance and pattern
matching algorithms (based on the taxonomies of such algorithms; additionally a few
tree parsing algorithms are included), representations of and constructions for the tree
automata used in these algorithms, and basic supporting data structures and algorithms.
Apart from providing experience with taxonomy-based toolkit design, FOREST FIRE is
useful for experiments aimed at understanding and comparing the many algorithms and
automata. A GUI, FIRE WOOD, was constructed to facilitate this and show the toolkit’s
usability.

Our toolkit and GUI offer many different tree automata types and construction, ac-
ceptance, matching, and parsing algorithms. This large collection of implementations
sets them apart from all other tree tools we know of.

The toolkit and GUI were implemented in Java, using the Standard Widget Toolkit
(SWT), for use on Apple Mac OS X, Linux, and Microsoft Windows XP, and will be
made available in the near future. In total, they contain about 140 classes and 16 thousand
lines of code.

In this tool paper we give a brief high-level overview of the toolkit and GUI and
mention some results obtained with them.

1. Related Work

Related work on taxonomy-based toolkits and TABASCO is discussed in [17].
Instruction selection tools each use a single tree parsing algorithm and automaton

type. Such tools include BEG [20], BURG/ iBURG [21], and TWIG [1].
Quite a few toolkits and GUIs use (ordered, ranked) trees and tree automata for other

applications. Such toolkits and GUIs generally also contain just one or a few automaton
representations and algorithm variants, and their focus is on using such representations
and algorithms in their particular application area.

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms192



Timbuk [22] uses tree automata for reachability analysis in term rewriting. It repre-
sents terms by automata and uses operations on such automata, which are implemented
by the underlying Taml library. Taml and Timbuk include a number of operations on
tree automata (boolean operations, determinization, decision problems, matching, in-
put/output). They are complemented by Tabi, a GUI to interactively construct trees and
explore the state assignments done to them.

Tiburon [23] is a toolkit based on weighted top-down tree automata and aimed at
natural language processing. It contains weighted top-down acceptors and transducers,
and e.g. construction of such automata based on regular tree grammars, boolean opera-
tions, and weighted determinization.

MONA [24] uses binary trees and corresponding tree automata to solve decision
problems in the weak monadic second-order theory of 2 successors. It uses bottom-up
tree automata with an initial top-down pass to restrict the state space of each tree node
and thereby prevent state space explosions; in our toolkit, such explosions are prevented
a.o. by filtering techniques (see Section 2).

Finally, TREEBAG [25] contains various kinds of tree grammars and tree transduc-
ers and allows them to be composed to generate and transform trees, but does not include
automata constructions or pattern matching algorithms.

2. Toolkit

The FOREST FIRE toolkit contains the three kinds of components mentioned in the
introduction.

Basic supporting data structures and algorithms include e.g. symbols (terminals of
fixed arity and variables or nonterminals, both of arity 0), alphabets, tree nodes (includ-
ing a symbol and links to parent and children), trees, regular tree grammars (consisting
of an alphabet, a start symbol nonterminal, productions allowing the replacement of a
nonterminal by a tree whose leafs may be labeled by nonterminals), and tree pattern sets
(sets of trees over an alphabet including variables), as well as algorithms for analyzing
trees, regular tree grammars, and productions (such as analyzing whether a grammar con-
tains chain rules), and algorithms for transforming them (such as those removing chain
rules using a transitive closure computation). All of these are required or useful as ba-
sic building blocks for the implementation of tree acceptance and tree pattern matching
algorithms and accompanying automata constructions.

Automata are essential to the tree acceptance and pattern matching algorithms from
the taxonomies. FOREST FIRE implements a number of (tree) automata types, i.e. non-
deterministic tree automata with and without ε-transitions, deterministic ones, and de-
terministic word automata of the Aho-Corasick type. The tree automata can be of types
assigning states to trees frontier-to-root or root-to-frontier, while the Aho-Corasick au-
tomata are used root-to-frontier. Deterministic frontier-to-root tree automata using filter-
ing are also included.2

For lack of space, automata construction details are not discussed, but tree automata
form generalizations from the word case, and many of the concepts are similar—for
example, states have a relation to (parts of) regular tree grammars or tree patterns, similar

2Filtering is a well known technique to reduce the memory use of a tree automaton’s transition tables by
using properties of the trees underlying its states [3].

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms 193



to the relation between states and regular grammar/expression elements in the word case.
By using different state sets obtained from a regular tree grammar or tree pattern set,
different automata of each of the types mentioned can be constructed. In total, FOREST

FIRE includes over thirty tree acceptor and tree pattern matcher constructions.
Despite the many constructions, just a few acceptance and pattern matching

algorithms—each using an automaton resulting from a construction—needed to be im-
plemented. For e.g. pattern matching, four were implemented, using nondeterministic
root-to-frontier and frontier-to-root tree automata, using deterministic frontier-to-root
ones, and using Aho-Corasick automata respectively.

The abstract algorithms from the taxonomies were translated into Java code in a
straightforward way. The coherence and factoring of commonalities—of states, behavior,
interface, operations—in the taxonomies and the similarities between them made toolkit
design and implementation simple and easy. This is in line with earlier experience with
taxonomy-based software construction [17,18].

3. GUI

FIRE WOOD is a GUI accompanying FOREST FIRE, facilitating input, output, creation
and manipulation of data structures from the toolkit. It supports interactive experiments
involving grammar transformations, automata constructions, acceptance, pattern match-
ing, and parsing.

Figure 1. Example showing the specification of a tree grammar.

To start working with FIRE WOOD a user loads a file with definitions of alphabets,
trees, grammars, pattern sets etc. These definitions are shown in a tree view, as on the left
of Figure 1. For each structure, various operations—depending on the structure’s type—
may be available, e.g. for a pattern set a pattern matching automaton can be created and
used in a pattern matching algorithm (applied to a tree set also taken from the input file).
The operations on each structure are accessed using the tab pages that appear to the right
of the tree view upon selection of a structure.

The tabs fall into just a few categories:

• Specification tabs for structures. Figure 1 shows this tab for a regular tree gram-
mar generating trees like c (using the last production) and a(b(c), d) (using the
fifth and the third production).

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms194



• Analysis tabs for tree grammars, providing statistics e.g. about chain rules.
• Transformation tabs for tree grammars, providing access to transformations such

as removal of (all or selected) chain rules.
• Automaton construction tabs, allowing automata of a specific type to be con-

structed for a tree grammar or pattern set, using construction specific settings.
Construction time, memory usage, automaton size, and the automaton’s structure
are reported following construction. Figure 2 shows an example of such a tab for
the tree grammar case.

• Acceptance/matching algorithm tabs, allowing such algorithms to be applied to
a grammar and tree(s) or to a pattern set and tree(s) respectively. Based on the
selected automaton’s type, the appropriate acceptance/matching algorithm is au-
tomatically selected. This algorithm is run on the tree(s) selected by the user,
returning a boolean for each tree (in the case of an acceptance algorithm) or a
set of matching patterns for every node of each tree (in the case of a matching
algorithm). As for automaton construction tabs, data related to benchmarking is
provided.

Figure 2. Example deterministic frontier-to-root tree automaton construction.

4. Practical Results

The practical results fall into two categories: those for the toolkit and GUI themselves—
particularly experiences with design, implementation, and extensibility—and those for
the algorithms and constructions contained in them—particularly in terms of experimen-
tal results obtained from benchmarking them.

The taxonomy-based design and implementation of the toolkit were beneficial in
multiple ways: as with earlier taxonomies [17,18], the taxonomies—with their uni-
form algorithm descriptions and explicit factoring of algorithms’ commonalities and
differences—made toolkit design and implementation quite straightforward [19,26]. Fur-
thermore, the coherent, taxonomy-based design made the toolkit easily extendable: two
tree parsing algorithms—not part of the taxonomies but straightforward extensions of

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms 195



tree acceptance algorithms—were added in less than two hours with just tens of lines of
code.

A number of experiments was performed with FOREST FIRE and FIRE WOOD:
with tree grammar transformations, with different (tree) automata constructions for use
in tree acceptance and tree pattern matching algorithms, and with these algorithms using
the different automata constructed.

Automata construction experiments for pattern matching and acceptance used var-
ious pattern sets and tree grammars. Examples ranged from small ‘toy’ examples to a
rewrite system taken from a model transformation case study and to grammars used for
instruction selection for e.g. the Intel X86. Experiments with pattern matching and ac-
ceptance algorithms using the automata thus constructed were also performed.

The most interesting results obtained are those on deterministic frontier-to-root tree
automata with filtering. These have been used in e.g. BURG [21]. BURG uses a well
known filter originally by Chase [3] to (drastically) reduce memory use compared to un-
filtered automata. We showed that Chase’s technique was an instance of a more general
technique and that another filter, TFILT, had appeared (somewhat implicitly) in the liter-
ature before [9]. More importantly, we described two new, simpler filters. We compared
construction times and memory use of resulting automata using the various filters. As an
example, the results for the Intel X86 instruction selection grammar (mentioned above)
are displayed in Table 1 below. Although the results depend on the pattern set/grammar
used, for instruction selection grammars such as this one the new IFILT consistently out-
performs the others—including Chase’s existing CFILT—in memory use of the resulting
automata, while the new SFILT does so in construction time.

Table 1. Automata constructions including ones with filtering.

Filter None None, TFILT SFILT IFILT CFILT

reduced

state set

Memory usage (MiB) 144.3 2.3 2.5 4.6 1.4 10.1

Construction time (ms) 273009 1626 7398 267 2883 288

(Detailed) results on all the experiments can be found in [19,26].

5. Concluding Remarks

We gave a brief impression of the FOREST FIRE toolkit and FIRE WOOD GUI. We also
discussed their context and design rationale, and mentioned some interesting results ob-
tained by experimenting with them. The toolkit has already been applied to tree parsing,
by extending some of the tree acceptance algorithms with little effort [26]. To simplify
use of algorithms from the toolkit by users that are not domain experts, a domain specific
language could be developed. Such a language would allow a user to automatically ob-
tain an algorithm by specifying some parameter values (e.g. importance of memory use
vs. preprocessing/automaton construction time, direction of tree processing).

We also plan to apply the toolkit to instruction selection and tree transformation/term
rewriting. In the latter, the combination of different pattern matching algorithms and

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms196



rewriting strategies—particularly others than the usual leftmost innermost—would be
investigated. Particularly interesting would be to see how match results on a tree can be
efficiently updated following a single rewrite step, and whether certain rewriting strate-
gies seem more useful or efficient than others in term rewriting in the domain of model
transformations.

For instruction selection, the application of the new filters instead of Chase’s filter is
of interest. An instruction selector can be implemented in Java using the toolkit, or one
or more of the new filters can be implemented in C++ as part of BURG [21], which uses
Chase’s filter.

More details on the software are available in [19, Chapter 8] and in [26]. The FOR-
EST FIRE and FIRE WOOD software and manuals will be available at http://www.
fastar.org and http://www.win.tue.nl/set.

Acknowledgments

I thank Roger Strolenberg for his work on the toolkit and GUI, and for the experiments
performed with them, during his Master’s thesis research and a subsequent temporary
appointment in our research group. Mark van den Brand, Bruce Watson, Kees Hemerik
and the referees provided valuable comments.

References

[1] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code generation using tree matching and dynamic
programming. ACM Transactions on Programming Languages and Systems, 11(4):491–516, 1989.

[2] A. Balachandran, D. M. Dhamdhere, and S. Biswas. Efficient retargetable code generation using bottom-
up tree pattern matching. Computer Languages, 15(3):127–140, 1990.

[3] David R. Chase. An improvement to bottom-up tree pattern matching. In Conference Record of the
Fourteenth Annual ACM Symposium on Principles of Programming Languages, pages 168–177. ACM,
1987.

[4] Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata for code selection. Acta
Informatica, 31:741–760, 1994.

[5] Philip J. Hatcher and Thomas W. Christopher. High-quality code generation via bottom-up tree pattern
matching. In Conference Record of the Thirteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 119–130. ACM, 1986.

[6] C. Hemerik and J. P. Katoen. Bottom-up tree acceptors. Science of Computer Programming, 13(1):51–
72, 1989.

[7] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. Journal of the ACM, 29(1):68–95,
January 1982.

[8] H. Kron. Tree templates and subtree transformational grammars. PhD thesis, University of California,
Santa Cruz, 1975.

[9] Prescott K. Turner. Up-down parsing with prefix grammars. SIGPLAN Notices, 21(12):167–174, De-
cember 1986.

[10] H. J. A. van de Meerakker. Een parsing algoritme voor boomgrammatica’s. Master’s thesis, Faculteit
Wiskunde en Informatica, Technische Universiteit Eindhoven, May 1988. (In Dutch).

[11] Yolanda van Dinther. De systematische afleiding van acceptoren en ontleders voor boom-grammatica’s.
Master’s thesis, Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, August 1987.
(In Dutch).

[12] Beatrix Weisgerber and Reinhard Wilhelm. Two tree pattern matchers for code selection. In Dieter Ham-
mer, editor, Compiler Compilers and High Speed Compilation, 2nd CCHSC Workshop, Berlin GDR,
October 10-14, 1988, Proceedings, volume 371 of Lecture Notes in Computer Science, pages 215–229,
1989.

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms 197



[13] R. Wilhelm and D. Mauer. Compiler Design. Addison-Wesley, 1995.
[14] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison, and

Marc Tommasi. Tree automata: Techniques and applications. TATA Website at http://www.grappa.univ-
lille3.fr/tata/, 2007.

[15] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
[16] Ferenc Gécseg and Magnus Steinby. Tree Languages, volume 3 of Handbook of Formal Languages,

pages 1–68. Springer, 1997.
[17] Loek Cleophas and Bruce W. Watson. Taxonomy-based software construction of SPARE Time: a case

study. IEE Proceedings Software, 152(1), February 2005.
[18] Loek Cleophas, Bruce W. Watson, Derrick G. Kourie, Andrew Boake, and Sergei Obiedkov. TABASCO:

Using concept-based taxonomies in domain engineering. South African Computer Journal, 37:30–40,
December 2006.

[19] Loek G. W. A. Cleophas. Tree Algorithms: Two Taxonomies and a Toolkit. PhD thesis, Department of
Mathematics and Computer Science, Eindhoven University of Technology, April 2008.

[20] H. Emmelmann, F.-W. Schröer, and L. Landwehr. Beg: a generator for efficient back ends. SIGPLAN
Notices, 24(7):227–237, 1989.

[21] Todd A. Proebsting. Burs automata generation. ACM Transactions on Programming Languages and
Systems, 17(3):461–486, 1995.

[22] T. Genet and V. Viet Triem Tong. Reachability analysis of term rewriting systems with timbuk. In
Proceedings of the 8th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence. Springer, 2001.

[23] Jonathan May and Kevin Knight. Tiburon: A weighted tree automata toolkit. In Proceedings of the 11th
International Conference on Implementation and Application of Automata, 2006.

[24] Nils Klarlund and Anders Møller. Mona Version 1.4 User Manual. Brics, Department of
Computer Science, University of Aarhus, January 2001. Notes Series NS-01-1. Available from
http://www.brics.dk/mona/. Revision of BRICS NS-98-3.

[25] Frank Drewes. The TREEBAG homepage. http://www.informatik.uni-bremen.de/theorie/treebag/, Ver-
sion 1.2, last update August 30 2001.

[26] Roger Strolenberg. ForestFIRE & FIREWood, A Toolkit & GUI for Tree Algorithms. Master’s thesis,
Department of Mathematics and Computer Science, Eindhoven University of Technology, June 2007.

L. Cleophas / Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms198



An XML Format Proposal for
the Description of Weighted Automata,
Transducers and Regular Expressions

Akim DEMAILLE a, Alexandre DURET-LUTZ a, Florian LESAINT a,
Sylvain LOMBARDY b, Jacques SAKAROVITCH c and Florent TERRONES a

a LRDE, EPITA, {name}@lrde.epita.fr
b IGM, Université Paris Est Marne-la-Vallée, lombardy@univ-mlv.fr

c LTCI, CNRS / ENST, sakarovitch@enst.fr

Abstract. We present an XML format that allows to describe a large class of finite
weighted automata and transducers. Our design choices stem from our policy of
making the implementation as simple as possible. This format has been tested for
the communication between the modules of our automata manipulation platform
Vaucanson, but this document is less an experiment report than a position pa-
per intended to open the discussion among the community of automata software
writers.

Keywords. XML format, finite automata, weighted automata, transducers, regular
expressions

Introduction

The aim of an interchange format for automata is to make possible, and hopefully easy,
the communication between the various programs that input or output such objects.

There exist many kinds of (finite) automata: automata on finite words or on infinite
words, automata on tuples of words (often called transducers), weighted automata where
the weights can be taken in very different semirings, timed automata, counter automata,
pushdown automata, Petri nets, etc. The scope of our proposal is restricted to weighted
automata and transducers on finite words. These automata already form a large family
and cover most of the needs in Finite State Machines that are relevant to Natural Lan-
guage Processing.

To our knowledge, there does not exist any format representing this class of au-
tomata. Many tools have devised their own format for reading and writing automata.
For instance Grail [1], FSM [2], OpenFST [3] each have their own textual representa-
tions of automata. Such representations, often integer-based, are concise and simple to
parse but they are dedicated to one program, and will hardly allow any generalization.
What if the weights of our automaton are not integers, or if we want to label the tran-
sition of an automaton with rational expressions instead of letters? Other formats, such
as GraphML [4], are more generic and allow to represent any kind of graph, but they
do not allow to represent the semantics associated to the automaton: indeed exchanging
automata requires some typing information to be conveyed along with the structure.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-199

199



Most of the design choices for our proposal for an exchange format have been shaped
by the policy of making its implementation as simple as possible. This is already true
of the option of choosing XML as the language for describing the format. Our proposal,
called FSMXML, already covers a large class of automata but should be considered as
a skeleton that can be completed to cater for other needs. We believe such a generic
interchange format, should be of interest to the community.

FSMXML has been implemented and tested within Vaucanson [5], our automata
manipulation platform, where it serves as an exchange format between components such
as the core and the command-line interface. But this document is less a report on an
experiment than a position paper intended to open the discussion.

Because of size constraints in these proceedings, we only give a brief summary of
the FSMXML format and of the choices we have taken. We refer interested readers to our
web page for more exhaustive information [6].

1. FSMXML Overview

We assume the reader familiar with the terminology of automata theory [7].

1.1. Data to Carry

The complete description of an automaton involves four different types of data: (1) the
type of the labels, which amounts to define a semiring of series, a mathematical structure;
(2) the automaton structure itself, that is a labeled graph; (3) if the automaton is to be
seen on a screen or drawn in a figure, geometric data that tell where the states are located,
and possibly the shape of the transitions, the relative location of its label; (4) finally, data
which we call drawing data and that tell how the states and transitions are actually drawn,
their size, the thickness the lines, the color, etc.

The two latter types are relevant only to applications that display the automaton in
some way: they have no influence on the structural meaning of the automaton. Their
presence is optional and we will focus on the first two items.

1.2. Automaton Description

An FSMXML description of an automaton consists in a tag <automaton/> containing
two required children:
<automaton name=’Example Automaton’ readingDir=right>

<valueType>...</valueType>
<automStruct>...</automStruct>

</automaton>

The tag <valueType/> specifies the type of the labels of the automaton, and the
tag <automStruct/> holds the description of the structure of the automaton (list of
states and transitions with their labels).

The attribute name names the automaton and the attribute readingDir tells
whether the automaton reads the word from left to right or from right to left.

A. Demaille et al. / An XML Format Proposal200



1.3. The Labels: That Is the Question

The question of labels has three levels: (1) what are the types of labels that need to be
supported? (2) how will these types be represented in the format? (3) how will the label of
a given transition in an automaton will be represented in the format? The first commands
over the two others.

b
a a

b b
(a)

a |1

a |1 a |2

(b)

Figure 1. How many automata are there?

Let us consider Figure 1. At (a), we see an automaton whose labels are letters a
and b and which clearly recognizes the set of words containing at least one b; but we
can consider that the same automaton is an automaton with multiplicity in N where the
coefficient of every transition is 1, in which case the automaton realizes the series which
associates every word with its number of occurences of b. At (b), we see an automaton
which is clearly a weighted automaton, and the weights are (positive) integers, but we do
not know without further information which is the semiring structure which is applied to
these integers: it may be the ‘classical structure’, in which case the weight of an is 2n, or
a ‘tropical structure’, and the weight of an is n if we are in 〈N,min,+〉, or 2n − 1 if we
are in 〈N,max,+〉. This example makes clear that the description of an automaton must
contain the definition of the semiring of series to which the behaviour of the automaton
belongs. The requirement of such a strong typing is what distinguishes FSMXML from
more general graph representation formats such as GraphML [4].

1.3.1. Label Types

We represent automata either over free monoids or over products of free monoids. Prod-
ucts of arbitrary number of free monoids allow to represent k-tape automata, that is,
generalization of transducers that are 2-tape automata (we thus do not use the name
‘transducer’ in the description of the format).

The generators of the free monoids are either simple letters or tuples of simple let-
ters of arbitrary dimension. The simple letters refers to simple types in programming lan-
guages such as characters (or subsets of them such as letters or digits) or even integers1.
Tuples of letters consist then in ordered sets of simple letters, not necessarily all of the
same type: for instance, pairs of letter and digit will naturally represent indexed letters.
Another very useful example: automata over free monoids whose generators are pairs
of letters are equivalent to transducers which realize length preserving relations and are
also used, modulo some technicalities, to represent synchronized transducers.

Within FSMXML, we represent weighted automata; the weights being taken either
in numerical semirings or in series semirings. By ‘numerical semirings’, we refer to
simple types of numbers, as they are implemented in any programming languages, like
integers, or reals, together with conventional operations, or ‘unconventional’ ones that
can be overloaded on the conventional ones. By ‘series semirings’, we refer to semirings

1Automata used in the study of numeration systems, for instance, make use of labels that are integers.

A. Demaille et al. / An XML Format Proposal 201



that can be recursively defined by using the already defined numerical semirings and the
(products of) free monoids. The reason for opening the possibility in FSMXML is Kleene-
Schützenberger Theorem for transducers which states that a (finite) automaton over the
product say A∗ × B∗ with multiplicity say in N is equivalent to an automaton over A∗

with multiplicity in the semiring of (rational) series over B∗ with multiplicity in N.

1.3.2. Label Type Representation

The three main features of label types that we want to represent are then: product of an
arbitrary number of free monoids, generators that are vectors of arbitrary dimension,
and recursive definition for semiring of multiplicities. These are easily and naturally
taken into account in an XML format although it may end rapidly into rather long and
apparently complicated description files.

Figure 2 shows three excerpts of FSMXML files that describe label types: the first
one for a classical Boolean automaton over a two-letter alphabet, and the two others for
the aforementioned two equivalent forms of transducers with multiplicities.

One understands that in both tags <semiring/> and <monoid/>, we use
the attribute type to control the syntax of the tag: we call such attributes pivotal.
In <semiring/>, type = numerical calls for two other attributes, set and
operation that will be given token values, that is, conventional strings that have to be
recognized and correctly interpreted by the parser. Whereas type = series calls for
another succession of <semiring/> and <monoid/> tags.

In <monoid/>, type = free calls for the attributes genKind, genDescrip
and genSort, whereas type = product calls for the attribute prodDim, an integer
stricly larger than 1 which tells how many children <monoid/> this tag <monoid/>
will have.

The attribute genKind is another pivotal attribute which controls whether the gen-
erators are simple or tuple. In the former case, genSort is a token which tells
which kind of generators are expected: letter, digit, alphanum, or integer.
The latter case is not exemplified in Figure 2 but the mecanism is of the same type as for
product of monoids, although it is not recursive.

The attribute genDescrip = enum tells that the generators of the free monoid will
be enumerated, by means of the attribute value in tags <monGen/>. The assignments
genDescrip = range and genDescrip = set are meant to give way to the de-
scription of large alphabets such as those that are used in NLP. The precise syntax and
semantic open by these tokens have still to be defined.

This constrained specification of the type of an automaton makes it easier to extend
the format to support new types without redefining the complete semantics of each new
automaton type. For instance to support automata over a log-probability semiring we
would just have to introduce some new tokens (and their semantics) for the set or
operation attributes.

1.3.3. Rational Expressions for Label Representation

It is quite a natural idea to be able to describe rational (that is, regular) expressions within
an XML format for automata. The behaviour of a finite automaton over any monoid can
be denoted by a rational expression, and most of the automata related software deal with
the conversion between automata and expressions, back and forth.

A. Demaille et al. / An XML Format Proposal202



<valueType>
<semiring type=numerical set=’B’ operation=’classical’ />
<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</valueType>

(a) Type for a Boolean automaton over {a, b}∗.

<valueType>
<semiring type=numerical set=’N’ operation=’classical’ />
<monoid type=product prodDim=’2’>

<monoid type=free genKind=simple genDescrip=’enum’
genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>
</monoid>

<monoid type=free genKind=simple genDescrip=’enum’
genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</monoid>

</valueType>

(b) Type for an automaton over {a, b}∗×{a, b}∗ with multiplicity in N

<valueType>
<semiring type=series>

<semiring type=numerical set=’N’ operation=’classical’ />
<monoid type=free genKind=simple genDescrip=’enum’

genSort=’letter’>
<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</semiring>
<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</valueType>

(c) Type for an automaton over {a, b}∗ with multiplicity in N〈〈A∗×B∗〉〉

Figure 2. FSMXML files for label types

For the large range of automata that we want to be able to describe, the need for
rational expression is even more striking. For instance, as a consequence of the Kleene-
Schützenberger Theorem we may have a transition labeled by a letter whose weight is a
regular expression.

Rational expressions are well-formed formulas, that naturally correspond to trees
and XML is perfectly fitted to describe trees. There is thus not much to say about the
translation of an expression into an XML file. Two points have to be noted though.

The expressions we are interested in denote rational series, of course the same as the
automata we are considering realize and, for the same reason, the expressions must begin
with the description of the type of the semiring of series to which the series they denote
belongs. The expressions thus share with automata the tag <valueType/> (and this is
the reason why we have called it valueType and not labelType).

As they correspond to weighted automata, our expressions are weighted expressions
and as the weights may be taken in non commutative semirings, there exist two external
multiplication operators: a left and a right one.

It is a major, as well as quite logical, feature of FSMXML that it possesses the possi-
bility of describing rational expressions. As bare letters are also rational expressions, and

A. Demaille et al. / An XML Format Proposal 203



with the idea of giving a uniform treatment to the largest class of entities, all labels (of
transitions) are represented in FSMXML using the syntax for rational expressions. As an
example, Figure 3 shows the description of a transition connecting two states s0 and s1,
and labeled by 2(a, b).
<transition source="s0" target="s1">
<label>
<leftExtMul>
<weight value="2"/>
<monElmt>
<monElmt><monGen value = "a"/></monElmt>
<monElmt><monGen value = "b"/></monElmt>

</monElmt>
</leftExtMul>

</label>
</transition>

Figure 3. A transition with input label ’a’, output label ’b’ and weight ’2’

1.3.4. Geometry and Drawing Informations

The tags <geometricData/> and <drawingData/> are optional child tags
of <automaton/> , <state/> , <transition/> , <inital/> , and
<final/> . The former contains coordinates for the automaton and the states, and ge-
ometric shapes for transitions. The latter is planned to hold information about the way
the automaton and its parts are drawn, but its content is not specified at this stage of our
proposal.

2. Design Choices

2.1. Why XML?

While parsing XML is certainly not as efficient as loading a binary file, efficiency is
not the first concern when devising a interchange format. The choice of XML simplifies
exchanges, manipulations, and future evolutions (adding new tags, attributes, or tokens to
support new automata do not invalidate existing files). Frameworks such as DOM [8] or
SAX [9] make it easier to build a parser in many languages. An XML Schema Description
(XSD) document [10] is available on our webpage [6] and many transformations can
easily be applied to XML files using languages such as XSLT [11].

2.2. Apparent Verbosity

While XML documents remain human-legible (compared to a binary file at least) this in-
terchange format is meant to be written by computers. We purposely tried to (1) unify the
representation of the various automata and (2) refrained from adding any kind of syntac-
tic sugar. In both cases, the intent is to simplify the number of cases an implementation
of the format has to deal with.

For instance from the perspective on someone actually typing in an automaton in
FSMXML, entering the transition as shown in Figure 3 is cumbersome and one could
dream about some kind of syntactic sugar like:

A. Demaille et al. / An XML Format Proposal204



<transition source="s0" target="s1" in="a" out="b" weight="2"/>.

Our point is that one never writes an XML file representing an automaton by hand
(automata are either drawn using a graphical interface, or computed) and from a imple-
mentation perspective, the two forms are as easy to input or output. Since the syntax of
Figure 3 makes it possible to represent more complex types than the above abbreviation,
we have only kept the first: this frees the implementation from having to deal with many
special cases. In other words, the verbosity is the result of a simpler grammar, chosen for
the sake of simplicity.

2.3. Computable Properties Are Not Part of the Type

Among the ‘structural’ properties of automata, we can distinguish between properties
that are static, or could be called a type property, such as the input alphabet, or the semir-
ing of weights, and properties that we could call computable such as ‘being determinis-
tic’, or ‘unambiguous’, or ‘trim’, or ‘functional’ (for a transducer).

As it stands, our proposition can specify static properties but makes no provision for
the expression of computable properties. We do agree that such kind of attributes are use-
ful (especially if the format is used for the communication between trusted components).
The floor is open for the specification of tokens that will describe these computable prop-
erties.

The reason we left these properties aside is that we did not want to organize the
format around them. For instance it sounds wrong to specify the type of an automaton
by first telling whether it is deterministic or not: this kind of property definitively is not
part of the type.

3. Conclusion

The experience gained using an XML format in Vaucanson, with the constraint of
being able to define a large variety of automata, has shaped our choices for the proposal
on the level both of design and implementation and there have been significant changes
since the format we presented at the CIAA 2005 conference [6].

Even though the class of automata initially supported by FSMXML are those targeted
by Vaucanson, this format is meant to be extended to encompass the needs of other
tools from the community. We believe that the strong typing enforced by the format will
give the many communities that use automata the necessary tools to ease such extensions.

References

[1] D. Raymond and D. Wood. Grail: Engineering automata in C++. http://www.csd.uwo.ca/
Research/grail/.

[2] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. A rational design for a weighted finite-
state transducer library. In Derick Wood and Sheng Yu, editors, Workshop on Implementing Automata,
volume 1436 of Lecture Notes in Computer Science, pages 144–158. Springer, 1997. http://www.
research.att.com/˜fsmtools/fsm/.

[3] C. Allauzen et al. Openfst: A general and efficient weighted finite-state transducer library. In Proc. of
CIAA’07, volume 4783 of LNCS, pages 11–23, 2007. http://www.openfst.org.

A. Demaille et al. / An XML Format Proposal 205



[4] U. Brandes, M. Eiglsperger, and J. Lerne. Graphml - an XML based graph interchange format. http:
//graphml.graphdrawing.org, 2002.

[5] The Vaucanson Group. Vaucanson, a generic C++ platform for computing automata and transducers
(2003–2008). http://vaucanson.lrde.epita.fr.

[6] The Vaucanson Group. Xml proposal for automaton exchanges (2004–2008). http://vaucanson.
lrde.epita.fr/XML.

[7] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 2000.

[8] W3C. Document object model 2, 2000. http://www.w3c.org/DOM.
[9] D. Megginson. Simple API for XML 2. http://www.saxproject.org, 2001.

[10] XML schema description. http://www.w3c.org/XML/Schema/, 2001.
[11] W3C. XSL transformations. http://www.w3.org/TR/xslt, 1999.

A. Demaille et al. / An XML Format Proposal206



A Simple Formalism for Capturing
Reduplication in Finite-State

Morphology1

Mans HULDEN a

and Shannon T. BISCHOFF b

a University of Arizona
b Universidad de Puerto Rico Recinto Universitario de Mayagüez

Abstract. This paper presents a simple formalism for capturing reduplication phe-
nomena in the morphology and phonology of natural languages. After a brief sur-
vey of the facts common in reduplicative elements cross-linguistically, these facts
are described in terms of finite-state systems. The principal idea is that an operator
can be derived to ensure equivalence of finite discontinuous strings at some level
of representation.

Keywords. reduplication, morphology, phonology, finite-state technology

Introduction

Reduplication phenomena are a challenge to finite-state developers of language models
for primarily two reasons. Firstly, a constraint that different parts of a string be equal
in content is, in the general case, not expressible through finite-state means, and in the
specific case, where such duplication is restricted to a finite lexicon, tends to lead to an
explosion of the number of states in a finite-state system. Second, in the restricted case,
asserting the equality of two parts in a string is not easily expressed through existing
finite-state operations.

In this paper we shall give a brief overview of the kinds of reduplication found
in natural languages, and, assuming a multi-level approach to morphological analysis
through composition, suggest a simple notation to include reduplication phenomena in
most grammars—that is, if one is willing to accept the first limitation of the growth of
the number of states in an entirely finite-state system that models reduplication.

1. Reduplication

The classical case of reduplication in morphology and phonology is the phenomenon of
complete reduplication—a perennial example is that of Bahasa Indonesia (1) or Axin-

1The authors wish to thank the organizers and participants of FSMNLP 2008, especially Mike Maxwell, for
stimulating feedback on an earlier version of this paper. This research was funded in part by a grant provided
by Universidad de Puerto Rico Recinto Universitario de Mayagüez.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-207

207



inca Campa (2), where (typically) pluralization is expressed through reduplication of a
complete word:

(1) Base Form Reduplication Gloss
buku buku-buku ‘book’ Pl.
orang orang-orang ‘man’ Pl. (people)

[1]

(2) Base Form Reduplication Gloss
kawosi kawosi-kawosi ‘bathe’

[2]

This is a very important type of reduplication, since it appears more or less in every
language [3], although not always with an explicit grammatical function as pluraliza-
tion.2

Another often occurring pattern is the phenomenon where a limited amount of ma-
terial is copied from a stem that may be longer than the reduplicant (Uw Oykangand):

(3) Base Form Reduplication Gloss
elbmben elbmbelbmben ‘red’
algal algalgal ‘straight’

[5]

A special type of this is the case where only a part is reduplicated, with intervening
material (Madurese):

(4) Base Form Reduplication Gloss
garadus dusgaradus ‘fast and sloppy’
abit bitabit ‘finally’

[6]

Also, reduplication may not always result in identical material—phonological
changes may occur that result in that two (or more) sequences are similar, yet not identi-
cal, as in this example from Javanese:

(5) Base Form Reduplication Gloss
bali bola-bali ‘return’
iba iba-ibu ‘mother’
udan udan-udEn ‘rain’

[7,8]

2English, for instance, apart from the well known shm-reduplication (as in linguistics-shminguistics), seems
to employ the device of total reduplication as a “contrastive focus” method: “I had a JOB-job once. [as op-
posed to an academic job].” Corpus studies have revealed that this occurs more often than one would ex-
pect: see [4] for examples like the one above, or the Corpus of English contrastive focus reduplications at
http://umanitoba.ca/faculties/arts/linguistics/russell/redup-corpus.html.

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication208



The more challenging patterns occur when we find dependencies that cross and pro-
duce multiple different partial copies of the base as well as certain affixes. Especially
such forms that include phonological change as in Coeur d’Alene:

(6) Base Form Reduplication Gloss
En’is E’En’En’is ‘little ones went off one by one’
caq caqcaqaqElip@p ‘he fell on his back’

[9]

2. Finite-state grammars

The prevalent mode of constructing morphological analyzers for natural languages is that
of composing a set of finite-state transducers in sequence, finally producing a transducer
that maps strings from an analysis to a surface form, and vice versa. Usually the setup is
as follows:3

Lexicon ◦ Rule1 ◦ . . . ◦ Rulen

This serial mode of creating surface strings from underlying strings lends itself to a
particular way of describing reduplication, namely, enforcing the equality of two parts of
a string at some level of representation. To return to the previous example of the habitual-
repetitive form in Javanese and the word bola-bali: it would be convenient if a grammar
on the lexical level would describe this word more or less as bali+HabRep. Then, at a
subsequent level, the tag +HabRep would be changed to -bali, giving bali-bali (let us
disregard for a moment how this could be done), and finally, vowel changes would make
the copy different from the base.

Lexicon︸ ︷︷ ︸ ◦ Rule1 ◦ . . . ◦ Rulen

bali+HabRep bola-bali

A rule for Javanese is that if the second vowel of the stem is not a, the first vowel of
the left copy changes from a to o and from o to E, and the second vowel changes to a,
i.e. something like:

define CRule a → o , o → E || .#. C* _ C* [V-a] ?* = „
[V-a] → a || .#. C* V C* _ ?* = ;

Here, C and V represent consonants and vowels, respectively.
Backing up to the operation that produces a copy of the root bali: there are meth-

ods available for performing this kind of a duplication (e.g. the compile-replace algo-
rithm in the xfst toolkit [10]). However, the apparent simplicity of reduplication is some-
what muddied by the complexity of current methods to handle the problem. Working
with a serialist description, one where regular relations are composed sequentially, our
survey shows that almost every type of reduplication could be handled if there were
some simple notational way to express a constraint about the similarity of strings at some
level of representation. In the example above, this kind of a constraint would have to be
enforced before composition with CRule.

3We assume an xfst-like notation here following [10], since that is the tool we used for our testing.

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication 209



3. Enforcing equality

We have experimented with defining an operator EQ(L, left, right) that takes three reg-
ular languages as arguments, L (the language of interest) and left and right (two ar-
bitrary delimiters), such that it filters from L the set of strings where everything delimited
by left, right is not equal. If such an operator existed, the above example of bola-bali
could be handled as follows: we could, in the lexical level, define the roots in such a
way that they are surrounded by special symbols (delimeters), which we here call < and
>. For the sake of generality, left right could be arbitrary regular languages, however,
single-symbol languages probably suffice for grammar writing. With this in mind we
return to our Javanese example bola-bali, illustrating the implementation of EQ.

Lexicon
| {z }

Rule1 Rule2 Rule3

bali+HabRep → bali<Σ∗> → <bali><Σ∗> → <bali><bali>

• Rule1: +HabRep→ <Σ∗> ({<, >} /∈ Σ)
• Rule2: surround reduplicant with <,>
• Rule3: enforce equality of all substrings that are inside <,> — EQ(<,>) applies here.

Rule4 Rule5

<bali><bali> → <bola><bali> → bola-bali

• Rule4: a→ o . . .
• Rule5: remove brackets, etc.

For the purposes of testing the notation, we have approximated EQ as follows.

1. Set n to 2.
2. Extract only the strings from L that contain exactly n pairs of left right. Then create

L1 . . . Ln from the strings between left and right. If this yields the empty language,
go to 6.

3. Intersect L1 ∩ . . . ∩ Ln, yielding L

4. Discard any resulting arcs in L that induce a cyclic path
5. Extract a word list from L, add to list W . Increase n, go to 2.
6. Create from W the language L & CO(w1) | ... | CO(wn) | ~$[L ?* R ?*

L ?* R] where CO(X) is [[~$[L|R] L X R ~$[L|R]]*]
7. create EQ(L,left,right) = L & W’

This is not meant to be an actual practical algorithm, neither efficient nor maximally general
(given finite-state limitations), but rather a first approximation to practically test the simplicity of
reduplicating grammars, given the availability of an operation EQ, or something equivalent.

Where the EQ function becomes most useful and transparent is in describing the equality of
discontinuous parts of strings, as in the Madurese plural example dusgaradus, where the final
syllable of the root garadus is prefixed. With the EQ function, one can, on the lexical level,
generate the roots, change +Pl tags into a prefixed <Σ∗> sequence, surround the final syllable of
the root with brackets < and >, and compose the relation with EQ(L,<,>), where L is the range
(lower projection) of the transducers composed so far, giving a sequence of derivations as follows:

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication210



garadus+Pl
< ... >garadus
< ... >gara<dus>
<dus>gara<dus> (EQ(L,<,>) applies here)
dusgaradus

As above, we will want to have a rule that removes our special symbols after EQ is no longer
needed.

As a another example, we also implemented the reduplication pattern of Warlpiri, of which
some examples are given here:

(7) Base Form Reduplication Gloss
pakarni pakapakarni ‘hit (?)’
wantimi wantiwantimi ‘fall’
tiirlparnkaja tiitiirlparnkaja ‘split lengthwise’
pangurnu pangupangurnu ‘dig’

[11]

The reduplication pattern works as follows: an instance of C V (C) (C) V is copied
from the stem, and prefixed. Starting with the lexical level, that contains strings such as:
Redup+pakarni, we change +Redup to a prefixed string <Σ∗>, yielding, in this example:
<Σ∗>pakarni. We then compose this level with the rule:

define MarkRedup [C V (C) (C) V] -> %< ... %> || %> _;

marking an instance of the prosodic pattern found in the root. Following this, we apply
EQ(L,<,>), and remove the bracket symbols, yielding derivations such as:

pakarni+Redup
< ... >pakarni
< ... ><paka>rni (EQ(<,>) applies here)
<paka><paka>rni
pakapakarni

For more complicated patterns, such as the crossing partial reduplications of Coeur d’Alene
in example (6), we need to resort to several different kinds of brackets, enforcing EQ on multiple
occasions. Even so, the notation is transparent and yields grammars that are quite clear, as the fol-
lowing simplified example illustrates (recall that both the base caq and the morpheme -ip are redu-
plicated). In the following the plus “+” is employed throughout for clarity to indicate a morpheme
boundary, in implementation this plus would be removed by a rule akin to the rule that removes
bracketing.

Lexicon
| {z }

Rule1

caq+Aug+Prog+ip+AfRedup → caq+<Σ∗>+[Σ∗]+ip+(Σ∗)

• Rule1: +Aug→ <Σ∗>, +Prog→ [Σ∗], +AfRedup→ (Σ∗)

Rule2

caq+<Σ∗>+[Σ∗]+ip+(Σ∗) → <c[aq>]+<Σ∗>+[Σ∗]+(ip)+(Σ∗)

• Rule2: surround reduplicants with <,>, [,], (,)

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication 211



Rule

As can be seen, the use of bracketing makes the process not only rather transparent, but also
rather simple even in a rather complex example such as caqcaqaqip@p with multiple reduplica-
tive forms and phonological change.

The examples thus far illustrate rather nicely how our proposed formalism can be applied to
facts of reduplication within finite-state methods. There is however a curious type of reduplication
found in Bambara that would pose challenges to finite-state methods, and thus our formalism. In
Bambara the compounding of nouns, in theory, can be infinite. Further, once compounded, these
noun forms can be reduplicated as in the following example taken from [8]. First we present the
nouns and their glosses, the compound and its gloss, next we show the compound reduplicated.
It should be noted that an o appears between the base and the reduplicant once reduplication has
occurred.

(8) Base Form Gloss
malo rice
nyinina searcher
filèla watcher

Compound Form Gloss
malo-nyinina-filèla rice-searcher-watcher

Reduplication Gloss
malo-nyinina-filèla o malo-nyinina-filèla whichever rice-searcher-watcher

[8]

It can easily be imagined how the above example could be captured in the proposed formal-
ism.

Lexicon
| {z }

◦ Rule1 ◦ . . . ◦ Rulen

malo-nyinina-filèla+Redup malo-nyinina-filèla o malo-
nyinina-filèla

3

<c[aq>]+<Σ∗>+[Σ∗]+(ip)+(Σ∗) → <c[aq>]+<c[aq>+[Σ∗]+(ip)+(Σ∗)

Rule4

<c[aq>]+<c[aq>+[Σ∗]+(ip)+(Σ∗) → <c[aq>]+<c[aq>+[aq>]+(ip)+(Σ∗)

Rule5

<c[aq>]+<c[aq>+[aq>]+(ip)+(Σ∗) → <c[aq>]+<c[aq>+[aq>]+(ip)+(ip)

• Rule3, Rule4, Rule5: enforce equality of all substrings that are inside brackets — EQ
applies here (elements of brackets will be reduplicated as well, but will be removed later).

Rule6

<c[aq>]+<c[aq>+[aq>]+(ip)+(ip) → <c[aq>]+<c[aq>+[aq>]+(ip)+(@p)

• Rule6: i→ @ . . .

Rule7

<c[aq>]+<c[aq>+[aq>]+(ip)+(@p) → caqcaqaqip@p

• Rule7: remove brackets, etc.

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication212



Naturally, the +Redup would be changed at some level to o <Σ∗>. Of course, the infinite
recursion of the noun elements in the base form would make this impossible using finite-state
technology alone. However, other computational means could be employed to tackle this particular,
and extremely rare, form of reduplication. Thus, exceptions such as this do not affect the motivation
for the proposed formalism.

For clarity we offer one final example of how the proposed formalism might be implemented
when phonological change is involved. In Malay, nasalization of vowels and bilabial glides is
triggered in the base form by reduplication. The following examples illustrate the phenomenon.4

(9) Base Form Reduplication
ham@̃ ‘germ’ hãm@̃-hãm@̃ ‘germs’
waÑI ‘fragrant’ w̃ãNĨ-w̃ãNĨ (intensified)
aNãn ‘reverie ãNãn-ãNãn ‘ambition’
aNẽn ‘wind’ ãNẽn-ãNẽn ‘unconfirmed news’

[12]

Taking waÑI as our example we can see how the delimiters used to ensure equality, in this
case the brackets < and >, can be used to ensure the relevant phonological change via a series of
simple re-write rules before EQ is applied. To begin, we want to define all the elements that are
nasalized and thus trigger nasalization in reduplication (here we simply use those from our limitted
data set for explication).

define N [ã | @̃ | w̃ | Ĩ | ẽ ] ;

Next, we implement the grammar as we have done above. However we make three changes:
we place the rule for bracketing the base before the phonological rules relevant to nasalization.
Then we add the rule for changing the relevant morpheme to <Σ∗>. Next we add the rule that
implements EQ.

Lexicon
| {z }

Rule1

waÑI+Redup → <waÑI>+Redup

• Rule1: surround reduplicant with <,> — Note this is different from above.

Rule2

<waÑI>+Redup → <w̃ãÑI>+Redup

• Rule2: a → ã || < ?* N ?* _ , _ ?* N ?* > „ w → w̃ || < ?* N ?*
_ , _ ?* N ?* >...
(Changes relevant elements in brackets to nasalized forms.)

Rule3

<w̃ãÑI>+Redup → <w̃ãÑI>+<Σ∗>

• Rule3: Redup→ <Σ∗>

Rule4

<w̃ãÑI>+<Σ∗> → <w̃ãÑI>+<w̃ãÑI>

• Rule4: enforce equality of all substrings that are inside <,> — EQ(L,<,>) applies here.

4Thanks to Mike Maxwell for bringing this example to our attention.

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication 213



Rule5

<w̃ãÑI>+<w̃aÑI> → w̃ãÑIw̃aÑI

• Rule5: remove brackets, etc.

Once again, in this way we arrive at the relevant reduplicated form.

4. Conclusion

There are many advanced methods available for building finite-state networks that encode lan-
guages that feature non-concatenative phenomena, including reduplication: e.g. the compile-
replace technique [13], adding extra memory to the parsing algorithm [14], or other techniques
where reduplication is semantically encoded into the automata [15]. However, for most such
phenomena—including perhaps even simple vowel-lengthening—a very compact notation would
allow the developer to, at some level of representation, assert that discontinuous parts of a string
are equal. Such a function can either be compiled directly into automata, assuming the reduplicants
are finite, or, if one is concerned about the size of the transducers, used as the basis for a run-time
constraint where the transducer is split into two parts: pre-equality, and post-equality, and equality
enforcement happens on the fly as the two are “virtually composed.”

References

[1] R.R. Macdonald and S. Darjowwidjojo. A Student’s Reference Grammar of Modern Formal Indonesian.
Georgetown University Press, Washington, DC, 1967.

[2] D.L. Payne. The phonoogy and morphology of Axininca Campa. University of Texas at Arlington,
Arlington, TX, 1981.

[3] E. Moravcsik. Reduplicative constructions. In J. Greenberg, editor, Universals of Human Language,
volume 3, pages 297–334. Stanford University Press, Stanford, CA, 1978.

[4] J. Ghomeshi, R. Jackendoff, N. Rosen, and K. Russell. Contrastive focus reduplication in English (the
Salad-Salad paper). Natural Language & Linguistic Theory, 22(2):307–357, 2004.

[5] B.A. Sommer. The shape of Kunjen syllables. In D.L. Goyvaerts, editor, Phonology in the 1980s.
Story-Scientia, Ghent, 1981.

[6] A. Stevens. Madurese phonology and morphology. American Oriental Society, New Haven, CT, 1968.
[7] P. Kiparsky. The phonology of reduplication. manuscript, Stanford University, 1987.
[8] R. Sproat. Computational Morphology. MIT Press, Cambridge, MA, 1992.
[9] G. Reichard. Coeur d’Alene. In F. Boas, editor, Handbook of American Indian Languages, volume 3,

pages 515–707. J. J. Augustin, New York, 1938.
[10] K. Beesley and L. Karttunen. Finite-State Morphology. CSLI, Stanford, 2003.
[11] D.G. Nash. Topics in Warlpiri Grammar. PhD thesis, MIT, 1980.
[12] R. Kager. Optimality Theory. Cambridge University Press, Cambridge, 1999.
[13] K. Beesley and L. Karttunen. Finite-state non-concatenative morphotactics. In Proceedings of the 38th

Annual Meeting of Association for Computational Linguistics, pages 191–198, 2000.
[14] Y. Cohen-Sygal and S. Winter. Finite-state registered automata for non-concatenative morphology.

Computational Linguistics, 32(1):49–82, 2006.
[15] M. Walther. Finite-state reduplication in one-level prosodic morphology. In Proceedings of the first

conference on North American chapter of the Association for Computational Linguistics, pages 296–
302, 2000.

M. Hulden and S.T. Bischoff / A Simple Formalism for Capturing Reduplication214



Applying Finite State Morphology to

Conversion Between Roman and

Perso-Arabic Writing Systems

Jalal MALEKI 1, Maziar YAESOUBI and Lars AHRENBERG

Department of Computer and Information Science,
Linköping University, SE-581 83 Linköping, Sweden

jma@ida.liu.se, maziar.yaesoubi@gmail.com, lah@ida.liu.se

Abstract. This paper presents a method for converting back and forth between

the Perso-Arabic and a romanized writing system for Persian. Given a word in one

writing system, we use finite state transducers to generate morphological analysis

for the word that is subsequently used to regenerate the orthography of the word in

the other writing system. The system has been implemented in XFST and LEXC.

Keywords. Transliteration, Finite State Transducers, Perso-Arabic Script, Romanization

Introduction

We present a method for converting between two scripts for Persian: the traditional

Perso-Arabic writing system [1][2] and a romanized script called Dabire [3]. The con-

version system, which is being developed using Xerox LEXC and XFST tools [4], uses

finite state transducers for modeling analysis and generation of word forms, phonologi-

cal alternations and orthographical conventions. Although our implementation is specific

to Persian spoken in Iran, the orthographical conversion model is general and can be

applied to any language with multiple scripts.

The essence of our approach is as follows. Let M1 and M2 denote morphological

analysis transducers for two possible scripts of a language and let L denote a transducer

that implements a stem lexicon mapping stems from one script to the other. Ideally, we

can construct a script conversion transducer by composing these transducers as thus:

M i
1 ⊗L⊗M2. Here M i

1 denotes the inverse of M1 and ⊗ is the operation for transducer

composition.

Persian (an Indo-European language) is mainly written in variations of the Perso-

Arabic script (PA-Script) [2][5]. The Latin script was officially used in Tajikistan in the

early days of the Soviet republic but was quickly abandoned in favor of the Cyrillic script

[6]. Nowadays, however, the Latin script is used extensively in text-based mobile and

electronic communication among Persian speakers.

1We would like to thank Prof. Klaus Lagally and Mr. Ola Leifler for their generous help in resolving some

of the typesetting issues of this paper.

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-58603-975-2-215

215



Table 1. Mapping /e/ to PA-Script Graphemes. ������� is the transcription of the Hawaiian word ’Opae (shrimp).

Word Segment Segment Segment Isolated

/e/ Initial Initial Medial Final

V, VC, VCC � �� �� ��� ���
	
����� � ����� ������� ������� ����� ������ ��

CVC, CVCC ��� ��� �������� ��
!
� "#$� �� �%� &

CV ��� ��� � '
"#�� �� �( %�� "�$� �� � �� ���� '%$ "�� 

!
�

The extensive amount of information published on the Internet in PA-Script and

varieties of proposed Latin-based scripts motivates our work in bridging the gap by trying

to understand the relationship between these scripts and also automatically converting

between them. Our aim is to create a platform for applications such as multi-script chat,

search, data mining, and indexing for libraries.

1. Persian Script Conversion Challenges

In this section we will present a brief description of the PA-Script and list a number

of challenging problems in using morphological anlysis for script conversion. We are

interested in converting between two different writing systems for Persian. First, the

traditional PA-Script used in Iran, which is an extension of the Arabic script and includes

some Persian-specific graphemes as well as some minor revisions to the orthographic

rules of the Arabic script. The second writing system we use in our implementation is

a Latin-based phonemic transcription called Dabire that is described in [3]. Since the

correspondence between Persian phonemes and graphemes of Dabire is straightforward

and the conventions of the script are similar to other Latin-based scripts, we will not

discuss it in any detail. We will, however, give a short description of the traditional PA-

Script below and when necessary mention specifics of Dabire.

PA-Script is a semi-cursive writing system in which words are written from right

to left by joining the appropriate graphemes. The typed variations of the writing system

simulate the hand-written semi-cursive style and inherit its properties. The correspon-

dence between consonants and graphemes representing them is relatively straightfor-

ward, whereas vowel representation is more complicated. Table-1 shows how the short

vowel /e/, for example, may be represented in various contexts. The diacritics ���, � ��, � )�
can be used to indicate the presence of a short vowel (e, a, o respectively), *+ is used to

indicate absence of a vowel and �,� is used to indicate gemination. However, these diacrit-

ics are usually not used unless there is a pedagogical reason for including them. Here is

an expression with three words: ���- .� /�� 0�� (a red apple) which in the fully vocalized

version would be written as
*��� *�-� .��

*/���
*
0��� (yek sib e qermez).

An alphabetic word is written as a sequence of one or more segments written from

right to left. Segments are separated by a zero-width space. In this paper, we use the word

J. Maleki et al. / Applying Finite State Morphology216



segment to refer to a sequence of conjoined graphemes. A segment is a orthographical

notion and does not necessarily coincide with a phonological or morphological unit.

The cursive nature of the writing system necessitates multiple allographs for a

grapheme. An allograph is essentially the adaptation of a grapheme so that it can prop-

erly join its neighboring allographs. There are four different positions in which a cur-

sive allograph can appear: Segment-Initial, Segment-Medial, Segment-Final and Isolated.

Some graphemes fully-cursive and have four allographs, one for each position. Others

only join their predecessor graphemes and do not join their successors and this essen-

tially means that the grapheme either appears on its own or it ends a segment - we call

these semi-cursive allographs. The graphemes �, 1,
�1, �, ��, "� and � are semi-cursive and

never join the following grapheme and therefore terminate the segment in which they

appear.

The rest of this section discusses some of the problematic issues related to conver-

sion of scripts.

1.1. Analysis Problems: PA-Script

One major problem in the analysis process of real world texts is related to tokeniza-

tion. Megerdoomian [7] gives a fair account of tokenization problems in processing Per-

sian text and suggests some remedies. An important cause of tokenization problems is

that word boundaries are not always marked correctly. Words ending in semi-cursive

graphemes are not delimited properly, for example, the sentence ” �. �-� � 1& �� ��2”
(Did the work and left) may be written as ” �. �-��1& ����2” without any spaces between

the five words constituting it. The reason for the latter being readable at all is that all

words end with semi-cursive graphemes that do not join to their successors. This is usu-

ally not a problem for the human eye familiar with the script, but to an automatic to-

kenizer the latter form would appear as a single token. Another example is when con-

stituents of a complex token are separated with a normal space rather than with the zero-

width non-joining space (ZWNJ) [8] which is the correct delimiter for separating ortho-

graphical segments. For example, � �� ���� (butterfly) and ��� (like) can be joined to form

the compound word ��� � �� ���� (like a butterfly) where the two words are correctly sepa-

rated using a ZWNJ character. However, a less carefully typed version (��� � �� ����) may

use space rather than a ZWNJ as delimiter creating two separate tokens.

Another issue in analysis is that Persian verbs have two stems: present stem and past
stem. The present stem can in principle be derived from the past stem, see [9] for an im-

plementation of this derivation process. However, since the number of verbs is limited,

one can represent the present and the past stems separately as in [7]. Yet another compli-

J. Maleki et al. / Applying Finite State Morphology 217



cation in the analysis process is the existence of the so called long-distance dependencies

in verbs [7].

1.2. Generation Problems: PA-Script

Given the morphological information about a word (a stem and a set of feature tags),

some of the main problems in generating a PA-Script word involve vowel representa-

tion, representation of phonological alternations and also generation of ZWNJ space in

compound words.

PA-Script has a relatively ad hoc set of conventions for writing compound words

which allows a large number of exceptions. These are listed in a recent publication by

the Persian Academy [1]. Some authors dispute the adequacy and the accuracy of these

conventions [10]. However, the general principle is to write compounds in a semi-open

format2 to make sure that the graphic identities of the sub-words of a compound are

preserved as much as possible in order to minimize ambiguities. In computer-based texts,

a ZWNJ-space is used to separate the constituents of a compound in order to override

the cursive nature of the orthography. In contrast to PA-Script, Dabire has a simple set

of conventions [3] for writing compounds that clearly indicate when words should be

written in open or closed format. In short, just like some European languages such as

Swedish, the default format for writing compound words in Dabire is the closed format,

whereas, the preferred format in PA-Script is the semi-open format.

In PA-Script, some graphemes have multiple roles, for example, ' (with the allo-

graphs � 34 3� and ') is used for denoting /h/ as well as word final /a/ and /e/. Here are

some examples:

[ kuh, '�&, kwh, kuh, mountain]

[ kuce, �(� �&, kwch, kutSE, alley]

[ na, � ��, nh, næ, no]

When such a word forms the non-final sub-word of a compound token, the ' being

fully-cursive can join the initial grapheme of the next sub-word and its shape will change

from the segment-final or isolated form ( ' 3 �) to the segment-initial or segment-medial (

4 3�). Since ' represents a vowel only if it occurs in the segment-final or isolated form,

changes in its shape may create ambiguities for the reader. It is therefore fine to write the

plural of '�& (kuh) as � 4 ��& (kuhhâ) but it is not good practice to write the plural of

�(� �& (kuce) as �44(� �& (kucehâ). It should be written as �� �(� �&. Similarly, 5� �(� �& (an

alley) is clearly a better choice compared to 5�4(� �&.

2We call this format semi-open to distinguish it from the open format in English that uses space to separate

parts of the compound [11].

J. Maleki et al. / Applying Finite State Morphology218



��������������

Remove TagsTT

PA-Script MorphPP

Alternation Rules

stem conversion

nemiborid

bar+2Pl+PresInd+Neg2P����+2Pl+PresInd+Negeg

Remove TagsTT

Dabire Morph

Alternation Rules

......

bor+2Pl+PresInd+Negr+

nemibarid

M1 M2

L

Figure 1. The composition of transducers that use finite state morphological analysis and a stem transcription

lexicon to transcribe words of Dabire to PA-Script and vice versa.

2. The Implementation

Our system is implemented using Xerox LEXC and XFST [4] and currently consists of:

a LEXC-module for specifying morphology for Dabire, a similar LEXC-module for PA-

Script,3 a syllabification method implemented in XFST (see [12]), a simple transducer

that implements a lexicon for stems in Dabire and PA-Script and finally the main XFST-

module that integrates the whole system and contains miscellaneous transducers such as

alternation rules and ZWNJ-space insertion rules.

Although finite state transducers are bidirectional, we have designed our transducers

as generators, that is, we define how words can be constructed by systematically attach-

ing morphological features to word stems. The complete finite state transducer for con-

verting from Dabire to PA-Script is defined as a multi-level composition of transducers

as shown in Figure-1. The left part of the figure implements the PA-Script morphology

transducer (M1), and the right part the Dabire morphology transducer (M2). The box at

the bottom of the diagram is a simple transducer (L) that maps between stem transcrip-

tions.

As we mentioned in the introduction, an orthographical conversion system can be

subsequently defined as the composition of these transducers as follows: M i
2 ⊗L⊗M1.

Here M i
2 denotes the inverse of M2 and ⊗ denotes transducer composition operation

(.o. in XFST).

The following example trace shows how the verb %���� 67 �8 (take+2Pl+PresInd+Neg)

3The LEXC-modules for the two scripts are very similar and it is possible to generate one from the other

using the lexicon transducer, but we have not exploited this possibility yet.

J. Maleki et al. / Applying Finite State Morphology 219



is analyzed to the present stem �� of the verb �91�� (to take). In the trace, %���� 67 �8 and ��
are shown as ”nmybryd” and ”br” respectively. The steps in the trace, numbered as M1*
and M2*, illustrate various stages in the analysis process in M1 and M2 transducers.

M11. br+2Pl+PresInd+Neg

M12. br+2Pl+PresIndˆDur+Neg

M13. [br]+2Pl+PresIndˆDur+Neg

M14. nmy[br]+2Pl+PresIndˆDur+Neg

M15. nmy[br]yd+PresIndˆDur+Neg

M16. nmybryd

Dabire-morpology produces similar trace,

M21. bar+2Pl+PresInd+Neg

M22. bar+2Pl+PresIndˆDur+Neg

M23. [bar]+2Pl+PresIndˆDur+Neg

M24. nemi[bar]+2Pl+PresIndˆDur+Neg

M25. nemi[bar]id+PresIndˆDur+Neg

M26. nemibarid

It is clear from these examples that inverting either M1 or M2 together with a trans-

ducer for stem conversion (stem dictionary) enables us to construct a FST for converting

from one writing system to another.

Finally, the implementation constitutes a relatively large number of transducers that

implement the rules and conventions of the writing system. For example, the rule i ->

[a y] || .#. would replace word-initial occurrences of i with a y which at a

later stage is transliterated to 5� (see Table-1). This particular rule covers one instance

of the orthography of i which occurs in syllables of the form V, VC, VCC and would be

written independent of other segments (for example, in 5� � ��� �:��2 (a factory)).

Finally, as an example illustrating peculiarities of Persian orthography in our XFST

implementation we include part of the rules for inserting zero-width spaces in the context

of compound words in PA-Script. In the following rules, ZWNJ is shown as +Z:

define paZWNJ [

[..] -> %+Z ||

%+Pre [[? - CmpndTag ]* - [ b h | b y | h m ]]

_ [CmpndTag - %+Pre]

.o.

[..] -> %+Z || %+Num [? - CmpndTag]* _ [CmpndTag]

.o.

J. Maleki et al. / Applying Finite State Morphology220



[..] -> %+Z || b _ CmpndTag b

...]

The first rule states the convention that PA-Script prefixes other than � �� , ;<� and

=� (shown as bh, by and hm in the rule) should not join the rest of the word [1]. The

second part implements another orthographic convention of PA-Script that suggests that

numbers initiating a compound word, should be separated from the rest of the word using

a ZWNJ-space, for example,

[ panjzel’i, 6>? �@AB� ����, pnj-z̧l↪y, pændZzElPI, pentagon]

is a compound built using [ panj, B� ����, pnj, pændZ, five] and [ zel’i, 6>? �@, z̧l↪y, zElPI,

sided].

Finally, the third rule which is the first instance of a series of replace rules (one

for each consonant) indicates that if one constituent of a compound ends with the same

grapheme that initiates the following sub-word, then the graphemes should be separated

by a zero-width space. For example, 0�� �� (good) which ends with a ”k” and ��1& (deed)

which starts with a ”k” can join to form a compound that can either be written as

��1$$�� �� or ��1&A0�� ��. However, the latter is preferred since it discourages the reader

from inserting a vowel after the first word. Essentially, this sort of complications is the

price the PA-Script has to pay for continuing to avoid short vowel representation.

3. Evaluation

Our system has not been evaluated in a real setting mainly because the stem lexicon is

small (500 words), the morphological rule-base does not cover all paradigms and some

of the necessary orthographical conventions are not represented. In particular, the rule-

base for handling affixes, adverbs and complex verbs is yet to be completed. However,

the results of the following evaluation are encouraging.

In a limited evaluation experiment, we randomly selected 448 words from Tehran

University Bijankhan Corpus [13] (which uses PA-Script), added all necessary stems to

the stem lexicon and tested the system in the conversion direction from PA-Script to

Dabire.

The transcriptions produced by the system were divided into three groups: correct,
failure and partially-correct. An answer was classified as correct when the list of the

generated transcriptions for the input word only included correct answers. For example,

1�� �� has a number of alternative analyses and can, therefore, be correctly romanized as

J. Maleki et al. / Applying Finite State Morphology 221



nabard (fight+Noun+Sg), nabord (take+Past+3Sg), nabarad (take+Pres+3Sg) or nabo-
rad (cut+Pres+3Sg). An answer was classified as partially-correct if it contained at least

one orthographically inaccurate transcription or a non-word (over-generation). Finally, in

those cases where no transcriptions were produced, the answer was classified as failure.

The system produced 88% correct transcriptions (394 cases), failed in 4% of the

cases (17 words) and generated partially-correct answers for the remaining 8% (37

words). Every partially-correct answer contained at least one correct transcription and the

total number of generated transcriptions for the 37 words amounted to 162 of which 54%

(88 transcriptions) were correct and 46% (74) were either non-words or orthographically

inaccurate.

Failures were either due to the incompleteness of the morphological rules or exis-

tence of morphologically rare compound words - that is words whose formations do not

follow general morphological rules.

4. Conclusion

In this paper, we have briefly described a general approach to the problem of automatic

conversion between two alternative scripts of a language. The main idea presented here

is to generate morphological analysis for a word written in one writing system and then

use the analysis to produce the orthography for the word in the other writing system. The

case of romanized and Perso-Arabic writing systems for Persian is specially interesting

since the writing systems are very different and enjoy different writing conventions.

The core of our implementation consists of finite state transducers for represent-

ing morphological analysis and production, phonological alternations and orthographical

conventions of the scripts. The system is implemented using Xerox LEXC and XFST

tools [4] [14].

Although FSM-technology has been extensively used in many applications, our use

of the technology for automatic transcription between multiple scripts for Persian is

unique. Related work includes [15] and [16] that apply XFST-technology to Arabic tran-

scription and transliteration. [7] applies XFST to morphological analysis of Persian and

[17] successfully uses the technology for constructing a pronunciation dictionary for

Turkish. Unfortunately, we have not been able to build on earlier systems for Persian

since their software is proprietary.

Our future work involves extending the system to cover all morphological paradigms

and a large stem lexicon. Furthermore, we intend to extend the system so that it can con-

vert words that are not represented in the lexicon. In our earlier work [12] we have used a

syllabification-based approach for converting correct Dabire-words that lack lexical rep-

resentation. We are also working on a system that uses HMM-techniques similar to [18]

for transcription of PA-Script words which lack lexical representation.

References

[1] Dastur e Khatt e Farsi (Persian Orthography). Tehran, 2003.

[2] S. Neysari. A Study on Persian Orthography - (in Persian). Sâzmân e Câp o Entešârât, 1996.

[3] J. Maleki. A Romanized Transcription for Persian. In Proceedings of Natural Language Processing
Track (INFOS2008), Cairo, 2008.

J. Maleki et al. / Applying Finite State Morphology222



[4] K.R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications, 2003.

[5] M.S. Adib-Soltâni. An Introduction to Persian Orthography - (in Persian). Amir Kabir Publishing

House, Tehrân, 2000.

[6] J.P. Perry. A Tajik Persian Reference Grammar. In Handbook of Oriental Studies. Brill, Leiden, 2005.

[7] K. Megerdoomian. Finite-State Morphological Analysis of Persian. In A. Farghaly and K. Megerdoo-

mian, editors, Proceedings of the Workshop on Computational Approaches to Arabic Script-based Lan-
guages, pages 35–41, 2004.

[8] B. Esfahbod. Persian Computing with Unicode. In 25th Internationalization and Unicode Conference,

Washington, DC, 2004.

[9] R. Ziai. Finite State Methods Applied to Verbal Inflection in Persian. Master’s thesis, Eberhard-Karls

Universitet, Tübingen, 2006.

[10] R.R.Z. Malek. Qavâed e Emlâ ye Fârsi. Golâb, 2001.

[11] R.M. Ritter. The Oxford Guide to Style. Oxford University Press, 2002.

[12] J. Maleki and L. Ahrenberg. Converting Romanized Persian to Arabic Writing System. In Proceedings
of the LREC2008, Marrakech, 2008.

[13] M. Bijankhan. Bijankhan Corpus. Tehran University, http://ece.ut.ac.ir/dbrg/
bijankhan/, 2008.

[14] R.M. Kaplan and M. Kay. Regular models of phonological rules systems. Computational Linguistics,

20(3):331–378, 1994.

[15] K.R. Beesley. Romanization, transcription and transliteration. Xerox. http://www.xrce.xerox.
com/competencies/content-analysis/arabic/info/romanization.html, 1996.

[16] K.R. Beesley. Arabic finite-state morphological analysis and generation. In Proceedngs of COLING’96,

Copenhagen, 1996.

[17] K. Oflazer and S. Inkelas. The architecture and the implementation of a finite state pronunciation lexicon

for Turkish. Computer Speech and Language, 20:80–106, 2006.

[18] Y. Gal. An HMM approach to vowel restoration in Arabic and Hebrew. In Proceedings of the ACL-02
workshop on computational approaches to semitic languages, pages 1–7, 2002.

J. Maleki et al. / Applying Finite State Morphology 223



Morphisto -
An Open Source Morphological Analyzer

for German

ANDREA ZIELINSKI a, CHRISTIAN SIMON a

a Institute for German Language,
R 5, 6 - 13, 68161 Mannheim, Germany

E-mail: {zielinski, simon}@ids-mannheim.de

Abstract. This paper presents the development of an open-source morphology tool
for German integrated into a grid-based environment. Departing from the SFST-
based SMOR tools (Schmid et al. [1]), we have implemented a minimal lexicon
component that works in tandem with the morphological tool. Tests on a list of
30,000 high-frequency German words show that the recognition rate is comparable
to other systems with even larger lexicons. Additional tools for the management
of lexical data and services built on top of the finite-state transducer are also inte-
grated as web services in the grid, so that all resources can be shared easily among
lexicographers, linguists, and finite-state developers.

Keywords. Computational German Morphology, Finite-State Transducer, Grid,
SFST

Introduction

As part of the TextGrid project [2], we have developed an open-source morphological
tool for the German language. Although numerous resources exist (i.e., WMTrans, GerT-
WOL, INXIGHT, Morphix, TAGH, etc.), no out-of-the-box broad coverage morphology
system is freely available at present. This is especially true for the lexicon, which is an
essential component of any morphology system for sophisticated real-life applications.
As is well known, finite-state transducers are the first choice in computational morphol-
ogy, because they are declarative, can be used bidirectionally for analysis and generation,
and are efficient in time and space. Thus, we based our work on the finite-state toolkit
SFST (Schmid [3]) that comes with the morphological grammar SMOR (Schmid [1])
and a small lexicon with approximately 1,000 example entries. As a consequence, we
adopted the underlying model-theoretic assumptions in SMOR and encoded the required
lexical information according to that framework. Our aim was to cover the 30,000 most
frequent words in the German language: The DeReWo list1 of lemmas compiled from
the DeReKo corpus2 provided by the IDS Mannheim has been chosen as the training set.

1http://www.ids-mannheim.de/kl/derewo/ DeReWo List and User Documentation (C) IDS,
Mannheim, 2007

2http://www.ids-mannheim.de/kl/projekte/korpora/

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)

IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-975-2-224

224



As the project focuses on supporting linguists and philologists working on historical lan-
guage resources, we plan to extend the morphological analyzer so that it covers other
diachronic stages of German as well. At present, we are concentrating on contemporary
German and the early stages of New High German (NHD).

1. Starting Point: SMOR & SFST

The basis of Morphisto is the open-source SFST-based SMOR morphology developed at
the IMS Stuttgart (Schmid et al. [1]). SFST is a meta-language for finite-state transducers
with an efficient compiler that has been specially designed for computational morphol-
ogy (Schmid [3]).
The SMOR morphology builds on previous work done in DMOR (Schiller [4]) and DeKo
(Heid et al. [5]) and provides an elaborate set of rules for German inflection, compound-
ing, and derivation. Its implementation is in the spirit of Karttunen & Beesley ([6]): Mor-
phological alternations are handled by a cascade of (conditional) replacement rules, in-
flectional paradigms and graduation of adjectives are defined via a set of continuation
classes, restrictions on rules are given by means of filter rules, and simplex units are
concatenated to form more complex units.

2. Bootstrapping a Morphological Analyzer

As can be expected, the coverage of SMOR with the distributed 1,000-entry lexicon is
small. Therefore, we performed two steps to increase it:

a. Addition of new (mostly) simplex entries and affixes
b. Addition or modification of morphotactic rules and filters

In fact, (a) and (b) are interdependent. For instance, compositional and derivational stems
can be either generated automatically from base stems by specific rules, or they can be
defined separately in the lexicon.
Our main goal, thus, is the (semi)automatic construction of a large computational lexicon
for SMOR that can be freely distributed and that covers a large part of standard Modern
German. The points we want to address are the following:

1 How do we obtain the inflectional and derivational information for SMOR from
a machine readable dictionary (MRD) automatically?

2 How do we manage the lexical data and make it reusable for other researchers or
developers of NLP software?

3 What effort in a cycle of testing and reengineering is needed to define a finite-
state analyzer for the basic vocabulary of standard German?

4 How good is the tool in terms of efficiency, accuracy, robustness, and coverage?

2.1. Extracting Morphological Information from an MRD

The Adelung lexicon from 1793 is an early NHD dictionary covering more than
65,000 entries. We used the free edition published by the “Digitale Bibliothek”3 for a

3Adelung - Grammatisch-kritisches Wörterbuch der Hochdeutschen Mundart, available from
http://www.zeno.org/Adelung-1793.

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German 225



(semi)automatic extraction of morphological information. Despite some inconsistencies
and errors we found, most of the desired entries could be parsed and transformed au-
tomatically. We used the dictionary in particular for the extraction of inflectional and
derivational information (headword/lemma, gender, inflection paradigm, derivational
variants). We defined about 50 rules that map common patterns used by the lexicogra-
pher to the corresponding SMOR inflection tag (Schiller et al., [7]). For instance, the
pattern Das Futter, des -s, plur ut nom. sing. (lining, food) is mapped to the SMOR tag
NNeut_s_0.
Below you can find an excerpt from Adelung (1793):

1. Das Futter, des -s, plur. ut nom. sing. die Bekleidung eines Körpers von außen oder
von innen; [..]

2. Das Futter, des -s, plur. ut nom. sing. 1) Alles, was Menschen und Thieren zur
Nahrung dienet; ohne Plural [..]

Figure 1. Excerpt from Adelung (1793) for the German homonym Futter(lining, food)

German umlaut variants and diminutive forms are explicitly encoded in Adelung and
could be mapped automatically to SMOR inflection classes. In the case of homonyms,
(cf. the entry for Futter above), two or more entries have been collapsed into one single
class. As an initial result, we obtained a lexicon with 32,700 entries for inflecting words
fully automatically (see Table 1).

The Adelung lexicon was used as a starting point for our NHD computational lexi-
con. For a successful mapping we defined some rules to accommodate for the diachronic
changes of some lemmas [th → t (e.g., thun), ey → ei (e.g., seyn), c → k (cabeljau)]
and normalized the special character encoding (e.g., Fūßtrabánt → Fußtrabant). Some
words have changed their inflection pattern in the course of time. These cases, as far as
they are documented in the literature, have been corrected manually.

Finally, we compiled our Adelung transducer, comprising SMOR and the new lexi-
con. We invested only minimal manual effort in building the lexicon, basically for creat-
ing further lexicon entries for non-inflecting word classes.

2.2. Managing the Lexical Data and Making It Reusable

As it is difficult for developers to add, modify, remove, and convert lexical data within the
originial SMOR lexicon format, we defined an exchange format that is independent of
the specific finite-state platform. We then implemented a database with an enhanced user
interface that is more convenient for lexicographic work than a simple text editor. Thus,
we set up a database table in PostgreSQL for nouns, verbs, and adjectives which con-
tain all information necessary for creating an SMOR-based finite-state automaton plus
additional lexicographic information (columns for simplex, source, frequency, editor).
Only recently, we added a fifth lexicographic field stating the "gold standard analysis" for
each word. This enables us to produce the correct analysis for ambiguous segmentations
which our transducer was not able to handle correctly before.

The database helped us greatly to ensure consistency among entries which otherwise
might have caused the transducer to interrupt. We also designed a Relax NG Schema for
an XML-based version of our lexicon. The data from the database is converted to XML,

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German226



<smor> <BaseStem>
<Lemma>Atlas</Lemma> <Stem>Atlanten</Stem>
<Pos>NN</Pos> <Origin>nativ</Origin>
<InfClass>NMasc/Pl</InfClass> <Frequency>676</Frequency>

</BaseStem> </smor>

=> <Base_Stems>Atlas:n<>:t<>:e<>:n<NN><base><nativ><NMasc/Pl>

Figure 2. Entry for the plural form of Atlas (atlas) in XML and SMOR lexicon format

joined with the XML-based data, validated against the Relax NG scheme, and finally
transformed into the SMOR lexicon format with an XSLT stylesheet (see Fig. 2).

2.3. Cycle of Testing and Reengineering

For our training set we used the DeReWo list of the 30,000 most frequent German words.
We analyzed the DeReWo list with the Adelung transducer and received an analysis for
more than 27,000 words. We looked at all 30,000 DeReWo word analyses and tried to
improve results (adding missing base stems, correcting false inflection classes or fea-
tures). Those new entries were verb particles (ab-, vor-, zu-, etc.), derivation or com-
pound stems (Kriminal-, Kirch-, Bio-, etc.), and new base stems. We also added some
missing inflection classes [e.g., NMasc_es_er for Geist-Geistes-Geister (ghost)]. Some
words could not be analyzed because of missing word formation rules [e.g., suffix rules
for noun derivations like StudentIn/Innen (male and/or female student(s)), or rules for
the derivation of compound stems from base stems (Peterskirche (Peter’s church)].
As most complex words can be derived automatically once all items have been defined
in the lexicon - and German is very productive in compounding and derivation - we con-
centrated on specifying only new lexical entries for simplexes. The overall approach was
to create a new entry only when the morphological analysis of the word was wrong. We
found that manually creating the simplex units together with their required features and
going through 30,000 test analyses was a time-consuming task. In the worst case, an in-
tensive study of the documentation and software code is required, which would not have
been possible without knowledge of the finite-state formalism.
Fine-tuning of the morphological tool also involved the handling of certain stems and af-
fixes that were likely to produce ambiguities. To exclude wrong analysis due to segmen-
tation errors (e.g., Tee-nager instead of Teen-ager), we decided to include these com-
plex words in the lexicon. This is justified because the DeReWo list consists of high-
frequency lexicalized terms, where such ambiguities are unlikely. Additionally, we re-
duced overgeneration by assigning the tag <NoDef> or <Initial> to some morphemes,
e.g., mostly short or antiquated words like Tand (bauble), or Ei (egg). These tags are used
in SMOR to impose restrictions on the productivity of certain compound or derivation
stems. Finally, we used the transducer to generate tables with the complete listing of an
inflectional paradigm. In this way, most errors in our lexicon could be eliminated by the
collaborative work of colleagues testing the data.

2.4. Test Results and Statistics

The Morphisto transducer lexicon is minimal in the sense that only those entries have
been included that are needed to analyze our training set. The final (minimal) Mor-

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German 227



phisto transducer lexicon comprises approximately 18,200 entries, which are all manu-
ally checked.
Moreover, we included all word formation affixes described in grammis4 to complete our
final lexicon. Compiling a transducer lexicon with approx. 18,200 entries together with
the grammar rules takes approximately 2:5h compiled on a dual-core Pentium D 3.4 Ghz
with 8 GB RAM running a Linux2.6.16 kernel for x86_64 architecture. The word class
statistics for the Adelung and Morphisto lexicons are shown in Table 1.

Lexicon Adelung Morphisto

Base Stems 32,152 17,339

- Nouns 20,605 7,833

- Proper Nouns 2 1,053

- Verb Stems 7,426 4,300

- Adjectives 4,061 3,178

- Adverbs 2 781

- Closed Word Classes 28 190

Derivation Stems 63 67

Compound Stems 30 181

Prefix Stems 94 213

Suffix Stems (Derivation Rules) 404 410

Total 32,743 18,210

Table 1. Number of lexical items in the transducer lexicon

The transducer performed best on our training set, the DeReWo lemma list, with a
precision of 95% and a coverage of 99%, as most base stems for frequent words are in-
cluded in the lexicon. We chose the analysis with the smallest number of morphemes5, in
order to reduce the number of segmentation errors. This strategy, however, blocks further
decomposition of complex words stored entirely in the lexicon, which is fine for lexical-
ized words, but generally weakens recall.
For a second test, we randomly selected subsets of 100 words in different frequency
ranges provided by the open-source spell checker ispell (Jacke, 2006). All test words
chosen from ispell are unknown to Morphisto and include many complex word forma-
tions. For calculating the frequency classes of the word forms in the ispell list, we used
the formula devised for the DeReWo lemma list6. We manually checked all test analyses
for each frequency class and marked the analyses as follows:

• True Positives (TP) = All analyses which match the manual choice (gold standard)

• False Positives (FP) = All other incorrect analyses generated by the tool

• False Negatives (FN)= All correct analysis that are missing in the results

Detailed test results on the precision and recall rates7 are given in Table 2.
While the Morphisto transducer performs well on high-frequency words, the number of

4http://hypermedia.ids-mannheim.de/pls/public/gramwb.ansicht
5This is a built-in function in SMOR
6FrequencyClass(Lemma) := |log2 (f (MostFreqLemma, e.g.′der′) ÷ f (Lemma)) |
7Precision = TP ÷ (TP + FP ) ∗ 100%; Recall = TP ÷ (TP + FN) ∗ 100%

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German228



spurious ambiguities and wrong or missing analyses increases in the lower frequency
ranges. On average, the precision rate of 96.93% is comparable to the results presented
in Schmid et al. (2004). As we decided to exclude proper names from the test set, the
recall rate of 91.09% is accordingly higher.
All in all, the number of incorrect analyses is low. Many false positives result from am-
biguous compound constituents or in combination with linking elements. For example,
the homonym Fest/fest (party/locked) in the word Feststellschraube (locking screw) leads
to a false analysis. Likewise, the word sätzen in the compound Zeichensätzen can be seg-
mented into Zeichen (character) followed by Sätzen (set) or followed by a linking s and
the verb ätzen (to etch).
False negatives are often due to an incomplete lexicon. About 9% of our test data has
not been analyzed because of missing entries in the lexicon. For instance, the German
word allernächster (the nearest), has been analyzed as a compound All (universe) and
Ler (shade) followed by a superlative of nah (near). As the prefix aller is not stored in
the lexicon, the correct analysis is missing.

Frequency Classes Precision Recall F-Measure

F0 − F4 100.00 100.00 100.00

F5 − F8 99.63 99.63 99.63

F9 − F12 98.74 87.71 92.90

F13 − F16 98.25 93.85 95.39

F17 - F20 93.21 84.36 88.56

F21 - F25 91.77 81.00 85.33

Average 96.93 91.09 93.63

Table 2. Test results on ispell for different frequency classes

3. Integration into the TextGrid Workbench

TextGrid offers an Eclipse-based rich-client platform as a development environment for
all text-centered scientific disciplines. Collaborative work is supported by the grid, where
resources (storage and computing power) can be shared easily among scientists over the
net. From this environment, Morphisto is accessible through a small set of document-
style web services conforming to the WSDL 1.1 standard. In this way, the user is not
required to have the SFST toolkit installed and running on her/his local workstation.
We will briefly sketch what kind of web services will be offered to the community:

Lexical Lookup in a Dictionary. The Adelung transducer (see Sect. 2.1) has been inte-
grated into a service for automatic lexical lookup. Likewise, our NHD transducer
is used to establish an automatic reference to the German online lexicon elexiko8

at the IDS.

8http://hypermedia.ids-mannheim.de/pls/elexiko/p4_start.portal

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German 229



Automatic Annotation of German Texts. The Morphisto transducer for standard Ger-
man (see Sect. 2.3) is the basis for a number of web services in TextGrid: (1) mor-
phological analyzer, 2) lemmatizer, 3) batch lemmatizer, and, 4) generator of in-
flected forms. The last service supports the lexicographer in specifying new entries
- the corresponding SMOR tag will be computed in the background whenever the
head constituent is in the lexicon.

Translation of words from one language stage to another. A common difficulty in
understanding historical literature is due to the fact that words undergo an evolu-
tionary change in form and meaning and therefore are often misconceived by the
scholars living today. For instance, a scholar would have to know that the word
form seyest is derived from the lemma seyn which is related to the lemma sein in
NHD. In our approach, this is implemented by mapping all Adelung lemmas to
their NHD counterparts, which in most cases are identical.9

4. Outlook

The goal was to implement a wide-coverage morphological analyzer for standard Ger-
man. We think that the finite-state framework is perfectly suited for this task. Also, the
open-source code of SMOR & SFST is a good starting point. However, for linguists
without special knowledge of finite-state technology, it is not straightforward to extend
and modify the underlying grammar. Therefore, we have opted to address this issue by
implementing a lexical database and lexicon export scripts.
More work is still needed to create a user-friendly interface in Eclipse that allows users
to add, create, and compile additional transducers on a user-selected set of lexemes and
rules. Furthermore, we plan to improve our morphological tool by adding structure to the
output, as linguists generally are not only interested in the segmentation of a complex
word, but also in its internal hierarchic structure. To increase the coverage of Morphisto,
we also like to integrate morphological guessers. Results are promising, whenever the
head constituent is known, because there are many syncretic forms that make it diffi-
cult to derive the correct features (e.g., gender) otherwise. Last but not least, we would
gradually like to build up a "Gold Standard" for German morphological analysis. A mor-
phological treebank with hierarchical analyses of the DeReWo list would be a valuable
resource for both computational linguists as well as more traditionally oriented linguists.

Acknowledgements

TextGrid is partially funded by the German Federal Ministry of Education and Research
(BMBF) under the D-Grid initiative by agreement 07TG01A-H. Responsibility for the
contents of this publication rests with its authors.

9This is done by replacement rules on the Adelung lexicon transducer, where the NHD lemmas constitute
the new UPPER language, and Adelung word forms appear on the LOWER side.

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German230



References

[1] H. Schmid, A. Fitschen, and U. Heid. SMOR: A German computational morphology covering derivation,
composition, and inflection. In Proceedings of the IVth International Conference on Language Resources
and Evaluation (LREC 2004), Lisbon, Portugal, 2004.

[2] P. Gietz, A. Aschenbrenner, S. Büdenbender, F. Jannidis, M. Küster, Ch. Ludwig, W. Pempe, T. Vitt,
W. Wegstein, and A. Zielinski. TextGrid and eHumanities. In Peter Sloot, editor, IEEE Conference on
e-Science and Grid Computing. Amsterdam 4.-6.12.2006, pages 133–133, Los Alamitos, CA, 2006. IEEE
Computer Society.

[3] H. Schmid. A programming language for finite state transducers. In Proceedings of the 5th International
Workshop on Finite State Methods in Natural Language Processing (FSMNLP 2005), pages 308–309,
Helsinki, 2005.

[4] A. Schiller. Deutsche Flexions- und Kompositionsmorphologie mit PC-KIMMO. In R. Hausser, edi-
tor, Linguistische Verifikation. Dokumentation zur ersten Morpholympics 1994, pages 37–52. Niemeyer,
Tübingen, 1996.

[5] U. Heid, B. Säuberlich, and A. Fitschen. Using descriptive generalisations in the acquisition of lexical
data for word formation. In Proceedings of the 3rd Conference on Language Resources and Evaluation
Volume IV, pages 86–92, Las Palmas de Gran Canaria, Spain, 2002.

[6] L. Karttunen and K. Beesley. Finite State Morphology. CSLI Studies in Computational Linguistics. CSLI
Publication, Stanford, 2003.

[7] A. Schiller. DMOR: Benutzeranleitung. Interner report, Institut für Maschinelle Sprachverarbeitung,
University Stuttgart, 2005.

A. Zielinski and C. Simon / Morphisto – An Open Source Morphological Analyzer for German 231



This page intentionally left blank



Subject Index 

ambiguous proper names 62 

automata compression 110 

automaton 146, 175 

calendar information 122 

classification 14 

clustering 14 

complex patterns 23

compression 146 

computational German  

morphology 224 

computational linguistics 72 

constraints 50 

coordination and ellipsis 62 

coreference resolution 50

Croatian 183 

DAWG 146 

electronic dictionaries 110, 146 

event extraction 158 

finite automata 199 

finite state model 175 

finite state programming language 27 

finite-state grammar(s) 39, 62, 158 

finite-state machines 23, 50 

finite-state methods 98

finite-state technology 207 

finite-state transducer(s) 3, 122, 183, 

215, 224 

greedy algorithm 146 

grid 224 

GUI 191 

information extraction 50, 62 

instruction selection 191 

Italian 158 

kernels 14 

Kleene 27 

language identification 175 

large-scale natural language  

processing 39 

learning 14 

local grammar 62

morphological analysis 3

morphology 183, 207 

multi-dimensional trees 98

named entity recognition 50 

natural language generation 175 

NooJ 110 

OpenFST 23 

OpenFst library 27

optimality theory 134 

Perso-Arabic script 215 

phonology 207 

Portuguese named entity  

recognition 62 

ranking 14 

rational powers series 14

reduplication 207 

regression 14 

regular expressions 199 

regularization 98 

research infrastructures 3

Romanization 215 

search engines 23

semantic calendar expressions 122 

semiring(s) 72, 134 

sequential minimization 110 

SFST 224 

software architecture 3

statistical machine translation 39 

string matching 23

tagging 50 

temporal representation 122 

text mining 23

text processing 175 

timeline 122 

toolkit 191 

transducers 199 

transliteration 215 

tree adjoining grammar 98

tree algorithms 191 

tree automata 191 

weighted automata 14, 199 

weighted finite state algebra 134 

weighted finite state transducers 39 

weighted finite-state automata 72 

weighted transducers 14

XML format 199 

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

233



This page intentionally left blank



Author Index 

Ahrenberg, L. 215 

Beesley, K.R. 27 

Bischoff, S.T. 207 

Blackwood, G. 39 

Bouchou, B. 146 

Brunning, J. 39 

Byrne, W. 39 

Cantone, D. 175 

Ćavar, D. 183 

Cleophas, L. 191 

Cortes, C. 14 

Cristofaro, S. 175 

de Gispert, A. 39 

Demaille, A. 199 

Didakowski, J. 50 

Drotschmann, M. 50 

Duret-Lutz, A. 199 

Eleutério, S. 62 

Faro, S. 175 

Giaquinta, E. 175 

Hanneforth, T. 72 

Hulden, M. 82, 207 

Jazbec, I.-P. 183 

Kasprzik, A. 98 

Koskenniemi, K. 3, 122 

Lesaint, F. 199 

Lombardy, S. 199 

Maleki, J. 215 

Maurel, D. 146 

Mesfar, S. 110 

Mohri, M. 14 

Niemi, J. 122 

Piskorski, J. v, 158 

Quernheim, D. 134 

Ranchhod, E. 62 

Sakarovitch, J. 199 

Seeker, W. 134 

Silberztein, M. 110 

Simon, C. 224 

Skut, W. 23 

Stojanov, T. 183 

Tanev, H. 158 

Terrones, F. 199 

Tounsi, L. 146 

Watson, B. v 

Yaesoubi, M. 215 

Yli-Jyrä, A. v, 3 

Zavarella, V. 158 

Zielinski, A. 224 

Finite-State Methods and Natural Language Processing
J. Piskorski et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.

235



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank


	Title page
	Preface
	Contents
	Invited Lectures
	CLARIN and Free Open Source Finite-State Tools
	Learning with Weighted Transducers
	Finite-State Machines for Mining Patterns in Very Large Text Repositories

	Regular Papers
	The Kleene Language for Weighted Finite-State Programming
	Large-Scale Statistical Machine Translation with Weighted Finite State Transducers
	Proper Noun Recognition and Classification Using Weighted Finite State Transducers
	Finite-State Local Grammars for Disambiguating Conjunctions in Portuguese Proper Names
	A Memory-Efficient epsilon-Removal Algorithm for Weighted Acyclic Finite-State Automata
	Regular Expressions and Predicate Logic in Finite-State Language Processing
	Making Finite-State Methods Applicable to Languages Beyond Context-Freeness via Multi-Dimensional Trees
	Transducer Minimization and Information Compression for NooJ Dictionaries
	Representing and Combining Calendar Information by Using Finite-State Transducers
	Optimality Theory and Vector Semirings
	A Compression Method for Natural Language Automata
	Event Extraction for Italian Using a Cascade of Finite-State Grammars

	Short Papers
	Finite State Models for the Generation of Large Corpora of Natural Language Texts
	CroMo - Morphological Analysis for Standard Croatian and Its Synchronic and Diachronic Dialects and Variants
	Forest FIRE and FIRE Wood: Tools for Tree Automata and Tree Algorithms
	An XML Format Proposal for the Description of Weighted Automata, Transducers and Regular Expressions
	A Simple Formalism for Capturing Reduplication in Finite-State Morphology
	Applying Finite State Morphology to Conversion Between Roman and Perso-Arabic Writing Systems
	Morphisto - An Open Source Morphological Analyzer for German

	Subject Index
	Author Index

