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To Erwin Bolthausen and Hervé Kunz



Preface

When constructing a mathematical model for a problem in natural science,
one often needs to combine methods from different fields of mathematics.
Stochastic differential equations, for instance, are used to model the effect
of noise on a system evolving in time. Being at the same time differential
equations and random, their description naturally involves methods from the
theory of dynamical systems, and from stochastic analysis.

Much progress has been made in recent years in the quantitative descrip-
tion of the solutions to stochastic differential equations. Still, it seems to us
that communication between the various communities interested in these mod-
els (mathematicians in probability theory and analysis, physicists, biologists,
climatologists, and so on) is not always optimal. This relates to the fact that
researchers in each field have developed their own approaches, and their own
jargon. A climatologist, trying to use a book on stochastic analysis, in the
hope of understanding the possible effects of noise on the box model she is
studying, often experiences similar difficulties as a probabilist, trying to find
out what his latest theorem on martingales might imply for action-potential
generation in neurons.

The purpose of this book is twofold. On the one hand, it presents a par-
ticular approach to the study of stochastic differential equations with two
timescales, based on a characterisation of typical sample paths. This approach,
which combines ideas from singular perturbation theory with probabilistic
methods, is developed in Chapters 3 and 5 in a mathematically rigorous way.
On the other hand, Chapters 4 and 6 attempt to bridge the gap between ab-
stract mathematics and concrete applications, by illustrating how the method
works, in a few specific examples taken from physics, biology, and climatology.
The choice of applications is somewhat arbitrary, and was mainly influenced
by the field of speciality of the modellers we happened to meet in the course
of the last years.

The present book grew out of a series of articles on the effect of noise
on dynamical bifurcations. In the process of writing, however, we realised
that many results could be improved, generalised, and presented in a more
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concise way. Also, the bibliographical research for the chapters on applications
revealed many new interesting problems, that we were tempted to discuss as
well. Anyone who has written a book knows that there is no upper bound
on the amount of time and work one can put into the writing. For the sake
of timely publishing, however, one has to stop somewhere, even though the
feeling remains to leave something unfinished. The reader will thus find many
open problems, and our hope is that they will stimulate future research.

We dedicate this book to Erwin Bolthausen and Hervé Kunz on the occa-
sion of their sixtieth birthdays. As our thesis advisors in Zürich and Lausanne,
respectively, they left us with a lasting impression of their way to use mathe-
matics to solve problems from physics in an elegant way. Our special thanks
go to Anton Bovier, who supported and encouraged our collaboration from
the very beginning. Without his sharing our enthusiasm and his insightful
remarks, our research would not have led us that far.

Many more people have provided help by giving advice, by clarifying sub-
tleties of models used in applications, by serving on our habilitation commit-
tees, or simply by showing their interest in our work. We are grateful to Lud-
wig Arnold, Gérard Ben Arous, Jean-Marie Barbaroux, Dirk Blömker, Fritz
Colonius, Predrag Cvitanović, Jean-Dominique Deuschel, Werner Ebeling,
Bastien Fernandez, Jean-François Le Gall, Jean-Michel Ghez, Maria Teresa
Giraudo, Peter Hänggi, Peter Imkeller, Alain Joye, Till Kuhlbrodt, Robert
Maier, Adam Monahan, Khashayar Pakdaman, Etienne Pardoux, Cecile Pen-
land, Pierre Picco, Arkady Pikovsky, Claude-Alain Pillet, Michael Rosenblum,
Laura Sacerdote, Michael Scheutzow, Lutz Schimansky-Geier, Igor Sokolov,
Dan Stein, Alain-Sol Sznitman, Peter Talkner, Larry Thomas, and Michael
Zaks.

Our long-lasting collaboration would not have been possible without the
gracious support of a number institutions. We thank the Weierstraß-Institut
für Angewandte Analysis und Stochastik in Berlin, the Forschungsinstitut für
Mathematik at the ETH in Zürich, the Université du Sud Toulon–Var, and
the Centre de Physique Théorique in Marseille-Luminy for kind hospitality.

Financial support of the research preceding the endeavour of writing this
book was provided by the Weierstraß-Institut für Angewandte Analysis und
Stochastik, the Forschungsinstitut für Mathematik at the ETH Zürich, the
Université du Sud Toulon–Var, the Centre de Physique Théorique, the French
Ministry of Research by way of the Action Concertée Incitative (ACI) Jeunes
Chercheurs, Modélisation stochastique de systèmes hors équilibre, and the ESF
Programme Phase Transitions and Fluctuation Phenomena for Random Dy-
namics in Spatially Extended Systems (RDSES) and is gratefully acknowl-
edged.

During the preparation of the manuscript, we enjoyed the knowledge-
able and patient collaboration of Stephanie Harding and Helen Desmond at
Springer, London.
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Finally, we want to express our thanks to Ishin and Tian Fu in Berlin
for providing good reasons to spend the occasional free evening with friends,
practising our skill at eating with chopsticks.

Marseille and Berlin, Nils Berglund
June 2005 Barbara Gentz
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1

Introduction

1.1 Stochastic Models and Metastability

Stochastic models play an important rôle in the mathematical description of
systems whose degree of complexity does not allow for deterministic modelling.
For instance, in ergodic theory and in equilibrium statistical mechanics, the
invariant probability measure has proved an extremely successful concept for
the characterisation of a system’s long-time behaviour.

Dynamical stochastic models, or stochastic processes, play a similarly im-
portant rôle in the description of non-equilibrium properties. An important
class of stochastic processes are Markov processes, that is, processes whose
future evolution only depends on the present state, and not on the past evo-
lution. Important examples of Markov processes are

• Markov chains for discrete time;
• Markovian jump processes for continuous time;
• Diffusion processes given by solutions of stochastic differential equations

(SDEs) for continuous time.

This book concerns the sample-path behaviour of a particular class of Markov
processes, which are solutions to either non-autonomous or coupled systems
of stochastic differential equations. This class includes in particular time-
inhomogeneous Markov processes.

There are different approaches to the quantitative study of Markov pro-
cesses. A first possibility is to study the properties of the system’s invari-
ant probability measure, provided such a measure exists. However, it is often
equally important to understand transient phenomena. For instance, the speed
of convergence to the invariant measure may be extremely slow, because the
system spends long time spans in so-called metastable states, which can be
very different from the asymptotic equilibrium state.

A classical example of metastable behaviour is a glass of water, suddenly
exposed to an environment of below-freezing temperature: Its content may
stay liquid for a very long time, unless the glass is shaken, in which case the
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water freezes instantly. Here the asymptotic equilibrium state corresponds to
the ice phase, and the metastable state is called supercooled water . Such a
non-equilibrium behaviour is quite common near first-order phase transition
points. It has been established mathematically in various lattice models with
Markovian dynamics (e.g., Glauber or Kawasaki dynamics). See, for example,
[dH04] for a recent review.

In continuous-time models, metastability occurs, for instance, in the case of
a Brownian particle moving in a multiwell potential landscape. For weak noise,
the typical time required to escape from a potential well (called activation time
or Kramers’ time) is exponentially long in the inverse of the noise intensity.
In such situations, it is natural to try to describe the dynamics hierarchically,
on two (or perhaps more) different levels: On a coarse-grained level, the rare
transitions between potential wells are described by a jump process, while a
more precise local description is used for the metastable intrawell dynamics.

Different techniques have been used to achieve such a separation of time
and length scales. Let us mention two of them. The first approach is more
analytical in nature, while the second one is more probabilistic, as it brings
into consideration the notion of sample paths.

• Spectral theory: The eigenvalues and eigenfunctions of the diffusion’s
generator yield information on the relevant timescales. Metastability is
characterised by the existence of a spectral gap between exponentially small
eigenvalues, corresponding to the long timescales of interwell transitions,
and the rest of the spectrum, associated with the intrawell fluctuations.

• Large-deviation theory: The exponential asymptotics of the probabil-
ity of rare events (e.g., interwell transitions) can be obtained from a vari-
ational principle, by minimising a so-called rate function (or action func-
tional) over the set of all possible escape paths. This yields information
on the distribution of random transition times between attractors of the
deterministic system.

To be more explicit, let us consider an n-dimensional diffusion process,
given by the SDE

dxt = f(xt) dt+ σF (xt) dWt , (1.1.1)

where f takes values in R n, Wt is a k-dimensional Brownian motion, and
F takes values in the set R n×k of (n × k)-matrices. The state xt(ω) of the
system depends both on time t, and on the realisation ω of the noise via the
sample path Wt(ω) of the Brownian motion. Depending on the point of view,
one may rather be inclined to consider

• either properties of the random variable ω �→ xt(ω) for fixed time t, in
particular its distribution;

• or properties of the sample path t �→ xt(ω) for each realisation ω of the
noise.

The density of the distribution is connected to the generator of the diffu-
sion process, which is given by the differential operator
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L =
n∑
i=1

fi(x)
∂

∂xi
+
σ2

2

n∑
i,j=1

dij(x)
∂2

∂xi∂xj
, (1.1.2)

where dij(x) are the elements of the square matrix D(x) = F (x)F (x)T. De-
note by p(x, t|y, s) the transition probabilities of the diffusion, considered as
a Markov process. Then (y, s) �→ p(x, t|y, s) satisfies Kolmogorov’s backward
equation

− ∂

∂s
u(y, s) = Lu(y, s) , (1.1.3)

while (x, t) �→ p(x, t|y, s) satisfies Kolmogorov’s forward equation or Fokker–
Planck equation

∂

∂t
v(x, t) = L∗v(x, t) , (1.1.4)

where L∗ is the adjoint operator of L.
Under rather mild assumptions on f and F , the spectrum of L is known

to consist of isolated non-positive reals 0 = −λ0 > −λ1 > −λ2 > . . . . If
qk(y) and pk(x) denote the (properly normalised) eigenfunctions of L and L�

respectively, the transition probabilities take the form

p(x, t|y, s) =
∑
k�0

e−λk(t−s)qk(y)pk(x) . (1.1.5)

In particular, the transition probabilities approach the invariant density p0(x)
as t− s→ ∞ (because q0(x) = 1). However if, say, the first p eigenvalues of L
are very small, then all terms up to k = p − 1 contribute significantly to the
sum (1.1.5) as long as t − s � λ−1

k . Thus the inverses λ−1
k are interpreted as

metastable lifetimes, and the corresponding eigenfunctions pk(x) as “quasi-
invariant densities”. The eigenfunctions qk(y) are typically close to linear com-
binations of indicator functions 1Ak

(y), where the sets Ak are interpreted as
supports of metastable states.

In general, determining the spectrum of the generator is a difficult task.
Results exist in particular cases, for instance perturbative results for small
noise intensity σ.1 If the drift term f derives from a potential and F = 1l
is the identity matrix, the small eigenvalues λk behave like e−2hk/σ

2
, where

the hk are the depths of the potential wells.
One of the alternative approaches to spectral theory is based on the con-

cept of first-exit times. Let D be a bounded, open subset of R n, and fix an
initial condition x0 ∈ D. Typically, one is interested in situations where D is
positively invariant under the deterministic dynamics, as a candidate for the
support of a metastable state. The exit problem consists in characterising the
laws of first-exit time

τD = τD(ω) = inf{t > 0: xt(ω) �∈ D} (1.1.6)
1Perturbation theory for generators of the form (1.1.2) for small σ is closely

related to semiclassical analysis.
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and first-exit location xτD ∈ ∂D. For each realisation ω of the noise, τD(ω)
is the first time at which the sample path xt(ω) leaves D. Metastability is
associated with the fact that for certain domains D, the first-exit time τD is
likely to be extremely large. Like the transition probabilities, the laws of τD
and of the first-exit location xτD can be linked to partial differential equations
(PDEs) involving the generator L (cf. Appendix A.6).

Another approach to the exit problem belongs to the theory of large de-
viations. The basic idea is that, although the sample paths of an SDE are in
general nowhere differentiable, they tend to concentrate near certain differen-
tiable curves as σ tends to zero. More precisely, let C = C([0, T ],R n) denote
the space of continuous functions ϕ : [0, T ] → R n. The rate function or action
functional of the SDE (1.1.1) is the function J : C → R + ∪ {∞} defined by

J(ϕ) = J[0,T ](ϕ) =
1
2

∫ T

0

(ϕ̇t − f(ϕt))TD(ϕt)−1(ϕ̇t − f(ϕt)) dt (1.1.7)

for all ϕ in the Sobolev space H1 = H1([0, T ],R n) of absolutely continuous
functions ϕ : [0, T ] → R n with square-integrable derivative ϕ̇.2 By definition,
J is infinite for all other paths ϕ in C. The rate function measures the “cost”
of forcing a sample path to track the curve ϕ — observe that it vanishes
if and only if ϕt satisfies the deterministic limiting equation ẋ = f(x). For
other ϕ, the probability of sample paths remaining near ϕ decreases roughly
like e−J(ϕ)/σ2

. More generally, the probability of xt belonging to a set of
paths Γ , behaves like e−J

∗/σ2
, where J∗ is the infimum of J over Γ . This can

be viewed as an infinite-dimensional variant of the Laplace method.
One of the results of the Wentzell–Freidlin theory is that, for fixed time

t ∈ [0, T ],

lim
σ→0

σ2 log Px0{τD < t} (1.1.8)

= − inf
{
J[0,t](ϕ) : ϕ ∈ C([0, t],R n), ϕ0 = x0, ∃s ∈ [0, t) s.t. ϕs �∈ D

}
.

If D is positively invariant under the deterministic flow, the right-hand side
is strictly negative. We can rewrite (1.1.8) as

Px0
{
τD < t

}
∼ e−J[0,t](ϕ

∗)/σ2
, (1.1.9)

where ∼ stands for logarithmic equivalence, and ϕ∗ denotes a minimiser of
J[0,t]. The minimisers of J[0,t] are interpreted as “most probable exit paths” of
the diffusion from D in time t; their cost is decreasing in t, and typically tends
to a positive limit as t → ∞. Since the limit in (1.1.8) is taken for fixed t,
(1.1.9) is not sufficient to estimate the typical exit time, though it suggests
that this time grows exponentially fast in 1/σ2.

2Note that in the general case, when D(x) is not positive-definite, the rate func-
tion J cannot be represented by (1.1.7), but is given by a variational principle.
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Under additional assumptions on the deterministic dynamics, more precise
results have been established. Assume for instance that the closure of D is
contained in the basin of attraction of an asymptotically stable equilibrium
point x�. Then

lim
σ→0

σ2 log Ex0{τD}

= inf
t>0, y∈∂D

{
J[0,t](ϕ) : ϕ ∈ C([0, t],R n), ϕ0 = x�, ϕt = y

}
, (1.1.10)

and thus the expected first-exit time satisfies Ex0{τD} ∼ eJ
�/σ2

, where J� is
the right-hand side of (1.1.10).

In the case of gradient systems, that is, for f(x) = −∇U(x) and F (x) = 1l,
the cost for leaving a potential well is determined by the minimum of the
rate function, taken over all paths starting at the bottom x� of the well and
occasionally leaving the well. This minimum is attained for a path satisfying
limt→−∞ ϕt = x� and moving against the deterministic flow, that is, ϕ̇t =
−f(ϕt). The resulting cost is equal to twice the potential difference H to be
overcome, which implies the exponential asymptotics of Kramers’ law on the
expected escape time behaving like e2H/σ2

.
Applying the theory of large deviations is only a first step in the study of

the exit problem, and many more precise results have been obtained, using
other methods. Day has proved that the law of the first-exit time from a set D,
contained in the basin of attraction of an equilibrium point x�, converges, if
properly rescaled, to an exponential distribution as σ → 0:

lim
σ→0

Px0
{
τD > sEx0{τD}

}
= e−s . (1.1.11)

There are also results on more complex situations arising when the boundary
of D contains a saddle point, or, in dimension two, when ∂D is an unstable
periodic orbit. In the case of gradient systems, the subexponential asymptotics
of the expected first-exit time has also been studied in detail. In particular,
the leading term of the prefactor e−J

�/σ2
Ex0{τD} of the expected first-exit

time Ex0{τD} can be expressed in terms of eigenvalues of the Hessian of the
potential at x� and at the saddle.

All these results allow for quite a precise understanding of the dynam-
ics of transitions between metastable equilibrium states. They also show that
between these transitions, sample paths spend long time spans in neighbour-
hoods of the attractors of the deterministic system. Apart from the timescales
associated with these transitions between metastable states, dynamical sys-
tems typically have additional inherent timescales or might be subject to
slow external forcing. The interplay between these various timescales leads to
many interesting phenomena, which are the main focus of the present book.
The description of these phenomena will often require to develop methods
going beyond spectral analysis and large deviations.
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1.2 Timescales and Slow–Fast Systems

Most nonlinear ordinary differential equations (ODEs) are characterised by
several different timescales, given, for instance, by relaxation times to equi-
librium, periods of periodic orbits, or Lyapunov times, which measure the
exponential rate of divergence of trajectories in chaotic regimes.

There are many examples of systems in which such different timescales are
well-separated, for instance

• slowly forced systems, such as the Earth’s atmosphere, subject to periodic
changes in incoming Solar radiation;

• interacting systems with different natural timescales, e.g., predator–prey
systems in which the prey reproduces much faster than the predators, or
interacting particles of very different mass;

• systems near instability thresholds, in which the modes losing stability
evolve on a longer timescale than stable modes; a typical example is
Rayleigh–Bénard convection near the appearance threshold of convection
rolls.

Such a separation of timescales allows to write the system as a slow–fast
ODE , of the form

ε
dxt
dt

= f(xt, yt) ,

dyt
dt

= g(xt, yt) ,
(1.2.1)

where ε is a small parameter. Here xt contains the fast degrees of freedom,
and yt the slow ones. Equivalently, the system can be written in fast time
s = t/ε as

dxs
ds

= f(xs, ys) ,

dys
ds

= εg(xs, ys) .
(1.2.2)

It is helpful to think of (1.2.2) as a perturbation of the parameter-dependent
ODE

dxs
ds

= f(xs, λ) , (1.2.3)

in which the parameter λ slowly varies in time. Depending on the dynamics
of the associated system (1.2.3), different situations can occur:

• If the associated system admits an asymptotically stable equilibrium point
x�(λ) for each value of λ, the fast degrees of freedom can be eliminated, at
least locally, by projection onto the set of equilibria, called slow manifold .
This yields the effective system
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dyt
dt

= g(x�(yt), yt) (1.2.4)

for the slow degrees of freedom, which is simpler to analyse than the full
system. More generally, if the associated system admits an attractor de-
pending smoothly on λ, such a reduction is obtained by averaging over the
invariant measure of the attractor.

• In other situations, most notably when the associated system admits bi-
furcation points, new phenomena may occur, which cannot be captured
by an effective slow system, for instance
– jumps between different (parts of) slow manifolds;
– relaxation oscillations, that is, periodic motions in which fast and slow

phases alternate;
– hysteresis loops, e.g., for periodically forced systems, where the state

for a given value of the forcing can depend on whether the forcing
increases or decreases;

– bifurcation delay , when solutions keep tracking a branch of unstable
equilibria for some time after a bifurcation has occurred;

– solutions scaling in a nontrivial way with the adiabatic parameter ε,
for instance like εν , where ν is a fractional exponent.

Deterministic slow–fast systems may thus display a rich behaviour, which
can only be analysed by a combination of different methods, depending on
whether the system operates near a slow manifold, near a bifurcation point,
near a periodic orbit, etc.

Adding noise to a slow–fast ODE naturally yields a slow–fast SDE. This
adds one or several new timescales to the dynamics, namely the metastable
lifetimes (or Kramers’ times) mentioned above. The dynamics will depend in
an essential way on the relative values of the deterministic system’s intrinsic
timescales, and the Kramers times introduced by the noise:

• In cases where the Kramers time is much longer than all relevant determin-
istic timescales, the system is likely to follow the deterministic dynamics
for very long time spans, with rare transitions between attractors.

• In cases where the Kramers time is much shorter than all relevant deter-
ministic timescales, noise-induced transitions are frequent, and thus the
system’s behaviour is well captured by its invariant density.

• The most interesting situations occurs for Kramers’ times lying somewhere
between the typical slow and fast deterministic timescales. In these cases,
noise-induced transitions are frequent for the slow system, but rare for the
fast one. As we shall see, this can yield remarkable, and sometimes unex-
pected phenomena, a typical example being the effect known as stochastic
resonance.
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1.3 Examples

Let us now illustrate the different approaches, and the interplay of timescales,
on a few simple examples.

We start with the two-parameter family of ODEs

dxs
ds

= µxs − x3
s + λ , (1.3.1)

which is a classical example in bifurcation theory.3 In dimension one, all sys-
tems can be considered as gradient systems. In the present case, the right-hand
side derives from the potential

U(x) = −1
2
µx2 +

1
4
x4 − λx . (1.3.2)

The potential has two wells and a saddle if µ3 > (27/4)λ2. For further ref-
erence, let us denote the bottoms of the wells by x�± and the position of
the saddle by x�0. If µ3 < (27/4)λ2, the potential only has one well. When
µ3 = (27/4)λ2 and λ �= 0, there is a saddle–node bifurcation between the sad-
dle and one of the wells. The point (x, λ, µ) = (0, 0, 0) is a pitchfork bifurcation
point, where all equilibria meet.

To model the effect of noise on this system, we replace now the determin-
istic family of ODEs (1.3.1) by the family of SDEs

dxs =
[
µxs − x3

s + λ
]
ds+ σ dWs . (1.3.3)

The invariant density of the stochastic process xs is given by

p0(x) =
1
N

e−2U(x)/σ2
, (1.3.4)

where N is the normalisation. The generator of the diffusion is essentially
self-adjoint on L2(R , p0(x) dx), which implies in particular that the eigen-
functions qk and pk of L and L∗ are related by pk(x) = qk(x)p0(x). For small
noise intensities σ, p0(x) is strongly concentrated near the local minima of
the potential. If the potential has two wells of different depths, the invariant
density favours the deeper well.

In situations where the potential has a single minimum of positive curva-
ture, the first non-vanishing eigenvalue −λ1 of the generator is bounded away
from zero, by a constant independent of σ. This implies that the distribution
of xs relaxes to the invariant distribution p0(x) in a time of order one.

In the double-well situation, on the other hand, the leading eigenvalue has
the expression

−λ1 = −ω0

2π

[
ω+e−2h+/σ

2
+ ω−e−2h−/σ2

][
1 + O(σ2)

]
, (1.3.5)

3The right-hand side of (1.3.1) is the universal unfolding of the simplest possible
singular vector field of codimension 2, namely ẋ = −x3.
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where h± = U(x�0) − U(x�±) are the depths of the potential wells, and
ωi = |U ′′(x�i )|1/2, i ∈ {−, 0,+}, are the square roots of the curvatures of the
potential at its stationary points. The other eigenvalues are again bounded
away from zero by some constant c > 0. As a consequence, the transition
probabilities satisfy

p(x, s|y, 0) =
[
1 + e−λ1sq1(y)q1(x) + O(e−cs)

]
p0(x) . (1.3.6)

It turns out that q1(y)q1(x) is close to a positive constant (compatible with
the normalisation) if x and y belong to the same well, and to −1 if they belong
to different wells. As a consequence, the distribution of xs is concentrated in
the starting well for s
 λ−1

1 , and approaches p0(x) for s� λ−1
1 .

The theory of large deviations confirms this picture, but is more precise,
as it shows that between interwell transitions, xt spends on average times of
order e2h−/σ2

in the left-hand well, and times of order e2h+/σ
2

in the right-
hand well. This naturally leads to the following hierarchical description:

• On a coarse-grained level, the dynamics is described by a two-state Marko-
vian jump process, with transition rates e−2h±/σ2

.
• The dynamics between transitions inside each well can be approximated

by ignoring the other well; as the process starting, say, in the left-hand
well spends most of the time near the bottom in x�−, one may for instance
approximate the dynamics of the deviation xt − x�− by the linearisation

dys = −ω2
−ys ds+ σ dWs , (1.3.7)

whose solution is an Ornstein–Uhlenbeck process of asymptotic variance
σ2/2ω2

−.

Let us now turn to situations in which the potential U(x) = U(x, εs)
depends slowly on time. That is, we consider SDEs of the form

dxs = −∂U
∂x

(xs, εs) ds+ σ dWs , (1.3.8)

which can also be written, on the scale of the slow time t = εs as

dxt = −1
ε

∂U

∂x
(xt, t) dt+

σ√
ε

dWt . (1.3.9)

The potential-well depths h± = h±(t) naturally also depend on time, and
may even vanish if one of the bifurcation curves is crossed. As a result, the
“instantaneous” Kramers timescales e2h±(t)/σ2

are no longer fixed quantities.
If the timescale ε−1, at which the potential changes shape, is longer than the
maximal Kramers time of the system, one can expect the dynamics to be a
slow modulation of the dynamics for frozen potential. Otherwise, the inter-
play between the timescales of modulation and of noise-induced transitions
becomes nontrivial. Let us discuss this in a few examples.
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x�
−(λ(t))

x�
0(λ(t))

x�
+(λ(t))

Fig. 1.1. A sample path of Equation (1.3.10) for parameter values ε = 0.02, σ =
0.2, A = 0.3. Heavy curves denote locations x�

±(λ(t)) of the potential minima and
x�

0(λ(t)) of the saddle.

Example 1.3.1. Assume µ > 0 is fixed, say µ = 1, and λ = λ(εs) changes
periodically, say λ(εs) = A cos εs. The SDE in slow time reads

dxt =
1
ε

[
xt − x3

t +A cos t
]
dt+

σ√
ε

dWt . (1.3.10)

If the amplitude A of the modulation is smaller than the critical value Ac =√
4/27, the drift term always has two stable and one unstable equilibria, i.e.,

it derives from a double-well potential. Since the depths h±(t) of the two
potential wells vary periodically between two values hmin < hmax (and half
a period out of phase), so do the instantaneous transition rates. Transitions
from left to right are more likely when the left-hand well is shallowest, and vice
versa for transitions back from right to left (Fig. 1.1). This yields transition
times which are not uniformly distributed within each period, an effect known
as stochastic resonance (SR). If the modulation period ε−1 is larger than twice
the maximal Kramers time e2hmax/σ

2
, transitions are likely to occur at least

twice per period, and one is in the so-called synchronisation regime.
If the amplitude A of the modulation is larger than the critical value

Ac =
√

4/27, the potential periodically changes from double-well to single-
well, each time the saddle–node bifurcation curve is crossed. As a result, tran-
sitions between potential wells occur even in the deterministic case σ = 0.
Solutions represented in the (λ, x)-plane have the shape of hysteresis cycles:
When |λ(t)| < A, the well the particle xt is “inhabiting” depends on whether
λ(t) is decreasing or increasing (Fig. 1.2a). The area of the cycles is known to
scale like A0 + ε2/3(A−Ac)1/3, where A0 is the “static hysteresis area” which
is of order 1. The main effect of noise is to enable earlier transitions, already
when there is still a double-well configuration. This modifies the hysteresis
cycles. We shall see in Section 6.4.1 that for sufficiently large noise intensities,
the typical area of cycles decreases by an amount proportional to σ4/3.
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(a) (b)x

λ

x�
0(λ)

x�
−(λ)

x�
+(λ) x

µ

√
µ

Fig. 1.2. (a) Sample paths of Equation (1.3.10) displaying hysteresis loops in the
(λ, x)-plane. Parameter values are ε = 0.05, σ = 0.1, A = 0.45. (b) Sample paths
of Equation (1.3.11), describing a dynamic pitchfork bifurcation. The deterministic
solution (σ = 0) displays a bifurcation delay of order 1; noise decreases this delay
to order

p
ε|log σ|. Parameter values are ε = 0.02, σ = 0.02.

Example 1.3.2. Assume that λ = 0, and µ = µ(εs) = µ0+εs is slowly growing,
starting from some initial value µ0 < 0. The SDE in slow time thus reads

dxt =
1
ε

[
µ(t)xt − x3

t

]
dt+

σ√
ε

dWt . (1.3.11)

When µ(t) becomes positive, the potential changes from single-well to double-
well. In the deterministic case σ = 0, the system displays what is called bi-
furcation delay : Even if the initial condition x0 is nonzero, solutions approach
the bottom of the well at x = 0 exponentially closely. Thus, when µ(t) be-
comes positive, the solution continues to stay close to x = 0, which is now the
position of a saddle, for a time of order 1 before falling into one of the wells.

For positive noise intensity σ, the fluctuations around the saddle help
to push the paths away from it, which decreases the bifurcation delay. We
shall show in Section 3.4.2 that the delay in the presence of noise is of order√
ε|log σ| (Fig. 1.2b).
Another interesting situation arises when µ(t) remains positive but ap-

proaches zero periodically. Near the moments of low barrier height, sample
paths may reach the saddle with a probability that can approach 1. Owing to
the symmetry of the potential, upon reaching the saddle the process has prob-
ability 1/2 to settle for the other well. The coarse-grained interwell dynamics
thus resembles a Bernoulli process.

These examples already reveal some questions about the sample-path be-
haviour that we would like to answer:

• How long do sample paths remain concentrated near stable equilibrium
branches, that is, near the bottom of slowly moving potential wells?
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(a) (b)x

y

x�
0(y)

x�
−(y)

x�
+(y) x

y

x�
0(y)

x�
−(y)

x�
+(y)

Fig. 1.3. Sample paths of the van der Pol Equation (1.3.12) (a) with noise added
to the fast variable x, and (b) with noise added to the slow variable y. The heavy
curves have the equation y = x3−x. Parameter values are ε = 0.01 and (a) σ = 0.1,
(b) σ = 0.2.

• How fast do sample paths depart from unstable equilibrium branches, that
is, from slowly moving saddles?

• What happens near bifurcation points, when the number of equilibrium
branches changes?

• What can be said about the dynamics far from equilibrium branches?

In the two examples just given, the separation of slow and fast timescales
manifests itself in a slowly varying parameter, or a slow forcing. We now
mention two examples of slow–fast systems, in which the slow variables are
coupled dynamically to the fast ones.

Example 1.3.3 (Van der Pol oscillator). The deterministic slow–fast system

εẋ = x− x3 + y ,

ẏ = −x ,
(1.3.12)

describes the dynamics of an electrical oscillating circuit with a nonlinear
resistance.4 Small values of ε correspond to large damping. The situation
resembles the one of Example 1.3.1, except that the periodic driving is replaced
by a new dynamic variable y. The term x−x3+y can be considered as deriving
from the potential − 1

2x
2 + 1

4x
4 − yx, which has one or two wells depending

on the value of y. For positive x, y slowly decreases until the right-hand
well disappears, and x falls into the left-hand well. From there on, y starts
increasing again until the left-hand well disappears. The system thus displays
self-sustained periodic motions, so-called relaxation oscillations.

4See Example 2.1.6 for the more customary formulation of the van der Pol oscil-
lator as a second-order equation, and the time change yielding the above slow–fast
system.



1.4 Reader’s Guide 13

(a) (b)

y t

Fig. 1.4. Sample paths of the Fitzhugh–Nagumo Equation (1.3.13) with noise added
to the y-variable, (a) in the (y, x)-plane, and (b) in the (t, x)-plane. The curve
y = x3 − x and the line y = α − βx are indicated. Parameter values are ε = 0.03,
α = 0.27, β = 1 and σ = 0.03.

Adding noise to the system changes the shape and period of the cycles. In
particular, if noise is added to the fast variable x, paths may cross the curve
y = x3 − x, which results, as in Example 1.3.1, in smaller cycles (Fig. 1.3a).

Example 1.3.4 (Excitability). The Fitzhugh–Nagumo equations are a simplifi-
cation of the Hodgkin–Huxley equations modelling electric discharges across
cell membranes, and generalise the van der Pol equations. They can be written
in the form

εẋ = x− x3 + y ,

ẏ = α− βx− y .
(1.3.13)

The difference to the previous situation is that ẏ changes sign on the line βx =
α− y. Depending on how this line intersects the curve y = x3 −x, the system
admits a stable equilibrium point instead of a limit cycle. Noise, however, may
drive the system near the saddle–node bifurcation point, and induce a pulse,
before the system returns to equilibrium (Fig. 1.4). This phenomenon is called
excitability .

1.4 Reader’s Guide

The examples we just discussed show that the solutions of slow–fast SDEs
typically display an alternation of small fluctuations near and quick transi-
tions between attractors. The phases between transitions can last very long,
a characteristic feature of metastable systems. The invariant distribution of
the stochastic process, if existing, is not able to capture this non-equilibrium
behaviour.

In this book, we develop an approach to slow–fast SDEs based on a char-
acterisation of typical sample paths. We aim at constructing sets of optimal
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shape, in which the sample paths are concentrated for long time spans. Then
we proceed to characterise the distribution of first-exit times from these sets
by providing rather precise concentration estimates for the sample paths.

Our point of view will be to assume that the deterministic dynamics is
sufficiently well known, meaning for instance that we know the invariant sets of
the associated system, and have some information on their basins of attraction.
We are then interested in what happens when noise is added, particularly
when the noise intensity is such that the Kramers transition times and the
typical timescales of the deterministic system are of comparable length. We
are mainly interested in the following questions:

• What is the shape of the domains in which sample paths are concentrated
between transitions?

• What can we say about the distribution of waiting times between transi-
tions?

• How much time is required for a typical transition?
• When a transition occurs, where does it lead the system?
• Do certain quantities exhibit a scaling-law behaviour as a function of pa-

rameters such as ε, measuring the difference in timescales, and the noise
intensity σ? Is there an easy way to determine these scaling laws?

The approach we develop provides a very precise description in the case of
one-dimensional systems. For instance, we know that the probability to leave
the neighbourhood of a stable equilibrium branch grows linearly with time
during long time spans. In the general, n-dimensional case, the results are
not yet as precise: For instance, we only obtain upper and lower bounds on
the probability of leaving the neighbourhood of a stable slow manifold, with
different time-dependences. Moreover, we treat only some of the most generic
bifurcations.

We have endeavoured to present the material gradually, starting with sim-
pler particular cases before discussing the general case, and intermingling ab-
stract parts with more applied ones. Here is a brief overview of the contents
of the chapters.

• Chapter 2 contains an overview of the results on deterministic slow–fast
systems that will be needed in the sequel. We start by giving standard re-
sults on the motion near asymptotically stable slow manifolds, that is, near
collections of equilibrium points of the associated system. Then we discuss
the most generic dynamic bifurcations, which arise when a slow manifold
loses stability. Finally, we briefly describe the case of an associated system
admitting stable periodic orbits.

• Chapter 3 considers the effect of noise on a particular class of slow–fast
systems, namely one-dimensional equations with slowly varying parame-
ters. In this case, we can give precise estimates on the time spent by sample
paths near stable and unstable equilibrium branches. We then discuss in
detail the dynamic saddle–node, pitchfork and transcritical bifurcations
with noise.
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• Chapter 4 is concerned with a special case of such slowly-driven, one-
dimensional systems, namely systems which display stochastic resonance.
The first part of the chapter gives an overview of mathematical results
based on spectral theory, and on the theory of large deviations. In the
second part, we apply the methods of Chapter 3 to the synchronisation
regime, in which typical sample paths make regular transitions between
potential wells.

• In Chapter 5, we turn to the general case of multidimensional, fully cou-
pled slow–fast systems with noise. A substantial part of the discussion is
concerned with the dynamics near asymptotically stable slow manifolds.
We prove results on the concentration of sample paths in an explicitly
constructed neighbourhood of the manifold, and on the reduction of the
dynamics to an effective equation involving only slow variables. The re-
mainder of the chapter is concerned with the dynamics near periodic orbits,
and with dynamic bifurcations, in particular the Hopf bifurcation.

• Finally, Chapter 6 illustrates the theory by giving some applications to
problems from physics, biology, and climatology. In particular, we discuss
bistable models of the North-Atlantic thermohaline circulation, the phe-
nomena of excitability and bursting in neural dynamics, and the effect of
noise on hysteresis cycles in ferromagnets.

The appendices gather some information on stochastic processes as needed
for the purpose of the book. Appendix A gives a general introduction to
stochastic integration, Itô calculus, SDEs, and the related large-deviation es-
timates provided by the Wentzell–Freidlin theory. Appendix B collects some
useful inequalities, and Appendix C discusses some results on first-passage-
time problems for Gaussian processes.

The mathematical notations we use are rather standard, except for some
unavoidable compromises in the choice of symbols for certain variables. We
shall introduce the set-up in each chapter, as soon as it is first needed. The
list of symbols at the end of the book gives an overview of the most commonly
used notations, with the place of their first appearance.

Bibliographic Comments

The use of stochastic models as simplified descriptions of complex determinis-
tic systems is very widespread. However, its justification is a difficult problem,
which has so far only been solved in a number of particular situations:

• For systems coupled to a (classical) heat reservoir, the effective description
by a stochastic differential equation goes back to Ford, Kac and Mazur for a
linear model [FKM65], and was developed by Spohn and Lebowitz [SL77].
This approach has then been extended to more general nonlinear systems
(chains of nonlinear oscillators) in [EPRB99]; see, for instance, [RBT00,
RBT02] for recent developments.
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• For quantum heat reservoirs, the situation is still far from a complete
understanding. See, for instance, [Mar77, Att98, vK04] for different ap-
proaches.

• Another class of systems for which an effective stochastic description has
been proposed are slow–fast systems of differential equations. Khasmin-
skii [Kha66] seems to have been the first to suggest that the effect of
fast degrees of freedom on the dynamics of slow variables can be approxi-
mated by a noise term, an idea that Hasselmann applied to climate mod-
elling [Has76]. See, for instance, [Arn01, Kif03, JGB+03] for extensions of
these ideas.

Concerning the mathematical foundations of the theory of stochastic dif-
ferential equations, we refer to the bibliographical comments at the end of
Appendix A.

We mentioned different mathematical approaches to the description of
SDEs. A (very) partial list of references is the following:

• For large-deviation results for the solutions of SDEs, the standard reference
is the book by Freidlin and Wentzell [FW98], see also the corresponding
chapters in [DZ98].

• For a review of spectral-theoretic results, see, for instance, [Kol00].
• Precise relations between spectral properties of the generator, metastable

lifetimes, and potential theory for reversible diffusions have recently been
established in [BEGK04, BGK05], and [HKN04, HN05].

• Another approach to SDEs is based on the concept of random dynamical
systems, see [Arn98, Sch89].

Concerning deterministic slow–fast differential equations, we refer to the
bibliographical comments at the end of Chapter 2.
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Deterministic Slow–Fast Systems

A slow–fast system involves two kinds of dynamical variables, evolving on very
different timescales. The ratio between the fast and slow timescale is measured
by a small parameter ε. A slow–fast ordinary differential equation (ODE) is
customarily written in the form1

εẋ = f(x, y) ,
ẏ = g(x, y) ,

(2.0.1)

where the components of x ∈ R n are called fast variables, while those of y ∈
Rm are called slow variables. Rather than considering ε as a fixed parameter,
it is of interest to study how the dynamics of the system (2.0.1) depends on ε,
for all values of ε in an interval (0, ε0].

The particularity of a slow–fast ODE such as (2.0.1) is that, instead of
remaining a system of coupled differential equations in the limit ε → 0, it
becomes an algebraic–differential system. Such equations are called singularly
perturbed . Of course, it is always possible to convert (2.0.1) into a regular
perturbation problem: The derivatives x′ and y′ of x and y with respect to
the fast time s = t/ε satisfy the system

x′ = f(x, y) ,
y′ = εg(x, y) ,

(2.0.2)

which can be considered as a small perturbation of the associated system (or
fast system)

x′ = f(x, λ) , (2.0.3)

in which λ plays the rôle of a parameter. However, standard methods from per-
turbation theory only allow one to control deviations of the solutions of (2.0.2)

1In many applications, the right-hand side of (2.0.1) shows an explicit depen-
dence on ε. We refrain from introducing this set-up here, but refer to Remark 2.1.4
concerning an equivalent reformulation.
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from those of the associated system (2.0.3) for fast times s of order 1 at most,
that is, for t of order ε. The dynamics on longer timescales has to be described
by other methods, belonging to the field of singular perturbation theory .

The behaviour of the slow–fast system (2.0.1) is nonetheless strongly linked
to the dynamics of the associated system (2.0.3). We recall in this chapter
results from singular perturbation theory corresponding to the following sit-
uations.

• In Section 2.1, we consider the simplest situation, occurring when the
associated system admits a hyperbolic equilibrium point x�(λ) for all pa-
rameters λ in some domain. The set of all points (x�(y), y) is called a slow
manifold of the system. We state classical results by Tihonov and Fenichel
describing the dynamics near such a slow manifold.

• In Section 2.2, we consider situations in which a slow manifold ceases to be
hyperbolic, giving rise to a so-called dynamic bifurcation. These singular-
ities can cause new phenomena such as bifurcation delay, relaxation oscil-
lations, and hysteresis. We summarise results on the most generic dynamic
bifurcations, including saddle–node, pitchfork and Hopf bifurcations.

• In Section 2.3, we turn to situations in which the associated system ad-
mits a stable periodic orbit, depending on the parameter λ. In this case,
the dynamics of the slow variables is well approximated by averaging the
system over the fast motion along the periodic orbit.

We will not consider more difficult situations, arising for more complicated
asymptotic dynamics of the associated system (e.g., quasiperiodic or chaotic).
Such situations have been studied in the deterministic case, but the analysis
of their stochastic counterpart lies beyond the scope of this book.

2.1 Slow Manifolds

2.1.1 Definitions and Examples

We consider the slow–fast system (2.0.1), where we assume that f and g
are twice continuously differentiable in a connected, open set D ⊂ R n ×
Rm. The simplest situation occurs when the associated system admits one or
several hyperbolic equilibrium points, i.e., points on which f vanishes, while
the Jacobian matrix ∂xf of x �→ f(x, λ) has no eigenvalue on the imaginary
axis. Collections of such points define slow manifolds of the system. More
precisely, we will distinguish between the following types of slow manifolds:

Definition 2.1.1 (Slow manifold). Let D0 ⊂ Rm be a connected set of
nonempty interior, and assume that there exists a continuous function x� :
D0 → R n such that (x�(y), y) ∈ D and

f(x�(y), y) = 0 (2.1.1)
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for all y ∈ D0. Then the set M = {(x, y) : x = x�(y), y ∈ D0} is called a slow
manifold of the system (2.0.1).

Let A�(y) = ∂xf(x�(y), y) denote the stability matrix of the associated
system at x�(y). The slow manifold M is called

• hyperbolic if all eigenvalues of A�(y) have nonzero real parts for all y ∈
D0;

• uniformly hyperbolic if all eigenvalues of A�(y) have real parts which are
uniformly bounded away from zero for y ∈ D0;

• asymptotically stable if all eigenvalues of A�(y) have negative real parts
for all y ∈ D0;

• uniformly asymptotically stable if all eigenvalues of A�(y) have negative
real parts which are uniformly bounded away from zero for y ∈ D0.

Finally, a hyperbolic slow manifold M is called unstable if at least one of
the eigenvalues of the stability matrix A�(y) has positive real part for some
y ∈ D0.

In the particular case of a one-dimensional slow variable, a slow mani-
fold is also called equilibrium branch (the terminology comes from bifurcation
theory). The graph of all equilibrium branches versus y is called bifurcation
diagram.

In the adiabatic limit ε → 0, the dynamics on the slow manifold is de-
scribed by the so-called reduced system (or slow system)

ẏ = g(x�(y), y) . (2.1.2)

However, it remains yet to be proved that the reduced system indeed gives a
good approximation of the original system’s dynamics. Before developing the
general theory, let us consider a few examples.

Example 2.1.2 (Slowly varying parameters). Consider a dynamical system

x′ = fµ(x) , (2.1.3)

depending on a set of parameters µ ∈ R p (the prime always indicates deriva-
tion with respect to a fast time s). In an experimental set-up, it is often
possible to modify one or several parameters at will, for instance an energy
supply, an adjustable resistor, etc. Modifying parameters sufficiently slowly (in
comparison to the relaxation time of the system) may allow measurements for
different parameter values to be taken in the course of a single experiment.
This procedure can be described mathematically by setting µ = h(εs), for a
given function h : R → R p. Introducing the slow time t = εs, one arrives at
the slow–fast system

εẋ = fh(y)(x) =: f(x, y) ,
ẏ = 1 .

(2.1.4)
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Equation (2.1.3) is of course the associated system of (2.1.4). If fµ vanishes
on some set of equilibrium points x = x�µ, then the slow manifold is given by
the equation x = x�h(y) =:x�(y). Note that the reduced dynamics is trivial,
since it is always given by the equation ẏ = 1.

Example 2.1.3 (Overdamped motion of a particle in a potential). The dynam-
ics of a particle in R d, subject to a field of force deriving from a potential
U(x), and a viscous drag, is governed by the second-order equation

x′′ + γx′ + ∇U(x) = 0 . (2.1.5)

One possible way to write this equation as a first-order system is

x′ = γ(y − x) ,

y′ = − 1
γ
∇U(x) .

(2.1.6)

Let us assume that the friction coefficient γ is large, and set ε = 1/γ2. With
respect to the slow time t =

√
εs, the dynamics is governed by the slow–fast

system

εẋ = y − x ,

ẏ = −∇U(x) .
(2.1.7)

The slow manifold is given by x�(y) = y. The stability matrix being simply
A∗(y) ≡ −1l, the slow manifold is uniformly asymptotically stable, and the
reduced dynamics is governed by the equation

ẏ = −∇U(y) , (2.1.8)

or, equivalently, ẋ = −∇U(x). This relation is sometimes called Aristotle’s
law , since it reflects the fact that at large friction, velocity is proportional to
force, as if inertia were absent.

Remark 2.1.4. For simplicity, we assumed in (2.0.1) that the right-hand side
does not explicitly depend on ε. This is no real constraint as we can always
introduce a dummy variable for ε. We rewrite the slow–fast system

εẋ = f(x, y, ε) ,
ẏ = g(x, y, ε) ,

(2.1.9)

as

εẋ = f(x, y, z) ,
ẏ = g(x, y, z) ,
ż = 0 ,

(2.1.10)

and consider z as an additional slow variable. Thus slow manifolds for (2.1.9)
are of the form x�(y, ε).2

2Some authors do not allow for ε-dependent slow manifolds and consider x�(y, 0),
obtained by setting ε = 0, as the slow manifold.
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The following example provides an application with ε-dependent right-
hand side.

Example 2.1.5 (Stommel’s box model). Simple climate models, whose dynamic
variables are averaged values of physical quantities over some large volumes,
or boxes, are called box models. Stommel’s model gives a simple qualitative
description of the North Atlantic thermohaline circulation. The fast variable is
proportional to the temperature difference between a low- and a high-latitude
box, and the slow variable is proportional to the salinity difference (see Sec-
tion 6.2 for a more detailed description). Their dynamics is governed by the
system

εẋ = −(x− 1) − εxQ(x− y) ,
ẏ = µ− yQ(x− y) ,

(2.1.11)

where the small parameter ε reflects the fact that the relaxation time for
the temperature difference is much shorter than the one for the salinity
difference. The parameter µ is proportional to the freshwater flux, while
the function Q describes the Fickian mass exchange. Typical choices are
Q(z) = 1 + η|z| [Sto61]3 or Q(z) = 1 + η2z2 [Ces94], where η, which depends
on the volume of the boxes, is of order one.

The slow manifold is of the form x�(y, ε) = 1−εQ(1−y)+O(ε2) for small
ε and y from a bounded set, and is obviously uniformly asymptotically stable.
The reduced dynamics is given by an equation of the form

ẏ = µ− yQ(1 − y) + O(ε) . (2.1.12)

For the above-mentioned choices of Q, depending on the values of µ and η,
there can be up to three equilibrium points, one of which is unstable.

Example 2.1.6 (Van der Pol oscillator). The van der Pol oscillator is an elec-
tric circuit including a current-dependent resistor (see Section 6.1.2). Its
(scalar) equation is

x′′ + γ(x2 − 1)x′ + x = 0 . (2.1.13)

For γ = 0, it reduces to an harmonic oscillator. For large γ, however, the
dynamics becomes very far from harmonic. Proceeding as in Example 2.1.3,
(2.1.13) can be transformed into the slow–fast system

εẋ = y + x− x3

3
,

ẏ = −x ,
(2.1.14)

where again ε = 1/γ2 and t =
√
εs. The associated system has up to three

equilibria, and the slow manifold is a curve, given implicitly by the equation
3Note that Stommel’s choice of Q does not satisfy our differentiability assump-

tion. Since left and right derivatives exist, the system can nevertheless be studied
by patching together solutions for x < y and x > y.
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Fig. 2.1. Behaviour of the van der Pol equation in the singular limit ε → 0 :
(a) the reduced dynamics (2.1.17) on the slow manifold, (b) the fast dynamics of
the associated system x′ = y + x − 1

3
x3.

x3/3 − x = y. The stability matrix, which is a scalar in this case, has value
1−x2, showing that points with |x| > 1 are stable while points with |x| < 1 are
unstable. The slow manifold is thus divided into three equilibrium branches
(Fig. 2.1),

x�− : (−∞, 2
3 ) → (−∞,−1) ,

x�0 : (− 2
3 ,

2
3 ) → (−1, 1) , (2.1.15)

x�+ : (− 2
3 ,∞) → (1,∞) ,

meeting at two bifurcation points ±(1,− 2
3 ).

The reduced system is best expressed with respect to the variable x. Since
on the slow manifold one has

−x = ẏ = (x2 − 1)ẋ , (2.1.16)

the reduced dynamics is governed by the equation

ẋ = − x

x2 − 1
, (2.1.17)

which becomes singular in x = ±1. We will see below (Example 2.2.3 in
Section 2.2.2) that the true dynamics for ε > 0 involves relaxation oscillations,
in which slow and fast motions alternate (Fig. 2.5).

2.1.2 Convergence towards a Stable Slow Manifold

The first results showing that the reduced equation on a slow manifold may
indeed give a good approximation to the full dynamics are due to Tihonov
[Tih52] and Gradštĕın [Gra53]. In particular, the following theorem on expo-
nentially fast convergence of solutions to an ε-neighbourhood of a uniformly
asymptotically stable slow manifold is contained in their results.
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Fig. 2.2. Two orbits approaching a uniformly asymptotically stable slow manifold.

Theorem 2.1.7 (Convergence towards a slow manifold). Let M =
{(x, y) : x = x�(y), y ∈ D0} be a uniformly asymptotically stable slow manifold
of the slow–fast system (2.0.1). Let f and g, as well as all their derivatives up
to order two, be uniformly bounded in norm in a neighbourhood N of M. Then
there exist positive constants ε0, c0, c1, κ = κ(n),M such that, for 0 < ε � ε0
and any initial condition (x0, y0) ∈ N satisfying ‖x0−x�(y0)‖ � c0, the bound

‖xt − x�(yt)‖ � M‖x0 − x�(y0)‖e−κt/ε + c1ε (2.1.18)

holds as long as yt ∈ D0.

This result shows that after a time of order ε|log ε|, all orbits starting
in a neighbourhood of order 1 of the slow manifold M will have reached
a neighbourhood of order ε, where they stay as long as the slow dynamics
permits (Fig. 2.2). This phenomenon is sometimes called “slaving principle”
or “adiabatic reduction”.

A simple proof of Theorem 2.1.7 uses Lyapunov functions. Since, for any
y ∈ D0, x�(y) is an asymptotically stable equilibrium point of the associated
system, there exists a Lyapunov function x �→ V (x, y), admitting a non-
degenerate minimum in x�(y), with V (x�(y), y) = 0, and satisfying

〈∇xV (x, y), f(x, y)〉 � −2κV (x, y) (2.1.19)

in a neighbourhood of x�(y), see, e.g., [Arn92, § 22]. One can choose V (·, y) to
be a quadratic form in x−x�(y), with V (x, y)/‖x−x�(y)‖2 uniformly bounded
above and below by positive constants. Taking into account the y-dependence
of V and x�, one arrives at the relation

ε
d
dt
V (xt, yt) =: εV̇t � −2κVt + const ε

√
Vt , (2.1.20)

which implies (2.1.18).
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2.1.3 Geometric Singular Perturbation Theory

While Tihonov’s theorem is useful to describe the orbits’ approach to a small
neighbourhood of a uniformly asymptotically stable slow manifold, it does not
provide a very precise picture of the dynamics in this neighbourhood. Fenichel
has initiated a geometrical approach [Fen79], which allows for a description
of the dynamics in terms of invariant manifolds. The simplest result of this
kind concerns the existence of an invariant manifold near a hyperbolic (not
necessarily stable) slow manifold.

Theorem 2.1.8 (Existence of an adiabatic manifold). Let the slow man-
ifold M = {(x, y) : x = x�(y), y ∈ D0} of the slow–fast system (2.0.1) be uni-
formly hyperbolic. Then there exists, for sufficiently small ε, a locally invariant
manifold

Mε = {(x, y) : x = x̄(y, ε), y ∈ D0} , (2.1.21)

where x̄(y, ε) = x�(y) + O(ε). In other words, if the initial condition is taken
on Mε, that is, x0 = x̄(y0, ε), then xt = x̄(yt, ε) as long as yt ∈ D0.

We shall call Mε an adiabatic manifold . The dynamics on Mε is governed
by the equation

ẏ = g(x̄(y, ε), y) , (2.1.22)

which reduces to (2.1.2) in the limit ε → 0. By extension, we also call it
reduced system. The deviations from the limiting system can now be treated
by standard methods of regular perturbation theory.

Fenichel has in fact proved more general results, in particular on the exis-
tence of invariant manifolds associated with the stable and unstable manifolds
of a family of hyperbolic equilibria of the fast system. These results, together
with their many refinements, are known as geometric singular perturbation
theory . See, for instance, [Jon95] for a review.

Theorem 2.1.8 can be proved by using the centre-manifold theorem (see, for
instance, [Car81]). Indeed, by again viewing ε as a dummy dynamic variable,
and using the fast time s = t/ε, the slow–fast system can be rewritten as

x′ = f(x, y) ,
y′ = εg(x, y) ,
ε′ = 0 .

(2.1.23)

Any point of the form (x�(y), y, 0) is an equilibrium point of this system.4

The linearisation of (2.1.23) around such a point has the structure⎛⎝A�(y) ∂yf(x�(y), y) 0
0 0 g(x�(y), y)
0 0 0

⎞⎠ . (2.1.24)

4There might also exist equilibrium points (x�(y), y, ε) with ε > 0, namely if
g(x�(y), y) = 0. At these points, slow and adiabatic manifold cöıncide for all ε.
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Fig. 2.3. An adiabatic manifold Mε associated with a uniformly asymptotically
stable slow manifold. Orbits starting in its vicinity converge exponentially fast to
an orbit on the adiabatic manifold.

Hence it admits m + 1 vanishing eigenvalues, while the eigenvalues of A�(y)
are bounded away from the imaginary axis by assumption. Thus the centre-
manifold theorem (cf. [Car81, Theorem 1, p. 4]) implies the existence of an
invariant manifold.

Two important properties of centre manifolds carry over to this special
case. Firstly, if the slow manifold M is uniformly asymptotically stable, then
the centre manifold Mε is locally attractive, cf. [Car81, Theorem 2, p. 4]. This
means that for each initial condition (x0, y0) sufficiently close to Mε, there
exists a particular solution ŷt of the reduced equation (2.1.22) such that

‖(xt, yt) − (x̂t, ŷt)‖ � M‖(x0, y0) − (x̂0, ŷ0)‖e−κt/ε (2.1.25)

for some M,κ > 0, where x̂t = x̄(ŷt, ε). Thus, after a short time, the orbit
(xt, yt) has approached an orbit on the invariant manifold.

The second property concerns approximations of x̄(y, ε). Using invariance,
one easily sees from (2.0.1) that x̄(y, ε) must satisfy the partial differential
equation

ε∂yx̄(y, ε)g(x̄(y, ε), y) = f(x̄(y, ε), y) . (2.1.26)

This equation is difficult to solve in general. However, the approximation the-
orem for centre manifolds (cf. [Car81, Theorem 3, p. 5]) states that, if f and g
are sufficiently differentiable, then any power series in ε or y, satisfying (2.1.26)
to order εk or yk, is indeed an approximation of x̄(y, ε) to that order. It is
thus possible to construct an approximate solution of (2.1.26) by inserting a
power series in ε and equating like powers. The first orders of the expansion
in ε are

x̄(y, ε) = x�(y) + εA�(y)−1∂yx
�(y)g(x�(y), y) + O(ε2)

= x�(y) − εA�(y)−2∂yf(x�(y), y)g(x�(y), y) + O(ε2) , (2.1.27)
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where the last line follows from the implicit-function theorem, applied to the
equation f(x�(y), y) = 0.

Example 2.1.9 (Overdamped motion of a particle in a potential – continued).
Consider again the slow–fast system of Example 2.1.3. The adiabatic manifold
satisfies the equation

ε∂yx̄(y, ε)∇U(x̄(y, ε)) = −y + x̄(y, ε) , (2.1.28)

and admits the expansion

x̄(y, ε) = y + ε∇U(y) + 2ε2∂yyU(y)∇U(y) + O(ε3) , (2.1.29)

where ∂yyU(y) denotes the Hessian matrix of U . The dynamics of x = x̄(y, ε)
on the adiabatic manifold is thus governed by the equation

ẋ =
y − x

ε
= −∂yx̄(y, ε)∇U(x)

= −
[
1l + ε∂xxU(x) + O(ε2)

]
∇U(x) . (2.1.30)

This is indeed a small correction to the limiting equation ẋ = −∇U(x).

One should note two facts concerning the power-series expansion of adi-
abatic manifolds, in the case where the fast and slow vector fields f and g
are analytic. First, centre manifolds are in general not unique. However, all
centre manifolds of a non-hyperbolic equilibrium share the same expansions,
and thus differ typically only by exponentially small terms. Second, although
these expansions are asymptotic expansions, they do not in general provide
convergent series.

Example 2.1.10. Consider the slow–fast system

εẋ = −x+ h(y) ,
ẏ = 1 ,

(2.1.31)

where h is analytic. The slow manifold is given by x�(y) = h(y) and is uni-
formly asymptotically stable. The adiabatic manifold satisfies the equation

ε∂yx̄(y, ε) = −x̄(y, ε) + h(y) , (2.1.32)

and admits the asymptotic expansion

x̄(y, ε) = h(y) − εh′(y) + ε2h′′(y) − . . . . (2.1.33)

This series will not converge in general, since the norm of the kth derivative
of h may grow like k! by Cauchy’s formula. In fact, (2.1.31) admits for each k
the particular solution



2.2 Dynamic Bifurcations 27

xt =
k−1∑
j=0

(−ε)jh(j)(yt) − (−ε)k−1

∫ t

0

e−(t−s)/εh(k)(ys) ds . (2.1.34)

If |h| is bounded by a constant M in a strip of width 2R around the real axis,
Cauchy’s formula shows that |h(k)| � MR−kk!, and the last term in (2.1.34) is
bounded by (ε/R)kMk!. Using Stirling’s formula, one finds that this remain-
der is smallest for k � R/ε, and that for this value of k it is of order e−1/ε.
This situation is quite common in analytic singularly perturbed systems.

2.2 Dynamic Bifurcations

An essential assumption in the previous section was the (uniform) hyperbol-
icity of the slow manifold, that is, the fact that no eigenvalue of the Jacobian
matrix A�(y) = ∂xf(x�(y), y) approaches the imaginary axis. It can happen,
however, that the slow dynamics of y on the adiabatic manifold takes the orbit
to a region where this assumption is violated, that is, to a bifurcation point
of the associated system. We have seen such a situation in the case of the van
der Pol oscillator (Example 2.1.6), where the points ±(1,− 2

3 ) correspond to
saddle–node bifurcations.

We will start, in Section 2.2.1, by showing how the dynamics near such a
bifurcation point can be reduced to a suitable centre manifold, involving only
bifurcating directions. Then we turn to a detailed description of the most
generic bifurcations.

2.2.1 Centre-Manifold Reduction

We say that (x̂, ŷ) is a bifurcation point of the slow–fast system

εẋ = f(x, y) ,
ẏ = g(x, y) ,

(2.2.1)

if f(x̂, ŷ) = 0 and ∂xf(x̂, ŷ) has q eigenvalues on the imaginary axis, with
1 � q � n. We consider here the situation where q < n, because otherwise no
reduction is possible, and assume that the other n−q eigenvalues of ∂xf(x̂, ŷ)
have strictly negative real parts (in order to obtain a locally attracting invari-
ant manifold).

We introduce coordinates (x−, z) ∈ R n−q × R q in which the matrix
∂xf(x̂, ŷ) becomes block-diagonal, with a block A− ∈ R (n−q)×(n−q) having
eigenvalues in the left half-plane, and a block A0 ∈ R q×q having eigenvalues
on the imaginary axis. We consider again ε as a dummy dynamic variable,
and write the system in slow time as
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(x−)′ = f−(x−, z, y) ,

z′ = f0(x−, z, y) ,

y′ = εg(x−, z, y) ,
ε′ = 0 .

(2.2.2)

This system admits (x̂−, ẑ, ŷ, 0) as an equilibrium point, with a linearisation
having q + m + 1 eigenvalues on the imaginary axis (counting multiplicity),
which correspond to the directions z, y and ε. In other words, z has become
a slow variable near the bifurcation point. We can thus apply the centre-
manifold theorem to obtain the existence, for sufficiently small ε and in a
neighbourhood N of (ẑ, ŷ), of a locally attracting invariant manifold

M̂ε = {(x−, z, y) : x− = x̄−(z, y, ε), (z, y) ∈ N} . (2.2.3)

The function x̄−(z, y, ε) satisfies x̄−(ẑ, ŷ, 0) = x̂−, and is a solution of the
partial differential equation

f−(x̄−(z, y, ε), z, y) = ∂zx̄
−(z, y, ε)f0(x̄−(z, y, ε), z, y)

+ ε∂yx̄
−(z, y, ε)g(x̄−(z, y, ε), z, y) . (2.2.4)

In particular, x̄−(z, y, 0) corresponds to a centre manifold of the associated
system.

By local attractivity, it is sufficient to study the (q +m)-dimensional re-
duced system

εż = f0(x̄−(z, y, ε), z, y) ,

ẏ = g(x̄−(z, y, ε), z, y) ,
(2.2.5)

which contains only bifurcating fast variables.

2.2.2 Saddle–Node Bifurcation

Assume that ∂xf(x̂, ŷ) has one vanishing eigenvalue, all its other eigenvalues
having negative real parts, that is, q = 1. The most generic bifurcation then
is the saddle–node bifurcation.

We will ease notations by choosing x̂ = 0 and ŷ = 0, writing x instead
of z, and omitting the ε-dependence on the right-hand side of (2.2.5).5 We
thus arrive at the reduced system

εẋ = f̃(x, y) ,
ẏ = g̃(x, y) ,

(2.2.6)

5This ε-dependence is harmless for the saddle–node bifurcation, which is struc-
turally stable, but may play a nontrivial rôle for less generic bifurcations. We will
examine examples of such situations, involving avoided bifurcations, in Chapter 4.
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where now x ∈ R . With a slight abuse of notation we also drop the tilde and
write (2.2.6) as

εẋ = f(x, y) ,
ẏ = g(x, y) .

(2.2.7)

The fast vector field f satisfies the bifurcation conditions

f(0, 0) = 0 and ∂xf(0, 0) = 0 . (2.2.8)

We will discuss here the case of a one-dimensional slow variable y ∈ R , that
is, m = 1, as for the van der Pol oscillator in Example 2.1.6. A saddle–node
bifurcation occurs if

∂xxf(0, 0) �= 0 and ∂yf(0, 0) �= 0 . (2.2.9)

For the sake of definiteness, we will choose the variables in such a way that

∂xxf(0, 0) < 0 and ∂yf(0, 0) < 0 (2.2.10)

hold. This implies in particular that the slow manifold exists for y < 0. Finally,
the additional assumption

g(0, 0) > 0 (2.2.11)

guarantees that trajectories starting near the stable slow manifold are driven
towards the bifurcation point. The simplest example of this kind is the system

εẋ = −x2 − y ,

ẏ = 1 ,
(2.2.12)

where the slow manifold consists of a stable branch M− = {(x, y) : x =√−y, y < 0} and an unstable branch M+ = {(x, y) : x = −√−y, y < 0}.
The linearisation of f at these branches is given by ∓2

√−y.
For general systems satisfying (2.2.8), (2.2.10) and (2.2.11), a qualitatively

similar behaviour holds in a neighbourhood of the bifurcation point (0, 0). By
rescaling x and y, we may arrange for

∂xxf(0, 0) = −2 and ∂yf(0, 0) = −1 . (2.2.13)

Using the implicit-function theorem, one easily shows that there exists a neigh-
bourhood N of (0, 0) such that

• there is an asymptotically stable slow manifold

M− = {(x, y) ∈ N : x = x�−(y), y < 0} , (2.2.14)

where x�−(y) =
√−y [1 + Oy(1)], and Oy(1) stands for a remainder r(y)

satisfying limy→0 r(y) = 0;
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(a) (b)

ε2/3

ε1/3

x�
+(y)

(yt, xt)

x�
−(y)

x

y1

y2

M−

M+

Fig. 2.4. Saddle–node bifurcation of a slow manifold. (a) Solutions track the stable
branch x�

−(y) at a distance growing up to order ε1/3. They jump after a delay of
order ε2/3. (b) For multidimensional slow variables y, a saddle–node bifurcation
corresponds to a fold in the slow manifold.

• the linearisation of f at M− is given by

a�−(y) := ∂xf(x�−(y), y) = −2
√
−y [1 + Oy(1)] ; (2.2.15)

• there is an unstable slow manifold

M+ = {(x, y) ∈ N : x = x�+(y), y < 0} , (2.2.16)

where x�+(y) = −√−y [1 + Oy(1)];
• there are no other slow manifolds in N ;
• g(x, y) > 0 in N .

M− being uniformly asymptotically stable for negative y, bounded away
from 0, there is an adiabatic manifold associated with it which, in this (1 + 1)–
dimensional setting, is simply a particular solution of the system. When ap-
proaching the bifurcation point, two effects make it increasingly difficult for
this solution to track the slow manifold:

• The stable manifold M− becomes less and less attracting,
• and M− has a vertical tangent at the bifurcation point.

The interesting consequence is that trajectories no longer track the stable
manifold at a distance of order ε, but of order ε1/3. After a delay of order ε2/3,
they leave the neighbourhood N in the direction of negative x-values (Fig. 2.4).
The following notation will be useful to formulate such scaling laws.

Notation 2.2.1 (Scaling behaviour). For functions x1(t, ε) and x2(t, ε),
defined for t in a specified interval I and 0 < ε � ε0, we indicate by

x1(t, ε) � x2(t, ε) (2.2.17)

the existence of two constants c± > 0 such that
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c−x2(t, ε) � x1(t, ε) � c+x2(t, ε) (2.2.18)

for all t ∈ I and 0 < ε � ε0.

For instance, we have x�−(y) � √−y and a�−(y) � −√−y. The announced
behaviour of the orbits is made precise in the following theorem.

Theorem 2.2.2 (Dynamic saddle–node bifurcation). Choose an initial
condition (x0, y0) ∈ N with constant y0 < 0 and an x0 satisfying x0−x�−(y0) �
ε. Then there exist constants c1, c2 > 0 such that

xt − x�−(yt) � ε

|yt|
for y0 � yt � −c1ε2/3 , (2.2.19)

xt � ε1/3 for −c1ε2/3 � yt � c2ε
2/3 . (2.2.20)

Moreover, for any sufficiently small constant L > 0, xt reaches −L at a time
t(L) such that yt(L) � ε2/3.

Proof. Since ẏ > 0 in N by assumption, we may use y instead of t as time
variable, and study the equation

ε
dx
dy

=
f(x, y)
g(x, y)

=: f̄(x, y) . (2.2.21)

It is straightforward to check that f̄ satisfies the same properties (2.2.8)
and (2.2.10) as f (before rescaling), and therefore, it is sufficient to study
the slow–fast system (2.2.7) for g ≡ 1. Again we may assume by rescaling x
and y that (2.2.13) holds.

• For y � −c1ε2/3, where c1 remains to be chosen, we use the change of
variables x = x�−(y) + z and a Taylor expansion, yielding the equation

ε
dz
dy

= a�−(y)z + b(z, y) − ε
dx�−(y)

dy
, (2.2.22)

where |b(z, y)| � Mz2 in N for some constant M . The properties of x�−(y)
and a�−(y), cf. (2.2.14) and (2.2.15), imply the existence of constants c± > 0
such that

ε
dz
dy

� −
√
−y

[
c− − M√−y z

]
z + ε

c+√−y . (2.2.23)

We now introduce the time

τ = inf
{
t � 0: (xt, yt) �∈ N or |zt| >

c−
2M

√
−yt

}
∈ (0,∞] . (2.2.24)

Note that τ > 0 for sufficiently small ε, since −y0 is of order 1 and z0 is
of order ε by assumption. For t � τ , we have
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ε
dz
dy

� −c−
2

√
−y z + ε

c+√−y , (2.2.25)

and thus, solving a linear equation,

zt � z0e−c−[(−y0)3/2−(−yt)
3/2]/3ε

+ c+

∫ yt

y0

1√
−u

e−c−[(−u)3/2−(−yt)
3/2]/3ε du , (2.2.26)

as long as t � τ and yt < 0. The integral can be evaluated by a variant of
the Laplace method, see Lemma 2.2.8 below. We obtain the existence of a
constant K = K(c−, c+) such that

zt � K
ε

|yt|
(2.2.27)

for t � τ and yt < 0. We remark in passing that the corresponding argu-
ment for the lower bound in particular shows that zt > 0.
Now choosing c1 = (3KM/c−)2/3, we find that for all t � τ satisfying yt �
−c1ε2/3, we also have zt � c−

√−yt/3M , so that actually t < τ whenever
yt � −c1ε2/3. Thus (2.2.27) holds for all t satisfying yt � −c1ε2/3, which
proves the upper bound in (2.2.19). The lower bound is obtained in a
similar way.

• For −c1ε2/3 � yt � c2ε
2/3, where c2 will be chosen below, we use the fact

that we rescaled x and y in such a way that

f(x, y) = −x2 − y + O(y) + O(x2) (2.2.28)

holds. The subsequent scaling x = ε1/3z, y = ε2/3s thus yields the equation

dz
ds

= −z2 − s+ Oε(1) , (2.2.29)

which is a small perturbation of a solvable Riccati equation. In fact, setting
z(s) = ϕ′(s)/ϕ(s) in (2.2.29) without the error term yields the linear
second order equation ϕ′′(s) = −sϕ(s), whose solution can be expressed
in terms of Airy functions.
In particular, there exist constants c3 > c2 > 0 such that z(s) remains
positive, of order 1, for s � c2, and reaches negative values of order 1 for
s = c3. Returning to the variables (x, y), we conclude that (2.2.20) holds,
and that xt � −ε1/3 as soon as yt = c3ε

2/3.
• For yt � c3ε

2/3, the trivial estimate f(x, y) � −(1−κ)x2 can be employed
to show that xt reaches any negative value of order 1 after yet another
time span of order ε2/3, which concludes the proof. ��
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(a) (b)x

y t

Fig. 2.5. (a) Two solutions of the van der Pol equations (2.1.13) (light curves) for
the same initial condition (1, 1

2
), for γ = 5 and γ = 20. The heavy curve is the slow

manifold y = 1
3
x3 − x. (b) The graph of xt (again for γ = 20) displays relaxation

oscillations.

Example 2.2.3 (Van der Pol oscillator – continued). As already mentioned,
the system

εẋ = y + x− x3

3
,

ẏ = −x ,
(2.2.30)

admits two saddle–node bifurcation points ±(1,− 2
3 ). Consider an orbit start-

ing near the stable slow manifold x = x�+(y). This orbit will approach an
ε-neighbourhood of the slow manifold in a time of order ε|log ε|. Since ẏ < 0
for positive x, the bifurcation point (1,− 2

3 ) is reached in a time of order 1.
Theorem 2.2.2, applied to the variables (x− 1,−(y + 2

3 )), shows that xt
“jumps” as soon as yt has reached a value − 2

3 − O(ε2/3). Once the orbit has
left a small neighbourhood of the bifurcation point, f is negative and bounded
away from zero. Solutions of the associated system x′ = y + x − x3

3 enter a
neighbourhood of order 1 of the slow manifold x = x�−(y) in a fast time of
order 1, while y changes only by O(ε) during the same (fast) time, so that by
an argument of regular perturbation theory, xt also approaches x�−(yt) in a
time of order ε.

We can then apply the same analysis as before, showing that the orbit
tracks the branch x = x�−(y) until reaching the bifurcation point (−1, 2

3 )
and jumping back to the first branch. In fact, using a Poincaré section and
the exponential contraction near adiabatic manifolds, one easily shows that
orbits approach a periodic orbit. (This is known to hold for any value of the
damping coefficient.) The resulting trajectory displays alternating slow and
fast motions, called relaxation oscillations (Fig. 2.5).

Similar phenomena have been analysed for more general systems, including
multidimensional slow variables. The difference is that, the Poincaré map no
longer being one-dimensional, orbits do not necessarily approach a periodic
one. A detailed analysis of such situations is given in [MR80] and [MKKR94].
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2.2.3 Symmetric Pitchfork Bifurcation and Bifurcation Delay

We consider the reduced slow–fast system

εẋ = f(x, y) ,
ẏ = g(x, y) ,

(2.2.31)

for x, y ∈ R , again under the assumptions

f(0, 0) = ∂xf(0, 0) = 0 and g(0, 0) > 0 . (2.2.32)

In this section we assume that f and g are of class C3. If, unlike in the
case of the saddle–node bifurcation, ∂xxf(0, 0) vanishes, several new kinds
of bifurcations can occur. These bifurcations are not generic, unless f and g
are restricted to belong to some smaller function space, for instance functions
satisfying certain symmetry conditions. We consider here the case where f is
odd in x and g is even in x:

f(−x, y) = −f(x, y) and g(−x, y) = g(x, y) (2.2.33)

for all (x, y) in a neighbourhood N of (0, 0). We say that a supercritical sym-
metric pitchfork bifurcation occurs at (0, 0) if

∂xyf(0, 0) > 0 and ∂xxxf(0, 0) < 0 . (2.2.34)

The simplest example of such a system is

εẋ = yx− x3 ,

ẏ = 1 .
(2.2.35)

The line x = 0 is a slow manifold, which changes from stable to unstable as y
changes from negative to positive. For positive y, there are two new branches
of the slow manifold, of equation x = ±√

y, which are stable (Fig. 2.6).
Similar properties hold for general systems satisfying (2.2.32), (2.2.33) and

(2.2.34). By rescaling x and y, one can always arrange for ∂xyf(0, 0) = 1 and
∂xxxf(0, 0) = −6. It is then straightforward to show that in a sufficiently
small neighbourhood N of (0, 0),

• all points on the line x = 0 belong to a slow manifold, with stability
“matrix”

∂xf(0, y) =: a(y) = y [1 + O(y)] , (2.2.36)

and thus the manifold is stable for y < 0 and unstable for y > 0, provided
N is small enough;

• there are two other stable slow manifolds of the form {x = ±x�(y), y > 0},
where x�(y) =

√
y[1 + Oy(1)]; the linearisation of f at these manifolds

satisfies
∂xf(±x�(y), y) =: a�(y) = −2y[1 + Oy(1)] ; (2.2.37)
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y0 Π(y0)

x�(y)

−x�(y)

(yt, xt)

Fig. 2.6. Dynamic pitchfork bifurcation. Solutions starting in (x0, y0) with x0 > 0
and y0 < 0 track the unstable manifold {x = 0, y > 0} until yt = Π(y0), before
jumping to the stable branch x�(y).

• there are no other slow manifolds in N ;
• g(x, y) > 0 in N .

Consider now an orbit starting in (x0, y0) ∈ N , with x0 > 0 and y0 <
0. It reaches an ε-neighbourhood of the slow manifold in x = 0 in a time
of order ε|log ε|. The new feature in this situation is that xt ≡ 0 is itself
a particular solution of (2.2.31), and thus the slow manifold is actually an
adiabatic manifold. For this reason, xt approaches 0 exponentially closely,
and when the slow manifold becomes unstable at y = 0, a time of order 1
is needed for xt to move away from 0 and approach x�(yt) (Fig. 2.6). This
phenomenon is known as bifurcation delay .

In order to quantify this delay, one can define, for negative y0 such that
(0, y0) ∈ N , a bifurcation delay time

Π(y0) = inf
{
y1 > 0:

∫ y1

y0

a(y)
g(0, y)

dy > 0
}
. (2.2.38)

In the particular case of the system (2.2.35), Π(y0) = −y0. In the general case,
one easily sees that Π(y0) = −y0 + O(y2

0). The following theorem states that
trajectories starting in (x0, y0) ∈ N track the line x = 0 approximately until
yt = Π(y0).

Theorem 2.2.4 (Dynamic pitchfork bifurcation). Let ε and N be suffi-
ciently small, and choose an initial condition (x0, y0) ∈ N such that x0 > 0
and y0 < 0. Then there exist c1 > 0 and

y1 = y0 + O(ε|log ε|) ,
y2 = Π(y0) − O(ε|log ε|) , (2.2.39)
y3 = y2 + O(ε|log ε|) ,

such that
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0 � xt � ε for y1 � yt � y2 , (2.2.40)
|xt − x�(yt)| � c1ε for yt � y3 , (2.2.41)

for all times t for which (xt, yt) ∈ N .

Proof.

• Since f(x, y0) < 0 for positive x, solutions of the associated system x′ =
f(x, y0) reach any neighbourhood of order 1 of x = 0 in a fast time of
order ε. Thus, by regular perturbation theory, the orbit of the slow–fast
system starting in (x0, y0) enters any neighbourhood of order 1 of the slow
manifold x = 0 in a slow time of order ε. From there on, Tihonov’s theorem
shows that an ε-neighbourhood is reached in a time of order ε|log ε|, and
thus xt1 = ε at a time t1 at which yt1 = y1.

• First note that we can write

f(x, y) = x
[
a(y) + b(x, y)x2

]
(2.2.42)

for some bounded function b. Let τ = inf{t > t1 : xt > ε}. For t1 � t � τ ,
we have

ε
dx
dy

=
[
a(y)
g(0, y)

+ O(ε2)
]
x , (2.2.43)

and thus there is a constant M > 0 such that

εe[α(yt,y1)−Mε2]/ε � xt � εe[α(yt,y1)+Mε2]/ε , (2.2.44)

where

α(y, y1) =
∫ y

y1

a(u)
g(0, u)

du . (2.2.45)

This shows that xt remains smaller than ε until a time t2 at which
α(yt2 , y1) = O(ε2), so that yt2 = y2 = Π(y0) + O(ε|log ε|).

• By continuity of f , for any sufficiently small constant c0, f(x, y) > 1
2xa(y2)

for |x| � c0 and y2 � y � y2+c0. Thus xt is larger than εea(y2)(t−t2)/ε, and
reaches c0 after a time of order ε|log ε|. Using the associated system and the
fact that f is positive, bounded away from 0 for x in any compact interval
contained in (0, x�(y)), one concludes that xt reaches any neighbourhood
of order 1 of the equilibrium branch x�(y) after a time of order ε. From
there on, Tihonov’s theorem allows to conclude the proof. ��

Remark 2.2.5. The proof shows that a similar bifurcation delay exists for any
system for which f(0, y) is identically zero. Only the behaviour after leav-
ing the unstable equilibrium branch may differ, as it depends on the global
behaviour of f .
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2.2.4 How to Obtain Scaling Laws

The analysis of the dynamic saddle–node bifurcation in Section 2.2.2 revealed
a nontrivial ε-dependence of solutions near the bifurcation point, involving
fractional exponents as in ε1/3 and ε2/3. These exponents were related to the
behaviour in

√−y of slow manifolds near the bifurcation point.
It is in fact possible to give a rather complete classification of the scaling

laws that may occur for one-dimensional bifurcations. Such a classification
involves two steps: Firstly, analyse the power-law behaviour of slow manifolds
near a bifurcation point; secondly, study the equation governing the distance
between solutions of the slow–fast system and the slow manifold.

The first step is best carried out with the help of the bifurcation point’s
Newton polygon. Consider again the scalar equation

ε
dx
dy

= f(x, y) (2.2.46)

where f is of class Cr for some r � 2, with all derivatives uniformly bounded
in a neighbourhood N of the origin. We also require the bifurcation conditions

f(0, 0) = ∂xf(0, 0) = 0 (2.2.47)

to hold. The function f admits a Taylor expansion in N of the form

f(x, y) =
∑
j,k�0
j+k�r

fjkx
jyk +R(x, y) , fjk =

1
j!k!

∂xjykf(0, 0) , (2.2.48)

with a remainder R(x, y) = O(‖(x, y)‖r), and f00 = f10 = 0. Assume for
simplicity6 that fr0 �= 0 and f0r �= 0. Then the Newton polygon P is obtained
by taking the convex envelope of the set of points{

(j, k) ∈ N 2
0 : fjk �= 0 or j + k � r

}
. (2.2.49)

Assume that f vanishes on a curve of equation x = x�(y), defined for y in an
interval of the form I = (−δ, 0], [0, δ) or (−δ, δ), such that |x�(y)| � |y|q for
some q > 0. We will call {(x, y) : x = x�(y), y ∈ I} an equilibrium branch with
exponent q. It is well known that the Newton polygon then admits a segment
of slope −q. For instance, in the case of the saddle–node bifurcation studied
in Section 2.2.2, there are two equilibrium branches with exponent 1/2, and P
has two vertices (2, 0) and (0, 1), connected by a segment of slope −1/2.

The second step is to examine the behaviour of the distance z = x−x�(y)
between solutions of (2.2.46) and the equilibrium branch. The dynamics of zt
is governed by an equation of the form

6This assumption is made to avoid situations such as f(x, y) = x5/2 − y, in
which r = 2 but f20(x, y) ≡ 0, where the relation between Newton’s polygon and
slow manifold does not work.
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Fig. 2.7. Newton’s polygon for (a) the saddle–node, (b) the transcritical and
(c) the asymmetric pitchfork bifurcation. The saddle–node bifurcation has branches
of exponent q = 1/2, for which p = 1/2. The transcritical bifurcation has branches
of exponent q = 1, for which p = 1. The asymmetric pitchfork bifurcation has two
types of branches, with exponents q = 1 and q = 1/2, both with p = 1.

ε
dz
dy

= a(y)z + b(y, z) − ε
dx�(y)

dy
, (2.2.50)

where a(y) = ∂xf(x�(y), y) is the linearisation of f at the equilibrium branch,
and b is of order z2. The behaviour of a(y) near y = 0 can also be deduced
from the Newton polygon P. Indeed, Taylor’s formula implies that

∂xf(x�(y), y) =
∑

j�1,k�0
j+k�r

jfjkx
�(y)j−1yk + O(|y|r + |y|rq) . (2.2.51)

Generically (that is, unless some unexpected cancellation occurs) we will thus
have |a(y)| � |y|p, where

p = inf
{
q(j − 1) + k : j � 1, k � 0, j + k � r and fjk �= 0

}
. (2.2.52)

Geometrically speaking, p is the ordinate at 1 of the tangent to Newton’s
polygon with slope −q (Fig. 2.7).

Definition 2.2.6 (Tame equilibrium branch). Let I be an interval of the
form I = (−δ, 0], [0, δ) or (−δ, δ), and assume that f vanishes on an equilib-
rium branch {(x, y) : x = x�(y), y ∈ I} with exponent q > 0. The equilibrium
branch is called tame if |∂xf(x�(y), y)| � |y|p with p given by (2.2.52).

Example 2.2.7.

• If f(x, y) = −x2 − y, then there are two tame equilibrium branches with
exponent q = 1/2, and such that p = 1/2.

• If f(x, y) = (x−y)2, then there is an equilibrium branch of equation x = y,
whose exponent is q = 1. This branch in not tame since a(y) = ∂xf(y, y)
is identically zero, and thus p = ∞.

The rational numbers q and p are usually sufficient to determine the scaling
behaviour of solutions near a bifurcation point. An essential rôle is played by
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the following variant of the Laplace method, which allows to analyse solutions
of (2.2.50) when the nonlinear term b(y, z) is absent.

Lemma 2.2.8. Fix constants y0 < 0, and ζ0, c, p, q > 0. Then the function

ζ(y, ε) = ec|y|
p+1/ε

[
εζ0e−c|y0|

p+1/ε +
∫ y

y0

|u|q−1e−c|u|
p+1/ε du

]
(2.2.53)

satisfies

ζ(y, ε) �
{
ε|y|q−p−1 for y0 � y � −ε1/(p+1) ,
εq/(p+1) for −ε1/(p+1) � y � 0 .

(2.2.54)

Using similar ideas as in the proof Theorem 2.2.2, we obtain the following
general result on the behaviour of solutions tracking a stable, tame equilibrium
branch, approaching a bifurcation point. If x�(y) is not identically zero, we
may assume that it is decreasing near the bifurcation point, otherwise we
change x to −x.

Theorem 2.2.9 (Scaling behaviour near a bifurcation point). Assume
that x� : (−δ, 0] → R + describes a tame equilibrium branch of f , with ex-
ponent q > 0, which is stable, that is, the linearisation a(y) = ∂xf(x�(y), y)
satisfies a(y) � −|y|p, where p is given by (2.2.52). Fix an initial condition
(x0, y0) ∈ N , where y0 ∈ (−δ, 0) does not depend on ε and x0 − x�(y0) � ε.
Then there is a constant c0 > 0 such that the solution of (2.2.46) with initial
condition (x0, y0) satisfies

xt − x�(yt) � ε|yt|q−p−1 for y0 � yt � −c0ε1/(p+1) . (2.2.55)

If, moreover, there is a constant δ1 > 0 such that f(x, y) < 0 for −δ � y � 0
and 0 < x− x�(y) � δ1, then there exists c1 > 0 such that

xt � εq/(p+1) for −c0ε1/(p+1) � yt � c1ε
1/(p+1) . (2.2.56)

Proof.

• For y0 � yt � −c0ε1/(p+1), where c0 will be determined below, we have

ε
dz
dy

� −c−|y|pz + b(y, z) + εc+|y|q−1 (2.2.57)

for some constants c± > 0. We know that |b(y, z)| � Mz2 for some M > 0,
but we will need a better bound in the case p > q. In fact, Taylor’s formula
implies that there is a θ ∈ [0, 1] such that

z−2b(y, z) =
1
2
∂xxf(x�(y) + θz, y) ,

=
1
2

∑
j�2,k�0
j+k�r

j(j − 1)fjk[x�(y) + θz]j−2yk +R(y) , (2.2.58)
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where R(y) = O(x�(y)r−2 + zr−2 + yr). Using the definition (2.2.52) of p,
we obtain that whenever |z| � L|y|q for some L > 0, there is a constant
M(L) such that

|b(y, z)| � M(L)|y|p−qz2 . (2.2.59)

Since M(L) is a nondecreasing function of L, we can choose L such that
2LM(L) � c−. In order to prove the upper bound in (2.2.55), we introduce

τ = inf
{
t � 0: |zt| > L|yt|q

}
. (2.2.60)

For t � τ , it easily follows from (2.2.57) and the definition of M(L) that

ε
dz
dy

� −c−
2

|y|pz + εc+|y|q−1 , (2.2.61)

so that, solving a linear equation and using Lemma 2.2.8,

zt � Kε|yt|q−p−1 (2.2.62)

for some K > 0, as long as yt � −ε1/(p+1). The conclusion is then obtained
as in the proof of Theorem 2.2.2, taking cp+1

0 = 1∧ (4MK/c−). The lower
bound is obtained in a similar way.

• For −c0ε1/(p+1) � yt � c1ε
1/(p+1), where c1 is determined below, we use

the scaling x = εq/(p+1)x̃, y = ε1/(p+1)ỹ, yielding the equation

dx̃
dỹ

= ε−(p+q)/(p+1)f(εq/(p+1)x̃, ε1/(p+1)ỹ) ,

=
∑
j,k�0
j+k�r

fjkε
[(j−1)q+k−p]/(p+1)x̃j ỹk + r̃(x, y) , (2.2.63)

for some remainder r̃(x, y). By (2.2.52), we have (j−1)q+k � p whenever
fjk �= 0 or j + k � r − 1, and thus the right-hand side of (2.2.63) is of
order 1 at most. In fact, we have

dx̃
dỹ

=
∑

fjkx̃
j ỹk + Oε(1), (2.2.64)

where the sum is taken over all vertices of the Newton polygon belonging
to a segment of slope −q.
If f(x, y) < 0 above x�(y), xt must decrease as long as yt < 0, and it
cannot cross x�(yt). Hence x̃ � 1, whenever ỹ = 0. Since (2.2.64) does not
depend on ε to leading order, x̃ remains positive and of order 1 for ỹ in a
sufficiently small interval [0, c1]. Going back to original variables, (2.2.56)
is proved. ��

The behaviour after yt has reached the bifurcation value 0 depends on
the number of equilibrium branches originating from the bifurcation point. In
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Fig. 2.8. Dynamic transcritical bifurcation. (a) If the unstable branch lies above
the decreasing stable branch, solutions cross the unstable branch for y � −√

ε and
explode soon thereafter. (b) If the unstable branch lies below the decreasing stable
branch, solutions cross the new stable branch for y � √

ε, before approaching it
again like ε/y.

the case of the indirect saddle–node bifurcation, no equilibrium branch exists
near the origin for positive y, and thus the orbits jump to some other region
of phase space (or explode). If one or several stable equilibrium branches exist
for y > 0, the behaviour of solutions can be analysed by methods similar to
those of Theorem 2.2.9. Rather then attempting to give a general classification
of possible behaviours, we prefer to discuss two of the most generic cases.

Example 2.2.10 (Transcritical bifurcation). Assume that f ∈ C2 satisfies, in
addition to the general bifurcation condition (2.2.47), the relation f01 = 0,
but with f20, f11, f02 �= 0. The Newton polygon has vertices (2, 0), (1, 1) and
(0, 2), connected by two segments of slope 1 (Fig. 2.7b). We thus take q = 1
and look for equilibrium branches of the form

x = Cy(1 + ρ(y)) , ρ(0) = 0 . (2.2.65)

Inserting this in the equation f(x, y) = 0 and taking y → 0, we obtain the
condition

f20C
2 + f11C + f02 = 0 (2.2.66)

for C. Thus there are three cases to be considered, depending on the value of
the discriminant ∆ = f2

11 − 4f20f02.

1. If ∆ > 0, then (2.2.66) admits two solutions C+ > C−. For each of these
solutions, the implicit-function theorem, applied to the pair (y, ρ), shows
that there is indeed a unique equilibrium branch of the form (2.2.65). A
simple computation of ∂xf(x, y) on each of these branches shows that they
have opposite stability, and exchange stability as y passes through 0.

2. If ∆ = 0, then (2.2.66) admits one solution, but the implicit-function
theorem cannot be applied. The behaviour will depend on higher order
terms. The second part of Example 2.2.7 belongs into this category.
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Fig. 2.9. Asymmetric dynamic pitchfork bifurcation. Solutions tracking the de-
creasing stable branch switch to the new branch x�

+(y) after a time of order
√

ε.

3. If ∆ < 0, then (0, 0) is an isolated equilibrium point of f .

Let us consider the case ∆ > 0 in more detail. Assume that the stable
equilibrium branch approaching the origin from the left is decreasing. The
situation depends on the location of the unstable equilibrium branch, whether
it lies above or below the stable one (Fig. 2.8):

• If the unstable branch lies above the stable one, which happens for f20 > 0,
then Theorem 2.2.9, applied for q = p = 1, shows that xt tracks the equi-
librium branch at a distance of order ε/|yt| until y = −c0

√
ε. Thereafter,

the trajectory escapes from a neighbourhood of the bifurcation point.
• If the unstable branch lies below the stable one, which happens for f20 < 0,

then the theorem can still be applied and shows, in addition, that xt stays
of order

√
ε until y = c1

√
ε. For later times, an analysis of the equation

governing the distance between solutions and the new stable equilibrium
branch shows that xt approaches that branch like ε/yt.

Example 2.2.11 (Asymmetric pitchfork bifurcation). Assume that f ∈ C3 sat-
isfies f01 = f20 = 0, but f30, f11, f02 �= 0. Then the Newton polygon has
three vertices (3, 0), (1, 1) and (0, 2), connected by two segments of slope 1/2
and 1 (Fig. 2.7c). A similar analysis as in the previous example shows the ex-
istence of an equilibrium branch x�(y) = −(f02/f11)y[1 + Oy(1)], existing for
both positive and negative y, and of two equilibrium branches x�±(y) �

√
|y|,

existing either for y < 0 or for y > 0, depending on the sign of f11/f30.
Consider the case where the branch x�(y) is decreasing, stable for y < 0

and unstable for y > 0, and the branches x�±(y) exist for y > 0. (Then the
latter two branches are necessarily stable, see Fig. 2.9.) The simplest example
of this kind is f(x, y) = (x+ y)(y − x2).

Theorem 2.2.9, applied for q = p = 1, shows that xt tracks the equilibrium
branch x�(y) at a distance of order ε/|yt| until y = −c0

√
ε, and remains

of order
√
ε until y = c1

√
ε. At this time, xt is at a distance of order ε1/4
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from the equilibrium branch x�+(y). Since f > 0 for x�(y) < x < x�+(y), xt
increases. By the same method as in the previous example, one shows that xt
approaches x�+(yt) like ε/y3/2

t . Note in particular that, unlike in the case of
the symmetric pitchfork bifurcation, there is no macroscopic delay.

2.2.5 Hopf Bifurcation and Bifurcation Delay

A Hopf bifurcation occurs if the Jacobian matrix ∂xf(x̂, ŷ) at the bifurcation
point (x̂, ŷ) has a pair of conjugate eigenvalues ±iω0 on the imaginary axis
(with ω0 �= 0). We assume here that all other eigenvalues of ∂xf(x̂, ŷ) have
negative real parts. We can thus consider the reduced system

εẋ = f(x, y) ,
ẏ = g(x, y) ,

(2.2.67)

for x ∈ R 2, where f(x̂, ŷ) = 0 and ∂xf(x̂, ŷ) has the eigenvalues ±iω0.
The implicit-function theorem implies the existence, in a neighbourhood

D0 ⊂ Rm of ŷ, of a slow manifold {(x, y) : x = x�(y), y ∈ D0}, with x�(ŷ) = x̂.
Let us denote by a(y) ± iω(y) the eigenvalues of ∂xf(x�(y), y), where a(0) =
0 and ω(0) = ω0. The associated system x′ = f(x, λ) admits x�(λ) as an
equilibrium (of focus type), which is stable if a(λ) < 0 and unstable if a(λ) > 0.
Depending on second- and third-order terms of the Taylor expansion of f ,
there is (generically)

• either a stable periodic orbit near x�(λ) for a(λ) > 0 and no invariant set
near x�(λ) for a(λ) < 0 (supercritical Hopf bifurcation),

• or an unstable periodic orbit near x�(λ) for a(λ) < 0 and no invariant set
near x�(λ) for a(λ) > 0 (subcritical Hopf bifurcation).

We refer to [GH90, p. 152] for the precise relation between criticality and
coefficients of the Taylor expansion.

The reduced system on the slow manifold is given by

ẏ = g(x�(y), y) . (2.2.68)

We are interested in the following situation. Let Yt be the solution of (2.2.68)
such that Yt� = ŷ for some t� ∈ R , and assume that a(Yt) changes sign
from negative to positive as t crosses t�, with positive velocity, that is,
〈∇a(ŷ), g(x̂, ŷ)〉 > 0. One can then construct an affine change of variables
x = x�(y) + S(y)(z, z)T, such that the complex variable z satisfies an equa-
tion of the form

εż =
[
a(Yt) + iω(Yt)

]
z + b(z, z, t, ε) − εW (Yt)

dx�(Yt)
dt

, (2.2.69)

where b(z, z, t, ε) = O(|z|2 + ε|z|), and W (Yt) is the first line of S(Yt)−1.
If x�(y) ≡ x̂ identically in y, then zt ≡ 0 is a particular solution of (2.2.69),

and the situation is very similar to the one encountered when studying the



44 2 Deterministic Slow–Fast Systems

symmetric pitchfork bifurcation in Section 2.2.3. Solutions starting near the
slow manifold at a time t0 for which a(Yt0) < 0 approach zero exponentially
closely, and need a macroscopic bifurcation delay time after t = t� before
leaving a neighbourhood of order one of the origin. This delay time is given
by an expression similar to (2.2.38).

The new feature of the Hopf bifurcation is that if f and g are analytic,7

then a delay persists even when x�(y) depends on y. This can be under-
stood as a stabilising effect of fast oscillations around the slow manifold. The
system (2.2.69) and its solution can be analytically continued to a complex
neighbourhood of t = t�, so that we can define the analytic function

Ψ(t) =
∫ t

t�

[
a(Ys) + iω(Ys)

]
ds . (2.2.70)

For real t0 < t�, we define

Π(t0) = inf
{
t > t� : ReΨ(t0) = ReΨ(t)

}
. (2.2.71)

Neishtadt has proved the following result [Nĕı87, Nĕı88].

Theorem 2.2.12 (Dynamic Hopf bifurcation). There exist buffer times
t− < t� and t+ = Π(t−) > t� and constants c1, c2 > 0 with the following
property. Any solution of (2.2.67) starting sufficiently close to (x�(Yt0), Yt0)
satisfies

‖(xt, yt) − (x�(Yt), Yt)‖ � c1ε (2.2.72)

for t0 + c2ε|log ε| � t � t1 − c2ε|log ε|, where t1 = Π(t0) ∧ t+. If, moreover,
‖xt0 − x�(Yt0)‖ is of order 1, then xt leaves a neighbourhood of order 1 of the
slow manifold at a time t1 + O(ε|log ε|).

This result means that for t− � t0 � t� − O(1), solutions experience a
bifurcation delay until time Π(t0), which is similar to the delay occurring for
the symmetric pitchfork bifurcation. For t0 � t−, however, this delay saturates
at t+. The computation of the buffer times t± is discussed in [DD91] and in
[Nei95]. Roughly speaking, (t−, t+) are the points furthest apart on the real
axis that can be connected by a path of constant ReΨ , satisfying certain
regularity assumptions.

Example 2.2.13. Assume that a(Yt) = t− t� and ω(Yt) = ω0 > 0. Then

ReΨ(t) =
1
2
[
(Re t− t�)2 − (Im t+ ω0)2 + ω2

0

]
(2.2.73)

is constant on hyperbolas centred in (t�,−iω0). We have Π(t) = 2t� − t, and
the buffer times are given by t± = t� ± ω0.

7Strictly speaking, the reduced system (2.2.67) is usually not analytic, even when
the original system is, because of lack of regularity of centre manifolds. This is why
the analysis in [Nĕı87, Nĕı88] does not use centre manifolds, but keeps track of all
original variables. The results are, however, the same.
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Note finally that analyticity is crucial for the existence of a delay if x�(y)
depends on y. Neishtadt has shown that the delay is usually destroyed even
by C∞-perturbations.

2.3 Periodic Orbits and Averaging

The case where the slow–fast system admits an asymptotically stable slow
manifold corresponds to the simplest possible asymptotic dynamics of the
associated (or fast) system: All trajectories are attracted by an equilibrium
point. The reduced (slow) dynamics is then simply obtained by projecting the
equations of motion on the slow manifold.

If the asymptotic dynamics of the fast system is more complicated than
stationary, how should one proceed to determine the effective dynamics of the
slow variables? For quite a general class of systems, one can show that the
effective dynamics can be obtained by averaging the vector field g(x, y) with
respect to the invariant measure describing the asymptotic fast dynamics. We
focus here on the case where the asymptotic fast motion is periodic.

2.3.1 Convergence towards a Stable Periodic Orbit

Assume that the associated system

dx
ds

≡ x′ = f(x, y0) (2.3.1)

has, for each fixed value of y0 in an open set D0, a periodic solution γ�(s, y0),
with period T (y0). We further assume that this orbit is asymptotically stable.
Recall that the stability of a periodic orbit is related to the linear system

ξ′ = ∂xf(γ�(s, y0), y0)ξ . (2.3.2)

Let U(s, s0) denote the principal solution of this system, that is, such that
ξs = U(s, s0)ξs0 . The eigenvalues of the monodromy matrix U(T (y0), 0) are
called characteristic multipliers, and their logarithms are called characteristic
exponents or Lyapunov exponents. One of the multipliers is equal to 1, and
the corresponding eigenvector is the tangent vector to the orbit at s = 0. We
will require that the n − 1 other characteristic multipliers have a modulus
strictly less than unity, which implies the orbit’s asymptotic stability.

We further assume that γ�(s, y0) is continuous in both variables (note that
the origin of time can be chosen arbitrarily on the orbit), and that there are
positive constants T1, T2 such that T1 � T (y) � T2 uniformly for y ∈ D0.

We turn now to the full slow–fast system

εẋ = f(x, y) ,
ẏ = g(x, y) .

(2.3.3)
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It seems natural that this system should admit solutions (xt, yt) for which
xt is close to the rapidly oscillating function γ�(t/ε, yt). The dynamics of yt
would then be governed by an equation of the form

ẏt � g(γ�(t/ε, yt), yt) , (2.3.4)

which has a rapidly oscillating right-hand side. The general philosophy of
averaging is to bring into consideration the averaged system

˙̄y = ḡ(ȳ) :=
1

T (ȳ)

∫ T (ȳ)

0

g(γ�(s, ȳ), ȳ) ds . (2.3.5)

Introducing Γ �(θ, y) = γ�(T (y)θ, y) allows to rewrite the averaged slow vector
field as

ḡ(ȳ) =
∫ 1

0

g(Γ �(θ, ȳ), ȳ) dθ . (2.3.6)

We assume that the solution ȳt of (2.3.5) with initial condition ȳ0 = y0 stays
in D0 for 0 � t � t1. Under these assumptions, Pontryagin and Rodygin have
proved the following result [PR60].

Theorem 2.3.1 (Dynamics near a slowly varying periodic orbit). Let
x0 be sufficiently close to Γ �(θ0, y0) for some θ0. Then there exists a function
Θt, satisfying the relation

εΘ̇t =
1

T (ȳt)
+ O(ε) , (2.3.7)

such that the estimates

xt = Γ �(Θt, ȳt) + O(ε) ,
yt = ȳt + O(ε)

(2.3.8)

hold for O(ε|log ε|) � t � t1. The error terms O(ε) in (2.3.7) and (2.3.8) are
uniform in t on this time interval.

We shall sketch the proof in the case of a two-dimensional fast variable
x ∈ R 2. Let n(θ, y) be the outward unit normal vector to the periodic orbit
at the point Γ �(θ, y). In a neighbourhood of the periodic orbit, the dynamics
can be described by coordinates (θ, r) such that

x = Γ �(θ, y) + r n(θ, y) . (2.3.9)

On the one hand, we have

εẋ = f(Γ �(θ, y), y) +A(θ, y) n(θ, y)r + O(r2) , (2.3.10)

where A(θ, y) = ∂xf(Γ �(θ, y), y). On the other hand, we can express εẋ as
a function of θ̇ and ṙ by differentiating (2.3.9) and using the equation for ẏ.
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Projecting on n(θ, y) and on the unit tangent vector to the orbit yields a
system of the following form, equivalent to (2.3.3):

εθ̇ =
1

T (y)
+ bθ(θ, r, y, ε) ,

εṙ = fr(θ, r, y, ε) , (2.3.11)
ẏ = g(Γ (θ, y) + r n(θ, y), y) .

The functions bθ and fr can be computed explicitly in terms of A, Γ �, n,
and their derivatives with respect to y. They both vanish for r = ε = 0, and
in particular the linearisation ∂rfr(θ, 0, y, 0) depends only on A(θ, y). In a
neighbourhood of r = 0, θ̇ is thus positive and we can consider the equations

dr
dθ

= T (y)
fr(θ, r, y, ε)

1 + T (y)bθ(θ, r, y, ε)
,

dy
dθ

= εT (y)
g(Γ (θ, y) + r n(θ, y), y)
1 + T (y)bθ(θ, r, y, ε)

,

(2.3.12)

instead of (2.3.11). Averaging the right-hand side over θ yields a system of
the form

dr̄
dθ

= T (ȳ)
[
ā(ȳ)r̄ + O(ε)

]
,

dȳ
dθ

= ε
[
ḡ(ȳ) + O(r̄) + O(ε)

]
,

(2.3.13)

where ā(ȳ) < 0. (In fact, ā(y) is the Lyapunov exponent of the periodic
orbit γ�(·, y).) This is again a slow–fast system, in which θ plays the rôle of
fast time. It follows thus from Tihonov’s theorem that r̄ approaches a slow
manifold r̄�(y) = O(ε). For such r̄, we are in a situation to which the standard
averaging theorem can be applied to show that rt− r̄t and yt− ȳt both remain
of order ε up to “times” θt of order 1/ε.

2.3.2 Invariant Manifolds

Theorem 2.3.1 is the equivalent of Tihonov’s theorem for slow manifolds. In
order to give a more precise description of the dynamics in a neighbourhood of
the family of slowly varying periodic orbits, it is useful to have an analogue of
Fenichel’s theorem as well, on the existence of an invariant manifold tracking
the family of periodic orbits.

To construct this invariant manifold, one can proceed as follows. Let Π be
the “time”(θ = 1)-Poincaré map associated with the equation (2.3.12). That
is, if the trajectory with initial condition (r, y) at θ = 0 passes through the
point (r̂, ŷ) at θ = 1, then by definition (r̂, ŷ) = Π(r, y). If we add ε as a
dummy variable, the Poincaré map can be written in the form
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r̂ = R(r, y, ε) ,
ŷ = y + εY (r, y, ε) ,
ε̂ = ε .

(2.3.14)

Since for ε = 0, one recovers the dynamics of the associated system, one
necessarily has R(0, y, 0) = 0, and ∂rR(0, y, 0) has the same eigenvalues as the
monodromy matrix U(T (y), 0) of the periodic orbit, except for the eigenvalue 1
associated with the variable θ.

Thus every point of the form (0, y, 0) is a fixed point of the Poincaré
map, and the linearisation of Π around each of these points admits 1 as an
eigenvalue of multiplicity m+ 1, while the other n− 1 eigenvalues are strictly
smaller than 1. The centre-manifold theorem thus yields the existence of an
invariant manifold of equation r = εr̄(y, ε), that is,

εr̄
(
y + εY

(
r̄(y, ε), y, ε

)
, ε

)
= R

(
εr̄(y, ε), y, ε

)
. (2.3.15)

A perturbative calculation shows that

r̄(y, ε) =
[
1l − ∂rR(0, y, 0)

]−1
∂εR(0, y, 0) + O(ε) . (2.3.16)

We can now return to the original equation (2.3.12). The set of images under
the flow of the invariant manifold r = εr̄(y, ε) defines a cylinder-shaped in-
variant object, whose parametrisation we can denote as r = εr̄(θ, y, ε). In the
original x-variables, the cylinder is given by the equation

Γ (θ, y, ε) = Γ �(θ, y) + εr̄(θ, y, ε) n(θ, y) . (2.3.17)

The dynamics on the invariant cylinder is then governed by the reduced equa-
tions

εθ̇ =
1

T (y)
+ bθ(θ, εr̄(θ, y, ε), y, ε) ,

ẏ = g
(
Γ (θ, y, ε), y

)
.

(2.3.18)

Note that the term bθ(θ, εr̄(θ, y, ε), y, ε) is at most of order ε, so that we
recover the fact that εθ̇ is ε-close to 1/T (y).
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and later analysed in detail by Neishtadt [Nĕı87, Nĕı88, Nei95]. Similar phe-
nomena for maps undergoing period doubling bifurcations have been studied
in [Bae95], while the case of a Hopf bifurcation of a periodic orbit has been
considered in [NST96].

Since these early results, dynamic bifurcations have been analysed by a
great variety of methods. These methods include nonstandard analysis (see,
e.g., [Ben91] for a review, in particular [DD91] for bifurcation delay, and [FS03]
for recent results); blow-up techniques [DR96, KS01] and a boundary function
method [VBK95]. The approach based on the Newton polygon, presented in
Section 2.2.4, was introduced in [Ber98, BK99].

The method of averaging was already used implicitly in celestial mechan-
ics, where it allows to determine the secular motion of the planets’ orbits,
by eliminating the fast motion along the Kepler ellipses. The method was
developed in particular by van der Pol, Krylov, Bogoliubov and Mitropol’skĭı.

We did not mention another interesting characteristic of systems with
slowly varying periodic orbits, the so-called geometric phase shifts. These
occur, e.g., when the system’s parameters are slowly modified, performing
a loop in parameter space before returning to their initial value. Then the
position on the orbit changes by a phase, whose first-order term in the speed of
parameter variation depends only on the geometry of the loop [Ber85, KKE91].
The same phenomenon occurs in quantum mechanics (see for instance [Ber90,
JKP91]).



3

One-Dimensional Slowly Time-Dependent
Systems

In this chapter, we examine the effect of noise on a particular class of singu-
larly perturbed systems, namely slowly time-dependent equations with one-
dimensional state space. Such situations occur for instance for systems with
slowly varying parameters, or for slowly forced systems. Doing this will allow
us to develop the sample-path approach in a simpler setting, and often we will
obtain sharper estimates than in the general case.

The deterministic systems that we will perturb by noise have the form

x′ = f(x, εs) . (3.0.1)

Passing to the slow timescale t = εs yields the familiar form

εẋ = f(x, t) , (3.0.2)

which is a particular case of the general slow–fast system (2.0.1), in which the
slow vector field g is identically equal to 1, and thus yt = t for all t.

Since we assume x to be one-dimensional, we can always introduce a poten-
tial U(x, t) = U(x, εs), such that f(x, t) = −∂xU(x, t). Example 2.1.3 shows
that one can think of (3.0.1) as describing the overdamped motion of a par-
ticle in the slowly time-dependent potential U(x, εs), in the limit of strong
damping (see also Section 6.1.1).

Typically, the function f(x, t) vanishes on a number of curves, the equi-
librium branches, corresponding to local maxima or minima of the potential.
These branches may intersect at certain bifurcation points. Between bifurca-
tion points, Fenichel’s theorem ensures the existence of adiabatic solutions,
tracking the equilibrium branches at a distance at most of order ε. Solutions
starting between equilibrium branches usually reach the ε-neighbourhood of
a stable branch in a time of order ε|log ε|, cf. Tihonov’s theorem. Combining
this information with a local analysis near each bifurcation point generally
allows to obtain a fairly precise picture of the deterministic dynamics.

Adding white noise to the slowly time-dependent equation (3.0.1) results
in the non-autonomous Itô stochastic differential equation (SDE)
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dxs = f(xs, εs) ds+ σF (xs, εs) dWs . (3.0.3)

Here we consider σ as another small parameter, while F is a given function
of order 1. On the slow timescale, by the scaling property of the Brownian
motion, this equation becomes

dxt =
1
ε
f(xt, t) dt+

σ√
ε
F (xt, t) dWt . (3.0.4)

Our analysis will mainly follow the same steps as in the deterministic case.

• In Section 3.1, we examine the motion near stable equilibrium branches.
Starting with the equation linearised around the adiabatic solution track-
ing the equilibrium branch, and then incorporating nonlinear terms in a
second step, we show that with high probability, paths remain concen-
trated in neighbourhoods of order σ of the deterministic solution. At the
heart of the presented approach lies the choice of the optimal “shape”
of these neighbourhoods, allowing for sharp bounds on the probability of
a sample path leaving such a neighbourhood early. These concentration
results also allow moments of the process to be estimated.

• In Section 3.2, we turn our attention to unstable equilibrium branches. In
this case, in a neighbourhood of order σ of the adiabatic solution tracking
the equilibrium branch, the noise term actually helps sample paths to
escape from the deterministic solution. The typical time needed to leave a
neighbourhood of order 1 of the unstable branch is of order ε|log σ|.

• Section 3.3 is dedicated to a detailed study of the dynamic saddle–node
bifurcation with noise, which is generic in dimension 1. Here a new phe-
nomenon is observed, which is due to the presence of noise: For large
enough σ, paths may reach and cross the unstable equilibrium branch
some time before the bifurcation occurs.

• In Section 3.4, we determine the effect of noise on symmetric dynamic
pitchfork bifurcations. Here the main effect of the noise term is to decrease
the bifurcation delay, which is macroscopic in the absence of noise while it
is of order

√
ε|log σ| for a large regime of non-vanishing noise intensities.

• Finally, Section 3.5 summarises results on two other types of dynamic
bifurcations, namely transcritical and asymmetric pitchfork bifurcations.

Throughout this chapter, we will work in the following setting. The
stochastic process {Wt}t�t0 is a standard one-dimensional Wiener process on
some probability space (Ω,F ,P). Initial conditions x0 are always assumed to
be either deterministic, or square-integrable with respect to P and independent
of {Wt}t�t0 . All stochastic integrals are considered as Itô integrals. Without
further mentioning, we always assume that f and F satisfy the usual Lip-
schitz and bounded-growth conditions, which guarantee existence and path-
wise uniqueness of a strong solution {xt}t of (3.0.4), cf. Theorem A.3.2. Under
these conditions, there exists a continuous version of {xt}t. Therefore we may
assume that the paths ω �→ xt(ω) are continuous for P-almost all ω ∈ Ω.
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We introduce the notation Pt0,x0 for the law of the process {xt}t�t0 , start-
ing in x0 at time t0, and use Et0,x0 to denote expectations with respect to
Pt0,x0 . Note that the stochastic process {xt}t�t0 is an inhomogeneous Markov
process. We are interested in first-exit times of xt from space–time sets. Let
A ⊂ R × [t0, t1] be Borel-measurable. Assuming that A contains (x0, t0), we
define the first-exit time of (xt, t) from A1 by

τA = inf
{
t ∈ [t0, t1] : (xt, t) �∈ A

}
, (3.0.5)

and agree to set τA(ω) = ∞ for those ω ∈ Ω which satisfy (xt(ω), t) ∈ A
for all t ∈ [t0, t1]. Typically, we will consider sets of the form A = {(x, t) ∈
R × [t0, t1] : g1(t) < x < g2(t)} with continuous functions g1 < g2. Note that
in this case, τA is a stopping time with respect to the filtration generated by
{xt}t�t0 .

3.1 Stable Equilibrium Branches

An overdamped particle starting near a local minimum of a static potential is
attracted by this minimum. Weak noise causes the particle to fluctuate around
the bottom of the well, but large excursions can only be seen on exponentially
long timescales. We will now show that a similar behaviour holds for slowly
moving potential wells.

We consider in this section the SDE

dxt =
1
ε
f(xt, t) dt+

σ√
ε
F (xt, t) dWt (3.1.1)

in the case where f admits an asymptotically stable equilibrium branch x�(t).
This is equivalent to assuming that the potential U(x, t) admits a strict local
minimum at all times t. More precisely, we will require the following.

Assumption 3.1.1 (Stable case).

• Domain and differentiability: f ∈ C2(D,R ) and F ∈ C1(D,R ), where D is
a domain of the form

D =
{
(x, t) : t ∈ I, d1(t) < x < d2(t)

}
, (3.1.2)

for an interval I = [0, T ] or I = [0,∞), and two continuous functions
d1, d2 : I → R such that d2(t)− d1(t) is positive and bounded away from 0
in I. We further assume that f , F and all their partial derivatives up to
order 2, respectively 1, are uniformly bounded in D by a constant M .

1For simplicity, we will often drop the second argument and refer to τA as the
first-exit time of xt from A.
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Fig. 3.1. Overdamped particle tracking a slowly moving potential well.

• Equilibrium branch: There are a continuous function x� : I → R and
some constant d > 0 such that d1(t) + d � x�(t) � d2(t) − d, and

f(x�(t), t) = 0 ∀t ∈ I . (3.1.3)

• Stability: Let a�(t) = ∂xf(x�(t), t). There exists a constant a�0 > 0 such
that

a�(t) � −a�0 ∀t ∈ I . (3.1.4)

• Non-degeneracy of noise term: There is a constant F− > 0 such that

F (x, t) � F− ∀(x, t) ∈ D . (3.1.5)

Since M = {(x, t) : x = x�(t), t ∈ I} is a uniformly asymptotically stable
slow manifold of the deterministic system (cf. Definition 2.1.1), Fenichel’s
theorem (Theorem 2.1.8) implies the existence of an invariant manifold Mε

at a distance of order ε from M. In fact, in this (1 + 1)-dimensional setting,
the invariant manifold consists of a particular solution of (3.1.1) for σ = 0, of
the form (see (2.1.27))

x̄(t, ε) = x�(t) + ε
ẋ�(t)
a�(t)

+ O(ε2) . (3.1.6)

Since a�(t) is negative, x̄(t, ε) is lagging behind the equilibrium x�(t): It is
smaller than x�(t) if x�(t) is increasing, and larger if it is decreasing. One
can associate this behaviour with the following intuitive picture (Fig. 3.1): In
a slowly moving potential well, the overdamped particle settles in a position
slightly behind the bottom of the well, where the force, directed towards the
bottom of the well, compensates for the motion of the potential.

In the time-independent case, the theory of large deviations implies that
solutions starting near the bottom x� of a potential well tend to remain there
for long time spans, a phenomenon called metastability . The expected time
needed to reach a point x in which V (x) = V (x�) +H, often called Kramers’
time, is of order e2H/σ2

, and thus very large as soon as |x− x�| � σ.2

2Here we assumed that the potential well has non-vanishing curvature at the
bottom. Otherwise, the condition changes to |x−x�| � σ2/q, where q is the smallest
integer such that ∂q

xV (x�) �= 0.
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Our main objective will be to characterise the noise-induced deviations of
sample paths of (3.1.1) from x̄(t, ε) in the time-dependent case. To this end
we set xt = x̄(t, ε) + yt, and observe that yt satisfies the equation

dyt =
1
ε

[
f(x̄(t, ε) + yt, t) − f(x̄(t, ε), t)

]
dt+

σ√
ε
F (x̄(t, ε) + yt, t) dWt

=
1
ε

[
a(t, ε)yt + b(yt, t, ε)

]
dt+

σ√
ε

[
F0(t, ε) + F1(yt, t, ε)

]
dWt , (3.1.7)

where we have set

a(t, ε) = ∂xf(x̄(t, ε), t) = a�(t) + O(ε) ,
F0(t, ε) = F (x̄(t, ε), t) . (3.1.8)

Note that −a�(t) is the curvature of the potential at the bottom x�(t) of
the potential well, and −a(t, ε) is the curvature at the adiabatic solution
tracking the potential well. The remainders satisfy |b(y, t, ε)| � M |y|2 and
|F1(yt, t, ε)| � M |y| for sufficiently small y. Henceforth, we shall suppress the
ε-dependence of a, b, F0 and F1.

The analysis can be simplified by using new coordinates, in which the
position-dependent diffusion coefficient F1 vanishes.

Lemma 3.1.2 (Transformation of variables). Let yt = xt − x̄(t, ε). In
a neighbourhood of y = 0, there exists a near-identity transformation y =
ỹ + O(ỹ2) + O(σ2), casting Equation (3.1.7) into the form

dỹt =
1
ε

[
ã(t)ỹt + b̃(ỹt, t)

]
dt+

σ√
ε
F0(t) dWt , (3.1.9)

with |b̃(y, t)| � M̃(y2 +σ2) and ã(t) = a(t) +O(ε) +O(σ2). If, in addition, F
is twice continuously differentiable in x, with |∂xxF | uniformly bounded, then
one can achieve |b̃(y, t)| � M̃y2.

Proof. The function

h1(y, t) =
∫ y

0

dz
1 + F1(z, t)/F0(t)

(3.1.10)

satisfies h1(y, t) = y + O(y2) for sufficiently small y. Itô’s formula shows that
ȳt = h1(yt, t) obeys a SDE of the form

dȳt =
1
ε

[
ā(t)ȳt + b̄(ȳt, t)

]
dt+

σ√
ε
F0(t) dWt , (3.1.11)

where ā(t) = a(t) + O(ε), and b̄(ȳ, t) contains terms of order ȳ2 and σ2. In
case F is twice continuously differentiable with respect to x, the latter can be
eliminated by a further change of variables
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ȳ = ỹ + σ2h2(t) , (3.1.12)

provided h2 satisfies the differential equation

εḣ2(t) = ā(t)h2(t) +
1
σ2
b̄(σ2h2(t), t) . (3.1.13)

The right-hand side vanishes on a curve h�2(t) = −b̄(0, t)/(σ2ā(t)) + O(σ2),
corresponding to a uniformly asymptotically stable slow manifold if σ is
sufficiently small. Thus by Tihonov’s theorem (cf. Theorem 2.1.7), Equa-
tion (3.1.13) admits a bounded solution. Combining both changes of variables
yields the form (3.1.9) with ã(t) = ā(t) + O(σ2). ��

Remark 3.1.3. In fact, it is also possible to replace F0(t) in (3.1.9) by a con-
stant, using a time-dependent rescaling of space. However, the resulting change
of variables would no longer be near-identity. Carrying out the analysis for
general F0(t) has the advantage of making the concentration results obtained
more transparent, as the domains of concentration are little affected by the
near-identity transformation.

For sufficiently small ε and σ, we may assume that ã(t) is bounded above,
uniformly in I, by a negative constant ã0. In the sequel, we shall simplify the
notations by dropping all tildes, which amounts to considering the original
equation (3.1.7) without the position-dependent noise coefficient F1(y, t).

We will proceed in two steps. In Section 3.1.1, we analyse the linear
equation obtained for vanishing nonlinear drift term b in (3.1.7). In Sec-
tion 3.1.2, we examine the effect of this nonlinear term. The main result is
Theorem 3.1.10, which gives rather precise estimates on the first-exit time of
sample paths from a strip surrounding x̄(t, ε), and of width proportional to
F0(t)2/2|a(t)|. Finally, Section 3.1.3 gives some consequences on the moments
of yt.

3.1.1 Linear Case

In this section, we study the non-autonomous linear SDE

dy0
t =

1
ε
a(t)y0

t dt+
σ√
ε
F0(t) dWt (3.1.14)

with initial condition y0
0 = 0, where we assume that a and F0 are continuously

differentiable functions from I to R , with F0(t) bounded below by F− > 0,
and a(t) bounded above by −a0 < 0. Its solution is a Gaussian process and
can be represented by the Itô integrals

y0
t =

σ√
ε

∫ t

0

eα(t,s)/εF0(s) dWs , (3.1.15)
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where α(t, s) =
∫ t
s
a(u) du is the curvature accumulated between times s and t.

Thus, for each fixed time t, y0
t is characterised by its mean being zero and its

variance given by

Var{y0
t } =

σ2

ε

∫ t

0

e2α(t,s)/εF0(s)2 ds . (3.1.16)

The variance can be computed, in principle, by evaluating two integrals. How-
ever, the expression (3.1.16) is not convenient to handle. An alternative ex-
pression is found by noting that Var{y0

t } = σ2v(t), where v(t) is a solution of
the ordinary differential equation

εv̇ = 2a(t)v + F0(t)2 , (3.1.17)

with initial condition v(0) = 0. The right-hand side of (3.1.17) vanishes on
the slow manifold of equation v = v�(t) = F0(t)2/2|a(t)|, which is uniformly
asymptotically stable. We thus conclude by Tihonov’s theorem that (3.1.17)
admits a particular solution of the form

ζ(t) =
F0(t)2

2|a(t)| + O(ε) , (3.1.18)

where the term O(ε) is uniform in t ∈ I (higher order terms in ε can be
computed, provided the functions are sufficiently smooth). Note, in particular,
that for sufficiently small ε, there exist constants ζ+ > ζ− > 0 such that

ζ− � ζ(t) � ζ+ ∀t ∈ I . (3.1.19)

The relation between ζ(t) and the variance of y0
t is given by

Var{y0
t } = σ2v(t) = σ2

[
ζ(t) − ζ(0)e2α(t)/ε

]
, (3.1.20)

where ζ(0) = F0(0)2/2|a(0)|+O(ε) and α(t) = α(t, 0) � −a0t for t � 0. Thus,
the variance approaches σ2ζ(t) exponentially fast.

Remark 3.1.4. An expansion of ζ(t) into powers of ε can also be obtained
directly from the definition (3.1.16), using successive integrations by parts.

Our aim is to show that sample paths of y0
t are concentrated in sets of the

form
B(h) =

{
(y, t) : t ∈ I, |y| < h

√
ζ(t)

}
, (3.1.21)

whenever we choose h > σ. At any fixed time t ∈ I, the probability that
(y0
t , t) does not belong to B(h) can be expressed in terms of the distribution

function of the standard normal law, Φ(x) = (2π)−1/2
∫ x
−∞ e−u

2/2 du, as

P0,0
{
(y0
t , t) /∈ B(h)

}
= 2Φ

(
−h
σ

√
ζ(t)
v(t)

)
� 2Φ

(
−h
σ

)
� e−h

2/2σ2
. (3.1.22)
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However, the probability that the sample path {ys}0�s�t leaves B(h) at least
once during the time interval [0, t] will be slightly larger. A convenient way to
write this probability uses the first-exit time

τB(h) = inf
{
s > 0: (y0

s , s) /∈ B(h)
}

(3.1.23)

of y0
s from B(h). The probability we are after is

P0,0
{
τB(h) < t

}
= P0,0

{
sup

0�s<t

|y0
s |√
ζ(s)

� h

}
. (3.1.24)

Although the event {τB(h) < t} is more likely than any of the fixed-time events
{(y0

s , s) /∈ B(h)}, we still expect that

P0,0
{
τB(h) < t

}
= Ch/σ(t, ε)e−h

2/2σ2
, (3.1.25)

where the prefactor Ch/σ(t, ε) is increasing with time.
We will present two ways to compute the prefactor Ch/σ(t, ε). The first one

only gives an upper bound, but has the advantage to be easily generalised to
higher dimensions. The second one allows Ch/σ(t, ε) to be computed exactly
to leading order in ε and σ, and will show that the upper bound derived by
the first method does not overestimate the prefactor too grossly.

The first approach is based on Doob’s submartingale inequality (Lemma
B.1.2) and its corollary, the Bernstein-type inequality (Lemma B.1.3)

P

{
sup

0�s�t

∣∣∣∣∫ s

0

ϕ(u) dWu

∣∣∣∣ � δ

}
� 2 exp

{
− δ2

2
∫ t
0
ϕ(u)2 du

}
, (3.1.26)

stated here for stochastic integrals of Borel-measurable deterministic functions
ϕ : [0, t] → R .

Proposition 3.1.5. For any γ ∈ (0, 1/2) and any t ∈ I, (3.1.25) holds with

Ch/σ(t, ε) � 2
⌈
|α(t)|
εγ

⌉
exp

{
γ
h2

σ2

[
1 + O(ε)

]}
. (3.1.27)

Proof. Fix γ ∈ (0, 1/2). As y0
t is a Gaussian process but not a martingale due

to the explicit time dependence of the integrand in the representation (3.1.15),
we cannot apply the Bernstein inequality (3.1.26) directly and our main task
will be to approximate y0

t locally by Gaussian martingales. In order to do so,
we introduce a partition 0 = s0 < s1 < · · · < sN = t of [0, t], by requiring

−α(sj+1, sj) = εγ for 0 � j < N =
⌈
|α(t)|
εγ

⌉
. (3.1.28)

Then, by Inequality (3.1.26) and the definition of ζ(t), for any j ∈ {1, . . . , N},
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P0,0
{
τB(h) ∈ [sj , sj+1)

}
� P0,0

{
sup

sj�s�sj+1

∣∣∣∣∫ s

0

e−α(u)/εF0(u) dWu

∣∣∣∣ �
√
ε

σ
inf

sj�s�sj+1
h
√
ζ(s)e−α(s)/ε

}
� 2 exp

{
− h2

2σ2
e2α(sj+1,sj)/ε inf

sj�s�sj+1

ζ(s)
ζ(sj+1)

}
� 2 exp

{
− h2

2σ2
e−2γ

[
1 − O(εγ)

]}
, (3.1.29)

where the last line is obtained from the fact that ζ̇(s) is of order 1, which can
be seen from (3.1.18) and (3.1.17). The result now follows by summing the
above inequality over all intervals of the partition. ��

Note that optimising over γ gives γ = (σ2/h2)[1 + O(ε)]−1, which is less
than 1/2 whenever h2 > 2σ2 as necessary for the probability (3.1.25) to be
small. This choice of γ yields

Ch/σ(t, ε) � 2e

⌈
|α(t)|
ε

h2

σ2

[
1 + O(ε)

]⌉
. (3.1.30)

The second approach uses more elaborate results on first-passage times of
Gaussian processes through a so-called curved boundary (see Appendix C).

Theorem 3.1.6 (Stochastic linear stable case). There exist constants c0,
r0 > 0 such that, whenever

r
(
h/σ, t, ε

)
:=
σ

h
+
t

ε
e−c0h

2/σ2 � r0 , (3.1.31)

then
P0,0

{
τB(h) < t

}
= Ch/σ(t, ε)e−h

2/2σ2
, (3.1.32)

with the prefactor satisfying

Ch/σ(t, ε) =

√
2
π

|α(t)|
ε

h

σ

[
1 + O

(
r(h/σ, t, ε) + ε+

ε

|α(t)| log(1 + h/σ)
)]

.

(3.1.33)

This estimate shows that as soon as we take h/σ sufficiently large, that is,
when the width of the strip B(h) is large compared to σ

√
ζ(t), it is unlikely

to observe any excursion of a sample path outside the strip, unless we wait
for an exponentially long time. We thus recover the existence of metastable
behaviour known in the time-independent case. The result is compatible with
the classical Wentzell–Freidlin theory, which shows in particular that the first
exit from the neighbourhood of a potential well typically occurs after a time
exponentially large in the potential difference to be overcome. However, the
expression (3.1.32) is more precise, since (3.1.33) also gives the prefactor to
leading order, and the result is not only valid in the limit σ → 0.
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Note that Condition (3.1.31) amounts to requiring h/σ to be large with
respect to log(t/ε), and is automatically fulfilled whenever the probabil-
ity (3.1.32) is small. Fixing our choice of h � σ, we see that the expres-
sion (3.1.32) is useful (in the sense of the error terms in (3.1.33) being small)
whenever log(h/σ) 
 t/ε
 ec0h

2/σ2
.3 Also note that the prefactor Ch/σ(t, ε)

is necessarily monotonously increasing in t.
The proof of Theorem 3.1.6 can be divided into two steps. We first in-

troduce first-passage times at the upper and lower boundary of B(h), given
by

τ±(h) = inf
{
t > 0: ± y0

t � h
√
ζ(t)

}
. (3.1.34)

The random variables τ±(h) are identically distributed, and the first-exit time
from B(h) is given by the minimum τB(h) = τ+(h)∧τ−(h). We start by deriving
the distribution of τ+(h).

Lemma 3.1.7. If Condition (3.1.31) is satisfied, then the density of τ+(h) is
given by

∂

∂t
P0,0

{
τ+(h) < t

}
=

1√
2π

|a(t)|
ε

h

σ
exp

{
− h2

2σ2

ζ(t)
v(t)

}
×

[
1 + O

(
r(h/σ, t, ε) + ε+ e−2a0t/ε

)]
. (3.1.35)

Proof. Instead of y0
t , we consider the process

zt = e−α(t)/εy0
t =

σ√
ε

∫ t

0

e−α(s)/εF0(s) dWs , (3.1.36)

which has the advantage of being a Gaussian martingale. We denote its vari-
ance at time t by

σ2ṽ(t) = σ2e−2α(t)/εv(t) . (3.1.37)

The first passage of y0
t at h

√
ζ(t) corresponds to the first passage of zt at

the level d(t) = h
√
ζ(t)e−α(t)/ε, a so-called curved boundary. Some results on

first-passage time densities are given in Appendix C. We plan to use Corol-
lary C.1.6, which provides the relation

∂

∂t
P0,0

{
τ+(h) < t

}
=

1
σ
c0(t)e−d(t)

2/2σ2ṽ(t)[1 + r̃] , (3.1.38)

where the exponent d(t)2/2σ2ṽ(t) yields the exponent in (3.1.35). The pref-
actor c0(t) is given by

c0(t) =
ṽ′(t)√
2πṽ(t)

[
d(t)
ṽ(t)

− d′(t)
ṽ′(t)

]
=

h√
2π

|a(t)|
ε

[
1 + O(ε) + O(e−2a0t/ε)

]
, (3.1.39)

3Recall that by Assumption 3.1.1, the curvature |a(t)| is bounded above and
below for t ∈ I, so that |α(t)| � t.
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and the remainder r̃ satisfies

r̃ =
2M1M2M3

∆
O

(
4M2σ

∆2
+

e−∆
2/4σ2

σ
t

)
, (3.1.40)

where the quantities ∆, M1, M2 and M3 must be chosen such that the fol-
lowing conditions are met for all t � 0 and 0 � s � t:

d(t)ṽ′(t) − ṽ(t)d′(t) � ∆ṽ′(t)(1 +
√
ṽ(t)) , (3.1.41)

d(t)ṽ′(t) − ṽ(t)d′(t) � M3(1 + ṽ(t)3/2) , (3.1.42)

1 + ṽ(t) � M2ṽ
′(t) , (3.1.43)[

d(t) − d(s)
ṽ(t) − ṽ(s)

− d′(t)
ṽ′(t)

]
� M1

√
2π(ṽ(t) − ṽ(s))

ṽ′(t)
. (3.1.44)

A computation shows that we can choose ∆ = O(h), M1 = O(h/ε), M2 =
O(ε), and M3 = O(h/ε), which yields the error term in (3.1.35). ��

The following result relates the distributions of the one-sided first-exit time
τ+(h) and the double-sided first-exit time τB(h).

Lemma 3.1.8. The first-exit time τB(h) satisfies

P0,0
{
τB(h) < t

}
= 2(1 − p)P0,0

{
τ+(h) < t

}
, (3.1.45)

where
0 � p � sup

0�s�t
Ps,0

{
τ+(h) < t

}
. (3.1.46)

Proof. Let us write τ± as a short-hand for τ±(h), and recall that τB(h) =
τ+ ∧ τ−. By symmetry of y0

t , we have

P0,0
{
τ+ ∧ τ− < t

}
= 2

[
P0,0

{
τ+ < t

}
− P0,0

{
τ− < τ+ < t

}]
. (3.1.47)

Furthermore, the Markov property implies

P0,0
{
τ− < τ+ < t

}
� E0,0

{
1{τ−<t}P

τ−,−h
√
ζ(τ−)

{
τ+ < t

}}
� P0,0

{
τ− < t

}
sup

0�s�t
Ps,−h

√
ζ(s)

{
τ+ < t

}
� P0,0

{
τ− < t

}
sup

0�s�t
Ps,0

{
τ+ < t

}
, (3.1.48)

where the last line follows from the fact that solutions of the same SDE,
starting in different points, cannot cross. Finally, in the last line, we can
replace P0,0{τ− < t} by P0,0{τ+ < t}. ��
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Proof (of Theorem 3.1.6). Now the proof of (3.1.32) and (3.1.33) follows from
Lemma 3.1.8 and Lemma 3.1.7, using the fact that

ζ(t)
v(t)

=
[
1 − ζ(0)

ζ(t)
e2α(t)/ε

]−1

. (3.1.49)

Note that Ps,0{τ+ < t} is bounded by a decreasing function of s. This implies
that the term p in (3.1.45) only contributes to the error terms in (3.1.33). ��
Remark 3.1.9. The existence of a uniform lower bound F− for the diffusion
coefficient F (x, t) is actually not necessary. It is sufficient that the lower bound
ζ− of the function ζ(t) defining the width of B(h) be strictly positive, which
can be the case even if F0(t) vanishes at some points. Then the error terms
may, however, depend on ζ−.

3.1.2 Nonlinear Case

We return now to a description of the original equation for yt = xt − x̄(t, ε),
which includes a nonlinear drift term (the noise-dependent diffusion coefficient
having been eliminated by the near-identity transformation of Lemma 3.1.2):

dyt =
1
ε

[
a(t)yt + b(yt, t)

]
dt+

σ√
ε
F0(t) dWt . (3.1.50)

We may assume the existence of a constant d0 such that the bound |b(y, t)| �
M(y2 + σ2) holds for |y| � d0.4

We will use an approach which is common in the theory of dynamical sys-
tems, and treat the term b as a small perturbation of the linearised equation.
Indeed, the solution of (3.1.50) can be written as the sum

yt = y0
t + y1

t , (3.1.51)

where y0
t is the solution (3.1.15) of the linearised equation (3.1.14), while

y1
t =

1
ε

∫ t

0

eα(t,s)/εb(ys, s) ds . (3.1.52)

As in (3.1.21), we denote by B(h) the strip

B(h) =
{
(x, t) : t ∈ I, |x− x̄(t, ε)| < h

√
ζ(t)

}
, (3.1.53)

centred in the deterministic solution (Fig. 3.2), whose width scales with the
same function ζ(t) as before, cf. (3.1.18). If we can show that as long as
the path xt stays in B(h), the term y1

t is small compared to y0
t with high

probability, then the distribution of the first-exit time τB(h) of xt from B(h)
will be close to the distribution of the first-exit time for the linearised process.
Implementing these ideas leads to the following result.

4The maybe unusual σ-dependence of (the bound on) b is introduced in or-
der to handle the new drift terms arising from the transformation of variables
(Lemma 3.1.2).



3.1 Stable Equilibrium Branches 63

t

x

x̄(t, ε)

xt

x�(t)

B(h)

Fig. 3.2. Concentration of sample paths near a stable equilibrium branch x�(t).
The shaded set B(h), shown for h = 3σ, is centred in the deterministic solution
x̄(t, ε), which tracks the equilibrium branch at a distance of order ε.

Theorem 3.1.10 (Stochastic nonlinear stable case). There exist con-
stants h0, r0, c0, c1 > 0 such that, whenever h � h0 and

r
(
h/σ, t, ε

)
:=
σ

h
+
t

ε
e−c0h

2/σ2 � r0 , (3.1.54)

then

Ch/σ(t, ε)e−κ−h2/2σ2 � P0,0
{
τB(h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
, (3.1.55)

where the exponents κ± are given by

κ+ = 1 − c1h ,

κ− = 1 + c1h ,
(3.1.56)

and the prefactor satisfies

Ch/σ(t, ε) =

√
2
π

|α(t)|
ε

h

σ
(3.1.57)

×
[
1 + O

(
r(h/σ, t, ε) + ε+ h+

ε

|α(t)| log(1 + h/σ)
)]

.

Proof. As |yτB(h) | = h
√
ζ(τB(h)), we can write

P0,0
{
τB(h) < t

}
= P0,0

{
sup

0�s�t∧τB(h)

|ys|√
ζ(s)

� h

}
� P0 + P1 , (3.1.58)

with

P0 = P0(H0) = P0,0

{
sup

0�s�t

|y0
s |√
ζ(s)

� H0

}
, (3.1.59)

P1 = P1(H1) = P0,0

{
sup

0�s�t∧τB(h)

|y1
s |√
ζ(s)

� H1

}
, (3.1.60)
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t

x

xt

x�(t)eB(h)

xdet
t

Fig. 3.3. Typical behaviour of a sample path starting at some distance from a
stable equilibrium branch x�(t). The path stays in the shaded set eB(h), centred in
the deterministic solution xdet

t starting at the same point as the sample path. The
deterministic solution converges exponentially fast to the adiabatic solution x̄(t, ε).

for any decomposition h = H0 + H1. The probability P0 has been esti-
mated in Theorem 3.1.6. For P1, we use the following deterministic bound
on |y1

s |/
√
ζ(s), valid for all s � τB(h), provided h � h0 := d0/

√
ζ+,

|y1
s |√
ζ(s)

� 1√
ζ(s)

1
ε

∫ s

0

eα(s,u)/ε|b(yu, u)|du � ζ+√
ζ−

M(h2 + σ2)
a0

. (3.1.61)

Note that we have σ2 � r20h
2 by Assumption (3.1.54). Thus, choosing H1 =

2M(1 + r20)h
2ζ+/(a0

√
ζ−) implies P1 = 0. In addition, H1 is significantly

smaller than H0 = h−H1 = h(1 − O(h)). Therefore, the contribution of the
nonlinear term causes only an error term of order h in the exponent and in
the prefactor obtained for P0.

As for the lower bound, whenever H0 −H1 � h, we can bound the prob-
ability below by P0(H0) − P1(H1). We thus take the same H1 as before, and
H0 = h+H1. ��

The result (3.1.55) can be interpreted as follows. For a fixed choice of
h � σ, the probability to leave B(h) before time t remains small as long as
|α(t)|/ε
 eh

2/2σ2
, that is, up to the order of Kramers’ time. On the other

hand, given a time t, paths are unlikely to leave B(h) before time t provided
h2 � 2σ2 log(|α(t)|/ε). Loosely speaking, we will say that typical sample
paths are concentrated in the set B(σ).

The difference between the two exponents κ+ and κ− in (3.1.55) actually
induces a more important inaccuracy than the error term in the prefactor.
This is due to the fact that we use the same strip B(h) as in the linear case,
although the nonlinear drift term b(y, t) will typically induce an asymmetric
distribution of paths around the deterministic solution.

In Theorem 3.1.10, we assumed for simplicity that xt starts exactly on the
adiabatic solution x̄(t, ε). What happens if the initial condition x0 lies at a dis-
tance δ from x̄(0, ε)? For δ which are sufficiently small, but may be of order 1,
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the deterministic solution xdet
t starting in x0 approaches x̄(t, ε) exponentially

fast. The linearisation ã(t) = ∂xf(xdet
t , t) thus approaches a(t) exponentially

fast, and is bounded away from 0 if δ is small enough. One can define a neigh-
bourhood B̃(h) of xdet

t , using instead of ζ(t) a solution ζ̃(t) of the equation
εż = 2ã(t)z + F (xdet

t , t)2; the difference ζ̃(t) − ζ(t) decreases exponentially
fast, and thus B̃(h) overlaps with B(h) as soon as t/ε is of order log(δ/h),
and for t/ε � log(δ/h), the difference between the sets becomes negligible
(Fig. 3.3). The same arguments as in the case δ = 0 then show that (3.1.55)
still holds, with B(h) replaced by B̃(h). In particular, the exponential decay
of ã(t) − a(t) implies that

∫ t
0
ã(s) ds = α(t) + O(ε), so that the prefactor still

has the form (3.1.57).
To complete the discussion, it is useful to have some information on the

motion far from equilibrium branches, that is, where the drift coefficient f(x, t)
is bounded away from zero. If we assume the diffusion coefficient F (x, t) to be
bounded away from zero as well, it is always possible to construct a change of
variables which replaces F by a constant, cf. Lemma 3.1.2 and Remark 3.1.3.
It is thus sufficient to consider the equation

dxt =
1
ε
f(xt, t) dt+

σ√
ε

dWt . (3.1.62)

The following result shows that sample paths starting far from equilibrium
branches are likely to reach a neighbourhood of order 1 of a stable branch in
a time of order ε.

Theorem 3.1.11 (Stochastic motion far from equilibria). Assume that
there are constants δ0 < δ1 and 0 < ρ < δ1 − δ0 such that f(x, t) � −f0 < 0
for all x ∈ [δ0, δ1 + ρ] and t ∈ [t0, t1]. Let c = 2(δ1 − δ0)/f0 and assume
ε � (t1 − t0)/c. Then

Pt0,δ1
{
xs > δ0 ∀s ∈ [t0, t0 + cε]

}
� e−κ/2σ

2
(3.1.63)

holds with κ = f0ρ
2/2(δ1 − δ0).

Proof. Define a process x0
t by

x0
t = δ1 − f0

ε
(t− t0) +

σ√
ε
Wt−t0 , t � t0 . (3.1.64)

By the comparison lemma (Lemma B.3.2), if δ0 � x0
t � δ1 + ρ for all t ∈

[t0, t0 + cε], then xt � x0
t for those t. Consider now the decomposition

Pt0,δ1
{
xs > δ0 ∀s ∈ [t0, t0 + cε]

}
� Pt0,δ1

{
sup

t0�s�t0+cε

σ√
ε
Wt−t0 > ρ

}
(3.1.65)

+ Pt0,δ1
{
xs > δ0 ∀s ∈ [t0, t0 + cε], sup

t0�s�t0+cε

σ√
ε
Wt−t0 � ρ

}
.
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The first term on the right-hand side is bounded by e−ρ
2/2cσ2

. The second
term is bounded above by

Pt0,δ1
{
δ0 < x0

s < δ1 + ρ− f0
ε

(s− t0) ∀s ∈ [t0, t0 + cε]
}

= 0 , (3.1.66)

because δ1 + ρ− f0
ε (s− t0) � δ0 for s = t0 + cε. ��

3.1.3 Moment Estimates

The results that we have obtained on the tail probabilities of the first-exit
time τB(h) also yield, via standard integration-by-parts formulae, estimates of
the moments of τB(h) and of the deviation |xt − x̄(t, ε)| of sample paths from
the adiabatic solution.

The following, exponentially large lower bound on the expected first-exit
time is straightforward to obtain, and is in accordance with standard large-
deviation results.

Proposition 3.1.12. Let Assumption 3.1.1 hold with I = [0,∞) as time in-
terval. Then

E0,0
{
τB(h)

}
� ε

c

σ2

h2
eκ+h

2/2σ2
(3.1.67)

holds for all h � h0, where κ+ = 1 − O(h) and c is a constant.

Proof. For any time t � 0, we can write

E0,0
{
τB(h)

}
=

∫ ∞

0

P0,0
{
τB(h) � s

}
ds

�
∫ t

0

[
1 − Ch/σ(s, ε)e−κ+h

2/2σ2]
ds . (3.1.68)

Instead of (3.1.57), we may use the estimate (3.1.30) for the prefactor
Ch/σ(s, ε), which is less precise but has the advantage to hold for all times s.
Bounding Ch/σ(s, ε) by a constant times (s/ε)(h2/σ2), the result follows by
optimising over t. ��

In order to estimate moments of the deviation xt− x̄(t, ε) of sample paths
from the deterministic solution, we need to make additional assumptions on
the global behaviour of f and F . For instance, in addition to Assumption 3.1.1
and the standard bounded-growth conditions, we may impose that

• f and F are defined and twice, respectively once, continuously differen-
tiable, for all x ∈ R and t ∈ I;

• there are constants M0, L0 > 0 such that xf(x, t) � −M0x
2 for |x| > L0;

• F (x, t) is bounded above and below by positive constants.



3.1 Stable Equilibrium Branches 67

The assumption of F being uniformly bounded above and below allows the
transformation of Lemma 3.1.2 to be carried out globally, thereby eliminat-
ing the x-dependence of the noise coefficient. We can thus still consider the
equation

dyt =
1
ε

[
a(t)yt + b(yt, t)

]
dt+

σ√
ε
F0(t) dWt (3.1.69)

for the deviation yt = xt− x̄(t, ε), where b(y, t) is bounded by M(y2 + σ2) for
small |y|.

The assumptions on the large-x behaviour of the drift term allow the
probability of sample paths making excursions of order larger than 1 to be
bounded. Indeed, there are constants L′

0,M
′
0 > 0 such that y2a(t)+yb(y, t) �

−M ′
0y

2 for |y| larger than L′
0 (in the sequel, we shall drop the primes). An

application of the comparison lemma (Lemma B.3.2) then shows that

P0,0

{
sup

0�s�t
|ys| � L

}
� C

(
t

ε
+ 1

)
e−κL

2/2σ2
(3.1.70)

holds, for some constants C, κ > 0, whenever L � L0.
In this setting, we obtain the following estimate on even moments of yt;

odd moments can then be deduced by an application of Schwarz’ inequality.

Proposition 3.1.13. There exist constants c1, c2 > 0 such that, for all σ
satisfying σ|log ε| � c1 and all k � 1,

E0,0
{
|yt|2k

}
� k!

[
1 + r(σ, ε, t)

]2k
σ2kζ(t)k , (3.1.71)

with an error term satisfying r(σ, ε, t) � c2(σ + εt)|log ε|.

Proof. We consider only the case k = 1, as the other cases can be treated
similarly. Let γ = Kσ|log ε|1/2, for a constant K to be chosen below. Let ζ+
and ζ− be upper and lower bounds on ζ(s) valid for 0 � s � t. We may
assume that γ2ζ+ < h2

0, where h0 is the constant in Theorem 3.1.10. Consider
the event

A(γ) =
{

sup
0�s�t

|ys|√
ζ(s)

< γ

}
. (3.1.72)

We decompose the expectation of y2
t as E0,0{y2

t } = E1 + E2, where

E1 = E0,0
{
y2
t 1A(γ)

}
, E2 = E0,0

{
y2
t 1A(γ)C

}
. (3.1.73)

The main contribution to the expectation comes from the term E1. Using the
representation yt = y0

t + y1
t , cf. (3.1.51), we can decompose it as

E1 �
(
E0,0

{
(y0
t )

2
}1/2 + E0,0

{
(y1
t )

21A(γ)

}1/2)2

. (3.1.74)

We immediately have E0,0{(y0
t )

2} � σ2ζ(t). Furthermore, using the fact that
|b(y, t)| � M(|y|2 + σ2), we can estimate
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E0,0
{

(y1
t )

21A(γ)

}1/2

� M
(
γ2ζ+ + σ2

)1
ε

∫ t

0

eα(t,s)/ε ds . (3.1.75)

The integral can be bounded by a constant times ε, and since ζ(t) is bounded
below, we may write

E1 � σ2ζ(t)
[
1 +M1σ

(
1 +

γ2ζ+
σ2

)]2

(3.1.76)

for some constant M1 > 0. The term E2 can be written, using integration by
parts, as

E2 = ζ(t)
∫ ∞

0

2z P0,0

{
sup

0�s�t

|ys|√
ζ(s)

� γ ∨ z
}

dz . (3.1.77)

We split the integral at γ, h0, and L0/
√
ζ−, and evaluate the terms separately,

with the help of Theorem 3.1.10 and (3.1.70). This yields a bound of the form

E2 � ζ(t)C
(
t

ε
+ 1

)
(3.1.78)

×
[(
γ2 +

σ2

κ+

)
e−κ+γ

2/2σ2
+
L2

0

ζ−
e−κ+h

2
0/2σ

2
+

2σ2

κ
e−κL

2
0/2σ

2
]
.

Now choosing the constant K in the definition of γ sufficiently large allows
E2 to be made negligible with respect to E1. ��

3.2 Unstable Equilibrium Branches

An overdamped particle, starting near a local maximum (or barrier) of a fixed
potential, moves away from the barrier with exponentially increasing speed
— unless it starts exactly on the top of the barrier: Then it just sits there
forever. The slightest amount of noise, however, destroys this effect, by kicking
the particle to one side or the other of the barrier, thereby accelerating the
first phase of its escape. We will now consider the analogous situation for
slowly moving potential barriers.

We consider in this section the SDE

dxt =
1
ε
f(xt, t) dt+

σ√
ε
F (xt, t) dWt (3.2.1)

in the case where f admits a uniformly hyperbolic unstable equilibrium branch
x�(t). This is equivalent to assuming that the potential U(x, t) admits a strict
local maximum at x�(t) for all times t. We thus require the same hypotheses
as in Section 3.1 to hold, except for the stability assumption which is replaced
by its converse.
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Fig. 3.4. Overdamped particle in equilibrium near a slowly moving potential barrier.

Assumption 3.2.1 (Unstable case).

• Domain and differentiability: f ∈ C2(D,R ) and F ∈ C2(D,R ), where D is
a domain of the form

D =
{
(x, t) : t ∈ I, d1(t) < x < d2(t)

}
, (3.2.2)

for an interval I = [0, T ] or I = [0,∞), and two continuous functions
d1, d2 : I → R such that d2(t)− d1(t) is positive and bounded away from 0
in I. We further assume that f , F and all their partial derivatives up to
order 2, are bounded in absolute value by a constant M , uniformly in D.5

• Equilibrium branch: There is a continuous function x� : I → R such that
d1(t) + d � x�(t) � d2(t) − d for some d > 0, and

f(x�(t), t) = 0 ∀t ∈ I . (3.2.3)

• Instability: Let a�(t) = ∂xf(x�(t), t). There exists a constant a�0 > 0 such
that

a�(t) � a�0 ∀t ∈ I . (3.2.4)

• Non-degeneracy of noise term: There is a constant F− > 0 such that

F (x, t) � F− ∀(x, t) ∈ D . (3.2.5)

In the deterministic case σ = 0, Fenichel’s theorem (cf. Theorem 2.1.8)
can be applied and yields, as in the stable case, the existence of an invariant
manifold given by a particular solution

x̄(t, ε) = x�(t) + ε
ẋ�(t)
a�(t)

+ O(ε2) (3.2.6)

of the deterministic equation. In contrast to the stable case, the adiabatic
solution precedes the unstable equilibrium x�(t) (Fig. 3.4). This is similar to
a juggler’s movements when balancing a pool cue while walking around.

5Several results remain true if F is only once continuously differentiable, but the
assumption F ∈ C2(D, R ) makes life simpler as it allows the x-dependence of F to
be removed without introducing remainders of order σ2 in the drift term.
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t

y

σ = 5 · 10−2

σ = 5 · 10−5

σ = 5 · 10−8

Fig. 3.5. Escape of sample paths from an unstable equilibrium branch. For each of
three different noise intensities, paths are shown for five different realisations of the
Brownian motion.

The invariant manifold is repelling. In fact, we can apply Tihonov’s theo-
rem (cf. Theorem 2.1.7) to the deterministic equation with reversed time, to
show that solutions approach x̄(t, ε) exponentially fast when looking backwards
in time. This exponential instability also implies that the time needed for
neighbouring solutions to depart from x̄(t, ε) depends on their initial distance
y0 = x0 − x̄(0, ε). When |y0| is sufficiently small, the distance yt = xt− x̄(t, ε)
behaves approximately like y0econst t/ε, and thus its absolute value reaches
order 1 in a time of order ε|log|y0||. However, this time can be of order 1,
if |y0| is exponentially small, which is the basic mechanism responsible for
bifurcation delay.

In the presence of noise, yt obeys, as in the stable case, an equation of the
form

dyt =
1
ε

[
a(t)yt + b(yt, t)

]
dt+

σ√
ε
F0(t) dWt , (3.2.7)

where, as before,

a(t) = ∂xf(x̄(t, ε), t) + O(σ2) = a�(t) + O(ε) + O(σ2) ,
F0(t) = F (x̄(t, ε), t) . (3.2.8)

The remainder satisfies |b(y, t)| � M |y|2, for sufficiently small y. If the diffu-
sion coefficient F (y, t) is position-dependent, we transform it into the purely
time-dependent coefficient F0(t), using the same arguments as in Lemma 3.1.2;
this slightly affects the value of M and accounts for the σ2-dependent term
in a(t).

The dynamics is dominated by the diffusion term as long as |y| � σρ(t),
where ρ(t) = F0(t)/

√
2a(t). For larger |y|, the drift term takes over and helps

push sample paths away from the equilibrium branch. Our aim is to show that
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for σ > 0, paths will typically leave a neighbourhood of order 1 of x̄(t, ε) after
a time of order ε|log σ| already, independently of the initial distance to the
unstable solution (Fig. 3.5). Below we present estimates of decreasing degree
of precision in three different regimes:

• In Section 3.2.1, we use results on small-ball probabilities for Brownian
motion to show that for h < σ, sample paths leave a neighbourhood of
size hρ(t) of x̄(t, ε) as soon as α(t) =

∫ t
0
a(s) ds� (4/π2)εh2/σ2.

• For slightly larger h, namely σ < h 

√
σ, a neighbourhood of size hρ(t)

is left in a time of order ε log(h/σ).
• Section 3.2.2 extends the results to the escape from a neighbourhood of

order δ, where δ is sufficiently small but independent of σ; this escape
typically occurs after a time proportional to ε log(δ/σ).

3.2.1 Diffusion-Dominated Escape

Consider first the solution y0
t of the linearised SDE

dy0
t =

1
ε
a(t)y0

t dt+
σ√
ε
F0(t) dWt , (3.2.9)

obtained from (3.2.7) by omitting the nonlinear drift term b(y, t). As in Sec-
tion 3.1.1 above, we can take advantage of the fact that y0

t is a Gaussian
process with zero mean and variance

Var{y0
t } =

σ2

ε

∫ t

0

e2α(t,s)/εF0(s)2 ds , (3.2.10)

where α(t, s) =
∫ t
s
a(u) du. In contrast to the stable case, however, Var{y0

t }
grows exponentially fast in time. An integration by parts shows that

Var{y0
t } = σ2e2α(t)/ε

[
ρ(0)2 − ρ(t)2e−2α(t)/ε + O(ε)

]
, (3.2.11)

where

ρ(t) =
F0(t)√
2a(t)

. (3.2.12)

The behaviour of the variance is thus given by

Var{y0
t } =

⎧⎪⎪⎨⎪⎪⎩
2σ2ρ(0)2

α(t)
ε

[
1 + O(t/ε) + O(ε)

]
, for t < ε ,

σ2ρ(0)2e2α(t)/ε
[
1 + O(e−2α(t)/ε) + O(ε)

]
, for t � ε .

(3.2.13)
The standard deviation of y0

t reaches hρ(0) as soon as α(t) � εh2/2σ2 if
h
 σ, and as soon as α(t) � ε log(h/σ) if h� σ.



72 3 One-Dimensional Slowly Time-Dependent Systems

A similar behaviour can be established for the sample paths of the non-
linear equation (3.2.7). We denote by τS(h) the first-exit time of yt from the
strip

S(h) =
{
(y, t) : t ∈ I, |y| < hρ(t)

}
. (3.2.14)

The main result of this section is the following upper bound on the probability
that yt remains in S(h) up to time t.

Theorem 3.2.2 (Stochastic unstable case – Diffusion-dominated es-
cape). Assume |y0| � hρ(0).

• If h < σ, then for any time t ∈ I,

P0,y0
{
τS(h) � t

}
� exp

{
−κ(h/σ)

α(t)
ε

}
, (3.2.15)

where the exponent κ(h/σ) is given by

κ(h/σ) =
π2

4
σ2

h2

[
1 − O

(
h

σ

√
1 +

ε

α(t)

)]
. (3.2.16)

• Let µ > 0, and define Cµ = (2 + µ)−(1+µ/2). Then, for any h such that
σ < h < (Cµσ)(1+µ)/(2+µ), and any time t ∈ I,

P0,y0
{
τS(h) � t

}
�

(
h

σ

)µ

exp
{
−κµ

α(t)
ε

}
, (3.2.17)

where the exponent κµ is given by

κµ =
µ

1 + µ

[
1 − O

(
ε
1 + µ

µ

)
− O

(
1

µ log(1 + h/σ)

)]
. (3.2.18)

Relation (3.2.15) shows that most paths will already have left S(h) for
times t such that α(t) � εκ(h/σ)−1.

Estimate (3.2.17) allows the description to be extended to slightly larger
h, up to all orders less than

√
σ. It shows that most paths will have left S(h)

whenever α(t) � ε(1 + µ) log(h/σ), where the admissible values for µ depend
on h. For any ν ∈ (1/2, 1), the choice µ = (2ν − 1)/(1 − ν), which yields an
exponent κµ close to 2 − 1/ν, allows h to be taken up to order σν .

Remark 3.2.3. As h approaches σ from below, Estimate (3.2.15) ceases to be
applicable as the error term in (3.2.16) is no longer small. To close the gap,
we will derive the additional estimate

P0,y0
{
τS(h) � t

}
�

√
e exp

{
−α(t)

ε

1 − O((h+ ε)h2/σ2)
log(1 + (2e/π)h2/σ2)

}
, (3.2.19)

valid for all h � σ and all t ∈ I; see Proposition 3.2.6 below.
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The proof of Theorem 3.2.2 is based on the following consequence of the
Markov property, which we will use several times in the sequel.

Lemma 3.2.4. Let 0 = s0 < s1 < · · · < sN = t be a partition of [0, t]. For
k = 1, . . . , N , let

Pk = sup
|y|�hρ(sk−1)

Psk−1,y

{
sup

sk−1�s�sk

|ys|
ρ(s)

< h

}
. (3.2.20)

Then

P0,y0

{
sup

0�s�t

|ys|
ρ(s)

< h

}
�

N∏
k=1

Pk (3.2.21)

holds for any y0 such that |y0| � hρ(0).

Proof. Denote by Ak the event on the right-hand side of (3.2.20). As a direct
consequence of the Markov property, the probability in (3.2.21) can be written
as

P0,y0
{ N⋂
k=1

Ak

}
= E0,y0

{
1{TN−1

k=1 Ak}P
sN−1,ysN−1{AN}

}
� PNP0,y0

{N−1⋂
k=1

Ak

}
� · · · �

N∏
k=1

Pk . (3.2.22)

��
Note that by taking the supremum over all y in (3.2.20), we overestimate

the probability. A more accurate bound would be obtained by integrating over
the distribution of ysk

at each k ∈ {1, . . . , N}.
The main point in proving Theorem 3.2.2 is to choose an appropriate

partition. Its intervals should be large enough to allow the linearised process
to leave S(h) with appreciable probability, but small enough to allow the
influence of the nonlinear drift term b(y, t) to be bounded.

We start by treating the case h
 σ. The key idea is again that the lineari-
sation y0

t is, at least locally, well approximated by the Gaussian martingale
e−α(t)/εy0

t , which is equal in distribution to the time-changed Brownian mo-
tion WVar(e−α(t)/εy0

t ). Using the Brownian scaling property and a standard
estimate on small-ball probabilities for Brownian motion, cf. Appendix C.2,
we obtain, for small t and h,

P0,0
{
|y0
s | < hρ(s) ∀s < t

}
� P0,0

{
|WVar(e−α(s)/εy0

s)| < hρ(0) ∀s < t
}

= P0,0

{√
Var(e−α(t)/εy0

t ) sup
0�s�1

|Ws| < hρ(0)
}

� exp
{
−π

2

8
Var(e−α(t)/εy0

t )
h2ρ(0)2

}
� exp

{
−π

2

4
α(t)
ε

σ2

h2

}
. (3.2.23)



74 3 One-Dimensional Slowly Time-Dependent Systems

Making the argument rigorous and applying it to each interval of the partition,
yields the following result, which in turn implies (3.2.15) and (3.2.16).

Proposition 3.2.5. Assume h < σ and |y0| � hρ(0). Then, for any t ∈ I,

P0,y0
{
τS(h) � t

}
� exp

{
−π

2

4
α(t)
ε

σ2

h2

[
1 − O

(
h

σ

√
1 +

ε

α(t)

)]}
. (3.2.24)

Proof.

• Let 0 = s0 < s1 < · · · < sN = t be a partition of [0, t]. We again choose
this partition “equidistant with respect to α”, that is, we require

α(sk, sk−1) = ε∆ for 1 � k < N =
⌈
α(t)
ε∆

⌉
, (3.2.25)

with ∆ > 0 to be chosen later. On each time interval [sk−1, sk], we write
the solution ys of (3.2.7) as the sum ys = yk,0s + yk,1s , where

yk,0s = ysk−1e
α(s,sk−1)/ε +

σ√
ε

∫ s

sk−1

eα(s,u)/εF0(u) dWu ,

yk,1s =
1
ε

∫ s

sk−1

eα(s,u)/εb(yu, u) du . (3.2.26)

Then the quantity Pk, defined in (3.2.20), can be decomposed as

Pk � sup
|y|�hρ(sk−1)

[
Pk,0(y,H0) + Pk,1(y,H1)

]
, (3.2.27)

where

Pk,0(y,H0) = Psk−1,y

{
sup

sk−1�s<sk

|yk,0s |
ρ(s)

< H0

}
, (3.2.28)

Pk,1(y,H1) = Psk−1,y

{
sup

sk−1�s<sk

|yk,1s |
ρ(s)

� H1, sup
sk−1�s<sk

|ys|
ρ(s)

< h

}
,

provided H0, H1 > 0 satisfy H0 −H1 = h.
• Since only those sample paths ys which do not leave S(h) during the time

interval [sk−1, sk), contribute to Pk,1(y,H1), the effect of the nonlinear
term b(y, t) can be controlled. Note that for all sufficiently small h and all
s ∈ [sk−1, sk),

|yk,1s∧τS(h)
| � 1

ε

∫ s

sk−1

eα(s,u)/εMh2ρ(u)2 du

� Mh2
[
e∆ − 1

]
sup

sk−1�u�sk

ρ(u)2

a(u)
. (3.2.29)
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Thus, for h � h0, any k and all s ∈ [sk−1, sk), by our choice of the partition,

|yk,1s∧τS(h)
|

ρ(s ∧ τS(h))
� Mh2

[
e∆ − 1

][
1 + O(ε∆)

]
sup

0�u�t

ρ(u)
a(u)

=:
H1

2
. (3.2.30)

This ensures Pk,1(y,H1) = 0 provided we take H1 � H1.
• To estimate the contribution of the Gaussian process yk,0s , we approximate

it locally, that is separately on each time interval [sk−1, sk), by a Gaussian
martingale. The latter can be transformed into standard Brownian motion
by a time change. Finally, it remains to bound the probability of Brownian
motion remaining in a small ball: For |y| � hρ(sk−1),

Pk,0(y,H0) � Pk,0(0, H0) = Psk−1,0

{
sup

sk−1�s<sk

|yk,0s |
ρ(s)

< H0

}
� Psk−1,0

{
e−α(s,sk−1)/ε|yk,0s | < H0ρ(s) ∀s ∈ [sk−1, sk]

}
� Psk−1,0

{
sup

sk−1�s�sk

|Wv̄k(s)/v̄k(sk)| < Rk(H0, σ)
}
, (3.2.31)

where
Rk(H0, σ) :=

H0

σ
v̄k(sk)−1/2 sup

sk−1�s�sk

ρ(s) (3.2.32)

depends on the variance σ2v̄k(s) of the approximating Gaussian martingale
e−α(s,sk−1)/εyk,0s . This variance satisfies

σ2v̄k(sk) =
σ2

ε

∫ sk

sk−1

e−2α(u,sk−1)/εF0(u)2 du

� σ2ρ(sk)2
[
1 − e−2∆

]
inf

sk−1�s�sk

ρ(s)2

ρ(sk)2
, (3.2.33)

and, by our choice of the partition, the infimum in this expression behaves
like 1 − O(α(sk, sk−1)) = 1 − O(ε∆). Thus,

Rk(H0, σ) � H0

σ

[
1 − e−2∆

]−1/2[1 + O(ε∆)
]
=:R(H0, σ;∆) . (3.2.34)

Now Corollary C.2.2 on small-ball probabilities for Brownian motion im-
mediately implies

sup
|y|�hρ(sk−1)

Pk,0(y,H0) � 4
π

e−π
2/8R(H0,σ;∆)2 . (3.2.35)

• We fix H1 = H1. For small values of ∆, we have H0 = h + H1 =
h[1 + O(h∆(1 + O(∆)))], and 1/R(H0, σ;∆)2 � 2∆(σ2/h2)[1 − O(∆)]
follows. Denoting the right-hand side of (3.2.35) by q(∆) and drawing
on Lemma 3.2.4, we can bound the probability of τS(h) exceeding t by
q(∆)N−1. We use the trivial bound 1 for PN , since the last interval may
be too small for PN to be small. Optimising the error terms leads to the
choice ∆ = (1 + ε/α(t))−1/2h/σ, which implies Estimate (3.2.24). ��
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We now turn to larger values of h. The previous proof is limited by the
fact that the key estimate (3.2.35) requires R(H0, σ;∆), and thus h/σ, to
be of order 1 at most. A more robust, though less precise, bound can be
obtained from an endpoint estimate. At any fixed time t, the probability that
the Gaussian process y0

t lies in a small ball of radius hρ(t), satisfies

P0,0
{
|y0
t | � hρ(t)

}
= 1 − 2Φ

(
− hρ(t)√

Var{y0
t }

)
� 2hρ(t)√

2πVar{y0
t }
, (3.2.36)

where the variance Var{y0
t } of y0

t is given by (3.2.11). Applying similar esti-
mates on each interval of the partition leads to the following bounds, which
complete the proof of Theorem 3.2.2 and Estimate (3.2.19) of Remark 3.2.3.

Proposition 3.2.6. Assume |y0| � hρ(0). Then, for all h � σ and t ∈ I,

P0,y0
{
τS(h) � t

}
�

√
e exp

{
−α(t)

ε

1 − O((h+ ε)h2/σ2)
log(1 + (2e/π)h2/σ2)

}
. (3.2.37)

Furthermore, for any µ > 0, σ < h < (σ/(2 + µ)1+µ/2)(1+µ)/(2+µ) and t ∈ I,

P0,y0
{
τS(h) � t

}
�

(
h

σ

)µ

exp
{
−κµ

α(t)
ε

}
, (3.2.38)

where

κµ =
µ

1 + µ

[
1 − O

(
ε
1 + µ

µ

)
− O

(
1

µ log(1 + h/σ)

)]
. (3.2.39)

Proof. The beginning of the proof is the same as for Proposition 3.2.5. The
main difference lies in the choice of the spacing ε∆ of the partition of the
time interval [0, t], defined implicitly by (3.2.25). While in the previous proof
we were able to choose ∆ small, this is not possible for larger regions. This
results in the estimate (3.2.31) on Pk,0(y,H0) not being precise enough. Thus
we start the proof by estimating Pk,0(y,H0) differently.

• Replacing the supremum of the (conditionally) Gaussian process yk,0s by
its endpoint yk,0sk

shows, for 1 � k < N ,

Pk,0(y,H0) � Psk−1,y
{
|yk,0sk

| < H0ρ(sk)
}

(3.2.40)

= Φ
(
ye∆ +H0ρ(sk)√
σ2v(sk, sk−1)

)
− Φ

(
ye∆ −H0ρ(sk)√
σ2v(sk, sk−1)

)
,

where the (conditional) variance σ2v(sk, sk−1) of the endpoint yk,0sk
satisfies

σ2v(sk, sk−1) = e2α(sk,sk−1)/εv̄k(sk) � σ2ρ(sk)2
[
e2∆−1

]
inf

sk−1�s�sk

ρ(s)2

ρ(sk)2
,

(3.2.41)
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cf. (3.2.33). Using the fact that in (3.2.40), the supremum over y is attained
for y = 0,6

Pk,0(y,H0) � 2H0ρ(sk)√
2πσ2v(sk, sk−1)

�
√

2
π

H0

σ

[
e2∆ − 1

]−1/2 sup
sk−1�s�sk

ρ(sk)
ρ(s)

(3.2.42)
follows for all y satisfying |y| � hρ(sk−1). Finally, by our choice of the
partition, the supremum in the preceding expression can be bounded by
1 + O(α(sk, sk−1)) = 1 + O(ε∆).

• We choose H1 = H1, where H1 is defined in (3.2.30), so that the nonlinear
term becomes negligible, while H0 = h[1+O(h[e∆−1][1+O(ε∆)])]. Then,
for 1 � k < N , Pk is bounded above, uniformly in k, by

q(∆) :=

√
2
π

h

σ

[
e2∆−1

]−1/2[1+O(ε∆)+O(h(e∆−1)(1+ε∆))
]
. (3.2.43)

We use again the trivial bound 1 for PN , since the last interval may be too
small for PN to be small. By Lemma 3.2.4, we obtain the upper bound

P0,y0
{
τS(h) � t

}
� q(∆)−1 exp

{
−α(t)

ε

log q(∆)−1

∆

}
. (3.2.44)

• The remainder of the proof follows from appropriate choices of ∆. In the
case h � σ, the choice

∆ =
1
2

log
(

1 + γ
h2

σ2

)
(3.2.45)

with γ = 2e/π yields q(∆) � 1/
√

e, and implies (3.2.37). In fact, a better
bound can be found by optimising log q(∆)−1/∆ over γ. The optimal γ
is always larger than 2e/π, and tends towards 2e/π as h2/σ2 → 0; for
h2/σ2 → π/2, the optimal γ diverges, and log q(∆)−1/∆ tends to 1. In the
case h > σ, the choice

∆ =
1 + µ

2
log

(
1 + µ+

h2

σ2

)
(3.2.46)

yields

q(∆) �
√

2
π

(
h

σ

)−µ(
1 + µ

σ2

h2

)−(1+µ)/2

×
[
1 + O(ε∆) + O

(
h

(
1 + µ+

h2

σ2

)(1+µ)/2)]
. (3.2.47)

The result (3.2.39) then follows from elementary computations. ��
6Note that for y �= 0, Pk,0(y, H0) is approximately Pk,0(0, H0)e

−y2/2σ2ρ(sk)2 .
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Remark 3.2.7. The term µ/(1 + µ) in the exponent of (3.2.39) is due to the
fact that we take the supremum over all y in (3.2.27). In fact, the probabil-
ity to remain in S(h) during [sk−1, sk] decreases when ysk−1 approaches the
boundary of S(h). A more precise estimate would be obtained by integrating
over the distribution of ysk−1 at each sk−1, which should decrease each Pk by
a factor h/σ. However, in the sequel we will consider the escape from a larger
domain, where the drift term is no longer close to its linearisation, and we
will not obtain the optimal exponent anyway.

3.2.2 Drift-Dominated Escape

Theorem 3.2.2 implies that paths will typically leave a neighbourhood of order
h > σ of the unstable invariant manifold x = x̄(t, ε) after a time of order
ε log(h/σ). However, the result is valid only for h of order less than σ1/2. We
will now extend the description to larger neighbourhoods, of the form

K(δ) = {(y, t) : t ∈ I, |y| < δ} , (3.2.48)

where δ will be chosen small, but independently of σ. As soon as paths have
left the small strip S(h), the drift term will help push the sample paths further
away from x̄(t, ε). In fact, for δ small enough, we may assume the existence
of a constant κ = κ(δ) > 0, such that the drift term satisfies

|a(t)y + b(y, t)| � κa(t)|y| (3.2.49)

for all (y, t) ∈ K(δ). We set aκ(t) = κa(t), ακ(t) = κα(t), and define

ρκ(t) =
F0(t)√
2aκ(t)

=
1√
κ
ρ(t) . (3.2.50)

We also introduce the shorthands

ρκ(t) = inf
0�s�t

ρκ(s) , ρ̄κ(t) = sup
0�s�t

ρκ(s) . (3.2.51)

The following theorem is our main result on the first-exit time τK(δ) of yt from
K(δ).

Theorem 3.2.8 (Stochastic unstable case – Drift-dominated escape).
Fix δ, κ and µ in such a way that (3.2.49) holds and µ > κ/(1−κ). Then, for
any T > 0, there exist ε0 > 0 and L(T, µ) > 0 such that, for all ε � ε0, all

σ � L(T, µ)
|log ε|1+µ/2 , (3.2.52)

all t ∈ (0, T ], and for any initial condition (y0, 0) ∈ K(δ), the bound

P0,y0
{
τK(δ) � t

}
� C(t)

δ

σ
|log ε|µ/2

(
1 +

ακ(t)
ε

)
e−ακ(t)/ε

√
1 − e−2ακ(t)/ε

(3.2.53)
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holds, with

C(t) =

√
2
π

1
ρκ(t)

(
2ρ̄κ(t)√
κρκ(t)

)µ

. (3.2.54)

The probability in (3.2.53) becomes small as soon as

κα(t) = ακ(t) � ε log
(
δ

σ

)
+ ε

µ

2
log|log ε| , (3.2.55)

where the second term on the right-hand side hardly matters because of Con-
dition (3.2.52). The optimal choice of κ and µ depends on the particular
situation. Generically, (3.2.49) is satisfied for some κ ∈ (0, 1), and thus it is
best to choose the smallest possible µ. In certain cases, however, κ = 1 may
be a possible choice, but the need to take a finite µ imposes a choice of κ < 1
for the theorem to be applicable.

The estimate (3.2.53) holds for t of order 1 only. To extend it to even larger
values of t, we can use the Markov property to restart after a finite time T .
This gives the following bound.

Corollary 3.2.9. Fix a T of order 1. Then, under the assumptions of Theo-
rem 3.2.8, for any initial condition (y0, 0) ∈ K(δ) and for all t > T

P0,y0
{
τK(δ) � t

}
� exp

{
−ακ(t)

ε

[
1 − O(ε|log ε|) − O(ε|log σ|)

]}
, (3.2.56)

where the O(·)-terms depend on µ, T , C(T ) and δ.

The main idea of the proof of Theorem 3.2.8 is to compare solutions of
the original equation for yt with those of the linear one

dyκt =
1
ε
aκ(t)yκt dt+

σ√
ε
F0(t) dWt . (3.2.57)

Given an initial time s and an initial condition y0, the solution of (3.2.57) is
a Gaussian process of variance

σ2vκ(t, s) =
σ2

ε

∫ t

s

e2ακ(t,u)/εF0(u)2 du . (3.2.58)

A trivial bound for the function vκ(t, s), is given by

ρκ(t)2e2ακ(t,s)/ε[1 − e−2ακ(t,s)/ε] � vκ(t, s) � ρ̄κ(t)2e2ακ(t,s)/ε . (3.2.59)

Assume now that yt has left the small strip S(h) through its upper boundary
at time τS(h). As long as yt remains positive, the comparison lemma B.3.2
shows that yt stays above the solution yκt of the linear equation (3.2.57),
starting at the same point. In particular, if yκt leaves K(δ) without returning
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δ

y

−δ

t
yt

τS(h) τκ
0 τK(δ)

S(h)

yt
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t

Fig. 3.6. Assume the path yt leaves the diffusion-dominated region S(h) through its
upper boundary at time τS(h). For larger times, it is bounded below by the solution
yκ

t of the linear equation (3.2.57), starting on the boundary at time τS(h), as long
as yt does not return to zero.

to zero, then yt must have left K(δ) already at an earlier time (Fig. 3.6). We
will express this with the help of the stopping time

τκ0 = inf{u : yκu � 0} , (3.2.60)

which satisfies the following relation.

Lemma 3.2.10. Assume the original and linear processes yt and yκt both start
in some y0 ∈ (0, δ) at time s. Then, for all times t > s,

Ps,y0
{
τK(δ) � t, τκ0 � t

}
� δ√

2πσ2vκ(t, s)
. (3.2.61)

Proof. By the choice of κ, the comparison lemma B.3.2 implies yt � yκt for all
t � τK(δ) ∧ inf{u > s : yu > 0}. As a consequence, yt cannot reach 0 before yκt
does. Therefore,

Ps,y0
{
τK(δ) � t, τκ0 � t

}
� Ps,y0

{
0 < yκu < δ ∀u ∈ [s, t]

}
, (3.2.62)

which is bounded above by Ps,y0{yκt ∈ [0, δ]}. Now, the result follows from
the fact that yκt is a Gaussian random variable with variance σ2vκ(t, s). ��

Next we bound the probability that yκt returns to zero before time t. The
following lemma actually provides more precise information on the law of τκ0 .
We will apply it for initial conditions satisfying y0 � hρ(s).

Lemma 3.2.11. Let yκt start in y0 �
√

2σρ̄κ(t) at initial time s. Then, the
probability of reaching zero before time t > s, satisfies the bound
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Ps,y0
{
τκ0 < t

}
� exp

{
−y

2
0e2ακ(t,s)/ε

2σ2vκ(t, s)

}
. (3.2.63)

Moreover, the density ψκ(t; s, y0) = ∂
∂tP

s,y0{τκ0 < t} satisfies

ψκ(t; s, y0) �
√

2
π

y0
σ

aκ(t)
ε

e−ακ(t,s)/ε√
vκ(t, s)

e−y
2
0/2σ

2ρ̄κ(t)2 . (3.2.64)

Proof. Let us introduce the shorthand

Ξ =
y2
0e2ακ(t,s)/ε

2σ2vκ(t, s)
� y2

0

2σ2

1
ρ̄κ(t)2

� 1 . (3.2.65)

The reflection principle (Lemma B.4.1) implies that

Ps,y0
{
τκ0 < t

}
= 2Ps,y0

{
yκt < 0

}
= 2Φ

(
−y0e

ακ(t,s)/ε

σ
√
vκ(t, s)

)
� e−Ξ , (3.2.66)

which yields (3.2.63).
Using the fact that vκ(t, s) satisfies the differential equation

∂

∂t
vκ(t, s) =

1
ε

[
2aκ(t)vκ(t, s) + F0(t)2

]
, (3.2.67)

facilitates taking the derivative of (3.2.66), and yields

ψκ(t; s, y0) =
2√
2π

e−Ξ
∂

∂t

(−y0)eακ(t,s)/ε

σ
√
vκ(t, s)

=

√
2
π

1
y0

σ

ε

F0(t)2√
vκ(t, s)

e−ακ(t,s)/εΞe−Ξ . (3.2.68)

The bound (3.2.64) then follows from the fact that the function Ξ �→ Ξe−Ξ

is decreasing for Ξ � 1. ��

These results already yield a bound for the probability we are interested
in, namely

Ps,hρ(s)
{
τK(δ) � t

}
� δ√

2πσρκ(t)
e−ακ(t,s)/ε

√
1 − e−2ακ(t,s)/ε

+ exp
{
− h2

2σ2

ρ(s)2

ρ̄κ(t)2

}
.

(3.2.69)

The first term decreases in the expected way, but the second is at best
e−h

2/2σ2 � e−1/2σ, as we cannot choose h of larger order than σ1/2. In order
to improve this bound, we have to take into account the fact that even when
returning to zero, paths will again be expelled of S(h), cf. Theorem 3.2.2; this
substantially decreases Ps,hρ(s){τK(δ) � t}.
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Proof (of Theorem 3.2.8).

• We first introduce some notations. We want to choose h slightly larger
than σ; so we set

h = γσ
√

|log ε| , (3.2.70)

where a suitable γ of order 1 will be chosen below. One easily checks
that for such a choice, the condition on h in Theorem 3.2.2 follows from
Condition (3.2.52) on σ. The various exit probabilities, used in the sequel,
are denoted by

Φt(s, y) = Ps,y
{
τK(δ) � t

}
, (3.2.71)

qt(s) = sup
|y|�hρ(s)

Φt(s, y) , (3.2.72)

Qt(s) = sup
hρ(s)�|y|�δ

Φt(s, y) . (3.2.73)

When applying Lemma 3.2.10, we will use the shorthand

g(t, s) =
e−ακ(t,s)/ε

√
1 − e−2ακ(t,s)/ε

. (3.2.74)

We will start by estimating qt(s) as a function of (a bound on) Qt. This
bound is then used to find a self-consistent equation for Qt, which is solved
by iterations.

• Without loss of generality, we may assume that yt starts in y � 0. Consider
first the case 0 � y � hρ(s). The strong Markov property allows us to
decompose

Φt(s, y) = Ps,y
{
τS(h) � t

}
+ Ps,y

{
τK(δ) � t, τS(h) < t

}
�

(
h

σ

)µ

e−ακ(t,s)/ε + Es,y
{
1{τS(h)<t}Qt(τS(h))

}
, (3.2.75)

where we used Theorem 3.2.2 on the diffusion-dominated escape to es-
timate the first term on the right-hand side.7 Let Qt(u) be an upper
bound on Qt(u) which is continuously differentiable and non-decreasing
as a function of u, and takes values in [0, 1]. Using a suitable variant of
the integration-by-parts formula (see Appendix B), the second term on
the right-hand side is seen to be bounded by(

h

σ

)µ

e−ακ(t,s)/ε +
(
h

σ

)µ ∫ t

s

Qt(u)
aκ(u)
ε

e−ακ(u,s)/ε du . (3.2.76)

We thus obtain the bound

qt(s) �
(
h

σ

)µ[
2e−ακ(t,s)/ε +

∫ t

s

Qt(u)
aκ(u)
ε

e−ακ(u,s)/ε du
]
. (3.2.77)

7Recall that we have chosen µ and κ in such a way that κµ, as defined in Theo-
rem 3.2.2, is larger than κ for sufficiently small ε.
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• We turn now to the case hρ(s) � y � δ. Here we can decompose

Φt(s, y) = Ps,y
{
τK(δ) � t, τκ0 � t

}
+ Ps,y

{
τK(δ) � t, τκ0 < t

}
, (3.2.78)

where Lemma 3.2.10 provides a bound for the first term on the right-hand
side. Again using the strong Markov property, the second term can be
bounded by

Ps,y
{
τK(δ) � t, τκ0 < t

}
= Es,y

{
1{τκ

0 <t}P
τκ
0 ,yτκ

0
{
τK(δ) � t

}}
�

∫ t

s

[qt(u) +Qt(u)]ψ
κ(u; s, y) du , (3.2.79)

where the density ψκ(u; s, y) of τκ0 can be estimated by Lemma 3.2.11.
• In order to proceed, we need to estimate some integrals involving g(t, u)

and g(u, s). The first estimate is

1
ε

∫ t

s

aκ(u)e−ακ(u,s)/εg(u, s) du � 1
ε

∫ t

s

aκ(u)g(u, s) du � π

2
. (3.2.80)

Let φ = e−ακ(t,s)/ε. Then, using the change of variable e−2ακ(u,s)/ε =
x(1 − φ2) + φ2, we can compute the integral

1
ε

∫ t

s

aκ(u)e−ακ(u,s)/εg(t, u)g(u, s) du =
φ

2

∫ 1

0

dx√
x(1 − x)

=
π

2
φ .

(3.2.81)
A third integral can be estimated with the help of the change of variables
x2 = 1 − e−2ακ(t,u)/ε:

1
ε

∫ t

s

aκ(u)e−ακ(u,s)/εg(t, u) du � φ

∫ √
1−φ2

0

dx
1 − x2

(3.2.82)

=
φ

2
log

1 +
√

1 − φ2

1 −
√

1 − φ2
� φ log

2
φ

�
(

1 +
ακ(t, s)
ε

)
e−ακ(t,s)/ε .

• We now replace qt(u) in (3.2.79) by its upper bound (3.2.77), and use
Lemma 3.2.11 to estimate the density ψκ(u; s, y). With the help of (3.2.80)
to bound the integrals, one arrives at

Qt(s) � C0g(t, s) + ce−ακ(t,s)/ε

+ c

∫ t

s

aκ(u)
ε

Qt(u)e
−ακ(u,s)/ε

[1
2

+
1
π
g(u, s)

]
du , (3.2.83)

where

c := c(t, s) :=
√

2πκ
(
h

σ

)1+µ
ρ̄κ(t)
ρκ(t)

e−κh
2ρκ(t)2/2σ2ρ̄κ(t)2 ,

C0 :=C0(t) :=
1√
2π

δ

σ

1
ρκ(t)

. (3.2.84)
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Taking σ sufficiently small, we may assume that C0 � 5. Furthermore, the
choice

γ =
2√
κ

ρ̄κ(t)
ρκ(t)

(3.2.85)

guarantees that c(1 + ακ(t, s)/ε) � 2/5 for 0 � s < t � T and sufficiently
small ε (recall that smaller ε implies larger h by our choice of h).

• We construct by iteration two sequences (an)n�1 and (bn)n�1 such that

Qt(u) � C0g(t, u) + ane−ακ(t,u)/ε + bn ∀u ∈ [s, t] (3.2.86)

holds for all n � 1. Using Qt(u) = 1 as a trivial bound in (3.2.83) and
applying (3.2.80) again, we see that (3.2.86) is satisfied with

a1 = c and b1 = c . (3.2.87)

Replacing Qt(u) by the right-hand side of (3.2.86) shows by induction that
the same bound holds for n �→ n+ 1 if

an+1 = c

[
1 +

C0

2

(
2 +

ακ(t, s)
ε

)
+
an
2

(
1 +

ακ(t, s)
ε

)]
, (3.2.88)

bn+1 = cbn . (3.2.89)

Since λ := c(1 + ακ(t, s)/ε)/2 � 1/5, we obtain

lim
n→∞ an =

1
1 − λ

[
λC0 + c

(
1 +

C0

2

)]
� 1

2
(1 + C0) , (3.2.90)

lim
n→∞ bn = 0 , (3.2.91)

and thus

Qt(s) � C0g(t, s) +
1
2
(1 + C0)e−ακ(t,s)/ε � 1

2
(1 + 3C0)g(t, s) . (3.2.92)

Combining this estimate with the bound (3.2.77) for qt(s) finally yields the
result, by taking the maximum of the bounds on Qt(s) and qt(s), using
C0 � 5 and the definitions of h and γ. ��

3.3 Saddle–Node Bifurcation

Up to now, we have considered the dynamics near uniformly hyperbolic, stable
or unstable equilibrium branches. We turn now to new situations, arising when
hyperbolicity is lost as one approaches a bifurcation point. In the picture of
an overdamped particle in a potential, this situation arises, for instance, when
a potential well becomes increasingly flat, until it disappears altogether in a
saddle–node bifurcation (Fig. 3.7).
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Fig. 3.7. Overdamped particle in a potential undergoing a saddle–node bifurcation.

We consider in this section the SDE

dxt =
1
ε
f(xt, t) dt+

σ√
ε
F (xt, t) dWt (3.3.1)

in the case where f undergoes an indirect saddle–node bifurcation at (x, t) =
(0, 0). Precisely, we will require the following.

Assumption 3.3.1 (Saddle–node bifurcation).

• Domain and differentiability: f ∈ C2(D,R ) and F ∈ C1(D,R ), where D is
a domain of the form

D =
{
(x, t) : |t| � T, |x| � d

}
, (3.3.2)

with T, d > 0. We further assume that f , F and all their partial derivatives
up to order 2, respectively 1, are uniformly bounded in D by a constant M .

• Saddle–node bifurcation: The point (0, 0) is a bifurcation point,

f(0, 0) = ∂xf(0, 0) = 0 , (3.3.3)

satisfying the conditions

∂tf(0, 0) < 0 and ∂xxf(0, 0) < 0 . (3.3.4)

• Non-degeneracy of noise term: There is a constant F− > 0 such that

F (x, t) � F− ∀(x, t) ∈ D . (3.3.5)

We can always scale x and t in such a way that ∂tf(0, 0) = −1 and
∂xxf(0, 0) = −2, like in the simplest example f(x, t) = −t−x2. As mentioned
in Section 2.2.2, by decreasing T and d if necessary, we can guarantee that
f vanishes in D if and only if (x, t) belongs to one of the two equilibrium
branches x�+ : [−T, 0] → [−d, 0] or x�− : [−T, 0] → [0, d], which satisfy

x�±(t) = ∓
√

|t|
[
1 + Ot(1)

]
. (3.3.6)
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Here the signs ± refer to the linearisation of f , which obeys the relations

a�±(t) := ∂xf(x�±(t), t) = ±
√

|t|
[
1 + Ot(1)

]
. (3.3.7)

Thus the equilibrium branch x�−(t) is stable, while x�+(t) is unstable.
The main result of Section 2.2.2, Theorem 2.2.2, describes the behaviour of

a particular solution x̄(t, ε) of the deterministic equation. This solution tracks
the stable equilibrium branch at a distance increasing with time, and reacts
to its disappearance only after a delay of order ε2/3. More precisely,

x̄(t, ε) − x�−(t) � ε

|t| for −T � t � −c0ε2/3, (3.3.8)

x̄(t, ε) � ε1/3 for −c0ε2/3 � t � t1 := c1ε2/3 , (3.3.9)

for some positive constants c0, c1. Moreover, x̄(t, ε) reaches −d at a time of
order ε2/3.

Let us now consider the effect of noise on the dynamics. Since we work
in a small neighbourhood of the bifurcation point, it is convenient to use
coordinates in which the diffusion coefficient is constant.

Lemma 3.3.2. For sufficiently small d and T , there exists a change of vari-
ables x̃ = x/F (0, t) + O(x2) + O(σ2) + O(ε) transforming Equation (3.3.1)
into

dx̃t =
1
ε
f̃(x̃t, t) dt+

σ√
ε

dWt , (3.3.10)

where f̃ satisfies the same assumptions as f .

Proof. Define the function

h(x, t) =
∫ x

0

dz
F (z, t)

=
x

F (0, t)
+ O(x2) . (3.3.11)

Then Itô’s formula shows that x̄t = h(xt, t) satisfies an equation of the
form (3.3.10) with a drift term given by

f̄(h(x, t), t) =
f(x, t)
F (x, t)

+ O(σ2) + O(ε) . (3.3.12)

The corresponding deterministic system admits a saddle–node bifurcation
point in a neighbourhood of order σ2 + ε of the origin, as can be checked
by a direct computation, using the implicit-function theorem. It can also be
seen as a consequence of the structural stability of the saddle–node bifurca-
tion. It then suffices to translate the origin to the new bifurcation point, and
rescale space and time, in order to obtain a drift term with the same proper-
ties as f . ��
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In the sequel, we will simplify the notation by considering Equation (3.3.10)
without the tildes.8 For negative t, bounded away from 0, the results of Sec-
tion 3.1 show that sample paths are concentrated in a neighbourhood of order
σ of x̄(t, ε). The main obstacle to extending this result up to t = 0 is that
the uniform stability of x�−(t) is violated, since the curvature at the bottom
of the potential well tends to zero. As a consequence, the spreading of sample
paths will increase. For strong enough noise, paths are even likely to reach
and overcome the potential barrier, located in x�+(t), some time before the
barrier vanishes.

We will divide the analysis into two steps. In Section 3.3.1, we extend as
far as possible the domain of validity of Theorem 3.1.10 on the concentra-
tion of sample paths near the deterministic solution x̄(t, ε). In Sections 3.3.2
and 3.3.3, we analyse the subsequent behaviour, when sample paths either fol-
low x̄(t, ε) in its jump towards negative x, or overcome the potential barrier
already for negative t.

3.3.1 Before the Jump

The stochastic motion in a vicinity of the deterministic solution x̄(t, ε) can
again be described by introducing the deviation yt = xt− x̄(t, ε). The relevant
quantity is the curvature a(t) = ∂xf(x̄(t, ε), t) of the potential at x̄(t, ε).

As a direct consequence of (3.3.8), (3.3.9) and Taylor’s formula, we have

a(t) � −
(
|t|1/2 ∨ ε1/3

)
for −T � t � t1 = c1ε

2/3 , (3.3.13)

indicating that the curvature of the potential at x̄(t, ε) stays bounded away
from zero up to time t1, although the potential well disappears already at
time 0. As in Section 3.1.1, we introduce a neighbourhood B(h) of the deter-
ministic solution x̄(t, ε), defined by

B(h) =
{
(x, t) : −T � t � t1, |x− x̄(t, ε)| < h

√
ζ(t)

}
. (3.3.14)

The function ζ(t), which is related to the variance of the linearisation
of (3.3.10), is defined by the integral

ζ(t) = ζ(−T )e2α(t,−T )/ε +
1
ε

∫ t

−T
e2α(t,s)/ε ds , (3.3.15)

where α(t, s) =
∫ t
s
a(u) du and ζ(−T ) = 1/2|a(−T )| + O(ε).9 For negative t,

bounded away from zero, we have ζ(t) = 1/2|a(t)| + O(ε). The behaviour of

8Mathematical textbooks must be littered with dropped tildes, much as Space
in Earth’s neighbourhood is littered with satellite debris.

9The initial value ζ(−T ) can be chosen in such a way as to match a previously
defined concentration domain of paths, if the stable equilibrium branch x�

−(t) already
exists for t � T .
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ζ(t) as t approaches zero can be determined by an integration by parts, and
an application of Lemma 2.2.8. The final result is

ζ(t) − 1
2|a(t)| � ε

t2
for −T � t � −c0ε2/3 , (3.3.16)

ζ(t) � ε−1/3 for −c0ε2/3 � t � t1 = c1ε
2/3 . (3.3.17)

It follows that the relations

ζ(t) � 1
|t|1/2 ∨ ε1/3 � 1

|a(t)| (3.3.18)

hold for all t ∈ [−T, t1]. The set B(h) thus becomes wider as t approaches
the bifurcation value 0, but stays of constant order in a neighbourhood of
order ε2/3 of t = 0. We also introduce

ζ̂(t) = sup
−T�s�t

ζ(s) , (3.3.19)

which satisfies ζ̂(t) � ζ(t) for t � t1. Theorem 3.1.10 admits the following
extension.

Theorem 3.3.3 (Stochastic saddle–node bifurcation – stable phase).
Let t0 ∈ [−T, 0) be fixed, and x0 = x̄(t0, ε). There exist constants h0, r0, c, c2 >

0 such that, for all h � h0ζ̂(t)−3/2 and t0 � t � t1 = c1ε
2/3 satisfying

r(h/σ, ε) :=
σ

h
+

1
ε
e−ch

2/σ2 � r0 , (3.3.20)

one has

Ch/σ(t, ε)e−κ−h2/2σ2 � Pt0,x0
{
τB(h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
, (3.3.21)

where the exponents κ± are given by

κ+ = 1 − c2hζ̂(t)3/2 ,

κ− = 1 + c2hζ̂(t)3/2 ,
(3.3.22)

and the prefactor satisfies

Ch/σ(t, ε) =

√
2
π

|α(t, t0)|
ε

h

σ
(3.3.23)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t, t0)|
+ r(h/σ, ε) + hζ̂(t)3/2

)]
.

Proof. The proof is essentially the same as the proof of Theorem 3.1.10, the
only difference lying in more careful estimates of the effect of the maximal
value of ζ(t) and the minimal value of |a(t)|. The proof of Lemma 3.1.7 remains
unchanged, except for the error terms of c0(t) in (3.1.39). In fact,
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(a) (b)x

t

B(h)

x�
+(t)

x

t

x�
+(t)

x̄(t, ε)

Fig. 3.8. Behaviour of sample paths near a dynamic saddle–node bifurcation. (a) In
the weak-noise regime σ <

√
ε, paths remain concentrated in the shaded set B(h)

centred in the deterministic solution; (b) in the strong-noise regime σ >
√

ε, paths
are likely to overcome the unstable solution some time before the bifurcation.

c0(t) =
h√
2π

1
2εζ(t)

[
1 + O

(
ζ(0)
ζ(t)

e−2|α(t,t0)|/ε
)]

, (3.3.24)

where (3.3.16) yields 1/ζ(t) = |2a(t)|[1 + O(ε|t|−3/2)] = |2a(t)| + O(ε|t|−1).
The error term O(ε|t|−1) is responsible for the error term ε|log ε| in (3.3.23).
The remainder of the proof is similar, except that more careful estimates of the
terms occurring in (3.1.41)–(3.1.44) yield M1 = O(h/εζ(t)), M2 = O(εζ(t))
and M3 = O(h/ε). The integral in (3.1.61), which deals with the contribution
of the nonlinear drift term, is bounded by

1√
ζ(s)

Mh2ζ̂(s)
inft0�u�s|a(u)|

� const h2ζ̂(t)3/2 . (3.3.25)

Thus the result follows by taking H1 of order h2ζ̂(t)3/2. ��

Theorem 3.3.3 shows that paths are concentrated in a neighbourhood of
order σ

√
ζ(t) � σ/(|t|1/4∨ε1/6) of x̄(t, ε), as long as ζ̂(t)3/2 is small compared

to σ−1. There are thus two regimes to be considered:

• Regime I: σ < σc =
√
ε. In this case, the theorem can be applied up to time

t1 := c1ε2/3, when the spreading of paths reaches order σ/ε1/6 (Fig. 3.8a).
In particular, the probability that paths have reached the t-axis before
time t1 is of order Ch0σc/σ(t1, ε)e−const ε/σ2

.
• Regime II: σ � σc =

√
ε. In this case, the theorem can only be applied

up to time −σ4/3, when the spreading of paths reaches order σ2/3, so that
paths may reach the t-axis with appreciable probability (Fig. 3.8b).

In Regime I, which we shall call weak-noise regime, the behaviour of typical
sample paths does not differ much from the behaviour of the deterministic
solution up to time t1, and we will show in Section 3.3.3 that typical paths
reach x = −d about at the same time as x̄(t, ε).



90 3 One-Dimensional Slowly Time-Dependent Systems

t

x

xt

bx(t, ε)

x̄(t, ε)

x�
+(t)

x�
−(t)

Fig. 3.9. Behaviour of sample paths near a dynamic saddle–node bifurcation in
the strong-noise regime. Note the repeated attempts to reach the adiabatic solution
tracking the potential barrier.

In Regime II, which we shall call strong-noise regime, the situation is
different. Taking the largest allowed value hmax � |t|3/4 of h in Theorem 3.3.3
shows that for t
 −σ4/3, the probability to cross the saddle before time t is
bounded by

Chmax/σ(t, ε)e−const |t|3/2/σ2
. (3.3.26)

The result does not exclude (but does not prove either) that paths reach the
unstable equilibrium branch x�+(t) already at times of order −σ4/3. We will
prove in the following section that this is indeed the case, and bound the
probability of the unlikely event that paths do not cross the potential barrier.

3.3.2 Strong-Noise Regime

We assume in this subsection that σ >
√
ε. Up to times of order −σ4/3,

Theorem 3.3.3 shows that sample paths are concentrated near the adiabatic
solution x̄(t, ε) tracking the stable potential well at x�−(t), although their
spreading increases as the potential well becomes flatter with increasing t.
We will now show that, as time increases, it quickly becomes very unlikely
not to reach and overcome the potential barrier at x�+(t), so that most paths
reach negative values of absolute order 1 some time before the potential well
disappears at time 0.

The analysis will be simplified by taking d and T small enough for the
relation

∂xxf(x, t) � 0 (3.3.27)

to hold for all (x, t) ∈ D, which is possible by Assumption 3.3.1.
An important rôle is played by an adiabatic solution x̂(t, ε) tracking the

potential barrier at x�+(t) (Fig. 3.9). This solution is not uniquely defined, but
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we may select it, for instance, by imposing that x̂(0, ε) = −ε1/3. Reversing
the direction of time, and using the results of Section 2.2.4, it is not difficult
to show that

x̂(t, ε) � −ε1/3 for −c0ε2/3 � t � 0 , (3.3.28)

x̂(t, ε) − x�+(t) � ε

|t| for −T � t � −c0ε2/3 , (3.3.29)

where it may be necessary to increase c0. This implies that the linearisation
of f at x̂(t, ε) satisfies

â(t) := ∂xf(x̂(t, ε), t) �
√

|t| ∨ ε1/3 � |a(t)| � 1
ζ(t)

. (3.3.30)

The least favourable situation for overcoming the potential barrier occurs
when a sample path starts, at time −σ4/3, near the upper boundary of B(h).
In order to reach −d, it has to cross first x̄(t, ε), and then x̂(t, ε). The basic
idea is to consider that paths make a certain number of excursions, during
which they attempt to overcome the potential barrier. If each excursion has
a probability of success of, say, 1/3, then the probability not to overcome
the barrier during a given time span, containing N attempts, will be of order
(2/3)N = exp{−N log(3/2)}. Making these ideas precise leads to the following
result.

Theorem 3.3.4 (Stochastic saddle–node bifurcation – the strong-
noise regime). Let t0 ∈ [−T, 0) be fixed, and x0 = x̄(t0, ε). There exist
constants r0, c, c3 > 0 such that, whenever t ∈ [t2, 0] = [−c3σ4/3, 0] and h
satisfy the conditions

x̄(s, ε) + h
√
ζ(s) � d ∀s ∈ [t0, t] , (3.3.31)

and
r(h/σ, ε) :=

σ

h
+

1
ε
e−ch

2/σ2 � r0 , (3.3.32)

there is a constant κ > 0 such that

Pt0,x0
{
xs > −d ∀s ∈ [t0, t]

}
� 3

2
exp

{
−κ |α(t, t2)|

ε(|log σ| ∨ log h/σ)

}
+ Ch/σ(t, ε)e−h

2/2σ2
, (3.3.33)

where

Ch/σ(t, ε) =

√
2
π

|α(t, t0)|
ε

h

σ
(3.3.34)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t, t0)|
+ r(h/σ, ε)

)]
.
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The two terms on the right-hand side of (3.3.33) bound, respectively, the
probability that xs does not reach −d before time t, while staying below
x̄(s, ε)+h

√
ζ(s), and the probability that xs crosses the level x̄(s, ε)+h

√
ζ(s)

before time t.
The term |α(t, t2)| in the exponent behaves like σ2/3(t − t2), and is thus

of order σ2 as soon as t − t2 reaches order σ4/3. Generically, d is of order 1,
and the condition on h is less restrictive for t of order −σ4/3, where it imposes
h = O(σ1/3). The probability not to reach the level −d before time t is thus
bounded by

3
2

exp
{
−const

σ2/3(t− t2)
ε|log σ|

}
+

const
ε

e−const /σ4/3
, (3.3.35)

which becomes small as soon as t−t2 � ε|log σ|/σ2/3. In particular, the saddle
is crossed before the bifurcation occurs with a probability larger than

1 − O
(

exp
{
−const

[
σ2

ε|log σ| ∧
1
σ4/3

]})
, (3.3.36)

which is close to 1 as soon as the noise intensity satisfies σ �
√
ε|log σ|. In

special cases, it may be possible to choose arbitrarily large d, which allows for
larger values of h, and thus a smaller second term in the exponent.

The main part of the proof of Theorem 3.3.4 is contained in the following
estimate.

Proposition 3.3.5. Under the assumptions of Theorem 3.3.4,

Pt0,x0
{
−d < xs < x̄(s, ε) + h

√
ζ(s) ∀s ∈ [t0, t]

}
� 3

2
exp

{
−κ |α(t, t2)|

ε(|log σ| ∨ log h/σ)

}
. (3.3.37)

Proof.

• We introduce again a partition t0 = s0 < s1 < · · · < sN = t of [t0, t]. It is
defined by s1 = t2 = −c3σ4/3, where c3 will be chosen later, and

α(sk, sk−1) = �ε for 1 < k < N =
⌈
|α(t, t2)|
�ε

⌉
+ 1 . (3.3.38)

The constant � will also be determined later. The same argument as in
Lemma 3.2.4 shows that the probability in (3.3.37) can be bounded by the
product

∏N
k=1 Pk, where

Pk = sup
x∈Ik−1

Psk−1,x
{
−d < xs < x̄(s, ε) + h

√
ζ(s) ∀s ∈ [sk−1, sk]

}
,

(3.3.39)
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with Ik−1 = [−d, x̄(sk−1, ε) + h
√
ζ(sk−1)]. We use the trivial bound 1

for P1 (since −d is unlikely to be reached before time s1) and PN (since
the last time interval may be too short). Our plan is to show that for an
appropriate choice of � and c3, Pk � 2/3 for 2 � k � N − 1, and thus the
probability in (3.3.37) is bounded by(

2
3

)N−1

=
3
2

exp
{
−N log

3
2

}
� 3

2
exp

{
−|α(t, t2)|

�ε
log

3
2

}
. (3.3.40)

• In order to estimate Pk, we should take into account the fact that, in
the worst case, xt has to cross x̄(t, ε) and x̂(t, ε) before reaching −d. The
dynamics is thus divided into three steps, which turn out to require com-
parable times. Hence we further subdivide [sk−1, sk] into three intervals,
delimited by times s̃k,1 < s̃k,2 such that

|α(sk, s̃k,2)| = |α(s̃k,2, s̃k,1)| = |α(s̃k,1, sk−1)| =
1
3
�ε . (3.3.41)

To ease notation, we introduce the stopping times

τ+
k = inf{s ∈ [sk−1, sk] : xs > x̄(s, ε) + h

√
ζ(s)} ,

τk,1 = inf{s ∈ [sk−1, sk] : xs < x̄(s, ε)} ,
τk,2 = inf{s ∈ [τk,1, sk] : xs < x̂(s, ε)} ,
τk,3 = inf{s ∈ [τk,2, sk] : xs < −d} , (3.3.42)

corresponding to the times at which xs crosses the various relevant levels.
By convention, these stopping times are infinite if the set on the right-hand
side is empty. Using the Markov property, we can decompose Pk as

Pk = sup
x∈Ik−1

Psk−1,x
{
τk,3 ∧ τ+

k > sk
}

� sup
x∈Ik−1

Psk−1,x
{
τk,1 ∧ τ+

k > s̃k,1
}

(3.3.43)

+ sup
x∈Ik−1

Esk−1,x
{
1{τk,1�s̃k,1}P

τk,1,xτk,1
{
τk,3 ∧ τ+

k > sk
}}

.

The probability appearing in the second term on the right-hand side can
be further decomposed as

P
τk,1,xτk,1

{
τk,3 ∧ τ+

k > sk
}

� P
τk,1,xτk,1

{
τk,2 ∧ τ+

k > s̃k,2
}

(3.3.44)

+ E
τk,1,xτk,1

{
1{τk,2�s̃k,2}P

τk,2,xτk,2
{
τk,3 ∧ τ+

k > sk
}}

.

We thus have to estimate the probabilities of three events, of the form
{τk,j ∧ τ+

k > s̃k,j}, each time assuming the worst values for initial time
and position.
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• The first phase of dynamics is described by the variable ys = xs − x̄(s, ε).
We may assume ysk−1 =: y > 0, since otherwise the first term on the right-
hand side of (3.3.43) is zero. The nonlinear part of the drift term is negative
by our assumption (3.3.27) on ∂xxf , so that ys is bounded above by

y0
s := yeα(s,sk−1)/ε +

σ√
ε

∫ s

sk−1

eα(s,u)/ε dWu (3.3.45)

for all s ∈ [sk, s̃k,1]. The expectation and variance of the Gaussian random
variable y0

s̃k,1
satisfy the following relations:

E{y0
s̃k,1

} = ye−�/3 , (3.3.46)

Var{y0
s̃k,1

} =
σ2

ε

∫ s̃k,1

sk−1

e2α(s̃k,1,u)/ε du � inf
u∈[sk−1,s̃k,1]

σ2
[
1 − e−2�/3

]
|2a(u)| .

We may assume that |a(u)| is decreasing, so that the infimum is reached
for u = sk−1. By the reflection principle,

Psk−1,y
{
τk,1 > s̃k,1

}
= 1 − 2Psk−1,y

{
y0
s̃k,1

� 0
}

= 1 − 2Φ
(
−

E{y0
s̃k,1

}√
Var{y0

s̃k,1
}

)
�

2E{y0
s̃k,1

}√
2πVar{y0

s̃k,1
}

�
√

2
π

e−�/3
√
ζ(sk−1)

σ
√

1 − e−2�/3

√
2|a(sk−1)| . (3.3.47)

• To describe the second phase of motion, we use as variable the deviation
zs = xs − x̂(s, ε) from the deterministic solution tracking the unstable
equilibrium. It satisfies a similar equation as ys, but with â(s) instead of
a(s). Relation (3.3.30) implies the existence of a constant L > 0 such that
â(t) � |a(t)|/L. For similar reasons as before,

zs � z0s = zτk,1e
bα(s,τk,1)/ε +

σ√
ε

∫ s

τk,1

ebα(s,u)/ε dWu , (3.3.48)

where α̂(s, u) =
∫ s
u
â(v) dv � |α(s, u)|/L. If |yτk,1 | < |a(τk,1)|, then (3.3.29)

and (3.3.30) imply that zτk,1 is bounded by a constant times |a(τk,1)|. Using
again the reflection principle, we obtain that

P
τk,1,zτk,1

{
τk,2 > s̃k,2

}
�

√
2
π

zτk,1

σ
√

1 − e−2�/3L

√
2â(sk−1) , (3.3.49)

uniformly in τk,1 � s̃k,1.
• In order to describe the last phase of motion, we use the simple endpoint

estimate

Pτk,2,bx(τk,2,ε)
{
τk,3 > sk

}
� Pτk,2,0

{
z̃0sk

> −d
}
. (3.3.50)
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An estimation of the corresponding Gaussian integral yields the bound

Pτk,2,0
{
z̃0sk

> −d
}

� 1
2

+
1√
2π

de−�/3L

σ
√

1 − e−2�/3L

√
2â(sk−1) . (3.3.51)

• To conclude the proof, we choose the parameters c3 and � in such a way
that Pk � 2/3. It follows from the estimates (3.3.47), (3.3.49) and (3.3.51)
that

Pk � 1
2

+
C0

σ

√
â(sk−1)√

1 − e−2�/3L

[
(h

√
ζ(sk−1) + d)e−�/3L + â(sk−1)

]
(3.3.52)

for a constant C0. The properties of â(t) and ζ(t) imply the existence of
another constant C1 such that

Pk � 1
2

+ C1

[(
h

σ
+ c

1/2
3

d

σ2/3

)
e−�/3L + c

3/2
3

]
. (3.3.53)

We thus choose first c3 in such a way that c3/23 � 1/(12C1), and then � in
such a way that the term in brackets is also smaller than 1/(12C1). This
requires � to be of order log(h/σ) + |log σ|, and gives Pk � 2/3. ��

In order to complete the proof of Theorem 3.3.4, we need to estimate
the probability that xt exceeds x̄(t, ε) + h

√
ζ(t), i.e., that it makes a large

excursion in the “wrong” direction, away from the potential barrier.

Proposition 3.3.6. Under the assumptions of Theorem 3.3.4,

Pt0,x0

{
sup

t0�s�t

xs − x̄(s, ε)√
ζ(s)

� h, inf
t0�s�t

xs > −d
}

� Ch/σ(t, ε)e−h
2/2σ2

,

(3.3.54)
where

Ch/σ(t, ε) =

√
2
π

|α(t, t0)|
ε

h

σ
(3.3.55)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t, t0)|
+ r(h/σ, ε)

)]
.

Proof. As a consequence of Lemma 3.3.2 and the fact that the nonlinear
part of the drift term is negative, we deduce from the comparison lemma
(Lemma B.3.2) that ys = xs − x̄(s, ε) is bounded above by

y0
s =

σ√
ε

∫ s

t0

eα(s,u)/ε dWu , (3.3.56)

as long as xs has not left the domain D. This shows in particular that the
probability in (3.3.54) is bounded above by
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Pt0,0
{

sup
t0�s�t

y0
s√
ζ(s)

> h
}
. (3.3.57)

The same arguments as in the first part of the proof of Theorem 3.3.3, but
without the nonlinear term, show that this probability can in turn be bounded
above by Ch/σ(t, ε)e−h

2/2σ2
. This concludes the proof of the proposition, and

thus also the proof of the theorem. ��

3.3.3 Weak-Noise Regime

In this section, we complete the discussion of the dynamic saddle–node bifur-
cation with noise by discussing the behaviour of paths after the bifurcation,
when σ <

√
ε. Theorem 3.3.3 implies that at time t1 = c1ε

2/3, the paths are
concentrated in a neighbourhood of order σε−1/6 of the deterministic solution
x̄(t, ε) � ε1/3. In particular,

Px0,t0
{
xt1 � 0

}
� C√

ε/σ(t1, ε)e−const ε/σ2
. (3.3.58)

We also know that the deterministic solution reaches the lower level x = −d
in a time of order ε2/3. The description of the stochastic dynamics in this case
is somewhat complicated by the fact that a region of instability is crossed,
where paths repel each other. The following estimate is a rather rough bound,
which suffices, however, to show that solutions of the stochastic differential
equation are unlikely to jump much later than in the deterministic case.

Theorem 3.3.7 (Stochastic saddle–node bifurcation – the weak-noise
regime). There is a constant κ > 0 such that for all x1 � d and t1 � t � T ,

Pt1,x1
{
xs > −d ∀s ∈ [t1, t]

}
� exp

{
− ε

σ2

[
κ

|log ε|
t− t1
ε2/3

− 1
]}

. (3.3.59)

Proof. It follows from the assumptions on f that

f(x, t) � −const (x2 + ε2/3) (3.3.60)

for all t � t1. It is thus possible to compare the solutions of the original
equation with those of an autonomous one. The probability we are looking
for can be estimated in a similar way as in Proposition 3.3.5 by introducing a
partition of [t1, t]. In this case, it turns out that when taking the intervals of
the partition of constant length γε2/3, a γ of order |log ε| is sufficient to make
each Pk smaller than e−O(ε/σ2). The probability in (3.3.59) is then bounded
by the product of all Pk. ��

The probability that a path has not reached the lower level −d by time t
becomes small as soon as t− t1 � ε2/3|log ε|, that is, shortly after the deter-
ministic solution has reached −d.
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Fig. 3.10. Overdamped particle in a potential undergoing a pitchfork bifurcation.

3.4 Symmetric Pitchfork Bifurcation

Another interesting situation arises when a single-well potential transforms
into a double-well potential as time increases (Fig. 3.10). Then the overdamped
particle has the choice between falling into one of the new wells, or remaining,
in unstable equilibrium, on the top of the barrier.

We consider in this section the SDE

dxt =
1
ε
f(xt, t) dt+

σ√
ε
F (xt, t) dWt (3.4.1)

in the case where f undergoes a subcritical symmetric pitchfork bifurcation
at (x, t) = (0, 0). The precise assumptions are the following.

Assumption 3.4.1 (Symmetric pitchfork bifurcation).

• Domain and differentiability: f ∈ C3(D,R ) and F ∈ C2(D,R ), where D is
a domain of the form

D =
{
(x, t) : |t| � T, |x| � d

}
, (3.4.2)

with T, d > 0. We further assume that f , F and all their partial derivatives
up to order 3, respectively 2, are uniformly bounded in D by a constant M .

• Symmetry: For all (x, t) ∈ D,

f(x, t) = −f(−x, t) and F (x, t) = F (−x, t) . (3.4.3)

• Pitchfork bifurcation: The point (0, 0) is a bifurcation point,

f(0, 0) = ∂xf(0, 0) = 0 , (3.4.4)

satisfying the conditions

∂txf(0, 0) > 0 and ∂xxxf(0, 0) < 0 . (3.4.5)

• Non-degeneracy of noise term: There is a constant F− > 0 such that

F (x, t) � F− ∀(x, t) ∈ D . (3.4.6)
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We can scale x and t in such a way that ∂txf(0, 0) = 1 and ∂xxxf(0, 0) =
−6, like in the simplest example f(x, t) = tx − x3. As mentioned in Sec-
tion 2.2.3, by decreasing T and d if necessary, we can guarantee that f van-
ishes in D if and only if x = 0 or (x, t) belongs to one of the two equilibrium
branches x = ±x�(t), t > 0, where x� : [0, T ] → [0, d] satisfies

x�(t) =
√
t
[
1 + Ot(1)

]
. (3.4.7)

The linearisation of f at x = 0 is given by

a(t) := ∂xf(0, t) = t
[
1 + O(t)

]
, (3.4.8)

while the linearisation at x = ±x�(t) satisfies

a�(t) := ∂xf(±x�(t), t) = −2t
[
1 + Ot(1)

]
. (3.4.9)

Taking T small enough, we can guarantee that a�(t) < 0 for 0 < t � T , while
a(t) has the same sign as t. In other words, the equilibrium branch x = 0
changes from stable to unstable as t becomes positive, while the branches
±x�(t) are always stable.

The main result of Section 2.2.3, Theorem 2.2.4, states that any solution
starting at time t0 < 0 sufficiently close to 0 tracks the particular solution
xt ≡ 0 at least up to the bifurcation delay time

Π(t0) = inf{t > 0: α(t, t0) > 0} , (3.4.10)

where α(t, s) =
∫ t
s
a(u) du. If xt0 is of order one, then xt jumps, near time

Π(t0), from the saddle at x = 0 to a neighbourhood of order ε of x�(t), in a
time of order ε|log ε|.

Let us now consider the effect of noise on the dynamics. We first note that
the x-dependence of the noise coefficient F (x, t) can be eliminated by the
same transformation as in Lemma 3.3.2. The symmetries of f and F imply
that the new drift term still vanishes for x = 0, so that no terms of order σ2

need to be eliminated. We may thus consider the equation

dxt =
1
ε
f(xt, t) dt+

σ√
ε

dWt (3.4.11)

instead of (3.4.1).
The results of Section 3.1 can be applied to show that, for negative times,

bounded away from zero, sample paths are concentrated in a neighbourhood
of order σ of the deterministic solution with the same initial condition. As t
approaches 0, the bottom of the potential well becomes increasingly flat, al-
lowing paths to spread more and more. In Section 3.4.1, we extend the domain
of validity of Theorem 3.1.10, to show that paths remain concentrated near
x = 0 up to a certain time depending on the noise intensity (typically, that
time is of order

√
ε|log σ|).

Sections 3.4.1 and 3.4.2 describe the subsequent behaviour of paths, from
the moment they leave a neighbourhood of the saddle until they approach one
of the potential wells at x�(t) or −x�(t).
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3.4.1 Before the Bifurcation

Let us consider a general initial condition (x0, t0) ∈ D with t0 < 0. The
deterministic solution xdet

t starting in x0 at time t0 approaches 0 exponentially
fast, and remains close to 0 almost up to time Π(t0). The SDE linearised
around xdet

t has the form

dy0
t =

1
ε
ā(t)y0

t dt+
σ√
ε

dWt , (3.4.12)

where
ā(t) := ∂xf(xdet

t , t) = a(t) + O(x0eα(t,t0)/ε) . (3.4.13)

This implies in particular that, for t0 � t � Π(t0),

α(t, t0) :=
∫ t

t0

ā(s) ds = α(t, t0) + O(x0ε) . (3.4.14)

In analogy with previous sections, we define a neighbourhood of xdet
t by

B(h) =
{
(x, t) ∈ D : t0 � t � T, |x− xdet

t | < h
√
ζ(t)

}
, (3.4.15)

where

ζ(t) = ζ(t0)e2α(t,t0)/ε +
1
ε

∫ t

t0

e2α(t,s)/ε ds (3.4.16)

and ζ(t0) = 1/|2ā(t0)|+O(ε). The behaviour of ζ(t) can be analysed with the
help of Lemma 2.2.8 and is summarised as follows.

Lemma 3.4.2. There exists a constant c0 > 0 such that

ζ(t) − 1
|2ā(t)| � ε

|t|3 for t0 � t � −c0
√
ε ,

ζ(t) � 1√
ε

for |t| � c0
√
ε , (3.4.17)

ζ(t) � 1√
ε
e2α(t)/ε for c0

√
ε � t � Π(t0) ,

where α(t) = α(t, 0).

The set B(h) thus slowly widens as the potential well becomes flatter when
t approaches 0. It has a width of order hε−1/4 for |t| � c0

√
ε, and for t >

√
ε,

its width grows exponentially as hε−1/4eα(t)/ε. Note that α(t) � t2 for t > 0.
We set again

ζ̂(t) = sup
t0�s�t

ζ(s) � ζ(t) . (3.4.18)

The generalisation of Theorem 3.1.10 takes the following form.
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(a) (b) (c)

Fig. 3.11. Sample paths of a stochastic pitchfork bifurcation, in the case f(x, t) =
tx−x3. The adiabatic parameter is ε = 0.02, and the noise intensities correspond to
the three qualitatively different regimes: (a) σ = 0.00001 (Regime I), (b) σ = 0.02
(Regime II), (c) σ = 0.2 (Regime III). In each case, the deterministic solution is
shown for comparison.

Theorem 3.4.3 (Stochastic pitchfork bifurcation – stable phase).
There exist constants h0, r0, c, c2 > 0 such that, for all h � h0ζ̂(t)−1 satisfying

r(h/σ, ε) :=
σ

h
+

1
ε
e−ch

2/σ2 � r0 , (3.4.19)

one has

Ch/σ(t, ε)e−κ−h2/2σ2 � Pt0,x0
{
τB(h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
, (3.4.20)

where the exponents κ± are given by

κ+ = 1 − c2h
2ζ̂(t)2 ,

κ− = 1 + c2h
2ζ̂(t)2 ,

(3.4.21)

and the prefactor satisfies

Ch/σ(t, ε) =

√
2
π

|α(t ∧ 0, t0)|
ε

h

σ
(3.4.22)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t ∧ 0, t0)|
+ r(h/σ, ε) + h2ζ̂(t)2

)]
.

Proof. The proof follows closely the proof of Theorem 3.3.3. The different
error terms are a consequence of the different behaviour of ζ(t), and the fact
that f(x, t) = a(t)x+O(x3) because of our symmetry assumptions. The term
α(t ∧ 0, t0) in the prefactor is due to the fact that the first-passage density
decreases exponentially fast for t > c0

√
ε because of the behaviour of ζ(t),

compare (3.3.24). ��

Theorem 3.4.3 shows that paths are concentrated in a neighbourhood of
order σ

√
ζ(t) of xdet

t as long as ζ̂(t) is small compared to σ−1. One can
distinguish between three regimes.
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• Regime I: σ � e−K/ε for some K > 0. In this case, paths are concen-
trated around xdet

t as long as 2α(t) 
 K, and even longer if 2α(Π(t0)) =
2|α(t0)| 
 K. With high probability, one observes a bifurcation delay of
order 1 as in the deterministic case (Fig. 3.11a).

• Regime II: σ = εp/2 for some p > 1. Paths are concentrated around
xdet
t as long as 4α(t) < (p − 1)ε|log ε|, that is, up to a time of order√
(p− 1)ε|log ε|. This time can be considered as a microscopic bifurcation

delay (Fig. 3.11b).
• Regime III: σ � √

ε. The theorem can be applied up to a time of order
−σ, when the spreading of paths reaches order

√
σ. The potential being

quartic near t = 0, the spreading remains of order
√
σ up to times of order

σ after the bifurcation (Fig. 3.11c).

In the sequel, we will mainly consider Regime II. We will show that after
a time of order

√
ε|log σ|, paths not only leave a neighbourhood of x = 0, but

also reach one of the two new potential wells at ±x�(t), in a time of the same
order.

3.4.2 Leaving the Unstable Branch

We consider now the dynamics in Regime II, that is, when e−K/ε 
 σ <
√
ε.

Theorem 3.4.3 shows that paths stay in B(h) up to times of order
√
ε|log ε|,

and that at time
√
ε, their typical spreading has order σε−1/4 < ε1/4.

We start by characterising the first-exit time from the diffusion-dominated
strip

S(h) =
{
(x, t) ∈ D : t �

√
ε, |x| < hρ(t)

}
, (3.4.23)

where, as in Section 3.2.1,

ρ(t) =
1√

2a(t)
. (3.4.24)

Since a(t) � t, ρ(t) is decreasing for sufficiently small t.
The following estimate is proved in exactly the same way as Proposi-

tion 3.2.6, taking into account the symmetries of f , which imply a smaller
nonlinear term.

Theorem 3.4.4 (Stochastic pitchfork bifurcation – diffusion-domi-
nated escape). Let µ > 0, and define Cµ = (2 + µ)−(1+µ/2). Then, for
any initial condition (x0, t0) ∈ S(h), any time t ∈ [t0, T ], and any h such that
σ < h < (t20Cµσ

1+µ)1/(3+µ),

Pt0,y0
{
τS(h) � t

}
�

(
h

σ

)µ

exp
{
−κµ

α(t, t0)
ε

}
, (3.4.25)

where the exponent κµ is given by

κµ =
µ

1 + µ

[
1 − O

(
ε
1 + µ

µ

)
− O

(
1

µ log(1 + h/σ)

)]
. (3.4.26)
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t

x

B(h)

x�(t)

−x�(t)

xdet
t

K(κ)

Aτ (h)

τ
√

ε

Fig. 3.12. Sample path of a stochastic pitchfork bifurcation in Regime II. The path
is likely to remain in the set B(h) until time

√
ε. It typically leaves the set K(κ)

after at a random time τ = τK(κ) of order
p

ε|log σ|, after which it concentrates in
a neighbourhood Aτ (h) of another deterministic solution.

This result shows that sample paths typically leave S(h) as soon as
α(t, t0) � ε log(h/σ). Since α(t, t0) grows quadratically with t, the typical
exit time is of order

√
ε log(h/σ). Once paths have left the small neighbour-

hood S(h) of the saddle, the drift term becomes appreciable, and helps push
paths away from the saddle. In order to describe this process, we introduce a
family of larger regions

K(κ) =
{

(x, t) ∈ D : t �
√
ε,
f(x, t)
x

� κa(t)x2
}
, (3.4.27)

where κ ∈ (0, 1). We set aκ(t) = κa(t) and ακ(t, s) = κα(t, s). The assump-
tions on f imply that the upper and lower boundaries of K(κ) are two curves
of equation x = ±x̃(t), where

x̃(t) =
√

(1 − κ)t
[
1 + O(t)

]
. (3.4.28)

Using the same line of thought as in Section 3.2.2, we obtain the following
estimate on the law of the first-exit time τK(κ).

Theorem 3.4.5 (Stochastic pitchfork bifurcation – drift-dominated
escape). Assume that σ|log σ|3/2 � √

ε. For all κ ∈ (0, 1) and all initial
conditions (x0, t0) ∈ K(κ),

Pt0,x0
{
τK(κ) � t

}
� C(t)

|log σ|
σ

(
1 +

ακ(t, t0)
ε

)
e−ακ(t,t0)/ε

√
1 − e−2ακ(t,t0)/ε

, (3.4.29)
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where
C(t) =

2√
π

√
aκ(t)x̃(t) . (3.4.30)

Proof. The proof is basically the same as the proof of Theorem 3.2.8. A slight
simplification arises from the fact that ρ(t) is decreasing. Since we have to
assume σ � √

ε anyway, we choose h = 2σ
√

|log σ| and µ = 2, which yields
the slightly different prefactor. ��

We conclude that paths typically leave K(κ) as soon as ακ(t, t0) � ε|log σ|.
Since ακ(t, t0) is close to κt2/2 for small t, this implies

Pt0,x0
{
τK(κ) �

√
2cε|log σ|

}
= O

(
σcκ−1|log σ|

)
, (3.4.31)

which becomes small as soon as c > 1/κ. In the regime e−K/ε 
 σ <
√
ε, the

typical bifurcation delay is thus of order
√
ε|log σ| (Fig. 3.12).

3.4.3 Reaching a Stable Branch

To complete the analysis of Regime II (that is, e−1/Kε 
 σ � √
ε), it remains

to show that paths approach one of the two stable equilibrium branches ±x�(t)
after they have left a neighbourhood K(κ) of the saddle. This can simply be
done by comparing the dynamics of sample paths leaving K(κ), say, through
its upper boundary at time τ = τK(κ) � √

ε, with the deterministic solution
xdet,τ
t starting at the same point.

The behaviour of xdet,τ
t can be analysed with the methods of Section 2.2.4.

We restrict the discussion to values of κ in (1/2, 2/3). The condition κ < 2/3
guarantees that the potential is convex outside K(κ), so that deterministic
solutions attract each other. The condition κ > 1/2 allows excluding the
possibility that xdet,τ

t reenters K(κ). We summarise the results in the following
proposition.

Proposition 3.4.6. Assume that κ ∈ (1/2, 2/3). For sufficiently small T ,
there exists η = 2−3κ−OT (1), such that the solution xdet,τ

t of the deterministic
equation εẋ = f(x, t) starting at time τ � √

ε in x = x̃(τ) satisfies

0 � x�(t) − xdet,τ
t � const

[
ε

t3/2
+ (x�(τ) − x̃(τ))e−ηα(t,τ)/ε

]
(3.4.32)

for τ � t � T . Furthermore, the curvature aτ (t) = ∂xf(xdet,τ
t , t) of the poten-

tial at xdet,τ
t satisfies

a�(t) � aτ (t) � a�(t) + const
[
ε

t
+ te−ηα(t,τ)/ε

]
. (3.4.33)

Finally, if ατ (t, s) =
∫ t
s
aτ (u) du, the function
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ζτ (t) =
1

2|aτ (τ)|e
2ατ (t,τ)/ε +

1
ε

∫ t

t0

e2ατ (t,s)/ε ds , (3.4.34)

satisfies ∣∣∣∣ζτ (t) − 1
2|aτ (t)|

∣∣∣∣ � const
[
ε

t3
+

1
t
e−ηα(t,τ)/ε

]
. (3.4.35)

The bounds (3.4.32) imply that as soon as t − τ � ε/τ , the particular
solution xdet,τ

t approaches the bottom of the potential well like ε/t3/2. In fact,
all solutions xdet,τ

t starting on the upper boundary of K(κ) converge exponen-
tially fast to the same particular solution, approaching x�(t) like ε/t3/2. The
bounds (3.4.33) show that aτ (t) � t. Thus it follows from (3.4.35) that ζτ (t)
decreases like 1/t.

In analogy with the stable case, we introduce the set

Aτ (h) =
{
(x, t) ∈ D : t � τ, |x− xdet,τ

t | � h
√
ζτ (t)

}
, (3.4.36)

which is centred at the deterministic solution xdet,τ
t , and has a width decreas-

ing like h/
√
t. The following analogue of Theorem 3.4.3 shows that sample

paths leaving K(κ) at time τ are unlikely to leave the set Aτ (h) if h� σ. The
proof uses a slightly more precise estimate as mentioned in Remark C.1.5 of
Appendix C.1.

Theorem 3.4.7 (Stochastic pitchfork bifurcation–approaching x�(t)).
There exist constants h0, r0, c, c2 > 0 such that, for all h � h0τ satisfying

r(h/σ, ε) :=
σ

h
+

1
ε
e−ch

2/σ2 � r0 , (3.4.37)

on the set {τ < T}, one has

Ch/σ(t, ε)e−κ−h2/2σ2 � Pτ,x̃(τ)
{
τAτ (h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
,

(3.4.38)
where the exponents κ± are given by

κ+ = 1 − c2h/τ ,

κ− = 1 + c2h/τ ,
(3.4.39)

and the (random) prefactor satisfies

Ch/σ(t, ε) =

√
2
π

|ατ (t, τ)|
ε

h

σ
(3.4.40)

×
[
1 + O

(
ε[|log τ | + log(1 + h/σ)]

|ατ (t, τ)| + r(h/σ, ε) +
h

τ

)]
.
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Note that several quantities in (3.4.38) depend on the random first-exit
time τ = τK(κ). However, the result is understood to be valid on the set
{
√
ε � τ � T}, and this restriction on τ allows to bound all random quantities

by deterministic constants.
Since the deterministic solutions starting on the boundary of K(κ) ap-

proach each other exponentially fast, the sets Aτ (h) start overlapping as soon
as ηα(t, τ) � ε. Together with the results of the previous section, this im-
plies that a time of order

√
ε|log σ| is sufficient for most sample paths to

concentrate near the bottom of a potential well.
An interesting related question is whether paths, starting at some t0 < 0

in a given point x0, say with x0 > 0, will reach the equilibrium branch x�(t)
or −x�(t). A simple answer can be given by comparing xt with the solutions
of the linear equation

dx0
t =

1
ε
a(t)x0

t dt+
σ√
ε

dWt . (3.4.41)

Since f(x, t) � a(t)x for sufficiently small t and positive x, xt is bounded
above by x0

t as long as xt � 0. The reflection principle thus implies

Pt0,x0
{
xt � 0

}
= 1 − 1

2
Pt0,x0

{
∃s ∈ [t0, t) : xs = 0

}
� 1 − 1

2
Pt0,x0

{
∃s ∈ [t0, t) : x0

s = 0
}

= Pt0,x0
{
x0
t � 0

}
. (3.4.42)

Performing a Gaussian integral and using Lemma 3.4.2, one obtains

1
2

� Pt0,x0
{
xt � 0

}
� 1

2
+ O

(
ε1/4

σ
e−|α(0,t0)|/ε

)
(3.4.43)

for all t � 0. Since |α(0, t0)| is of order t20, paths reach either potential well
with almost the same probability, provided σ is not exponentially small.

In a sense, Regime II is the most favourable for an experimental determi-
nation of the bifurcation diagram, by slowly sweeping the control parameter.
Indeed, exponentially small noise intensities lead to an undesired bifurcation
delay, which fails to reveal part of the stable bifurcation branches. On the
other hand, noise intensities larger than

√
ε yield a large spreading of paths

around the bifurcation diagram. The relation between bifurcation delay and
noise intensity can also be used to determine the noise level experimentally,
by performing experiments with different sweeping rates ε.

3.5 Other One-Dimensional Bifurcations

3.5.1 Transcritical Bifurcation

The behaviour of sample paths when approaching a transcritical or a saddle–
node bifurcation point is quite similar. Depending on the noise intensity, paths
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either remain close to the stable equilibrium branch, or they cross the unstable
branch and escape. The weak-noise behaviour after passing the bifurcation
point is, by contrast, very different for the transcritical and the saddle–node
bifurcation. It moreover depends, as in the deterministic case discussed in
Example 2.2.10, on the relative location of equilibrium branches (see Fig. 2.8).

For simplicity, we discuss here the particular case of the SDE

dxt =
1
ε
(t2 − x2

t ) dt+
σ√
ε

dWt . (3.5.1)

The deterministic system has a stable equilibrium branch x�−(t) = |t| and an
unstable branch x�+(t) = −|t|, touching at t = 0. The linearisations of the
drift term f(x, t) = t2 − x2 at these branches are a�±(t) = ±2|t|.

We have seen that the adiabatic solution x̄(t, ε) associated with the stable
branch satisfies, for some constant c0,

x̄(t, ε) − x�−(t) � ε

|t| for t � −c0
√
ε , (3.5.2)

x̄(t, ε) �
√
ε for −c0

√
ε � t � c0

√
ε , (3.5.3)

x̄(t, ε) − x�−(t) � − ε

|t| for t � c0
√
ε . (3.5.4)

The linearisation a(t) = ∂xf(x̄(t, ε), t) = −2x̄(t, ε) of the drift term at x̄(t, ε)
thus scales as a(t) � −(|t|∨

√
ε) for all t. As usual, α(t, s) denotes the integral

of a(u) from s to t. Fixing some initial time t0 = −T < 0, we can define ζ(t)
exactly as in (3.3.15) and (3.4.16); it satisfies ζ(t) � |a(t)|−1. The set

B(h) =
{
(x, t) : t � t0, |x− x̄(t, ε)| < h

√
ζ(t)

}
(3.5.5)

thus has a maximal width of order hε−1/4, attained for t ∈ [−c0
√
ε, c0

√
ε].

The function ζ̂(t) = supt0�s�t ζ(s) grows like |t|−1 for t � −c0
√
ε, and stays

of constant order 1/
√
ε for subsequent times.

The analogue of Theorem 3.3.3 is the following.

Theorem 3.5.1 (Stochastic transcritical bifurcation – stable phase).
Let x0 = x̄(t0, ε). There exist constants h0, r0, c, c2 > 0 such that, for all
h � h0ζ̂(t)−3/2 and t � t0 satisfying

r(h/σ, t, ε) :=
σ

h
+

(t− t0)
ε

e−ch
2/σ2 � r0 , (3.5.6)

one has

Ch/σ(t, ε)e−κ−h2/2σ2 � Pt0,x0
{
τB(h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
, (3.5.7)

where the exponents κ± are given by

κ+ = 1 − c2hζ̂(t)3/2 ,

κ− = 1 + c2hζ̂(t)3/2 ,
(3.5.8)
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(a) (b)x

t

B(h)

x

txt

x̄(t, ε)

B(h)

Fig. 3.13. Behaviour of sample paths near a dynamic transcritical bifurcation.
(a) In the weak-noise regime σ < ε3/4, paths remain concentrated in the shaded set
B(h) centred in the deterministic solution; (b) in the strong-noise regime σ > ε3/4,
paths are likely to overcome the unstable solution some time before the bifurcation.

and the prefactor satisfies

Ch/σ(t, ε) =

√
2
π

|α(t, t0)|
ε

h

σ
(3.5.9)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t, t0)|
+ r(h/σ, t, ε) + hζ̂(t)3/2

)]
.

Theorem 3.5.1 shows that paths are concentrated in a neighbourhood of
order σ

√
ζ(t) � σ/(

√
|t|∨ε1/4) of x̄(t, ε), as long as ζ̂(t)3/2 is small compared

to σ−1. There are thus two regimes to be considered:

• Regime I: σ < σc = ε3/4. In this case, the theorem can be applied for
all (finite) times t, and shows that paths are likely to remain in B(h) if
σ 
 h � ε3/4. The maximal spreading of typical paths has order σε−1/4

(Fig. 3.13a). In particular, the probability that paths reach the t-axis is
bounded by Ch0σc/σ(t, ε)e−const ε3/2/σ2

.
• Regime II: σ � σc = ε3/4. In this case, the theorem can only be applied

up to time −σ2/3, when the spreading of paths reaches order σ2/3, so that
paths may reach the t-axis with appreciable probability (Fig. 3.13b).

The following result, which is proved exactly in the same way as Theo-
rem 3.3.4, shows that in Regime II, paths are indeed likely to cross the unstable
equilibrium branch.

Theorem 3.5.2 (Stochastic transcritical bifurcation – the strong-
noise regime). Assume that σ � ε3/4 and fix −d < 0. Let x0 = x̄(t0, ε).
There exist constants c3, κ > 0 such that, for all t ∈ [t1, t2] = [−c3σ2/3, c3σ

2/3],

Pt0,x0
{
xs > −d ∀s ∈ [t0, t]

}
� 3

2
exp

{
−κ |α(t, t1)|

ε(|log σ| + |log ε|)

}
. (3.5.10)
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Proof. One starts by establishing the same upper bound as in Theorem 3.3.4,
see (3.3.33), which contains a second term bounding the probability of excur-
sions away from the unstable branch. However, owing to the particular nature
of the drift term in (3.5.1), the parameter h can be chosen arbitrarily large.
The choice h = σ5/3/

√
ε makes the second term negligible. Its only effect is

then the term |log ε| in the denominator of the exponent. ��

The term |α(t, t1)| in the exponent behaves like σ2/3(t− t1), and is thus of
order σ4/3 as soon as t − t1 reaches order σ2/3. The probability not to cross
the unstable solution is thus of order

3
2

exp
{
−const

σ4/3

ε(|log σ| + |log ε|)

}
. (3.5.11)

Two important facts can be noted:

1. In the strong-noise regime σ � ε3/4, transitions are only likely in a time
window of width of order σ2/3 around the bifurcation point. Indeed, paths
which have not reached the t-axis by time c3σ2/3 are most likely attracted
again by the stable branch, and concentrate in B(σ).

2. This is a first example where sufficiently strong noise induces, with prob-
ability close to 1, a radically different behaviour than in the deterministic
case. In combination with global mechanisms (for drift terms behaving
only locally as in (3.5.1)), this phenomenon can lead to organised noise-
induced behaviours such as stochastic resonance.

3.5.2 Asymmetric Pitchfork Bifurcation

In this last section, we briefly discuss the effect of noise on asymmetric dy-
namic pitchfork bifurcations. Consider for simplicity the particular case

dxt =
1
ε
(xt + t)(t− x2

t ) dt+
σ√
ε

dWt . (3.5.12)

The equilibrium branch x�(t) = −t is stable for t < 0 and unstable for t > 0
(and t < 1). As t becomes positive, two stable equilibrium branches x�±(t) =
±
√
t appear in a pitchfork bifurcation. The associated potential transforms

from a single-well to a double-well potential, the only difference with the
symmetric case being the fact that x�(t) depends on time.

As we have seen in Example 2.2.11, in the deterministic case σ = 0, (3.5.12)
admits an adiabatic solution x̄(t, ε), tracking x�(t) at a distance of order
ε/|t| for t � −

√
ε. For |t| � √

ε, x̄(t, ε) remains positive and of order
√
ε,

while for t � √
ε it approaches the upper equilibrium branch at x�+(t) like

ε/|t|3/2 (see Fig. 2.9). One can also show the existence of a deterministic
solution x̂(t, ε), tracking the saddle at x�(t) for t > 0. It separates the basins
of attraction of the two potential wells, and satisfies x̂(0, ε) � −

√
ε (Fig. 3.14).
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x

t

B(h)

bx(t, ε)

Fig. 3.14. A typical and a less typical sample path for the asymmetric dynamic
pitchfork bifurcation.

Let −a(t) denote the curvature of the potential at x̄(t, ε). One easily shows
that there is a constant c0 such that a(t) � −|t| for |t| � c0

√
ε (and t not

approaching 1). For |t| � c0
√
ε, |a(t)| is at most of order

√
ε, and it may

briefly become positive for some positive times. This slight peculiarity, how-
ever, happens on too short a time interval to have visible effects on the dy-
namics. Indeed, one shows that the function ζ(t) defined exactly as in (3.3.15)
and (3.4.16), still satisfies ζ(t) � 1/(|t| ∨

√
ε). The set

B(h) =
{
(x, t) : t � t0, |x− x̄(t, ε)| < h

√
ζ(t)

}
(3.5.13)

thus has a maximal width of order hε−1/4, attained for times of order
√
ε.

Again, one obtains two regimes:

• If σ < σc = ε3/4, sample paths are likely to remain in B(h) for all times,
and thus to end up tracking the bottom of the right-hand potential well.

• If σ � σc = ε3/4, sample paths have an appreciable probability of reaching
the adiabatic solution x̂(t, ε) tracking the saddle. They are thus also likely
to visit the left-hand potential well.

The subsequent dynamics for σ � σc is more difficult to analyse. As long
as the potential barrier is sufficiently low, sample paths may jump back and
forth between the two potential wells. It is not straightforward to obtain the
probability to end up tracking the bottom of the left-hand rather than the
right-hand well. We expect, however, that if the depths of the two wells are
different, sample paths are more likely to settle in the deeper one of the two
wells (which is the right-hand well for the drift term in (3.5.12)).
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Stochastic Resonance

In some of the examples studied in the previous chapter, the noise term was
able to induce transitions between equilibrium branches, with appreciable
probability, even some time before a bifurcation occurred. In fact, the existence
of a bifurcation is not even necessary — an avoided bifurcation, in which
equilibrium branches come close without actually touching, can be sufficient to
produce such transitions. In this chapter, we apply the methods just developed
to a much studied phenomenon involving noise-induced transitions, known as
stochastic resonance (SR).

SR occurs when a multistable system, subject to noise, displays an or-
ganised behaviour which is qualitatively different from its behaviour in the
absence of noise. A typical example is a bistable system driven by weak peri-
odic forcing, which, in combination with noise, induces close-to-periodic large-
amplitude oscillations between the stable equilibria. For instance, the SDE

dxs =
[
xs − x3

s +A cos εs
]
ds+ σ dWs (4.0.1)

describes the dynamics of an overdamped particle in a symmetric double-well
potential U(x) = 1

4x
4 − 1

2x
2, subject to periodic driving A cos εs and additive

noise. The potential U(x) has local minima in x = ±1. In the absence of noise,
and when the amplitude A of the forcing lies below a threshold, solutions
of (4.0.1) always remain in the same potential well. The noise term may
cause the particle to switch potential wells. Roughly speaking, the expression
stochastic resonance refers to the fact that these interwell transitions are not
uniformly distributed in time, but show instead some trace of the periodic
forcing.

One of the difficulties in quantitative studies of SR arises from the fact
that several parameters are involved. Even in the simple example (4.0.1), there
are already three of them: noise intensity σ, amplitude A and frequency ε
of the forcing. SR is usually associated with some quantitative measure of
the system’s response being maximal for a certain noise intensity, depending
on the other parameters A and ε. Most existing studies assume either the
amplitude A, or the frequency ε, or both, to be small.
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The method of choice for a mathematical analysis depends on the regime
one is interested in. In order to compare the type of results obtained by the
sample-path approach and other methods, we have divided this chapter into
two parts as follows.

• In Section 4.1, we give a brief overview of the phenomenon of SR, discuss
various measures introduced to quantify it, and present some of the results
that have been obtained on their behaviour as the different parameters
vary.

• In Section 4.2, we apply methods from Chapter 3 to the study of sample-
path behaviour in the so-called synchronisation regime. We treat the case
of relatively large values of the amplitude A, slightly below the threshold
that would allow the particle to overcome the potential barrier in the
deterministic case. A sufficient noise intensity then causes nearly regular
transitions of the particle between both potential wells.

4.1 The Phenomenon of Stochastic Resonance

4.1.1 Origin and Qualitative Description

The concept of SR was originally introduced by Benzi, Sutera and Vulpi-
ani [BSV81] and by Nicolis and Nicolis [NN81], in order to offer an explana-
tion for the close-to-periodic appearance of the major Ice Ages. Various proxies
indicate that during the last 700 000 years, the Earth’s climate has repeat-
edly experienced dramatic transitions between “warm” phases, with average
temperatures comparable to today’s values, and Ice Ages, with temperatures
about ten degrees lower. The transitions occur with a striking, though not
perfect, regularity, with an average period of about 92 000 years.

The idea that this regularity might be related to (quasi-)periodic vari-
ations of the Earth’s orbital parameters was put forward by Croll [Cro75]
in 1864, and worked out during the first half of the twentieth century by Mi-
lankovitch [Mil41]. The slow variations of insolation, however, can only explain
the rather drastic changes between climate regimes if some powerful feedbacks
are involved, for example a mutual enhancement of ice cover and the Earth’s
albedo.

The simplest possible model for the variations of the average climate is an
energy-balance model, whose sole dynamic variable is the mean temperature T
of the Earth’s atmosphere. Its evolution is described by

c
dT
ds

= Rin(s) −Rout(T, s) , (4.1.1)

where c is the heat capacity, and s denotes time. The incoming solar radiation
Rin(s) is modelled by the periodic function

Rin(s) = Q
(
1 +K cosωs

)
, (4.1.2)
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Fig. 4.1. Overdamped particle in a periodically forced double-well potential. In a
climate model, the two potential wells represent, for instance, Ice Age and temperate
climate. For subthreshold forcing amplitudes, resulting from variations in the Earth’s
orbital parameters, no transitions between wells occur, unless noise, modelling the
weather, acts on the system.

where the constant Q is called solar constant , the amplitude K of the mod-
ulation is small, of the order 5 × 10−4, and the period 2π/ω equals 92 000
years. The outgoing radiation Rout(T, s) decomposes into directly reflected
radiation, and thermal emission. It thus has the form

Rout(T, s) = α(T )Rin(s) + E(T ) , (4.1.3)

where α(T ) is called the Earth’s albedo, and E(T ) its emissivity.
The emissivity, approximated by the Stefan–Boltzmann law of black-body

radiation E(T ) ∼ T 4, varies little in the range of interest, and can be replaced
by a constant E0. All the richness of the model thus lies in modelling the
albedo’s temperature-dependence (which is influenced by factors such as size
of ice sheets and vegetation coverage). The evolution equation (4.1.1) can be
rewritten as

dT
ds

=
E0

c

[
γ(T )(1 +K cosωs) +K cosωs

]
, (4.1.4)

where γ(T ) = Q(1 − α(T ))/E0 − 1. In order that two stable climate regimes
can coexist, γ(T ) should have three roots, the middle root corresponding to
an unstable state. The authors of [BPSV83] take a pragmatic view and choose
to model γ(T ) by the cubic polynomial

γ(T ) = β

(
1 − T

T1

)(
1 − T

T2

)(
1 − T

T3

)
, (4.1.5)

where T1 = 278.6 K and T3 = 288.6 K are the representative temperatures of
the two stable climate regimes, and T2 = 283.3 K represents an intermediate,
unstable regime. The parameter β determines the relaxation time τ of the
system in the “temperate climate” state, taken to be 8 years, by

1
τ

= −E0

c
γ′(T3) . (4.1.6)
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Introducing the slow time t = ωs and the “dimensionless temperature” x =
(T − T2)/∆T , with ∆T = (T3 − T1)/2 = 5 K, yields the rescaled equation of
motion

ε
dx
dt

= −x(x−X1)(x−X3)(1 +K cos t) +A cos t . (4.1.7)

Here X1 = (T1 − T2)/∆T � −0.94 and X3 = (T3 − T2)/∆T � 1.06, while the
adiabatic parameter ε is given by

ε = ωτ
2(T3 − T2)

∆T
� 1.16 × 10−3 . (4.1.8)

The effective driving amplitude

A =
K

β

T1T2T3

(∆T )3
(4.1.9)

is approximately equal to 0.12, according to the value E0/c = 8.77×10−3/4000
Ks−1 given in [BPSV83]. For simplicity, let us replace X1 by −1, X3 by 1,
and neglect the term K cos 2πt in (4.1.7). This yields the equation

ε
dx
dt

= x− x3 +A cos t . (4.1.10)

The right-hand side derives from a double-well potential, and thus has two
stable equilibria and one unstable equilibrium, for all A < Ac = 2/3

√
3 � 0.38.

The periodic forcing is thus not sufficient to allow for transitions between the
stable equilibria (Fig. 4.1).

The new idea in [BSV81, NN81] is to incorporate into the equation (4.1.7)
the effect of short-timescale atmospheric fluctuations, by adding a noise term,
as suggested by Hasselmann [Has76]. This yields the SDE

dxt =
1
ε

[
xt − x3

t +A cos t
]
dt+

σ√
ε

dWt , (4.1.11)

here considered on the slow timescale. For adequate parameter values, typical
solutions of (4.1.11) are likely to cross the potential barrier twice per period,
producing the observed sharp transitions between climate regimes. This is
a manifestation of SR. Whether SR is indeed the right explanation for the
appearance of Ice Ages is controversial, and hard to decide. However, mod-
els similar to (4.1.11) have been analysed in different contexts, and SR was
discovered to act as an amplification mechanism in many physical systems
subject to noise, for instance ring lasers. It also plays a rôle in biology where
SR has been observed in neural systems, for instance.

Depending on forcing amplitude A and noise intensity σ, the following
regimes are observed (Fig. 4.2):

• If A = 0, the study of (4.1.11) reduces to the well-known problem of bar-
rier crossing in a static potential. The expected time between transitions is
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Fig. 4.2. Sample paths of Equation (4.1.11) for ε = 0.003 and different forcing
amplitudes A and noise intensities σ. Solid lines indicate the location of the potential
minima and of the saddle. From top to bottom and left to right: A = 0 and σ = 0.3,
A = 0.1 and σ = 0.27, A = 0.24 and σ = 0.2, A = 0.35 and σ = 0.2.

given by Kramers’ time (see Appendix A.6), which is exponentially large
in 2H/σ2, where H is the potential barrier height. For small noise inten-
sities, the distribution of waiting times between crossings is close to an
exponential distribution, with parameter equal to the inverse of Kramers’
time. Thus transitions asymptotically follow a Poisson point process (after
a proper rescaling of time).

• If 0 < A 
 Ac, the barrier height varies periodically, so that transitions
become more likely at some moments in the cycle than at others, yielding a
periodically modulated distribution of waiting times between transitions.
This effect is expected to be most pronounced when the Kramers time
equals half the forcing period. For smaller noise intensities, transitions are
rare, while for larger intensities, they become frequent within each period.

• If A < Ac, but Ac −A
 Ac, the potential barrier becomes very low twice
per period. For sufficiently strong noise, transitions become likely twice
per period, and large-amplitude oscillations appear.

Since the introduction of the model, several measures have been considered
in order to quantify the effect:

• Spectral characteristics: The time-autocorrelation function of the sig-
nal has a periodic component, producing peaks in its Fourier transform,
the power spectrum. Various quantities have been used to measure the
importance of this periodic component, such as signal-to-noise ratio, or
spectral power amplification.

• Residence-time distributions: In the absence of forcing, the rescaled
waiting times between interwell transitions obey an exponential law in the
limit of small noise intensity. In the presence of forcing, the distribution of
residence times becomes a periodically modulated exponential, reflecting
the fact that transitions are more likely to occur at certain times in the
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cycle. Then resonance can be quantified by a suitable measure of concen-
tration of residence-times within each period.

• Sample-path properties: In some parameter regimes, typical sample
paths switch back and forth between the potential wells in a close-to-
periodic way, and it can be proved that sample paths converge (in a suit-
able sense) towards a deterministic periodic function as the noise inten-
sity σ goes to zero. More generally, one can obtain concentration results
in a neighbourhood of such a deterministic function.

Various methods have been used to study these quantitative properties,
including spectral-theoretic methods (such as expansion of the probability
density in a basis of eigenfunctions of the unperturbed generator), linear re-
sponse theory, and large-deviation techniques.

In the sequel, we shall give an overview of some of these results, with an
emphasis on mathematically precise ones. We will concentrate on equations
of the type (4.1.11). Note, however, that SR appears in other types of systems
as well. Two simplified systems that have been studied in detail are

• the motion in a potential switching back and forth between two different
static configurations, first considered in [BSV81];

• a two-state Markovian jump process with time-periodic transition proba-
bilities, first considered in [ET82].

4.1.2 Spectral-Theoretic Results

For simplicity, we consider here again the special case of the system (4.1.11),
written in the form

dxs =
[
−U ′(xs) +A cosΩs

]
ds+ σ dWs , (4.1.12)

where U(x) = 1
4x

4 − 1
2x

2 is the standard static symmetric double-well poten-
tial. A first variety of ways to quantify SR are based on the process’ power
spectrum

SA(ω) = lim
t→∞

1
2t

∣∣∣∣∫ t

−t
lim

t0→−∞ Et0,x0{xu} eiωu du
∣∣∣∣2 , (4.1.13)

where A refers to the power spectrum’s dependence on the forcing ampli-
tude A. The limit t0 → −∞ is taken in order that the system be in a station-
ary state (and thus SA does not depend on the initial state x0). In practice,
it is often more convenient to compute the power spectrum by invoking the
Wiener–Khintchin theorem, which relates the power spectrum to the process’
autocorrelation function,

CA(t, s) = lim
t0→−∞ Et0,x0

{
xsxt

}
= CA(s, t) . (4.1.14)

Note that, for t > s, CA(t, s) is given in terms of transition probabilities by
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CA(t, s) = lim
t0→−∞

∫∫
x p(x, t|y, s) y p(y, s|x0, t0) dy dx . (4.1.15)

Then the Wiener–Khintchin theorem states that SA(ω) is the Fourier trans-
form of t �→ CA(t+ s, s), averaged over s.

Let us first consider the case without periodic forcing, i.e., A = 0.
The transition probabilities (x, t) �→ p(x, t|y, s) are solutions of the Kol-
mogorov’s forward, or Fokker–Planck, equation ∂tp = L∗

0p with initial condi-
tion p(x, s|y, s) = δy(x) (cf. Appendix A.4), where

(L∗
0p)(x) =

∂

∂x

(
U ′(x)p(x)

)
+
σ2

2
∂2

∂x2
p(x) (4.1.16)

is the adjoint of the diffusion’s generator. Note that L∗
0 is essentially self-

adjoint in L2(R ,W (x)−1 dx) with weight W (x)−1 given by

W (x) =
1
N

e−2U(x)/σ2
. (4.1.17)

We choose the normalisation N in such a way that W (x) is a probability
density, and denote the associated scalar product by 〈·, ·〉W−1 . It is also well
known (see, for instance, [Kol00]) that the spectrum of L∗

0 consists of isolated,
simple, non-positive eigenvalues

0 = −λ0 > −λ1 > −λ2 > . . . , (4.1.18)

where

• the eigenfunction p0(x) = W (x) associated with λ0 = 0 is the invariant
density;

• the first non-vanishing eigenvalue −λ1 satisfies

λ1 =
1
π

√
U ′′(1)|U ′′(0)| e−2H/σ2[

1 + O(σ2)
]
, (4.1.19)

where H = U(0)−U(−1) = 1/4 is the potential barrier height; the associ-
ated eigenfunction is of the form p1(x) = φ1(x)W (x), where φ1(x) is well
approximated by signx;

• all eigenvalues λk for k � 2 are bounded away from 0 (by a constant
independent of σ), i.e., there is a spectral gap.

The completeness of the basis of eigenfunctions immediately yields the
following representation of the transition probabilities

p(x, s+ t|y, s) =
∑
k�0

e−λktW (y)−1pk(y)pk(x) . (4.1.20)

Inserting this into the definition (4.1.15) of the autocorrelation function gives
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C0(s+ t, s) = C0(t, 0) =
∑
k�0

e−λk|t|α2
k , where αk =

∫
x pk(x) dx .

(4.1.21)
The symmetry of the potential implies that eigenfunctions are even for even k
and odd for odd k, so that αk = 0 if k is even. The power spectrum is thus
the sum of Lorentzians

S0(ω) =
∫

e−iωtC0(t, 0) dt = 2
∑

k∈2Z +1

α2
k

λk
λ2
k + ω2

. (4.1.22)

Because of the spectral gap, for small noise intensities (and small ω) this sum
is dominated by its first term.

Consider now the periodically perturbed system (4.1.12). Its adjoint gen-
erator is the time-periodic differential operator

L∗(t) = L∗
0 +AL∗

1(t) , where L∗
1(t) = cosΩt

∂

∂x
. (4.1.23)

Floquet theory implies the existence of “eigenmodes” qk(x, t), depending pe-
riodically on t and satisfying(

L∗(t) − ∂

∂t

)
qk(x, t) = −µkqk(x, t) . (4.1.24)

Similarly, the generator L(t) + ∂t admits dual Floquet eigenmodes that we
denote by q̃k(x, t). The eigenmodes qk(x, t) and characteristic exponents µk
depend on A and reduce to their static counterparts pk(x) and λk in the limit
A→ 0. In particular, µ0 is identically zero, and thus q0(x, t) is a time-periodic
solution of the Fokker–Planck equation, describing the asymptotic dynamics
of the process.

The transition probabilities can be represented in terms of Floquet modes
as

p(x, s+ t|y, s) =
∑
k�0

e−µktq̃k(y, s)qk(x, s+ t) . (4.1.25)

A similar computation as above yields the expression

CA(s+ t, s) =
∑
k�0

e−µk|t|αk(s+ t)βk(s) (4.1.26)

for the autocorrelation function, where the αk(u) and βk(u) are periodic func-
tions, of period T = 2π/Ω, given by

αk(u) =
∫
x qk(x, u) dx , (4.1.27)

βk(u) =
∫
x q̃k(x, u)q0(x, u) dx . (4.1.28)
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(a)

SA(ω)

ω

(b)

η(σ)

RSN(σ)

σ

Fig. 4.3. (a) Qualitative behaviour of the power spectrum SA(ω): the periodic
forcing produces peaks in multiples of the forcing frequency Ω; (b) typical plots of
the signal-to-noise ratio RSN(σ) (solid line) and spectral power amplification η(σ)
(broken line), as a function of the noise intensity σ.

A direct computation shows that the first dual Floquet mode is simply
q̃0(x, t) = 1, so that β0(u) = α0(u). The term k = 0 of the sum (4.1.26)
yields a singular component of the power spectrum

S sing
A (ω) =

∫
1
T

∫ T

0

α0(s+ t)α0(s) e−iωt dsdt = 2π
∑
�∈Z

|α̂0,�|2δ�Ω(ω) ,

(4.1.29)
where α̂0�, � ∈ Z , are the Fourier coefficients of α0(u). The amplitudes of the
delta-peaks in this singular component are a measure of the signal’s period-
icity. It is customary to consider the amplitude of the first peak,

SA,1 = lim
∆→0

∫ Ω+∆

Ω−∆
S sing
A (ω) dω = 2π|α̂0,1|2 . (4.1.30)

The two most commonly used measures of resonance are the signal-to-noise
ratio

RSN =
SA,1
S0(Ω)

� π
|α̂0,1|2
α2

1

λ2
1 +Ω2

λ1
, (4.1.31)

and the spectral power amplification

η =
SA,1
πA2

= 2
|α̂0,1|2
A2

. (4.1.32)

Note that for fixed parameters σ, A and Ω, the quantities RSN and η depend
only on the expected position α0(t) in the “stationary” Floquet mode q0(x, t),
satisfying ∂tq0(x, t) = L∗(t)q0(x, t).

Several approximate calculations exist for the small-amplitude case A
 1
[Fox89, GMSS+89, JH89]. A straightforward expansion to linear order in A
(which can be viewed in the framework of linear response theory) yields

q0(x, t) = p0(x) +
A

2

∑
k�1

[
eiΩt

λk + iΩ
+

e−iΩt

λk − iΩ

]〈
pk,

∂

∂x
p0

〉
W−1

pk(x) + O(A2) .

(4.1.33)



120 4 Stochastic Resonance

As a consequence,

α̂0,1 =
A

2

∑
k�1

αk
λk + iΩ

〈
pk,

∂

∂x
p0

〉
W−1

+ O(A2) . (4.1.34)

Using the properties of the static eigenfunctions pk(x), one obtains that this
sum is dominated by the term with k = 1, and that the matrix element
〈p1, ∂xp0〉W−1 is proportional to λ1/σ

2. This yields the expressions

RSN = RSN(σ) � const
A2

σ4
λ1 = const

A2

σ4
e−2H/σ2

, (4.1.35)

η = η(σ) � const
1
σ4

λ2
1

λ2
1 +Ω2

, (4.1.36)

for the signal-to-noise ratio and spectral power amplification. Each function
has a unique maximum, tends to zero exponentially fast in the limit of van-
ishing noise, and decreases like σ−4 for large noise (Fig. 4.3b). The signal-to-
noise ratio is maximal for σ2 = H, while the maximal power amplification is
reached when the Kramers time λ−1

1 is of the order of the driving period, i.e.,
σ2 � 2H/ logΩ−1.

Though we are not aware of completely rigorous proofs of the above results
(that is, the error terms O(A2) in (4.1.33) are not precisely controlled), there
seems to be little doubt as to their validity, which has also been confirmed
experimentally.

Another limit that can be studied perturbatively is the adiabatic limit
Ω := ε 
 1. Rather than working in the basis of eigenfunctions of the sym-
metric double-well system, it is then advantageous to expand the periodic
Floquet solution q0(x, t) in the basis of instantaneous normalised eigenfunc-
tions pk(x, t) of L∗(t). These satisfy, for each fixed time t,

L∗(t)pk(x, t) = −λk(t)pk(x, t) . (4.1.37)

Let U(x, t) = U(x) − Ax cos εt be the time-dependent potential including
the effect of the periodic driving. We denote by x�−(t) < x�0(t) < x�+(t) its
stationary points at time t, by h±(t) = U(x�0(t), t)−U(x�±(t), t) the depths of
its two wells, and by ωi(t)2 = |∂xxU(x�i (t), t)|, i ∈ {−, 0,+}, the curvatures of
U at its stationary points. Then it is known that

• λ0(t) = 0, and p0(x, t) = N(t)−1e−2U(x,t)/σ2
is the associated stationary

distribution;
• the first non-vanishing eigenvalue satisfies

λ1(t) =
ω0(t)
2π

[
ω+(t)e−2h+(t)/σ2

+ω−(t)e−2h−(t)/σ2][
1+O(σ2)

]
; (4.1.38)

the corresponding eigenfunction has the form p1(x, t) = φ1(x, t)p0(x, t),
where φ1(x, t) is close to −φ−, for x < x�0(t), and close to φ+ = 1/φ−, for
x > x�0(t), with φ− given by
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φ2
− =

ω−(t)
ω+(t)

e2∆(t)/σ2
, ∆(t) = h+(t) − h−(t) ; (4.1.39)

• there is a spectral gap of order 1 between λ1(t) and all subsequent eigen-
values.

In the sequel, we shall work on the slow timescale εt. Substituting the decom-
position q0(x, t) =

∑
k�0 ck(t)pk(x, t) into the accordingly rescaled Floquet

equation yields the system

εċk = −λk(t)ck − ε
∑
��0

〈pk, ṗ�〉W−1 c� . (4.1.40)

Orthonormality of the pk (with respect to the scalar product weighted by
W−1(x, t) = p0(x, t)−1) yields 〈p0, ṗ�〉W−1 = 0 for all �, so that c0(t) = 1.
Now the existence of a spectral gap implies that for ε 
 1, all ck with k � 2
are fast variables. By an infinite-dimensional variant of Tihonov’s theorem,
they remain thus ε-close to a slow manifold given by ck(t) = O(ε) ∀k � 2. The
reduced dynamics on the slow manifold is described by the one-dimensional
effective equation

εċ1 = −λ1(t)c1 − ε〈p1, ṗ1〉W−1 c1 − ε〈p1, ṗ0〉W−1 . (4.1.41)

Let us now show that this equation is equivalent to the two-state Markovian
jump process introduced in [ET82]. The scalar products in (4.1.41) can be
evaluated by first noting that

ṗ0(x, t) =
2A
σ2

sin t
(∫

yp0(y, t) dy − x

)
p0(x, t) , (4.1.42)

and then using the orthonormality conditions and their derivatives to obtain

〈p1, ṗ0〉W−1 = −2A
σ2

sin t 〈p1, xp0〉W−1 , (4.1.43)

〈p1, ṗ1〉W−1 =
A

σ2
sin t

[
〈p0, xp0〉W−1 − 〈p1, xp1〉W−1

]
. (4.1.44)

The matrix elements can be estimated by the Laplace method. Below, the
notation a ∼= b is used to indicate that a/b = 1 + O(σ2). It is also convenient
to introduce ∆(t) = ∆(t) − 1

2σ
2 log(ω+(t)/ω−(t)). One obtains

〈p1, xp0〉W−1 ∼=
x�+(t) − x�−(t)

e∆(t)/σ2 + e−∆(t)/σ2 , (4.1.45)

〈p0, xp0〉W−1 ∼=
x�+(t)e∆(t)/σ2

+ x�−(t)e−∆(t)/σ2

e∆(t)/σ2 + e−∆(t)/σ2 , (4.1.46)

〈p1, xp1〉W−1 ∼=
x�−(t)e∆(t)/σ2

+ x�+(t)e−∆(t)/σ2

e∆(t)/σ2 + e−∆(t)/σ2 . (4.1.47)
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The reduced equation (4.1.41) thus takes the form

εċ1 = −λ1(t)c1 − ε
A

σ2
sin t

(
x�+(t) − x�−(t)

) sinh(∆(t)/σ2)c1 − 1
cosh(∆(t)/σ2)

. (4.1.48)

To show equivalence with the two-state process, we note that the popula-
tion of the right-hand potential well is given by

c+(t) = Pq0
{
xt > x�0(t)

} ∼=
e∆(t)/σ2

+ c1(t)
e∆(t)/σ2 + e−∆(t)/σ2 . (4.1.49)

Conversely, c1(t) can be expressed in terms of c+(t) and c−(t) = 1− c+(t) by

c1(t) = c+(t)e−∆(t)/σ2 − c−(t)e∆(t)/σ2
. (4.1.50)

A straightforward calculation, using ∆̇(t) = −A sin t (x�+(t) − x�−(t)) and

λ1(t) ∼= r+(t) + r−(t) , (4.1.51)

then shows that (4.1.48) is equivalent to the set of rate equations

εċ+ = −r+(t)c+ + r−(t)c− ,
εċ− = r+(t)c+ − r−(t)c− ,

(4.1.52)

with transition rates

r±(t) ∼=
ω±(t)ω0(t)

2π
e−2h±(t)/σ2

. (4.1.53)

These rates are interpreted as instantaneous Kramers transition rates between
the two potential wells. The expected position α0(t) is given by

α0(t) = Eq0{xt} ∼= c+(t)x�+(t) + c−(t)x�−(t) , (4.1.54)

and satisfies the differential equation

εα̇0(t) = −λ1(t)α0(t) +
[
r−(t)x�+(t) + r+(t)x�−(t)

][
1 + O(εA)

]
. (4.1.55)

It can thus be written in the form

α0(t) =
1 + O(ε)
1 − e−Λ/ε

1
ε

∫ t

t−2π

e−Λ1(t,s)/ε
[
r−(s)x�+(s)+ r+(s)x�−(s)

]
ds , (4.1.56)

where we have set Λ1(t, s) =
∫ t
s
λ1(u) du, and Λ = Λ1(2π, 0). Note that Λ is

of the order e−2hmin/σ
2
, where hmin is the minimal depth the potential wells

attain.
We can now distinguish between two situations (Fig. 4.4):
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ε = 0.001

ε = 0.3

Fig. 4.4. Expected position α0(t) = Eq0{xt} (solid lines), for A = 0.3, σ = 0.2, and
two different driving frequencies. The broken line is the forcing A cos t. For ε = 0.001
(superadiabatic regime), α0(t) tracks the deepest potential minimum. For ε = 0.3
(semiadiabatic regime), α0(t) changes well near the instant of minimal barrier height.

• In the superadiabatic regime ε 
 Λ, the system has enough time to cross
the potential barrier, and thus settles close to its static equilibrium distri-
bution p0(x, t), while the potential slowly modifies its shape. As a conse-
quence, α0(t) adiabatically tracks its equilibrium value

α∗
0(t) =

r−(t)x�+(t) + r+(t)x�−(t)
r−(t) + r+(t)

. (4.1.57)

Disregarding the motion of the potential minima x�±(t), we see that α∗
0(t)

behaves like tanh(∆(t)/σ2), and has an amplitude of order tanh(A/σ2).
It follows that the signal-to-noise ratio and spectral power amplification
behave like

RSN(σ) � const tanh2

(
A

σ2

)
e−2hmin/σ

2
, (4.1.58)

η(σ) � const
1
A2

tanh2

(
A

σ2

)
. (4.1.59)

We recover the same small-amplitude behaviour as before, but see a satu-
ration effect at large amplitudes, due to the fact that the oscillations are
bounded by the interwell distance (cf. (4.1.54)).

• In the semiadiabatic regime O(Λ) � ε 
 1, the system does not react as
quickly to changes of the potential. Increasing the driving frequency ε has
two effects on the behaviour of α0(t). Firstly, transitions between poten-
tial wells are delayed towards the instants of minimal barrier height; and
secondly, the amplitude of α0(t) decreases proportionally to 1/(1 + ε/Λ).
In particular, the spectral power amplification now behaves like

η(σ) � const
1
A2

tanh2

(
A

σ2

)
Λ2

Λ2 + ε2
. (4.1.60)
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Note that η(σ) still has a unique maximum, but when the amplitude A is
not a small parameter, the decay of the power amplification is rather slow,
and makes itself felt only for noise intensities σ2 of order larger than A.

In the case of the switching potential, as well as for the corresponding two-
state process, the spectral power amplification can easily be computed exactly.
A detailed comparison between both cases is given in [IP02] for σ2 
 A. As
expected, in some parameter regimes, the power amplification of the two-state
model behaves qualitatively differently from its continuous-space counterpart,
as a consequence of intrawell fluctuations.

4.1.3 Large-Deviation Results

The spectral-theoretic results discussed so far all relate to the behaviour of
the expected position. It would be possible to study the properties of higher
moments by similar means. However, much more information is contained in
the sample-path behaviour of the process.

The theory of large deviations can be used to derive sample-path properties
in the quasistatic regime, that is, for driving periods comparable to Kramers’
time or larger. More precisely, consider the family of stochastic processes {xt}t,
satisfying

dxt =
[
xt − x3

t +A cos(2πt/T (σ))
]
dt+ σ dWt (4.1.61)

with an initial condition x0. In this context, the forcing period T (σ) is assumed
to scale with the noise intensity in such a way that

lim
σ→0

σ2 log T (σ) = λ , (4.1.62)

for some parameter λ > 0 controlling the relative value of period and “instan-
taneous” Kramers’ time. The theory of large deviations allows one to prove
convergence, in an appropriate sense, of the rescaled process ys = xsT (σ) to
a deterministic function s �→ φ(s, λ, x0) in the limit of vanishing noise inten-
sity σ.

Let U(x, t) = 1
4x

4 − 1
2x

2 − A cos(2πt/T (σ))x denote the time-dependent
potential associated with the drift term in (4.1.61). Let x�±(t) again be the
positions of its two minima, x�0(t) the position of its saddle, and let h±(t) =
U(x�0(t), t)−U(x�±(t), t) denote the depths of the two potential wells. Consider
for a moment t as a fixed parameter, so that x�±(t) ≡ x�± and h±(t) ≡ h±.
The classical Wentzell–Freidlin theory (see Appendix A.5) shows in particular
that a sample path starting, say, at time t = 0 in x�−, first hits x�+ at a random
time τ+

− such that
lim
σ→0

σ2 log E0,x�
−
{
τ+
−

}
= 2h− . (4.1.63)

Furthermore, for any constant δ > 0,

lim
σ→0

P0,x�
−
{
e(2h−−δ)/σ2

< τ+
− < e(2h−+δ)/σ2}

= 1 . (4.1.64)
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A sample path starting in the left-hand potential well is thus likely to remain
in that same well on all timescales shorter than e2h−/σ2

. On larger timescales,
it is likely to visit the right-hand well, where it typically stays for a time of
order e2h+/σ

2
before returning into the left-hand well. If h− �= h+, the relative

time spent in the shallower well tends to zero in the limit σ → 0.
We return now to the time-dependent system (4.1.61). The asymptotic

behaviour, in the simultaneously taken limit of weak noise and exponentially
long driving period (4.1.62), is described by a deterministic function t �→
φ(t, λ, x), giving the position of the bottom of the well the particle is most
likely “inhabiting” at time t, when the forcing period is of order eλ/σ

2
: For an

initial condition x < x�0(0) in the left-hand well, φ(t, λ, x) = x�−(t) until the
first time τ1, when h−(t) becomes smaller than λ/2 and the right-hand well
is deeper. Then φ switches from x�−(t) to x�+(t). It switches back to x�−(t) at
the first time τ2 > τ1 at which h+(t) falls below λ/2 and the left-hand well
has again become the deeper one. Now, the pattern is repeated with switches
from x�−(t) to x�+(t) at times τ2i−1, and switches back from x�+(t) to x�−(t) at
subsequent times τ2i, i � 1. Thus, using τ0 = 0, we can write

φ(t, λ, x) =

{
x�−(t) , if t ∈ [τ2i, τ2i+1) for some i � 0 ,
x�+(t) , if t ∈ [τ2i+1, τ2(i+1)) for some i � 0 .

(4.1.65)

The definition is analogous for initial conditions x > x�0(0) from the right-hand
well.

A typical result obtained by large-deviation theory is the following. For
any fixed S, p, δ > 0,

lim
σ→0

P0,x

{∫ S

0

∣∣xsT (σ) − φ(sT (σ), λ, x)
∣∣p ds > δ

}
= 0 . (4.1.66)

That is, the Lp-distance between sample paths and the limiting function φ
converges to zero in probability as the noise intensity goes to zero (while the
forcing period simultaneously diverges like eλ/σ

2
). If hmin and hmax denote

the extremal depths of the potential wells, the following regimes can be dis-
tinguished:

• In the superadiabatic regime λ > 2hmax, φ(t, λ, x) is always the deepest
potential well, i.e., sample paths are always likely to be close to the deepest
minimum of U . Note that this does not forbid excursions to the shallower
well, which are in fact frequent, but short compared to the forcing period.

• In the intermediate regime 2hmin < λ < 2hmax, the limiting function φ
switches from the shallower to the deeper well some time before the bar-
rier height reaches its minimum. This switching displays a hysteresis be-
haviour: Transitions from left to right and vice versa occur for different
values of the forcing.

• For λ < 2hmin, the forcing period is smaller than the minimal Kramers
time, and thus no transitions between wells are observed in the weak-noise
limit, during any finite number of periods.
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An advantage of these large-deviation results is that they are valid in much
greater generality than discussed here. They can be extended to multidimen-
sional systems with an arbitrary (finite) number of attractors, which can be
more complicated than equilibrium points. These attractors are then organ-
ised in a hierarchy of cycles, which is used to define the deterministic limiting
function φ. A limitation of these quasistatic large-deviation estimates is the
rather weak notion of convergence, which does not exclude excursions away
from the limiting function. A more refined description of transitions is given
by first-passage-time and residence-time distributions.

4.1.4 Residence-Time Distributions

The term residence time refers to the time elapsing between two successful
transitions from one potential well to the other. In the absence of forcing, a
transition time can be defined as the first time τ1 at which a sample path
crosses the saddle, say from the left-hand to the right-hand well. The time
of the next successful crossing is then the smallest time τ2 > τ1 at which xt
reaches the saddle again, after having left a suitably chosen neighbourhood
of the saddle and having visited the right-hand well between times τ1 and
τ2 (this is done in order to mask the effect of rapid fluctuations of sample
paths around the saddle). Continuing in this way, one obtains a sequence
{τn}n�1 of successive crossing times; in the properly rescaled vanishing-noise
limit, their distribution is given by a Poisson point process. The residence-
time distribution is the large-n asymptotics of the distribution of differences
τn+1 − τn, and tends to an exponential distribution in the limit σ → 0.

Consider now the periodically forced system

dxt =
[
xt − x3

t +A cos(2πt/T )
]
dt+ σ dWt . (4.1.67)

If σ = 0 and A < Ac = 2/3
√

3, the system has exactly three periodic orbits,
two of them being stable and tracking the potential wells, the third one being
unstable and tracking the saddle. We denote this last periodic orbit, which
separates the basins of attraction of the two stable ones, by xper(t). In the
adiabatic case T � 1, xper(t) tracks the saddle at x�0(t) at a distance of order
1/T , while for decreasing T , the orbit xper(t) oscillates with an amplitude
decreasing like (1 + 1/T )−1.

In the presence of forcing, the noise-induced transitions between wells are
characterised by the first-passage times {τn}n�1 through the unstable periodic
orbit xper(t). Again, the residence-time distribution is defined as the asymp-
totic distribution of differences τn+1 − τn. Stochastic resonance can then be
quantified by the deviation of this distribution from an exponential one.

The problem of determining the residence-time distribution can be split
into two tasks:

• Find the (conditional) first-passage density
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p(t|s) =
∂

∂t
Ps,x

per(s)
{
τ < t

}
, (4.1.68)

where τ is the time of the first successful crossing from the left-hand to the
right-hand well, following a preceding transition in the opposite direction
at time s.

• Find the density ψ(s) of asymptotic arrival phases, which is a T -periodic
function of average 1/T , satisfying

ψ(t) =
∫ t

−∞
p(t|s)ψ(s− T/2) ds . (4.1.69)

The shift by T/2 reflects the fact that the two potential wells move half
a period out of phase, i.e., if ψ(s) is the density of arrival phases for
transitions from left to right, then ψ(s − T/2) is the density of arrival
phases for transitions from right to left.

The density q(t) of the residence-time distribution is then obtained by de-
termining the density of the first-passage time when starting with an initial
condition chosen according to the distribution of arrival phases, i.e., by aver-
aging p(s+ t|s) over the arrival phase s:

q(t) =
∫ T

0

p(s+ t|s)ψ(s− T/2) ds . (4.1.70)

In the adiabatic regime T � 1, the residence-time distribution should
be well-approximated by the residence-time distribution of the two-state sys-
tem (4.1.52), which can be computed explicitly. In particular, for small driving
amplitude A
 σ2, one obtains [ZMJ90, CFJ98]

q(t) � 1
N

e−κt/T
0
K
[
1 − c1 sin(2πt/T ) − c2 cos(2πt/T )

]
, (4.1.71)

where T 0
K � e2H/σ2

is the (static) Kramers time, and κ, c1, c2 are constants
related to A/σ2 and T/T 0

K, with c1 and c2 being of order (A/σ2)2.
In the weak-noise regime σ2 
 A, on the other hand, quite a precise char-

acterisation of the residence-time distribution can be obtained from results on
the exit problem (see Appendix A.6). Equation (4.1.67) can be rewritten as a
two-dimensional system on the cylinder R × (R /TZ ) as

dxt =
[
xt − x3

t +A cos(2πyt/T )
]
dt+ σ dWt ,

dyt = dt .
(4.1.72)

Consider the set D = {(x, y) : x < xper(y)}, and fix an initial condition
(x0, y0) ∈ D. The exit problem consists in determining the distribution of the
first-exit time τ of (xt, yt) from D, and of the first-exit location (xτ , yτ ) ∈ ∂D.
Note that in our particular case, yτ = y0 + τ (mod T ) and xτ = xper(yτ ).
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A first approach to the exit problem relies on the theory of large deviations,
which relates properties of the exit law to the behaviour of the large-deviation
rate function and the quasipotential induced, see in particular Theorem A.6.2.
Two difficulties are inherent to the present situation:

• The system (4.1.72) is degenerate, in the sense that the noise only acts on
the x-variable.

• The quasipotential is constant on the boundary ∂D, owing to the fact that
translations along the periodic orbit xper(t) do not contribute to the “cost”
of a path in terms of the action functional, because ∂D is invariant under
the deterministic flow. This is a special case of a characteristic boundary .

The first difficulty turns out not to be too serious, because the distribution
of exit locations depends little on whether or not there is noise acting on the
y-variable. The second difficulty is more serious, as it implies that on the level
of exponential asymptotics, all points on the boundary are reached with the
same probability — an apparent contradiction with the quasistatic approach
of the previous section. The explanation lies, of course, in the subexponential
behaviour of the exit law, which becomes highly nonuniform in the adiabatic
limit.

Exit problems with characteristic boundary have been studied in detail.
In particular, Day [Day90b] discovered a striking phenomenon, that he called
cycling : As the noise intensity converges to zero, the distribution of exit lo-
cations does not converge, but rotates around the boundary, with an angular
velocity proportional to |log σ|.

Though the theory of large deviations is not sufficiently precise to compute
the subexponential behaviour of the exit distribution, it is helpful inasmuch as
it shows that paths leaving the set D through a given subset of ∂D most likely
track minimisers of the action functional. Generically, for paths reaching ∂D
after n periods, the action functional has n minimisers, distinguished by the
number of periods they spend near the unstable orbit before crossing it.

The most precise result useful for our purpose is the following. Assume
the amplitude A is of order 1, and σ2 
 A. Let a(t) = −∂xxU(xper(t), t) be
the curvature of the potential at xper(t), and

λ =
1
T

∫ T

0

a(t) dt (4.1.73)

the characteristic (or Lyapunov) exponent of the unstable orbit. Then, for any
∆ � √

σ, and t � t0, one can show [BG04, BG05a, BG05b] that

Px0,t0
{
τ ∈ [t, t+∆]

}
=

∫ t+∆

t

p̄(s|t0) ds [1 + r(σ)] , (4.1.74)

where r(σ) = O(
√
σ) and

p̄(t|t0) =
1

N(t0)
PλT

(
θ(t) − |log σ|

) θ′(t)
λTK(σ)

e−[θ(t)−θ(t0)]/λTK(σ)ftrans(t|t0) .
(4.1.75)
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Because of the restriction on ∆, this result does not quite prove that the first-
exit time density is given by (4.1.75), but only allows for a coarse-grained
description of p(t|t0). For simplicity, in the sequel we shall identify p(t|t0) and
p̄(t|t0). The following notations are used in (4.1.75):

• TK(σ) is the analogue of Kramers’ time in the autonomous case; it has the
form

TK(σ) =
C

σ
eV /σ

2
, (4.1.76)

where V is the constant value of the quasipotential on the boundary. The
prefactor has order σ−1 rather than 1, due to the fact that most paths
reach xper(t) through a bottleneck of width σ around a minimiser of the
action functional. (Note that the width of these bottlenecks would be larger
if |A| were not of order 1.)

• PλT (y) is a universal λT -periodic function, given by

PλT (y) =
λT

2

∞∑
k=−∞

A(y − kλT ) with A(z) = 2e−2z exp
{
−1

2
e−2z

}
.

(4.1.77)
It thus consists of a superposition of identical asymmetric peaks, shifted by
a distance λT . The kth term of the sum is the contribution of a minimiser of
the action functional tracking the unstable orbit during k periods before
crossing it.1 The shape of the peaks A(z) is given by the density of a
Gumbel distribution with scale parameter 1/2, describing the distribution
of the largest extreme of a large number of independent trials. The average
of PλT (y) over one period is equal to 1, and its Fourier series is given by

PλT (y) =
∑
q∈Z

2πiq/λTΓ
(

1 +
πiq
λT

)
e2πiqy/λT , (4.1.78)

where Γ denotes the Euler Gamma function.
• θ(t) contains the model-dependent part of the distribution; it is an increas-

ing function of t, satisfying θ(t+ T ) = θ(t) + λT , and is given by

θ(t) = const +
∫ t

0

a(s) ds− 1
2

log
v(t)
v(0)

, (4.1.79)

where v(t) is the unique periodic solution of the differential equation v̇(t) =
2a(t)v(t) + 1, that is,

v(t) =
1

e2λT − 1

∫ t+T

t

exp
{∫ t+T

s

2a(u) du
}

ds . (4.1.80)

1If we neglect boundary effects, we may assume that there are n = �t/T 	 min-
imisers of the action functional, and k should thus actually range from 1 to n.
However, extending the sum to all integers only yields a small correction which can
be hidden in the error term r(σ).
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(a) (b)

(c) (d)

Fig. 4.5. Plots of residence-time distributions q(t) (full curves) as a function of
t/T , shown for ten periods. The vertical scale is different between plots. The broken
lines show the average behaviour of q(t), that is, without the periodic modulation
QλT (t/T ), scaled vertically in order to match the peak height. Parameter values are
V = 0.5, λ = 1 and (a) T = 2, σ = 0.2, (b) T = 2, σ = 0.45, (c) T = 10, σ = 0.2
and (d) T = 10, σ = 0.45.

• ftrans(t|t0) accounts for the initial transient behaviour of the system; it is
an increasing function satisfying

ftrans(t|t0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

(
exp

{
− L

σ2

e−λ(t−t0)

1 − e−2λ(t−t0)

})
for λ(t− t0) < 2| log σ|,

1 − O
(

e−λ(t−t0)

σ2

)
for λ(t− t0) � 2| log σ|,

(4.1.81)
where L is a constant, describing the rate at which the distribution in the
initial well approaches metastable equilibrium.

The function θ(t) yields a natural parametrisation of time. Redefining
time in such a way that θ(t) = λt, one obtains the simpler expression of the
(approximate) first-exit time density

p̄(t|t0) =
1

N(t0)
PλT

(
λt− |log σ|

) 1
TK(σ)

e−(t−t0)/TK(σ)ftrans(t|t0) . (4.1.82)

After a transient phase of order |log σ|, p̄(t|t0) becomes a periodically modu-
lated exponential. The cycling phenomenon manifests itself as the argument
λt− |log σ| of the periodic modulation.

The expression (4.1.82) gives an approximation of the first-passage-time
distribution for an initial condition inside the left-hand well. Note, however,
that it depends on the starting point x0 only via ftrans(t|t0) which can be
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neglected after a short time, and that the periodic part does not depend on
the initial time t0. In order to apply (4.1.70) to compute the residence-time
distribution, we should consider initial conditions on the unstable periodic
orbit. But as only sample paths visiting the left-hand well contribute, we may
approximate p(t|t0) by p̄(t|t0), at the cost of making a small error on t0.

For T 
 TK(σ), one easily obtains that the normalisation is given by
N(t0) = 1+O(T/TK(σ))+O(r(σ)), and that the solution of (4.1.69) is of the
form

ψ(t) =
1
T
PλT

(
λt− |log σ|

)[
1 + O(T/TK(σ)) + O(r(σ))

]
. (4.1.83)

It follows that the residence-time distribution has the expression

q(t) = QλT (t/T )
1

TK(σ)
e−t/TK(σ)f̃trans(t)

[
1 + O(T/TK(σ)) + O(r(σ))

]
,

(4.1.84)
where the transient term f̃trans(t) behaves like ftrans(t|0) and QλT is a periodic
modulation described by the 1-periodic function

QλT (t) =
1
T

∫ T

0

PλT
(
λ(tT + s) − |log σ|

)
PλT

(
λ(s− T/2) − |log σ|

)
ds

=
(
λT

2

)2 ∞∑
k=−∞

∫ ∞

−∞
A

(
λT (t+ u− k)

)
A

(
λT (u− 1/2)

)
du

=
λT

2

∞∑
k=−∞

1
cosh2(λT (t+ 1/2 − k))

. (4.1.85)

After a transient phase of duration |log σ|/λ, the residence-time distribution
approaches a periodically modulated exponential distribution. The periodic
modulation t �→ QλT (t/T ) has maxima in odd multiples of T/2, and the
larger the period, the more sharply peaked the function s �→ QλT (s) becomes,
so that one recovers the strongly localised residence times of the quasistatic
regime.

An important aspect of the expression (4.1.84) of the residence-time dis-
tribution is that is controlled by two independent dimensionless parameters,
λT and T/TK(σ). While λT governs the concentration of residence phases,
T/TK(σ) determines the speed of asymptotic decay of q(t). For T 
 TK(σ),
this decay is very slow, so that sample paths have an appreciable probability
to stay in the same potential well for several periods. As T approaches the
Kramers time TK(σ), the decay becomes faster (relatively to the period), until
the first peak of q(t) at T/2 dominates.2 In this synchronisation regime, the
system is likely to switch wells twice per period.

2Though ψ(t) departs from its expression (4.1.83) when T/TK(σ) is not small,
one can show that this only results in a deformation of order 1/λTK(σ) of QλT ,
which is very small in the regime σ2 
 A considered here.
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4.2 Stochastic Synchronisation: Sample-Paths Approach

Consider again the standard example (4.0.1) of an overdamped Brownian par-
ticle in a periodically forced double-well potential. When the minimal Kramers
time, associated with the lowest value of the potential barrier height, is close
to half the forcing period, the process may display almost regular transitions
between the two potential wells, once per period in each direction. Thus, for
fixed forcing amplitude A ∈ (0, Ac), the forcing period allowing for such a
synchronisation behaviour must be exponentially large in 1/σ2.

The situation is different when the driving amplitude A approaches its
critical value Ac: If Ac − A is allowed to decrease with the noise intensity
σ, synchronisation can be observed for moderately large forcing periods. In
terms of slow–fast vector fields, the situation of close-to-threshold driving am-
plitude corresponds to the existence of avoided bifurcations between the stable
equilibrium branches (the bottoms of the potential wells) and the unstable
equilibrium branch (the saddle). In this section, we show how the methods of
Chapter 3 can be extended to such situations of avoided bifurcations, in order
to yield results on the sample-path behaviour in the synchronisation regime.

4.2.1 Avoided Transcritical Bifurcation

Consider the stochastic differential equation

dxs = f(xs, εs) ds+ σ dWs (4.2.1)

first for the particular case of the drift term

f(x, t) = f(x, t, ε) = x− x3 −A(ε) cos t . (4.2.2)

We assume that the driving frequency ε is small, and that its amplitude A(ε)
satisfies A(ε) = Ac − δ(ε) for some δ = δ(ε) tending to zero with ε. (Recall
that Ac = 2/3

√
3 is the critical driving amplitude above which the potential

ceases always to have two wells.) As in the previous chapters, we will study
the SDE (4.2.1) on the slow timescale given by t = εs.

Observe that ∂xf(x, t) vanishes in ±xc, where xc = 1/
√

3, and that

f(xc + y, t) = Ac −A(ε) cos t−
√

3y2 − y3

= δ(ε) +
1
2
(Ac − δ(ε))t2 −

√
3y2 + O(t4) + O(y3) . (4.2.3)

Near the point (xc, 0), the drift term vanishes for
√

3y2 � δ(ε) + const t2.

• If δ = 0, we are in the situation of the transcritical bifurcation discussed in
Section 3.5.1. We know (see in particular Fig. 3.13) that in the weak-noise
regime σ 
 ε3/4, sample paths are unlikely to cross the saddle, while for
σ � ε3/4, they are likely to cross it, at a time of order −σ2/3.
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• If δ > 0, the equilibrium branches of f no longer meet, but are separated
by a minimal distance of order δ1/2. As a consequence, one expects that a
larger threshold noise intensity σc = σc(ε) is necessary to make transitions
likely. It will turn out that σc scales like (δ ∨ ε)3/4.

We will now consider the SDE (4.2.1) for more general drift terms, satis-
fying the following conditions.3

Assumption 4.2.1 (Avoided transcritical bifurcation).

• Domain and differentiability: f ∈ C3(D,R ), where D = (−d, d) × R , with
d > 0. We further assume that f and all its partial derivatives up to order 3
are uniformly bounded in D by a constant M .

• Periodicity: There is a T > 0 such that f(x, t+T ) = f(x, t) for all (x, t) ∈
D.

• Equilibrium branches: There are continuous functions x�−(t) < x�0(t) <
x�+(t) from R to (−d, d) such that f(x, t) = 0 in D if and only if x = x�i (t),
with i ∈ {−, 0,+}.4

• Stability: The equilibrium branches x�±(t) are stable and the equilibrium
branch x�0(t) is unstable, that is, for all t ∈ R ,

a�±(t) := ∂xf(x�±(t), t) < 0 ,
a�0(t) := ∂xf(x�0(t), t) > 0 .

(4.2.4)

• Avoided bifurcation at t = 0: There exists xc ∈ (−d, d) such that

∂xxf(xc, 0) < 0 ,

∂xf(xc, t) � O(t2) , (4.2.5)

f(xc, t) = δ + a1t
2 + O(t3) ,

where a1 > 0 and ∂xxf(xc, 0) are fixed (of order 1), while δ = δ(ε) � 0
tends to zero as ε→ 0.

• Avoided bifurcation at t = tc: Similar relations as (4.2.5), but with op-
posite signs, imply the existence of an avoided bifurcation near a point
(x′c, tc), where tc �= 0.

• Absence of other avoided bifurcations: There is a constant c0 > 0 such
that x�+(t) − x�0(t) and x�0(t) − x�−(t), as well as the linearisations (4.2.4),
are bounded away from 0 if t (mod T ) is not in a c0-neighbourhood of 0
or tc. Furthermore, f is bounded away from 0 outside a c0-neighbourhood
of the three equilibrium branches.
3Part of these assumptions concern the local behaviour near the avoided bifur-

cation points, and are essential for the following results. Some other assumptions,
on the global behaviour, such as periodicity and number of equilibrium branches,
are made for convenience of the discussion, but are not needed in the proof of the
theorems.

4If the drift term f depends not only on x and t but also on ε, we need to assume
in addition that the equilibrium branches remain bounded away from ±d as ε varies.
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Fig. 4.6. (a) Location of equilibrium branches in Assumption 4.2.1. There are
two avoided transcritical bifurcations, at (0, xc) and at (tc,−xc). (b) Equilibrium
branches and associated adiabatic solutions near the avoided transcritical bifurcation
point (0, xc).

These assumptions imply in particular that

x�+(t) − xc � xc − x�0(t) � δ1/2 ∨ |t| (4.2.6)

near t = 0 (Fig. 4.6), while

−a�+(t) � a�0(t) � δ1/2 ∨ |t| . (4.2.7)

Similar relations hold for the branches x�−(t) and x�0(t) near t = tc. For sim-
plicity, we will further assume that each of the three equilibrium curves has
exactly one minimum and one maximum per period.

We first need to establish a few properties of the adiabatic solutions x̄(t, ε)
and x̂(t, ε) of the deterministic equation εẋ = f(x, t), tracking, respectively,
the bottom x�+(t) of the right-hand potential well, and the saddle at x�0(t).
These particular solutions can be chosen to be T -periodic (this is easily proved
by studying qualitative properties of the system’s Poincaré map).

Proposition 4.2.2. The solution x̄(t, ε) crosses x�+(t) exactly twice during
each period. There is a constant c1 > 0 such that

x̄(t, ε) − x�+(t) �

⎧⎪⎪⎨⎪⎪⎩
ε

|t| for −c0 � t � −c1(δ ∨ ε)1/2 ,

− ε

|t| for c1(δ ∨ ε)1/2 � t � c0 ,
(4.2.8)

and thus x̄(t, ε) − x�+(t) � |t| on these intervals. Furthermore,

x̄(t, ε) − xc � (δ ∨ ε)1/2 for |t| � c1(δ ∨ ε)1/2 . (4.2.9)

Otherwise, that is, if |t (mod T )| > c1, x̄(t, ε) = x�+(t) + O(ε).
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The linearisation of f at x̄(t, ε) satisfies

ā(t) := ∂xf(x̄(t, ε), t) � −
(
t2 ∨ δ ∨ ε

)1/2 (4.2.10)

for |t| � c0, and is ε-close to a∗+(t) otherwise.
The solution x̂(t, ε) crosses x�0(t) exactly twice in each period. It satisfies

analogous relations as above, with opposite signs, when compared to x�0(t).

Proof.

• The assertion on the number of crossings follows from the fact that deter-
ministic solutions are increasing when lying between x�0(t) and x�+(t), and
decreasing when lying above x�+(t). Thus in a given period, any solution
can cross x�+(t) at most once for increasing x�+(t), and once for decreasing
x�+(t).

• The first relation in (4.2.8) is proved exactly as in Theorem 2.2.9, by
analysing the behaviour of y = x−x�+(t). The proof of the second relation
is similar, once the order of x̄(c1(δ ∨ ε)1/2, ε) is known.

• For δ � ε, (4.2.9) can be established by carrying out the space–time scaling
x−xc = (γ3ε/a1)1/2z and t = (γε/a1)1/2s, with γ = (2a1/|∂xxf(xc, 0)|)1/2,
which yields a perturbation of order ε1/2 of the Riccati equation

dz
ds

=
δ

γε
+ s2 − z2 . (4.2.11)

One shows that solutions of this equation stay of order 1 for s of order 1,
implying that x̄(t, ε) stays of order ε1/2 for s of order ε1/2. Note that this
also implies that x̄(t, ε) has to cross x�+(t) at a time of order ε1/2.

• For δ > ε, one can proceed as in the proof of Tihonov’s theorem to show
that x̄(t, ε) tracks x�+(t) adiabatically at a distance of order ε/δ1/2 at most,
which is smaller than δ1/2.

• The assertion on ā(t) follows from the fact that ∂xf(xc + y, t) � −y near
(y, t) = (0, 0) because of the assumption (4.2.5).

• Finally, the properties of x̂(t, ε) are proved in the same way by considering
the time-reversed equation, in which stable and unstable branches are
interchanged. ��

4.2.2 Weak-Noise Regime

We return now to the dynamics in the presence of noise. Equation (4.2.1) can
be rewritten in slow time t = εs as

dxt =
1
ε
f(xt, t) dt+

σ√
ε

dWt . (4.2.12)

For sufficiently weak noise, we expect sample paths starting at some time
t0 ∈ [−T+c0,−c0] in the right-hand potential well to remain close to x̄(t, ε). In
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perfect analogy with all stable situations discussed in Chapter 3, we introduce
the function

ζ(t) = ζ(t0)e2α(t,t0)/ε +
1
ε

∫ t

t0

e2α(t,s)/ε ds , (4.2.13)

where α(t, s) =
∫ t
s
ā(u) du denotes the accumulated curvature over the time

interval [s, t], measured at the position of the deterministic particle at x̄(t, ε).
We will use ζ(t) to characterise the deviation of typical sample paths from
x̄(t, ε). Note that one can choose the initial condition ζ(t0) in such a way that
ζ(t) is periodic, which yields a convenient extension of the definition of ζ(t)
to all times t ∈ R . Using Lemma 2.2.8 and (4.2.10), one obtains

ζ(t) � 1
|ā(t)| � 1

(t2 ∨ δ ∨ ε)1/2 (4.2.14)

for |t| � c0. Also note that, otherwise, ζ(t) is of order 1. Hence the set

B(h) =
{
(x, t) : t ∈ R , |x− x̄(t, ε)| < h

√
ζ(t)

}
(4.2.15)

has a maximal width of order h/(δ ∨ ε)1/4, reached near multiples of the
forcing period T . The function ζ̂(t) = supt0�s�t ζ(s) first grows like 1/|t| for
t0 � t � −c1(δ ∨ ε)1/2, and then stays of constant order 1/(δ ∨ ε)1/2 for all
subsequent times.

The following analogue of Theorems 3.3.3 and 3.5.1 is proved in exactly
the same manner as these two results.

Theorem 4.2.3 (Stochastic avoided transcritical bifurcation – stable
phase). Let x0 = x̄(t0, ε). There exist constants h0, r0, c, c2 > 0 such that, for
all h � h0ζ̂(t)−3/2 and t ∈ [t0, T − c0] satisfying

r(h/σ, ε) :=
σ

h
+

1
ε
e−ch

2/σ2 � r0 , (4.2.16)

one has

Ch/σ(t, ε)e−κ−h2/2σ2 � Pt0,x0
{
τB(h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
, (4.2.17)

where the exponents κ± are given by

κ+ = 1 − c2hζ̂(t)3/2 ,

κ− = 1 + c2hζ̂(t)3/2 ,
(4.2.18)

and the prefactor satisfies

Ch/σ(t, ε) =

√
2
π

|α(t, t0)|
ε

h

σ
(4.2.19)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t, t0)|
+ r(h/σ, ε) + hζ̂(t)3/2

)]
.
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Fig. 4.7. Behaviour of sample paths near a dynamic avoided transcritical bifurca-
tion. (a) In the weak-noise regime σ < (δ ∨ ε)3/4, paths remain concentrated in the
shaded set B(h) centred in the deterministic solution; (b) in the strong-noise regime
σ > (δ ∨ ε)3/4, paths are likely to overcome the unstable solution some time before
the bifurcation.

As in the particular case δ = 0, one can distinguish between two regime:

• Regime I: σ < σc = (δ ∨ ε)3/4. In this case, the theorem can be applied
for all times t � T − c0, and shows that paths are likely to remain in
B(h) whenever σ 
 h � h0σc. The maximal spreading of typical paths
has order σ/(δ∨ ε)1/4 (Fig. 4.7a). In particular, the probability that paths
cross the saddle during one period is bounded by

Ch0σc/σ(t, ε)e−constσ2
c/σ

2
. (4.2.20)

• Regime II: σ � σc = (δ∨ε)3/4. In this case, the theorem can only be applied
up to times of order −σ2/3, when the spreading of paths reaches order σ2/3,
so that paths may reach the saddle with appreciable probability (Fig. 4.7b).

For δ > ε, the numerator σ2
c = δ3/2 in the exponent of the crossing

probability indeed corresponds to the minimal potential barrier height, since
x�+(0)−x�0(0) � δ1/2, and the potential U(x, t), associated with the drift term
f(x, t), satisfies

U(xc + y, t) − U(xc, t) � y3 − δy (4.2.21)

near (y, t) = (0, 0), as a consequence of (4.2.5). Thus the driving is sufficiently
slow for the crossing probability to be determined by the (static) Kramers rate
associated to the minimal barrier height.

On the other hand, for all δ < ε, the behaviour is the same as for δ = 0.
This is a dynamical effect: The system behaves as if there were an effective
potential barrier of height ε3/2, because the driving is not slow enough for
the particle to take full advantage of the barrier becoming low. This effect is
already present in the behaviour of the deterministic particle which approaches
the saddle not closer than order ε1/2, cf. (4.2.9).
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Fig. 4.8. A sample path of Equation (4.2.1) for the drift term (4.2.2) in the strong-
noise regime σ > (δ ∨ ε)3/4. The path switches from one potential well to the other
during time windows of width σ2/3 around each avoided transcritical bifurcation
point.

4.2.3 Synchronisation Regime

We now complete the analysis of the strong-noise regime σ � σc = (δ ∨ ε)3/4.
Theorem 4.2.3 shows that paths starting in the right-hand well are unlikely
to cross the saddle before times of order −σ2/3. The study of the subsequent
behaviour is similar to the analysis of the strong-noise regime for the saddle–
node bifurcation, see Section 3.3.2. We can introduce constants d0, d1, d2 such
that d0 < d1 < xc < d2 < d, and

f(x, t) � −1 for d0 � x � d1 and |t| � c0,
∂xxf(x, t) � 0 for d1 � x � d2 and |t| � c0.

(4.2.22)

Then the following result is proved in exactly the same way as Theorem 3.3.4.

Theorem 4.2.4 (Stochastic avoided transcritical bifurcation – the
strong-noise regime). Let t0 ∈ [−T + c0,−c0] be fixed, and x0 = x̄(t0, ε).
There exist constants r0, c, c3 > 0 such that, whenever t ∈ [t1, 0] = [−c3σ2/3, 0]
and h satisfy the conditions

x̄(s, ε) + h
√
ζ(s) � d2 ∀s ∈ [t0, t] , (4.2.23)

and
r(h/σ, ε) :=

σ

h
+

1
ε
e−ch

2/σ2 � r0 , (4.2.24)

there is a constant κ > 0 such that

Pt0,x0
{
xs > d0 ∀s ∈ [t0, t]

}
� 3

2
exp

{
−κ |α(t, t1)|

ε(|log σ| ∨ log h/σ)

}
+ Ch/σ(t, ε)e−h

2/2σ2
, (4.2.25)
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where

Ch/σ(t, ε) =

√
2
π

|α(t, t0)|
ε

h

σ
(4.2.26)

×
[
1 + O

(
ε[|log ε| + log(1 + h/σ)]

|α(t, t0)|
+ r(h/σ, ε)

)]
.

The numerator in the exponent in (4.2.25) behaves like σ2/3(t − t1), and
is thus of order σ4/3 as soon as t − t1 reaches order σ2/3. Therefore, the
probability not to cross the saddle is of order

exp
{
−const

σ4/3

ε|log σ|

}
+

const
ε

e−const /σ4/3
. (4.2.27)

The second term on the right-hand side is due to the possibility that paths
escape through the upper boundary of D; generically, Condition (4.2.23) only
allows h to take values up to order σ1/3. In special cases, like for the drift
term (4.2.2), one can take arbitrarily large d2, and the second term can be
neglected.

Once xt has reached d0, one can apply Theorem 3.1.11 to show that xt
will reach an h-neighbourhood of the bottom of the left-hand potential well
in a time of order ε|log h|. From there on, the Markov property allows one to
restart the process in the left-hand well, and one can use a similar description
for the dynamics near x�−(t), until the next avoided bifurcation occurs at time
tc. In particular, xt is likely to jump back into the right-hand well at a time of
order σ2/3 before tc. As a result, sample paths jump back and forth between
the potential wells during time windows of width σ2/3 around times kT and
tc + kT (Fig. 4.8).

4.2.4 Symmetric Case

The techniques applied to the study of bistable systems with avoided saddle–
node bifurcations can also be applied to periodically forced systems with other
types of avoided bifurcations. Consider for instance the SDE

dxt =
1
ε

[
a(t)xt − x3

t

]
dt+

σ√
ε

dWt , (4.2.28)

where
a(t) = δ(ε) + 1 − cos t . (4.2.29)

The drift term derives from the symmetric double-well potential U(x, t) =
1
4x

4− 1
2a(t)x

2, which has the well bottoms in ±a(t)1/2. The wells are separated
by a barrier of height 1

4a(t)
2, which becomes low periodically. One can thus

view the instants of lowest barrier height as the occurrence of an avoided
pitchfork bifurcation at the origin.
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Fig. 4.9. Behaviour of sample paths near a dynamic avoided pitchfork bifurcation.
(a) In the weak-noise regime σ < δ ∨ ε2/3, paths remain concentrated near the
deterministic solution; (b) in the strong-noise regime σ > δ ∨ ε2/3, paths are likely
to reach the saddle some time before the bifurcation.

In this case, one shows that the deterministic adiabatic solution x̄(t, ε)
tracking the right-hand potential well behaves like |t| ∨ δ1/2 ∨ ε1/3 near t = 0.
The set B(h), defined as in (4.2.15), has width hζ(t)1/2, where ζ(t) again
relates to the linearisation of the drift term, and behaves as

ζ(t) � 1
t2 ∨ δ ∨ ε2/3 (4.2.30)

near t = 0. Thus its maximum process ζ̂(t) = supt0�s�t ζ(s) first grows like
1/t2 for t0 � t � −(δ1/2 ∨ ε1/3), and then stays of constant order 1/(δ ∨ ε2/3)
for all subsequent times.

The analogue of Theorem 4.2.3 then states that, for h � h0ζ̂(t)−1,

Ch/σ(t, ε)e−κ−h2/2σ2 � Pt0,x0
{
τB(h) < t

}
� Ch/σ(t, ε)e−κ+h

2/2σ2
(4.2.31)

holds with κ± = 1 ∓ c2hζ̂(t), and a similar prefactor Ch/σ(t, ε).5 There are
thus two regimes to be considered:

• Regime I: σ < σc = δ ∨ ε2/3. In this case, the theorem can be applied for
all times t from a neighbourhood of the avoided bifurcation at t = 0, and
shows that paths are likely to remain in B(h) whenever σ 
 h � σc. The
maximal spreading of typical paths has order σ/(δ1/2 ∨ ε1/3) (Fig. 4.9a).
In particular, the probability that paths cross the saddle is bounded by

Ch0σc/σ(t, ε)e−constσ2
c/σ

2
. (4.2.32)

• Regime II: σ � σc = δ∨ε2/3. In this case, the theorem can only be applied
up to time −σ1/2, when the spreading of paths reaches order σ1/2, so that
paths may reach the saddle with appreciable probability (Fig. 4.9b).

5The different power of ζ̂(t) is due to the cubic form of the nonlinearity, compare
Theorem 3.4.3.
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Fig. 4.10. A sample path of Equation (4.2.28) in the strong-noise regime σ >
δ ∨ ε2/3. The path has a probability close to 1/2 to switch from one potential well
to the other during time windows of width σ1/2 around each avoided pitchfork
bifurcation point.

In the strong-noise regime σ � σc, the analogue of Theorem 4.2.4 states
that if t ∈ [t1, t2] = [−c2σ1/2, c2σ

1/2], then the probability for the process xt
not to reach the saddle up to time t satisfies

Pt0,x0
{
xs > 0 ∀s ∈ [t0, t]

}
� 2 exp

{
−κ |α(t, t1)|

ε|log σ|

}
+ Ch/σ(t, ε)e−κ+h

2/2σ2
.

(4.2.33)
The denominator in the first exponent is simpler as in (4.2.25), because we
only consider the probability not to reach the saddle. The exponent behaves
like σ(t − t1), and is of order σ3/2 as soon as t − t1 reaches order σ1/2. The
probability not to reach the saddle is thus of order

exp
{
−const

σ3/2

ε|log σ|

}
. (4.2.34)

The new aspect of this symmetric situation is that once paths have reached
the saddle, they have probability 1/2 to end up in the left-hand or the right-
hand potential well, once the avoided bifurcation has been passed. Paths may
in fact cross the saddle several times during the time window [t1, t2], but an
analogue of Theorem 3.4.5 shows that they are likely to leave a neighbourhood
of the saddle after time t2.

As a result, in the strong-noise regime, paths choose to switch or not to
switch wells, each time the potential barrier is low, according to a Bernoulli
process (Fig. 4.10).
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Multi-Dimensional Slow–Fast Systems

In this chapter, we turn to the analysis of the effect of noise on general systems
of fully coupled, multidimensional slow–fast differential equations, of the form

εẋ = f(x, y) ,
ẏ = g(x, y) .

(5.0.1)

To allow for the possibility that several independent sources of noise act on
each variable, we will perturb this system by adding position-dependent noise
terms, resulting from multidimensional white noise. The intensity of the noise
acting on the fast and slow components, respectively, is measured by small
parameters σ and σ′. We will choose a scaling of the form

dxt =
1
ε
f(xt, yt) dt+

σ√
ε
F (xt, yt) dWt ,

dyt = g(xt, yt) dt+ σ′G(xt, yt) dWt .

(5.0.2)

In this way, σ2 and (σ′)2 each measure the relative importance of diffusion
and drift, respectively, for the fast and slow variables. We think of σ = σ(ε)
and σ′ = σ′(ε) as being functions of ε, and we will further assume that
ρ(ε) = σ′(ε)/σ(ε) is bounded above as ε → 0. This implies that the noise
acting on the slow variable does not dominate the noise acting on the fast
variable.

Compared to the one-dimensional situation examined in Chapter 3, several
new difficulties have to be dealt with in general systems of the form (5.0.2):

• The multidimensional nature of x allows for more complicated asymptotic
deterministic dynamics than stationary.

• The explicit dependence of dyt on the fast variable xt yields a richer slow
dynamics.

• The fact that noise also acts on the slow variable effectively introduces an
additional stochastic term acting on the dynamics of xt.
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As a result of these difficulties, we will not obtain an equally precise descrip-
tion as in the one-dimensional case. Still, our approach is based on similar
considerations as in Chapter 3.

• In Section 5.1, we consider the dynamics near uniformly asymptotically
stable slow manifolds. First we prove an extension of Theorem 3.1.10 on
the concentration of sample paths in an appropriately constructed neigh-
bourhood of the slow manifold. Then we discuss the possibility of reducing
the dynamics to an effective equation, involving only slow variables. Fi-
nally, we give some more precise estimates on the dynamics near the slow
manifold.

• Section 5.2 is dedicated to the situation arising when the associated (or
frozen) system admits an asymptotically stable periodic orbit for each
value of the slow variable.

• In Section 5.3, we give some results on multidimensional systems with
bifurcations. We first establish concentration and reduction results near
invariant manifolds, allowing, to some extent, to reduce the dynamics to
an effective equation, which involves only bifurcating modes. Then we
consider the effect of noise on dynamic Hopf bifurcations.

5.1 Slow Manifolds

Let {Wt}t�0 be a k-dimensional Brownian motion. In this section, we consider
the slow–fast system of SDEs

dxt =
1
ε
f(xt, yt) dt+

σ√
ε
F (xt, yt) dWt ,

dyt = g(xt, yt) dt+ σ′G(xt, yt) dWt ,

(5.1.1)

with σ′ = ρσ, in the case where the deterministic system admits a uniformly
asymptotically stable slow manifold M. More precisely, we will make the
following assumptions.

Assumption 5.1.1 (Asymptotically stable slow manifold).

• Domain and differentiability: There are integers n,m, k � 1 such that
f ∈ C2(D,R n), g ∈ C2(D,Rm) and F ∈ C1(D,R n×k), G ∈ C1(D,Rm×k),
where D is an open subset of R n×Rm. We further assume that f , g, F , G
and all their partial derivatives up to order 2, respectively 1, are uniformly
bounded in norm in D by a constant M .

• Slow manifold: There is a connected open subset D0 ⊂ Rm and a contin-
uous function x� : D0 → R n such that

M =
{
(x, y) ∈ D : x = x�(y), y ∈ D0

}
(5.1.2)

is a slow manifold of the deterministic system, that is, (x�(y), y) ∈ D and
f(x�(y), y) = 0 for all y ∈ D0.
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• Stability: The slow manifold is uniformly asymptotically stable, that is, all
eigenvalues of the Jacobian matrix

A�(y) = ∂xf(x�(y), y) (5.1.3)

have negative real parts, uniformly bounded away from 0 for y ∈ D0.

We will also need a non-degeneracy assumption on F , which we will specify
in Assumption 5.1.4 below. (It is sufficient, but not at all necessary, to assume
that the diffusion matrix FFT be positive definite.) Recall that under the
above assumptions, Fenichel’s theorem (Theorem 2.1.8) ensures the existence
of an invariant manifold

Mε =
{
(x, y) ∈ D : x = x̄(y, ε), y ∈ D0

}
, (5.1.4)

where x̄(y, ε) = x�(y) + O(ε).
We will start, in Section 5.1.1, by constructing a neighbourhood B(h) of

Mε, extending the definition of Section 3.1.1, and proving a generalisation
of Theorem 3.1.10 on concentration of sample paths in this set. Section 5.1.2
contains the relatively long proof of this result. Section 5.1.3 considers the
problem of reducing the dynamics near Mε to an effective m-dimensional
equation, and Section 5.1.4 gives more precise results on the dynamics in
B(h).

5.1.1 Concentration of Sample Paths

In order to define the domain of concentration B(h), we first consider a linear
approximation of the system (5.1.1) near the adiabatic manifold Mε. To this
end, we use Itô’s formula (cf. Theorem A.2.7) to obtain that the deviation
ξt = xt − x̄(yt, ε) of sample paths from the adiabatic manifold satisfies the
SDE

dξt = dxt − ∂yx̄(yt, ε) dyt + O((σ′)2) dt (5.1.5)

=
1
ε

[
f(x̄(yt, ε) + ξt, yt) − ε∂yx̄(yt, ε)g(x̄(yt, ε) + ξt, yt) + O(ε(σ′)2)

]
dt

+
σ√
ε

[
F (x̄(yt, ε) + ξt, yt) − ρ

√
ε∂yx̄(yt, ε)G(x̄(yt, ε) + ξt, yt)

]
dWt .

Note that the new drift term vanishes when ξt = 0 and σ′ = 0, because of the
equation (2.1.26) satisfied by x̄(y, ε).

The linear approximation is obtained by considering (5.1.5) to lowest order
in ξt, neglecting the Itô-term O(ε(σ′)2), and replacing yt by its deterministic
counterpart ydet

t . This yields the system

dξ0t =
1
ε
A(ydet

t , ε)ξ0t dt+
σ√
ε
F0(ydet

t , ε) dWt ,

dydet
t = g(x̄(ydet

t , ε), ydet
t ) dt ,

(5.1.6)
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where we have introduced the matrices

A(y, ε) = ∂xf(x̄(y, ε), y) − ε∂yx̄(y, ε)∂xg(x̄(y, ε), y) ,

F0(y, ε) = F (x̄(y, ε), y) − ρ
√
ε∂yx̄(y, ε)G(x̄(y, ε), y) . (5.1.7)

Note, in particular, that A(y, 0) = A�(y) and F0(y, 0) = F (x�(y), y).
We now analyse the solution of the system (5.1.6) for a given initial con-

dition (ξ00 , y
det
0 ) = (0, ydet

0 ). It can be represented as the Itô integral

ξ0t =
σ√
ε

∫ t

0

U(t, s)F0(ydet
s , ε) dWs , (5.1.8)

where U(t, s) denotes the principal solution of the homogeneous linear system
εξ̇ = A(ydet

t , ε)ξ. For fixed time t, ξ0t is a Gaussian random variable of zero
mean and covariance matrix

Cov(ξ0t ) =
σ2

ε

∫ t

0

U(t, s)F0(ydet
s , ε)F0(ydet

s , ε)TU(t, s)T ds . (5.1.9)

The key observation is that Xt = σ−2 Cov(ξ0t ) obeys the slow–fast ODE

εẊ = A(y, ε)X +XA(y, ε)T + F0(y, ε)F0(y, ε)T ,
ẏ = g(x̄(y, ε), y) .

(5.1.10)

This system admits a slow manifold of equation X = X�(y, ε), where X�(y, ε)
is a solution of the Lyapunov equation1

A(y, ε)X +XA(y, ε)T + F0(y, ε)F0(y, ε)T = 0 . (5.1.11)

Let us recall a fundamental result on such equations.

Lemma 5.1.2. Let A and B be square matrices of respective dimension n
and m. Denote their eigenvalues by a1, . . . , an and b1, . . . , bm. Define a linear
operator L : R n×m → R n×m by

L(X) = AX +XB . (5.1.12)

Then the nm eigenvalues of L are given by {ai + bj}i=1,...,n,j=1,...,m, and thus
L is invertible if and only if A and −B have no common eigenvalue.

If, moreover, all ai and bj have negative real parts, then for any matrix
C ∈ R n×m, the unique solution of the equation AX +XB + C = 0 is given
by

X =
∫ ∞

0

eAsCeBs ds . (5.1.13)

1Equivalently, one may consider the slow manifold to be given by the solution
X�(y) of Equation (5.1.11) with ε = 0. This will yield the same invariant manifold
X(t, ε) = X�(y) + O(ε).
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Proof. First note that the integral (5.1.13) exists whenever all ai and bj have
negative real parts. The fact that X solves the equation AX +XB + C = 0
is checked by a direct computation, see [Bel60, p. 175]. The assertion on the
eigenvalues of L follows from the theory of Kronecker products, see [Bel60,
Chapter 12, in particular Theorem 4]. ��

Assumption 5.1.1 ensures that the eigenvalues of A(y, ε) have strictly neg-
ative real parts for sufficiently small ε. Lemma 5.1.2 thus shows that (5.1.11)
admits a unique solution, given by the symmetric matrix

X�(y, ε) =
∫ ∞

0

esA(y,ε)F0(y, ε)F0(y, ε)TesA(y,ε)T ds . (5.1.14)

This expression is called a controllability Grammian in control theory. Fur-
thermore, the lemma shows that {X�(y, ε) : y ∈ D0} is a uniformly asymptot-
ically stable slow manifold. Thus Fenichel’s theorem implies the existence of
an invariant manifold {X(y, ε) : y ∈ D0}, with

X(y, ε) = X�(y, ε) + O(ε) . (5.1.15)

In fact, the remainder has the form εX1(y, ε) + O(ε2), where X1(y, ε) obeys
the Lyapunov equation

A(y, ε)X1 +X1A(y, ε)T = Ẋ�(y, ε) = ∂yX
�(y, ε)g(x̄(y, ε), y) . (5.1.16)

For sufficiently differentiable coefficients, the adiabatic manifold can be further
expanded into a series in ε, each term of which satisfies a similar Lyapunov
equation.

Next we invoke a result from control theory to give a condition under
which X(y, ε) is invertible.

Lemma 5.1.3. The Grammian X�(y, ε) is invertible if and only if the matrix[
F0(y, ε) A(y, ε)F0(y, ε) . . . A(y, ε)n−1F0(y, ε)

]
∈ R n×nk (5.1.17)

has full rank, that is, the pair (A(y, ε), F0(y, ε)) is controllable.

Proof. The integrand in (5.1.14) being positive semi-definite, X�(y, ε) is sin-
gular if and only if there exists a row vector w �= 0 such that

wesA(y,ε)F0(y, ε) = 0 ∀s � 0 . (5.1.18)

Evaluating successive derivatives of this relation in s = 0 shows, by analyticity
of s �→ esA(y,ε), that (5.1.18) is equivalent to

wA(y, ε)�F0(y, ε) = 0 ∀� = 0, 1, 2, . . . . (5.1.19)

By the Cayley–Hamilton theorem, this relation holds for all � � 0 if and only if
it holds for � = 0, . . . , n−1. This in turn is equivalent to the matrix in (5.1.17)
not having full rank. ��
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x1

y

x2

B(h)

x̄(y, ε)

Fig. 5.1. Example of a domain of concentration B(h) of paths around an adiabatic
manifold Mε, given by an adiabatic solution x̄(t, ε), for one slow dimension and two
fast dimensions.

If X�(y, ε) is invertible, the adiabatic manifold X(y, ε) is also invertible
for sufficiently small ε. In the sequel, we shall make the following, slightly
stronger non-degeneracy assumption:

Assumption 5.1.4 (Non-degeneracy of noise term). The operator norms
‖X(y, ε)‖ and ‖X(y, ε)−1‖ are uniformly bounded for y ∈ D0.

Under this assumption, we may safely define the set

B(h) =
{
(x, y) ∈ D : y ∈ D0, 〈x− x̄(y, ε), X(y, ε)−1(x− x̄(y, ε))〉 < h2

}
.

(5.1.20)
This set is a union of ellipsoids, centred in the adiabatic manifold Mε, whose
shape is determined by the symmetric matrix X(y, ε). We offer two graphical
representations of the situation. Fig. 5.1 shows a case with n = 2, m = 1,
in which B(h) is a tube-like object surrounding an adiabatic solution of the
deterministic system. Fig. 5.2 shows a case with n = 1, m = 2, where B(h)
has the shape of a mattress of variable thickness surrounding Mε.

Example 5.1.5 (Gradient system). Assume that f(x, y) = −∇xU(x, y) derives
from a potential U , and F (x, y) = 1l (with k = n). Then A�(y) and A(y, ε),
being Hessian matrices of U , are automatically symmetric, and A(y, ε) com-
mutes with X�(y, ε). Hence the Lyapunov equation admits the solution

X�(y, ε) = −1
2
A(y, ε)−1 , (5.1.21)

so that X�(y, ε)−1 = −2A(y, ε). The (mutually orthogonal) eigenvectors of
A(y, ε) and its eigenvalues define respectively the principal curvature direc-
tions of the potential at y, and its principal curvatures. As a consequence, the
set B(h) is wider in those directions in which the potential is flatter, capturing
the effect that we expect larger spreading of sample paths in these directions.



5.1 Slow Manifolds 149

y1

y2

x

B(h)
Mε

Fig. 5.2. Example of a domain of concentration B(h) of paths around an adiabatic
manifold Mε, for two slow dimensions and one fast dimension.

We return now to the original system (5.1.1). For a given initial condition
(x0, y0) ∈ B(h), we define the first-exit times

τB(h) = inf{t > 0: (xt, yt) /∈ B(h)} ,
τD0 = inf{t > 0: yt /∈ D0} . (5.1.22)

We can now state the main result of this section.

Theorem 5.1.6 (Multidimensional stochastic stable case). Under As-
sumptions 5.1.1 and 5.1.4, there exist constants ε0,∆0, h0, c, c1, L > 0 such
that the following relations hold for all ε � ε0, ∆ � ∆0, h � h0, all γ ∈ (0, 1)
and all t � 0.

• Upper bound: Let x0 = x̄(y0, ε). Then

Px0,y0
{
τB(h) < t ∧ τD0

}
� C+

h/σ,n,m,γ,∆(t, ε)e−κ+h
2/2σ2

, (5.1.23)

where the exponent κ+ is uniform in time and satisfies

κ+ = γ
[
1 − c1

(
h+∆+mερ2σ2/h2 + e−c/ε/(1 − γ)

)]
, (5.1.24)

and the prefactor is given by

C+
h/σ,n,m,γ,∆(t, ε) = L

(1 + t)2

∆ε

[
(1−γ)−n+en/4+em/4

](
1+

h2

σ2

)
. (5.1.25)

• Lower bound: There exists a time t0 > 0, independent of ε, such that for
all t > 0,

Px0,y0
{
τB(h) < t

}
� C−

h/σ,n,m,∆(t, ε)e−κ−h2/2σ2
, (5.1.26)

where the exponent κ− is uniform in time for t � t0 and satisfies
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κ− = 1 + c1
(
h+ e−c(t∧t0)/ε

)
, (5.1.27)

and the prefactor is given by

C−
h/σ,n,m,∆(t, ε) =

1
L

[
1 −

(
en/4 +

em/4

∆ε

)
e−h

2/4σ2
]
. (5.1.28)

• General initial condition: There exist δ0 > 0 and t1 � ε|log h| such that,
whenever δ � δ0 and we choose an initial condition (x0, y0) such that
y0 ∈ D0 and ξ0 = x0 − x̄(y0, ε) satisfies 〈ξ0, X(y0, ε)−1ξ0〉 < δ2, then, for
all t � t2 � t1,

Px0,y0
{
∃s ∈ [t2, t] : (xs, ys) /∈ B(h)

}
� C+

h/σ,n,m,γ,∆(t, ε)e−κ̄+h
2/2σ2

,

(5.1.29)
with the same prefactor given by (5.1.25), and an exponent

κ̄+ = γ
[
1 − c1

(
h+∆+mερ2σ2/h2 + δe−c(t2∧1)/ε/(1 − γ)

)]
. (5.1.30)

The upper bound (5.1.23) shows that sample paths are likely to stay in
B(h) during exponentially long time spans (roughly of the order εeh

2/2σ2
),

unless the slow dynamics causes yt to leave the set D0, in which the slow
manifold is defined. For instance, it might drive the system towards a bifurca-
tion point, where the slow manifold ceases to be attracting, and possibly even
ceases to exist altogether. In Section 5.1.4, we shall provide more precise es-
timates on the deviation of sample paths from deterministic solutions, which
give informations on the distribution of τD0 . If, on the other hand, the domain
D0 is positively invariant under the deterministic flow, then the first-exit time
τD0 is typically exponentially large, and so is τB(h).

The small parameters ∆ and γ can be chosen arbitrarily in their domains,
but optimal bounds are attained for ∆ small and γ close to 1: This gives
the best possible exponent, at the affordable cost of blowing up the prefactor.
Since the exponents contain error terms of order h anyway, a convenient choice
is∆ = h, γ = 1−h, which yields a prefactor of order h−(n+1) and no additional
error in the exponents.

The bounds C+ and C− on the prefactor are certainly not optimal, in
particular the time-dependence of the actual prefactor can reasonably be ex-
pected to be linear, as in the one-dimensional case. Note that an upper bound
with the same exponent, but a smaller prefactor, holds for the probability that
the endpoint (xt, yt) does not lie in B(h) at any fixed time t, cf. Lemma 5.1.14.
The fact that C+ grows exponentially with the spatial dimension is to be ex-
pected, as it reflects the fact that the tails of n-dimensional Gaussians only
show their typical decay outside a ball of radius scaling with the square root
of n.

Finally, Estimate (5.1.29) shows that if the initial condition lies in a suf-
ficiently small neighbourhood of the adiabatic manifold, after a time of order
ε|log h|, typical sample paths will have reached B(h), and they start behaving
as if they had started on the adiabatic manifold.
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5.1.2 Proof of Theorem 5.1.6

The first step of the proof is to perform the change of variables

xt = x̄(ydet
t + ηt, ε) + ξt ,

yt = ydet
t + ηt

(5.1.31)

in the original system (5.1.1). Applying the Itô formula, and making a Taylor
expansion of the resulting system, one obtains the SDE

dξt =
1
ε

[
A(ydet

t )ξt + b(ξt, ηt, t)
]
dt+

σ√
ε

[
F0(ydet

t ) + F1(ξt, ηt, t)
]
dWt ,

dηt =
[
C(ydet

t )ξt +B(ydet
t )ηt + c(ξt, ηt, t)

]
dt

+ σ′
[
G0(ydet

t ) +G1(ξt, ηt, t)
]
dWt , (5.1.32)

where we have omitted to indicate the ε-dependence of the functions for sim-
plicity. The matrices A(y) = A(y, ε) and F0(y) = F0(y, ε) are those defined
in (5.1.7), and

C(y) = C(y, ε) = ∂xg(x̄(y, ε), y) ,
B(y) = B(y, ε) = C(y)∂yx̄(y, ε) + ∂yg(x̄(y, ε), y) , (5.1.33)
G0(y) = G0(y, ε) = G(x̄(y, ε), y) .

The other functions appearing in (5.1.32) are remainders, satisfying

‖F1(ξ, η, t)‖ � M1

(
‖ξ‖ + ‖η‖

)
,

‖G1(ξ, η, t)‖ � M1

(
‖ξ‖ + ‖η‖

)
,

‖b(ξ, η, t)‖ � M2

(
‖ξ‖2 + ‖ξ‖‖η‖ +mερ2σ2

)
,

‖c(ξ, η, t)‖ � M2

(
‖ξ‖2 + ‖η‖2

)
,

(5.1.34)

for some constants M1, M2 depending on M and the dimensions n, m. The
term mερ2σ2 is due to the contribution of the diffusion term to the new drift
coefficient when applying Itô’s formula.

Remark 5.1.7. The term F1(ξ, η, t) could be eliminated from (5.1.32) by a
change of variables of the form ξ̄ = h(ξ, η, t) if one could find a function
h satisfying the equation ∂ξh = 1l + F1(ξ, η, t)F0(ydet

t )−1. However, such a
function does not exist in general.

The solution of the first equation in (5.1.32) can be represented as

ξt = U(t)ξ0 +
σ√
ε

∫ t

0

U(t, s)F0(ydet
s ) dWs (5.1.35)

+
σ√
ε

∫ t

0

U(t, s)F1(ξs, ηs, s) dWs +
1
ε

∫ t

0

U(t, s)b(ξs, ηs, s) ds ,
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where U(t, s) is again the fundamental solution of εξ̇ = A(ydet
t )ξ and U(t) =

U(t, 0). Our strategy will be to control the behaviour of the first two terms on
the right-hand side as precisely as possible, and to treat the other two terms
as small perturbations. We will proceed in three steps:

1. First we consider the dynamics on a small time interval of length ∆ε,
where the process ξt can be approximated by a Gaussian martingale,
and ηt remains small.

2. Then we extend the description to timescales of order 1, patching together
intervals of length ∆ε.

3. Finally, we consider arbitrarily long time intervals (up to τD0) by restart-
ing the process, with the help of the Markov property, at multiples of a
fixed time T .

Timescales of length ∆ε

We start by considering the dynamics on a fixed interval [s, t] of length ∆ε,
assuming ydet

u ∈ D0 for all u � t. We denote by K2
+ and K2

− the upper bounds
on ‖X(y)‖ and ‖X(y)−1‖, respectively, valid for y ∈ D0. Further let K0 > 0
be such that ‖U(t, u)‖ is bounded by a constant times exp{−K0(t−u)/ε} for
all t � u � 0. The existence of such a K0 follows from the asymptotic stability
of the slow manifold.

Instead of directly estimating 〈ξu, X(yu)−1ξu〉, we start by considering the
behaviour of 〈ξu, X(ydet

u )−1ξu〉, which can be written as

〈ξu, X(ydet
u )−1ξu〉 = ‖Qs(u)Υu‖2 , (5.1.36)

where Υu = U(s, u)ξu and Qs(u) is the symmetric matrix satisfying

Qs(u)2 = U(u, s)TX(ydet
u )−1U(u, s) . (5.1.37)

We now split Υu into the sum Υu = Υ 0
u + Υ 1

u + Υ 2
u , with

Υ 0
u = U(s)ξ0 +

σ√
ε

∫ u

0

U(s, v)F0(ydet
v ) dWv , (5.1.38)

Υ 1
u =

σ√
ε

∫ u

0

U(s, v)F1(ξv, ηv, v) dWv , (5.1.39)

Υ 2
u =

1
ε

∫ u

0

U(s, v)b(ξv, ηv, v) dv . (5.1.40)

Let us first focus on the Gaussian martingale Υ 0
u . Since (5.1.10) implies

ε
d
du
Qs(u)−2

= U(s, u)
[
ε

d
du
X(ydet

u ) −A(ydet
u )X(ydet

u ) −X(ydet
u )A(ydet

u )T
]
U(s, u)T

= U(s, u)F0(ydet
u )F0(ydet

u )TU(s, u)T , (5.1.41)
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the covariance of Qs(u)Υ 0
u has the form

Cov
(
Qs(u)Υ 0

u

)
= Qs(u)

σ2

ε

∫ u

0

U(s, v)F0(ydet
v )F0(ydet

v )TU(s, v)T dv Qs(u)

= σ2
[
1l −Qs(u)Qs(0)−2Qs(u)

]
. (5.1.42)

For u ∈ [s, t], ‖Qs(u)‖ is of order 1, while Qs(0)−2 = U(s)X(ydet
0 )U(s)T is

exponentially small in K0s/ε. Thus Qs(u)Υ 0
u behaves like the scaled Brownian

motion σWu for large u. However, Qs(u)Υ 0
u is not a martingale, so that we

first need to establish a bound on the supremum of Qt(u)Υ 0
u , and later use

the fact that Qs(u) and Qt(u) are close to each other, in order to estimate
the supremum of Qs(u)Υ 0

u .

Lemma 5.1.8. For every γ ∈ (0, 1) and H0 > αh > 0, the bound

Pξ0,0
{

sup
s�u�t

‖Qs(t)Υ 0
u‖ � H0

}
� 1

(1 − γ)n/2
exp

{
−γH

2
0 − α2h2

2σ2

}
(5.1.43)

holds uniformly for all ξ0 such that 〈ξ0, X(y0)−1ξ0〉 � α2h2.

Proof. Let γ̂ = γ/σ2. The process {exp{γ̂‖Qs(t)Υ 0
u‖2}}u being a positive

submartingale, Doob’s submartingale inequality (cf. Lemma B.1.2) allows the
left-hand side of (5.1.43) to be bounded by

Pξ0,0
{

sup
s�u�t

ebγ‖Qs(t)Υ 0
u‖2 � ebγH2

0

}
� e−bγH2

0 Eξ0,0
{
ebγ‖Qs(t)Υ 0

t ‖2}
. (5.1.44)

The Gaussian random variable Qs(t)Υ 0
t has expectation E = Qs(t)U(s)ξ0

and covariance Σ = σ2[1l − RRT], where R = Qs(t)U(s)X(ydet
0 )1/2. Using

completion of squares to compute the Gaussian integral, we find

Eξ0,0
{
ebγ‖Qs(t)Υ 0

t ‖2}
=

ebγ〈E,(1l−bγΣ)−1E〉

(det[1l − γ̂Σ])1/2
. (5.1.45)

Now det[1l − γ̂Σ] � (1 − γ̂σ2)n = (1 − γ)n, and ‖RRT‖ = ‖RTR‖ ∈ (0, 1).
This follows from the fact that X(ydet

t )−U(t)X(ydet
0 )U(t)T, being the covari-

ance (5.1.9) of ξ0t , is positive definite. It follows that

〈E, (1l − γ̂Σ)−1E〉 = 〈X(ydet
0 )−1/2ξ0, R

T(1l − γ̂Σ)−1RX(ydet
0 )−1/2ξ0〉

� α2h2
∥∥RT

(
1l − γ̂σ2[1l −RRT]

)−1
R

∥∥ (5.1.46)

� α2h2
(
[1 − γ̂σ2]‖RTR‖−1 + γ̂σ2

)−1 � α2h2

for all ξ0 satisfying 〈ξ0, X(y0)−1ξ0〉 � α2h2. ��

Remark 5.1.9. Properties of the Bessel process ‖Wt‖ may yield an alternative
way to bound the probability in (5.1.43).
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Next we examine the effect of the position-dependent diffusion coefficient
F1(ξ, η, t). To this end, we introduce the functions

Ψ(t) =
1
ε

∫ t

0

∥∥U(t, u)TX(ydet
t )−1U(t, u)

∥∥du ,

Φ(t) =
1
ε

∫ t

0

Tr
[
U(t, u)TX(ydet

t )−1U(t, u)
]
du , (5.1.47)

Θ(t) =
1
ε

∫ t

0

‖U(t, u)‖du .

Note that Ψ(t) and Θ(t) are of order 1, while Φ(t) � nΨ(t) is of order n. We
also introduce stopping times

τη = inf
{
u > 0: ‖ηu‖ � h1

}
, (5.1.48)

τξ = inf{u > 0:
〈
ξu, X(ydet

u )−1ξu
〉

� h2} , (5.1.49)

where h1 < h is a constant.

Lemma 5.1.10. The bound

P1 := Pξ0,0
{

sup
s�u�t∧τξ∧τη

‖Qs(t)Υ 1
u‖ � H1

}

� exp
{
−

(
H2

1 − σ2M2
1 (K+h+ h1)2Φ(t)

)2

8σ2M2
1 (K+h+ h1)2H2

1Ψ(t)

}
(5.1.50)

holds uniformly for all ξ0 such that 〈ξ0, X(y0)−1ξ0〉 � h2.

Proof. Let τ denote the stopping time

τ = τξ ∧ τη ∧ inf{u � 0: ‖Qs(t)Υ 1
u‖ � H1} , (5.1.51)

and define, for a given γ1, the stochastic process Ξu = eγ1‖Qs(t)Υ 1
u‖2

. (Ξu)u
being a positive submartingale, another application of Doob’s submartingale
inequality yields

P1 � e−γ1H
2
1 Eξ0,0

{
Ξt∧τ

}
. (5.1.52)

Itô’s formula (together with the fact that (dWu)TRTR dWu = Tr(RTR) du
for any matrix R ∈ R n×k) shows that Ξu obeys the SDE

dΞu = 2γ1
σ√
ε
Ξu(Υ 1

u)TQs(t)2U(s, u)F1(ξu, ηu, u) dWu

+ γ1
σ2

ε
Ξu Tr

[
RT

1 R1 + 2γ1R
T
2 R2

]
du , (5.1.53)

where
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R1 = Qs(t)U(s, u)F1(ξu, ηu, u) ,

R2 = (Υ 1
u)TQs(t)2U(s, u)F1(ξu, ηu, u) .

(5.1.54)

The first term in the trace can be estimated as

Tr
[
RT

1 R1

]
= Tr

[
R1R

T
1

]
(5.1.55)

� M2
1

(
‖ξu‖ + ‖ηu‖

)2 Tr
[
Qs(t)TU(s, u)U(s, u)TQs(t)

]
� M2

1

(
‖ξu‖ + ‖ηu‖

)2 Tr
[
U(t, u)TX(ydet

t )−1U(t, u)
]
,

while the second term satisfies the bound

Tr
[
RT

2 R2

]
=

∥∥F1(ξu, ηu, u)TU(s, u)TQs(t)2Υ 1
u

∥∥2 (5.1.56)

� M2
1

(
‖ξu‖ + ‖ηu‖

)2∥∥U(s, u)TQs(t)
∥∥2‖Qs(t)Υ 1

u‖2

= M2
1

(
‖ξu‖ + ‖ηu‖

)2∥∥U(t, u)TX(ydet
t )−1U(t, u)

∥∥‖Qs(t)Υ 1
u‖2 .

Using the fact that ‖ξu‖ � K+h, ‖ηu‖ � h1 and ‖Qs(t)Υ 1
u‖ � H1 hold for all

0 � u � t ∧ τ , we obtain

Eξ0,0
{
Ξu∧τ

}
(5.1.57)

� 1 + γ1
σ2

ε
M2

1

(
K+h+ h1

)2
∫ u

0

Eξ0,0
{
Ξv∧τ

}
×

[
Tr

[
U(t, v)TX(ydet

t )−1U(t, v)
]
+ 2γ1H

2
1

∥∥U(t, v)TX(ydet
t )−1U(t, v)

∥∥]
dv ,

and Gronwall’s inequality (Lemma B.3.1) yields

Eξ0,0
{
Ξt∧τ

}
� exp

{
γ1σ

2M2
1

(
K+h+ h1

)2[
Φ(t) + 2γ1H

2
1Ψ(t)

]}
. (5.1.58)

Now, (5.1.52) implies that P1 is bounded above by

exp
{
−γ1

(
H2

1 − σ2M2
1 (K+h+ h1)2Φ(t)

)
+ 2γ2

1σ
2M2

1 (K+h+ h1)2H2
1Ψ(t)

}
,

(5.1.59)
and (5.1.50) follows by optimising over γ1. ��

Combining Lemmas 5.1.8 and 5.1.10 with the decomposition (5.1.38)–
(5.1.40), we obtain the following estimate on the probability of the quantity
〈ξu, X(ydet

u )−1ξu〉 making a large excursion.

Proposition 5.1.11. For all α ∈ [0, 1), all γ ∈ (0, 1) and all µ > 0,

sup
ξ0 : 〈ξ0,X(y0)−1ξ0〉�α2h2

Pξ0,0
{

sup
s�u�t∧τη

〈
ξu, X(ydet

u )−1ξu
〉

� h2

}

� emερ
2

(1 − γ)n/2
exp

{
−γ h

2

2σ2

[
1 − α2 −M0

(
∆+ (1 + µ)h+ (h+ h1)Θ(t)

)]}
+ eΦ(t)/4Ψ(t) exp

{
−h

2

σ2

µ2(1 −M0∆)
8M2

1 (K+ + h1/h)2Ψ(t)

}
(5.1.60)



156 5 Multi-Dimensional Slow–Fast Systems

holds for all h < 1/µ, with a constant M0 depending only on the linearisation
A of f , K+, K−, M , ‖F0‖∞, and on the dimensions n and m via M .

Proof. Recall that 〈ξu, X(ydet
u )−1ξu〉 = ‖Qs(u)Υu‖2. Since we can only es-

timate ‖Qs(t)Υu‖, we need to compare Qs(u) with Qs(t). Relation (5.1.41)
implies

Qs(u)2Qs(t)−2 = 1l +Qs(u)2
1
ε

∫ t

u

U(s, v)F0(ydet
v , ε)F0(ydet

v , ε)TU(s, v)T dv

= 1l + O(∆) , (5.1.61)

and hence ‖Qs(u)Υu‖ can only exceed h if ‖Qs(t)Υu‖ exceeds H, where

H :=h
(

sup
s�u�t

∥∥Qs(u)Qs(t)−1
∥∥)−1

= h
(
1 − O(∆)

)
. (5.1.62)

Thus for any decomposition H = H0 +H1 +H2, the probability on the left-
hand side of (5.1.60) is bounded by

Pξ0,0
{

sup
s�u�t∧τξ∧τη

‖Qs(t)Υu‖ � H

}
� P0 + P1 + P2 , (5.1.63)

where

Pi = Pξ0,0
{

sup
s�u�t∧τξ∧τη

‖Qs(t)Υ iu‖ � Hi

}
(5.1.64)

for i = 0, 1, 2. The terms P0 and P1 have been estimated in Lemma 5.1.8 and
Lemma 5.1.10, respectively. As for P2, since

sup
s�u�t∧τξ∧τη

‖Qs(t)Υ 2
u‖ (5.1.65)

� K−M2(K2
+h

2 +K+hh1 +mερ2σ2)(1 + O(∆))Θ(t) :=H2 ,

P2 vanishes whenever H2 > H2. Thus we take H2 = 2H2, H1 = µhH for
0 < µ < 1/h and H0 = H −H1 −H2. When estimating H2

0 , we may assume
M0hΘ(t) < 1, the bound (5.1.60) being trivial otherwise. ��

To complete the discussion of the dynamics on timescales of order ∆ε, we
need to estimate the probability that ηu becomes large. Let V (u, v) be the
principal solution of η̇ = B(ydet

u , ε)η. The quantities

χ(1)(t) = sup
0�s�t

∫ s

0

(
sup

u�v�s
‖V (s, v)‖

)
du , (5.1.66)

χ(2)(t) = sup
0�s�t

∫ s

0

(
sup

u�v�s
‖V (s, v)‖2

)
du (5.1.67)

are measures of the rate of expansion of orbits in the slow directions. The
following bound is proved in a similar way as Proposition 5.1.11.
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Proposition 5.1.12. There exists a constant cη > 0 such that for all choices
of h1 > 0 satisfying h1 � cηχ

(1)(t)−1,

sup
ξ0 : 〈ξ0,X(y0)−1ξ0〉�h2

Pξ0,0
{

sup
s�u�t∧τB(h)

‖ηu‖ � h1

}
� 2em/4 exp

{
mερ2

(ρ2 + ε)χ(2)(t)

}
(5.1.68)

× exp
{
−κ0

h2
1(1 − O(∆ε))

σ2(ρ2 + ε)χ(2)(t)

[
1 −M ′

0 χ
(1)(t)h1

(
1 +K2

+

h2

h2
1

)]}
,

where κ0 > 0 is a constant depending only on ‖F‖∞, ‖G‖∞, ‖C‖∞ and U ,
while the constant M ′

0 depends only on M , ‖C‖∞ and U . Note that cη may
depend on the dimensions n and m via M .

Proof. The solution of (5.1.32) satisfied by ηu can be split into four parts,
ηu = η0

u + η1
u + η2

u + η3
u, where

η0
u = σ′

∫ u

0

V (u, v)[G0(ydet
v ) +G1(ξv, ηv, v)] dWv ,

η1
u =

σ√
ε

∫ u

0

S(u, v)[F0(ydet
v ) + F1(ξv, ηv, v)] dWv ,

η2
u =

∫ u

0

V (u, v)c(ξv, ηv, v) dv ,

η3
u =

1
ε

∫ u

0

S(u, v)b(ξv, ηv, v) dv ,

(5.1.69)

with
S(u, v) =

∫ u

v

V (u,w)C(ydet
w )U(w, v) dw . (5.1.70)

Let τ = τB(h) ∧ τη. It follows immediately from the definitions of τB(h), τη and
the bounds (5.1.34) that∥∥η2

u∧τ
∥∥ � M2(1 + O(∆ε))χ(1)(t)(K2

+h
2 + h2

1) ,∥∥η3
u∧τ

∥∥ � M ′χ(1)(t)(K2
+h

2 +K+hh1 +mερ2σ2)
(5.1.71)

for all u ∈ [s, t]. Here M ′ depends only on M2, U and ‖C‖∞. Furthermore,
using similar ideas as in the proof of Lemma 5.1.10, it is straightforward to
establish for all H0, H1 > 0 that

Pξ0,0
{

sup
s�u�t∧τ

‖η0
u‖ � H0

}
� em/4 exp

{
− H2

0 (1 − O(∆ε))
8(σ′)2‖G0 +G1‖2∞χ(2)(t)

}
,

Pξ0,0
{

sup
s�u�t∧τ

‖η1
u‖ � H1

}
� em/4 exp

{
− H2

1 (1 − O(∆ε))
8σ2εcS‖F0 + F1‖2∞χ(2)(t)

}
,

(5.1.72)
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where cS is a constant depending only on S. Then (5.1.68) is obtained by
taking, e.g., H0 = H1 = 1

2h1 − 2(M2 +M ′)χ(1)(t)(K2
+h

2 +h2
1 +mερ2σ2), and

using h1 � cηχ
(1)(t)−1, where we may choose cη � 1/(2M ′

0). ��

Estimate (5.1.68) implies that ‖ηu‖ is unlikely to become much larger than
σ(ρ+

√
ε)χ(2)(t)1/2 for u � t.

Timescales of length 1

We still consider the situation where y0 ∈ D0, but drop the requirement that
ydet
u ∈ D0 for all u � t. The uniform-hyperbolicity assumption implies the ex-

istence of a δ > 0 such that the slow manifold is also uniformly asymptotically
stable in the δ-neighbourhood D+

0 (δ) of D0. Then the deterministic first-exit
time

τdet
D0

= τdet
D0

(y0) = inf{u � 0: ydet
u �∈ D+

0 (δ)} (5.1.73)

is strictly positive, and τB(h) ∧ τη � τdet
D0

whenever h1 � δ.
We can now prove a version of Theorem 5.1.6 on timescales of order 1.

Proposition 5.1.13. Fix a time t > 0 and a constant h > 0 in such a way
that h � c1χ

(1)(t∧τdet
D0

)−1 for a sufficiently small constant c1 > 0 and χ(2)(t∧
τdet
D0

) � (ρ2+ε)−1. Then, for any α ∈ [0, 1), any γ ∈ (0, 1) and any sufficiently
small ∆,

C−
n,m(t, ε)e−κ−(0)h2/2σ2 � Pξ0,0

{
τB(h) < t

}
� C+

n,m,γ(t, ε)e
−κ+(α)h2/2σ2

(5.1.74)
holds uniformly for all ξ0 satisfying 〈ξ0, X(y0)−1ξ0〉 � α2h2. Here the expo-
nents are given by

κ+(α) = γ
[
1 − α2 − O(∆) − O(mερ2σ2/h2) − O((1 + χ(1)(t ∧ τdet

D0
))h)

]
,

κ−(0) = 1 + O(h) + O
(
e−K0t/ε

)
, (5.1.75)

and the prefactors satisfy

C+
n,m,γ(t, ε) =

⌈
t

∆ε

⌉[
1

(1 − γ)n/2
+

(
en/4 + 2em/4

)
e−κ+(0)h2/σ2

]
, (5.1.76)

C−
n,m(t, ε) =

(√
2
π

h

σ
∧ 1

)
e−O(mερ2) −

(
en/4 + 4

⌈
t

∆ε

⌉
em/4

)
e−eκh2/2σ2

,

where κ̃ = 1 − O(e−K0t/ε) − O(mερ2σ2/h2) − O((1 + χ(1)(t ∧ τdet
D0

))h).

Proof. We first establish the upper bound. Fix an initial condition (ξ0, 0)
satisfying 〈ξ0, X(y0)−1ξ0〉 � α2h2, and observe that
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Pξ0,0
{
τB(h) < t

}
(5.1.77)

� Pξ0,0
{
τB(h) < t ∧ τη

}
+ Pξ0,0

{
τη < t ∧ τB(h)

}
= Pξ0,0

{
τB(h) < t ∧ τdet

D0
∧ τη

}
+ Pξ0,0

{
τη < t ∧ τdet

D0
∧ τB(h)

}
.

To estimate the first term on the right-hand side, we introduce a partition
0 = u0 < u1 < · · · < uK = t of the time interval [0, t], defined by uk = k∆ε
for 0 � k < K = �t/(∆ε)�. Thereby we obtain

Pξ0,0
{
τB(h) < t ∧ τdet

D0
∧ τη

}
�

K∑
k=1

Pξ0,0
{
uk−1 � τB(h) < uk ∧ τdet

D0
∧ τη

}
.

(5.1.78)
Before we estimate the summands on the right-hand side of (5.1.78), note
that by the boundedness assumption on ‖X(y)‖ and ‖X−1(y)‖, we have
X(yu)−1 = X(ydet

u )−1 + O(h1) for u � τdet
D0

∧ τη. Thus the bound obtained in
Proposition 5.1.11 can also be applied to estimate first-exit times from B(h)
itself:

Pξ0,0
{
uk−1 � τB(h) < uk ∧ τdet

D0
∧ τη

}
(5.1.79)

� Pξ0,0
{

sup
uk−1�u<uk∧τdet

D0
∧τη

〈
ξu, X(ydet

u )−1ξu
〉

� h2(1 − O(h1))
}
.

The second term on the right-hand side of (5.1.77) can be similarly estimated
by Proposition 5.1.12. Choosing

µ2 = 8M2
1

[
K+ +h1/(h(1−O(h1)))

]2
Ψ(t∧τdet

D0
)/

[
1−O(h1)−M0∆

]
(5.1.80)

and h1 = h/
√
κ0 in the resulting expression, we see that the Gaussian part

of ξt gives the major contribution to the probability. Thus we obtain that the
probability in (5.1.77) is bounded by⌈
t

∆ε

⌉[
emερ

2

(1 − γ)n/2
exp

{
−γ h

2

2σ2

[
1 − α2 − O(∆) − O(h)

]}
+ en/4e−h

2/σ2

+ 2em/4 exp
{
−
h2(1 − O(χ(1)(t ∧ τdet

D0
)h) − O(∆ε) − O(mερ2σ2/h2))

σ2(ρ2 + ε)χ(2)(t ∧ τdet
D0

)

}]
,

(5.1.81)

where we have used the fact that Φ(t) � nΨ(t), while Ψ(t) and Θ(t) are at
most of order 1. The prefactor emερ

2
can be absorbed into the error term in

the exponent. This completes the proof of the upper bound in (5.1.74).
The lower bound is again a consequence of the fact that the Gaussian part

of ξt gives the major contribution to the probability in (5.1.74). To check this,
we split the probability as follows:
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Pξ0,0
{
τB(h) < t

}
(5.1.82)

� Pξ0,0
{
τ̃ξ < t, τη � t

}
+ Pξ0,0

{
τB(h) < t, τη < t

}
= Pξ0,0

{
τ̃ξ < t ∧ τη

}
− Pξ0,0

{
τ̃ξ < τη < t

}
+ Pξ0,0

{
τB(h) < t, τη < t

}
� Pξ0,0

{
τ̃ξ < t ∧ τη

}
− Pξ0,0

{
τη < t ∧ τB(h)

}
,

where

τ̃ξ = inf{u � 0:
〈
ξu, X(ydet

u )−1ξu
〉

� h2(1 + O(h1))} , (5.1.83)

and the O(h1)-term stems from estimating X(yu)−1 by X(ydet
u )−1 as in

(5.1.79). The first term on the last line of (5.1.82) can be estimated as in
the proof of Proposition 5.1.11: A lower bound is obtained trivially by con-
sidering the endpoint instead of the whole path, and instead of applying
Lemma 5.1.8, the Gaussian contribution can be estimated below by a straight-
forward calculation. The non-Gaussian parts are estimated above as before
and are of smaller order. Finally, we need an upper bound for the probability
that τη < t ∧ τB(h), which can be obtained from Proposition 5.1.12. ��

The lower bound in (5.1.74) implies the lower bound (5.1.26) of Theo-
rem 5.1.6, as well as the upper bound (5.1.23) on timescales of order 1. It
remains to prove the upper bound on longer timescales, and the assertion on
general initial conditions.

Longer timescales

The approach used so far fails to control the dynamics on timescales on which
χ(i)(t) � 1, because it uses in an essential way the fact that ηt = yt − ydet

t

remains small. Our strategy in order to describe the paths on longer timescales
is to compare them to different deterministic solutions on time intervals [0, T ],
[T, 2T ], . . . , where T is a possibly large constant such that Proposition 5.1.13
holds on time intervals of length T , provided yt remains in D0.

We will also need an estimate on the probability that 〈ξT , X(yT )−1ξT 〉
exceeds h2. Proposition 5.1.13 provides, of course, such an estimate, but since
it applies to the whole path, it does not give optimal bounds for the endpoint.
An improved bound is given by the following lemma.

Lemma 5.1.14 (Endpoint estimate). If T and h satisfy the conditions
h � c1χ

(1)(T ∧ τdet
D0

)−1 and χ(2)(T ∧ τdet
D0

) � (ρ2 + ε)−1, we have, for every
γ ∈ (0, 1),

sup
ξ0 : 〈ξ0,X(y0)−1ξ0〉�h2

Pξ0,0
{
〈ξT , X(yT )−1ξT 〉 � h2, τD0 � T

}
� Ĉn,m,γ(T, ε)e−κ

′h2/2σ2
, (5.1.84)

where
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κ′ = γ
[
1 − O(∆) − O(h) − O

(
e−2K0T/ε/(1 − γ)

)]
, (5.1.85)

Ĉn,m,γ(T, ε) =
emερ

2

(1 − γ)n/2
+ 4C+

n,m,γ(T, ε)e
−κ+(0)h2/2σ2

. (5.1.86)

Proof. Let ξt = ξ0t +ξ1t +ξ2t , where ξ0t denotes the Gaussian contribution, that
is, the first two terms on the right-hand side of (5.1.35), and the two other
terms stand for the contributions of F1 and b, respectively. We introduce
the notations τ̃ξ and τ̃η for stopping times defined like τξ and τη in (5.1.48)
and (5.1.48), but with h and h1 replaced by 2h and 2h1, respectively. The
probability in (5.1.84) is bounded by

Pξ0,0
{
〈ξT , X(ydet

T )−1ξT 〉 � h2(1−O(h1)), τ̃η > T
}
+Pξ0,0

{
τ̃η � T

}
. (5.1.87)

Let H2 = h2(1 −O(h1)). As in the proof of Proposition 5.1.11, the first term
can be further decomposed as

Pξ0,0
{
〈ξT , X(ydet

T )−1ξT 〉 � H2, τ̃η > T
}

� Pξ0,0
{∥∥X(ydet

T )−1/2ξ0T
∥∥ � H0

}
+ Pξ0,0

{
τ̃η > T, τ̃ξ � T

}
+ Pξ0,0

{∥∥X(ydet
T )−1/2ξ1T

∥∥ � H1, τ̃η > T, τ̃ξ > T
}

+ Pξ0,0
{∥∥X(ydet

T )−1/2ξ2T
∥∥ � H2, τ̃η > T, τ̃ξ > T

}
, (5.1.88)

where we choose H1, H2 twice as large as in the proof of Proposition 5.1.11,
while H0 = H −H1 −H2.

The first term on the right-hand side can be estimated as in Lemma 5.1.8,
with the difference that, the expectation of ξ0T being exponentially small in
T/ε, it leads only to a correction of order e−2K0T/ε/(1 − γ) in the exponent.
The second and the third term can be estimated by Proposition 5.1.13 and
Lemma 5.1.10, the only difference lying in a larger absolute value of the expo-
nent, because we enlarged h and h1. The last term vanishes by our choice of
H2. Finally, the second term in (5.1.87) can be estimated by splitting accord-
ing to the value of τB(2h) and applying Lemma 5.1.10 and Proposition 5.1.13.

��

We are now ready to establish an improved estimate on the distribution of
τB(h). As we will restart the process ydet

t whenever t is a multiple of T , we need
the assumptions made in the previous section to hold uniformly in the initial
condition y0 ∈ D0. Therefore we will introduce replacements for some of the
notations introduced before. Note that χ(1)(t) = χ

(1)
y0 (t) and χ(2)(t) = χ

(2)
y0 (t)

depend on y0 via the principal solution V . We define

χ̂(1)(t) = sup
y0∈D0

χ(1)
y0

(
t ∧ τdet

D0
(y0)

)
, (5.1.89)

χ̂(2)(t) = sup
y0∈D0

χ(2)
y0

(
t ∧ τdet

D0
(y0)

)
. (5.1.90)
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In the same spirit, the χ(i)(T )-dependent O(·)-terms in the definitions of
κ+(α), κ′ and the prefactors like C+

n,m,γ(T, ε) are modified.
We fix a time T of order 1 satisfying χ̂(2)(T ) � (ρ2 + ε)−1. T is cho-

sen in such a way that whenever h � c1χ̂
(1)(T )−1, Proposition 5.1.13 (and

Lemma 5.1.14) apply. Note that larger T would be possible unless ρ is of or-
der 1, but for larger T the constraint on h becomes more restrictive which is
not desirable. Having chosen T , we define the probabilities

Pk(h) = P0,0
{
τB(h) < kT ∧ τD0

}
,

Qk(h) = P0,0
{
〈ξkT , X(ykT )−1ξkT 〉 � h2, τD0 � kT

}
. (5.1.91)

Proposition 5.1.13 provides a bound for P1(h), and Lemma 5.1.14 provides
a bound for Q1(h). Subsequent bounds are computed by induction, and the
following proposition describes one induction step.

Proposition 5.1.15. Let κ̂ � κ+(0) ∧ κ′. Assume that for some k ∈ N ,

Pk(h) � Dke−κ̂h
2/2σ2

, (5.1.92)

Qk(h) � D̂ke−κ̂h
2/2σ2

. (5.1.93)

Then the same bounds hold for k replaced by k + 1, provided

Dk+1 � Dk + C+
n,m,γ(T, ε)D̂k

γ

γ − κ̂
e(γ−κ̂)h2/2σ2

, (5.1.94)

D̂k+1 � D̂k + Ĉn,m,γ(T, ε) . (5.1.95)

Proof. Let ρk = 〈ξkT , X(ykT )−1ξkT 〉1/2. We start by establishing (5.1.95).
The Markov property allows for the decomposition

Qk+1(h) � P0,0
{
τB(h) < kT, τD0 � kT

}
+ E0,0

{
1{τB(h)�kT}PkT,(ξkT ,0)

{
ρk+1 � h, τD0 � (k + 1)T

}}
� Qk(h) + Ĉn,m,γ(T, ε)e−κ̂h

2/2σ2
, (5.1.96)

where the superscript in PkT,(ξkT ,0){·} indicates that at time kT we also restart
the process of the deterministic slow variables ydet

t in the point ykT ∈ D0. In
the second line, we used Lemma 5.1.14. This shows (5.1.95).

As for (5.1.94), we again start from a decomposition, similar to (5.1.96):

Pk+1(h) = P0,0
{
τB(h) < kT ∧ τD0

}
(5.1.97)

+ E0,0
{

1{τB(h)�kT}PkT,(ξkT ,0)
{
τB(h) < (k + 1)T ∧ τD0

}}
.

Proposition 5.1.13 allows us to estimate

Pk+1(h) � Pk(h) + E0,0
{
1{ρk�h}

[
ϕ
(
ρk

)
∧ 1

] ∣∣ τD0 � kT
}
P0,0

{
τD0 � kT

}
,

(5.1.98)
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with
ϕ(ρ) = C+

n,m,γ(T, ε)e
(γ−κ̂)h2/2σ2

e−γ(h2−ρ2)/2σ2
. (5.1.99)

Assumption (5.1.93) yields

P0,0
{
ρk < ρ

∣∣ τD0 � kT
}

� ϕk(ρ) , (5.1.100)

where
ϕk(ρ) :=

(
1 − D̂ke−κ̂ρ

2/2σ2)/
P0,0

{
τD0 � kT

}
. (5.1.101)

Then (5.1.94) follows by estimating the expectation in (5.1.98) with the help
of Lemma B.2.1 of Appendix B, taking τ = ρ2

k, s = ρ2, t = h2, g(ρ2) = ϕ(ρ)∧1
and G(ρ2) = ϕk(ρ). ��

The following bounds can now be obtained directly by induction on k,
using as initial values the bounds P1(h) from Proposition 5.1.13 and Q1(h)
from Lemma 5.1.14.

Corollary 5.1.16. Assume that y0 ∈ D0, x0 = x̄(y0, ε). Then, for every time
t > 0, we have

Px0,y0
{
τB(h) < t ∧ τD0

}
(5.1.102)

� C+
n,m,γ(T, ε)

[
1 + Ĉn,m,γ(T, ε)

(
1
2

+
t

T

)2
γ

2(γ − κ̂)

]
e−(2κ̂−γ)h2/2σ2

.

In addition, the distribution of the endpoint ξt satisfies

Px0,y0
{
〈ξt, X(yt)−1ξt〉 � h2, τD0 � t

}
� Ĉn,m,γ(T, ε)

⌈
t

T

⌉
e−κ̂h

2/2σ2
.

(5.1.103)

We can now complete the proof of Theorem 5.1.6.

Proof (of Theorem 5.1.6). We first optimise our choice of κ̂, taking into ac-
count the constraint κ̂ � κ+(0) ∧ κ′. By doing so, we find that

γ

2(γ − κ̂)
e−(2κ̂−γ)h2/2σ2 � 2h2

σ2
e−κ+h

2/2σ2
, (5.1.104)

where we have set

κ+ = γ
[
1 − O(h) − O(∆) − O(mερ2) − O

(
e−c/ε/(1 − γ)

)]
. (5.1.105)

Simplifying the prefactor in (5.1.102) finally yields the upper bound (5.1.23).
As for general initial conditions, cf. (5.1.29), one starts by establishing

sup
ξ0 : 〈ξ0,X(y0)−1ξ0〉�δ2

Pξ0,0
{

sup
0�s�t∧τD0

〈
ξs, X(ys)−1ξs

〉
(h+ c0δe−K0s/ε)2

� 1
}

�
⌈
t

∆ε

⌉[
1

(1 − γ)n/2
+

(
en/4 + 2em/4

)
e−κ̄h

2/2σ2
]
e−κ̄h

2/2σ2
, (5.1.106)
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where κ̄ = γ[1−O(h)−O(∆)−O(mερ2σ2/h2)−O(δ)]. The proof differs from
the proof of Proposition 5.1.13 only in the definition of the set in which sample
paths are concentrated. This shows that after a time t1 of order ε|log h|, the
paths are likely to have reached B(h). Mimicking the proof of Corollary 5.1.16,
one can show that after any time t2 � t1, the probability of leaving B(h)
behaves as if the process had started on the adiabatic manifold, i.e.,

Pξ0,0
{

sup
t2�s�t∧τD0

〈
ξs, X(ys)−1ξs

〉
� h2

}
� C+

n,m,γ,∆(t, ε)e−κ̄+h
2/2σ2

,

(5.1.107)
uniformly for all ξ0 such that 〈ξ0, X(y0)−1ξ0〉 � δ2. Here the prefactor is the
same as for the upper bound (5.1.23), and κ̄+ is given by (5.1.30). ��

5.1.3 Reduction to Slow Variables

So far, we have shown that sample paths of the slow–fast SDE

dxt =
1
ε
f(xt, yt) dt+

σ√
ε
F (xt, yt) dWt ,

dyt = g(xt, yt) dt+ σ′G(xt, yt) dWt

(5.1.108)

remain concentrated in a σ-neighbourhood of an asymptotically stable adia-
batic manifold x = x̄(y, ε), as long as the slow dynamics permits. This nat-
urally leads to the idea to approximate the system by the reduced stochastic
system

dy0
t = g(x̄(y0

t , ε), y
0
t ) dt+ σ′G(x̄(y0

t , ε), y
0
t ) dWt , (5.1.109)

obtained by “projection” of the original system (5.1.108) on the adiabatic
manifold Mε. The question is how well the process {y0

t }t approximates so-
lutions {yt}t of (5.1.108), and, in particular, whether this approximation is
more accurate than the approximation by the reduced deterministic system

dydet
t = g(x̄(ydet

t , ε), ydet
t ) dt . (5.1.110)

The following theorem provides estimates on the respective deviations between
yt, y0

t and ydet
t .

Theorem 5.1.17 (Reduction to slow variables). Let the system (5.1.108)
satisfy Assumptions 5.1.1 and 5.1.4. Fix an initial condition (x0, y0) =
(x̄(y0, ε), y0) on the adiabatic manifold. Let χ(1)(t) and χ(2)(t) be the quan-
tities defined in (5.1.66) and (5.1.67). Then there exist constants κ1, κ2, L
such that, for any choice of h, h1 at most up to order χ(1)(t)−1,
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Px0,y0

{
sup

0�s�t∧τB(h)

∥∥ys − y0
s

∥∥ � h

}
� L

(
1 +

t

ε

)
em/4

[
exp

{
− κ1h

2

[(σ′)2h2 + σ2ε](1 + χ(2)(t))

}
+ exp

{
− κ2h

2
1

(σ′)2(1 + χ(2)(t))

}]
(5.1.111)

and

Py0
{

sup
0�s�t∧τD0

∥∥y0
s − ydet

s

∥∥ � h1

}
� L

(
1 +

t

ε

)
em/4 exp

{
− κ2h

2
1

(σ′)2(1 + χ(2)(t))

}
. (5.1.112)

Proof. The proof resembles the one of Proposition 5.1.12. To show (5.1.112),
one first observes that η0

t = y0
t − ydet

t obeys an SDE of the form

dη0
t =

[
B(ydet

t )η0
t + c̃(ydet

t , η0
t )

]
dt+ σ′Ĝ(ydet

t , η0
t ) dWt , (5.1.113)

where B(y) is given in (5.1.33), c̃(ydet
t , η0

t ) is a nonlinear term of order ‖η0
t ‖2,

and G(ydet
t , η0

t ) = G(x̄(ydet
t + η0

t , ε), y
det
t + η0

t ). Thus

η0
t =

∫ t

0

V (t, s)c̃(ydet
s , η0

s) ds+ σ′
∫ t

0

V (t, s)Ĝ(ydet
s , η0

s) dWs . (5.1.114)

The norm of the two integrals is then bounded as in (5.1.71) and (5.1.72) on
short timescales, and on longer timescales by adding contributions of short
intervals. The proof of (5.1.111) is similar. The probability can be estimated
above by the sum of (5.1.112), and the probability of ‖ys − y0

s‖ exceeding h
despite ‖y0

s − ydet
s ‖ remaining small. This last contribution is then estimated

with the help of an SDE satisfied by ys − y0
s , in which the noise term has

order σ′h. ��
The probability (5.1.111) becomes small as soon as h� σ

√
ε(1+χ(2)(t))1/2

(taking h1 large enough for the first term on the right-hand side to dominate).
Thus one can say that the reduced stochastic system provides an approxima-
tion of the slow dynamics to order σ

√
ε(1 + χ(2)(t))1/2. The behaviour of

χ(2)(t) depends on the deterministic reduced dynamics: In stable situations,
for instance in the vicinity of an asymptotically stable fixed point or periodic
orbit, it remains bounded. In unstable situations, however, it can grow ex-
ponentially fast, with an exponent given by the (local) Lyapunov exponent
of the orbit, and thus the approximation is good only on timescales of order
|log(σ

√
ε)|.

The probability (5.1.112) becomes small as soon as h1 � σ′(1+χ(2)(t))1/2,
where σ′ = ρσ. Thus for σ′ > σ

√
ε (that is, ρ >

√
ε), the reduced stochastic

system (5.1.109) provides a better approximation of the slow dynamics than
the reduced deterministic system (5.1.110). This can be understood as being
an effect of the stronger intensity of noise acting on the slow dynamics.
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5.1.4 Refined Concentration Results

In this section, we improve the results of Theorem 5.1.6 and Theorem 5.1.17
by giving a more precise description of the deviation of sample paths from
deterministic solutions (xdet

t , ydet
t ) on the adiabatic manifold. This is useful,

in particular, to control the first exit-time τD0 of yt from the domain D0 in
which the slow manifold is uniformly asymptotically stable.

As in the proof of Theorem 5.1.6, we use the change of variables

xt = x̄(ydet
t + ηt, ε) + ξt ,

yt = ydet
t + ηt ,

(5.1.115)

which produces (compare (5.1.32)) a nonlinear perturbation of the linear sys-
tem

dξ0t =
1
ε
A(ydet

t )ξ0t dt+
σ√
ε
F0(ydet

t ) dWt ,

dη0
t =

[
C(ydet

t )ξ0t +B(ydet
t )η0

t

]
dt+ σ′G0(ydet

t ) dWt . (5.1.116)

The coefficients are the matrices defined in (5.1.7) and (5.1.33). We can rewrite
this system in compact form as

dζ0
t = A(ydet

t )ζ0
t dt+ σF0(ydet

t ) dWt , (5.1.117)

where (ζ0)T = ((ξ0)T, (η0)T) and

A(ydet
t ) =

( 1
εA(ydet

t ) 0

C(ydet
t ) B(ydet

t )

)
, F0(ydet

t ) =

( 1√
ε
F0(ydet

t )

ρG0(ydet
t )

)
. (5.1.118)

The solution of the linear SDE (5.1.116) is given by

ζ0
t = U(t)ζ0 + σ

∫ t

0

U(t, s)F0(ydet
s ) dWs , (5.1.119)

where U(t, s) denotes the principal solution of the deterministic homogeneous
system ζ̇ = A(ydet

t )ζ. It can be written in the form

U(t, s) =
(
U(t, s) 0
S(t, s) V (t, s)

)
. (5.1.120)

Recall that U(t, s) and V (t, s) denote, respectively, the principal solutions of
εξ̇ = A(ydet

t )ξ and η̇ = B(ydet
t )η, while

S(t, s) =
∫ t

s

V (t, u)C(ydet
u )U(u, s) du . (5.1.121)

The Gaussian process ζ0
t has a covariance matrix of the form
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Cov(ζ0
t ) = σ2

∫ t

0

U(t, s)F0(ydet
s )F0(ydet

s )TU(t, s)T ds

= σ2

(
X(t) Z(t)
Z(t)T Y (t)

)
. (5.1.122)

The matrices X(t) ∈ R n×n, Y (t) ∈ Rm×m and Z(t) ∈ R n×m are a particular
solution of the following slow–fast system, which generalises (5.1.10):

εẊ = A(y)X +XA(y)T + F0(y)F0(y)T ,

εŻ = A(y)Z + εZB(y)T + εXC(y)T +
√
ερF0(y)G0(y)T ,

Ẏ = B(y)Y + Y B(y)T + C(y)Z + ZTC(y)T + ρ2G0(y)G0(y)T ,
ẏ = g(x̄(y, ε), y) .

(5.1.123)

This system admits a slow manifold given by

X = X�(y) ,

Z = Z�(y) = −
√
ερA(y)−1F0(y)G0(y)T + O(ε) , (5.1.124)

where X�(y) is given by (5.1.14). It is straightforward to check that this
manifold is uniformly asymptotically stable for sufficiently small ε, so that
Fenichel’s theorem yields the existence of an adiabatic manifold X = X(y, ε),
Z = Z(y, ε), at a distance of order ε from the slow manifold. This manifold
attracts nearby solutions of (5.1.123) exponentially fast, and thus asymptot-
ically, the expectations of ξ0t (ξ

0
t )

T and ξ0t (η
0
t )

T will be close, respectively, to
σ2X(ydet

t , ε) and σ2Z(ydet
t , ε).

In general, the matrix Y (t) cannot be expected to approach some asymp-
totic value depending only on ydet

t and ε. In fact, if the deterministic orbit
ydet
t is repelling, ‖Y (t)‖ can grow exponentially fast. In order to measure this

growth, we use again the functions

χ(1)(t) = sup
0�s�t

∫ s

0

(
sup

u�v�s
‖V (s, v)‖

)
du , (5.1.125)

χ(2)(t) = sup
0�s�t

∫ s

0

(
sup

u�v�s
‖V (s, v)‖2

)
du . (5.1.126)

The solution of (5.1.123) with initial condition Y (0) = Y0 satisfies

Y (t;Y0) = V (t)Y0V (t)T

+ ρ2

∫ t

0

V (t, s)G0(ydet
s )G0(ydet

s )TV (t, s)T ds

+ O((ε+ ρ
√
ε)χ(2)(t)) . (5.1.127)

We thus define an “asymptotic” covariance matrix Z(t) = Z(t;Y0, ε) by
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Z(t;Y0, ε) =

(
X(ydet

t , ε) Z(ydet
t , ε)

Z(ydet
t , ε)T Y (t;Y0)

)
, (5.1.128)

and use Z(t)−1 to characterise the ellipsoidal region in which ζ(t) is concen-
trated. The result is the following.

Theorem 5.1.18 (Concentration around a deterministic solution).
Assume that ‖X(ydet

s , ε)‖ and ‖X(ydet
s , ε)−1)‖ are uniformly bounded for 0 �

s � t and that Y0 has been chosen in such a way that ‖Y (s)−1‖ = O(1/(ρ2+ε))
for 0 � s � t. Fix an initial condition (x0, y0) with y0 ∈ D0 and x0 = x̄(y0, ε),
and let t be such that ydet

s ∈ D0 for all s � t. Define

R(t) = ‖Z‖[0,t]

[
1 +

(
1 + ‖Y −1‖1/2

[0,t]

)
χ(1)(t) + χ(2)(t)

]
. (5.1.129)

Let ζT
t = (ξTt , η

T
t ) denote the deviation of sample paths from the determin-

istic solution (x̄(ydet
t , ε), ydet

t ). Then there exist constants ε0,∆0, h0, L > 0,
independent of Y0, y0 and t, such that

Px0,y0
{

sup
0�s�t∧τD0

〈
ζu,Z(u)−1ζu

〉
� h2

}
� Cn+m,γ,∆(t, ε)e−κh

2/2σ2

(5.1.130)
holds, whenever ε � ε0, ∆ � ∆0, h � h0R(t)−1 and 0 < γ < 1. Here

κ = γ
[
1 − O

(
ε+∆+ hR(t)

)]
, (5.1.131)

Cn+m,γ,∆(t, ε) = L

(
1 +

t

∆ε

)[(
1

1 − γ

)(n+m)/2

+ e(n+m)/4

]
.

Proof. The proof differs from the one of Theorem 5.1.6 only in a few points
on which we comment here. First we need bounds on the inverse of Z = Z(u),
which is given by

Z−1 =

(
(X − ZY −1ZT)−1 −X−1Z(Y − ZTX−1Z)−1

− Y −1ZT(X − ZY −1ZT)−1 (Y − ZTX−1Z)−1

)
.

(5.1.132)
Our assumptions imply that all entries are of order 1, except possibly the
lower right one, which may reach order 1/(ρ2 + ε). When extending the proof
of Lemma 5.1.10, the functions Φ(t) and Ψ(t) defined in (5.1.47) are replaced
by

Φ̂(t) =
∫ t

0

Tr
[
J (v)TU(t, v)TZ(t)−1U(t, v)J (v)

]
dv ,

Ψ̂(t) =
∫ t

0

∥∥J (v)TU(t, v)TZ(t)−1U(t, v)J (v)
∥∥ dv , (5.1.133)
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where

J (v) =
1

√
2M1h‖Z‖1/2

∞
F1(ζv, v, ε) =

(O( 1√
ε
)

O(ρ)

)
(5.1.134)

as long as 〈ζu,Z(u)−1ζ(u)〉 � h2. Using the representations (5.1.120) of U
and (5.1.132) of Z−1 and expanding the matrix product, one obtains the
relations

Φ̂(t) � Φ(t) + ρ2

∫ t

0

Tr
[
V (t, v)TY (t)−1V (t, v)

]
dv

+ O
(
(n+m)(1 + χ(1)(t) + χ(2)(t))

)
,

Ψ̂(t) � Ψ(t) + ρ2

∫ t

0

∥∥V (t, v)TY (t)−1V (t, v)
∥∥dv

+ O
(
1 + χ(1)(t) + χ(2)(t)

)
. (5.1.135)

Finally, to extend the proof of Proposition 5.1.11, one needs to show that the
symmetric matrix Q(u), defined by

Q(u)2 = U(u, s)TZ(u)−1U(u, s) , (5.1.136)

satisfies ‖Q(u)Q(t)−1‖ = 1 + O(∆) for u ∈ [t −∆ε, t]. This follows from the
estimate

U(s, v)F0(ydet
v )F0(ydet

v )TU(s, v)T =

( O(1/ε) O(∆+ ρ/
√
ε)

O(∆+ ρ/
√
ε) O(∆2ε+ ρ2)

)
,

(5.1.137)
and the analogue of the differential equation (5.1.41). The remainder of the
proof is similar. ��

Concerning the implications of this result, let us first discuss timescales of
order 1. Then the functions ‖Z‖[0,t], χ(1)(t) and χ(2)(t) are at most of order 1,
and ‖Y (t)−1‖ remains of the same order as ‖Y −1

0 ‖. The probability (5.1.130)
becomes small as soon as h � σ. Because of the restriction h � h0R(t)−1,
the result is useful provided ‖Y −1‖[0,t] 
 σ−2. In order to obtain the optimal
concentration result, we have to choose Y0 according to two opposed criteria.
On the one hand, we would like to take the smallest possible Y0, in order
to obtain the optimal domain of concentration 〈ζu,Z(u)−1ζu〉 < h2. On the
other hand, ‖Y −1

0 ‖ must not exceed certain bounds for Theorem 5.1.18 to be
valid. Thus we require that

Y0 >
[
σ2 ∨ (ρ2 + ε)

]
1lm (5.1.138)

(in the sense of positive definite matrices). Because of the Gaussian decay
of the probability (5.1.130) in σ/h, we can interpret the theorem by saying
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y1

y2

x B(h)

Fig. 5.3. Domain of concentration of sample paths around an asymptotically sta-
ble periodic orbit (broken closed curve), lying in a uniformly asymptotically stable
adiabatic manifold.

that the typical spreading of paths in the y-direction is of order σ(ρ+
√
ε) if

σ < ρ+
√
ε and of order σ2 if σ > ρ+

√
ε.

The term ρ is clearly due to the intensity σ′ = ρσ of the noise acting on
the slow variable. It prevails if ρ > σ ∨

√
ε. The term

√
ε is due to the linear

part of the coupling between slow and fast variables, while the behaviour in
σ2 observed when σ > ρ +

√
ε can be traced back to the nonlinear coupling

between slow and fast variables.
For longer timescales, the condition h � h0R(t)−1 obliges us to take a

larger Y0, while Y (t) typically grows with time. If the largest Lyapunov expo-
nent of the deterministic orbit ydet

t is positive, this growth is exponential in
time, so that the spreading of paths along the adiabatic manifold will reach
order 1 in a time of order log|σ ∨ (ρ2 + ε)|.

Example 5.1.19 (Asymptotically stable periodic orbit). Assume that ydet
t is an

asymptotically stable periodic orbit with period T , entirely contained in D0

(and not too close to its boundary). Then all coefficients in (5.1.123) depend
periodically on time, and, in particular, Floquet’s theorem allows us to write

V (t) = P (t)eΛt , (5.1.139)

where P (t) is a T -periodic matrix. The asymptotic stability of the orbit means
that all eigenvalues but one of the monodromy matrix Λ have strictly negative
real parts, the last eigenvalue, which corresponds to translations along the
orbit, being 0. In that case, χ(1)(t) and χ(2)(t) grow only linearly with time,
so that the spreading of paths in the y-direction remains small on timescales
of order 1/(σ ∨ (ρ2 + ε)).

In fact, we even expect this spreading to occur mainly along the periodic
orbit, while the paths remain confined to a neighbourhood of the orbit on
subexponential timescales. To see that this is true, we can use a new set of
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variables in the neighbourhood of the orbit. In order not to introduce too
many new notations, we will replace y by (y, z), where y ∈ Rm−1 describes
the degrees of freedom transversal to the orbit, and z ∈ R parametrises the
motion along the orbit. In fact, we can use an equal-time parametrisation of
the orbit, so that ż = 1 on the orbit, i.e., we have zdet

t = t (mod T ). The SDE
takes the form

dxt =
1
ε
f(xt, yt, zt) dt+

σ√
ε
F (xt, yt, zt) dWt ,

dyt = g(xt, yt, zt) dt+ σ′G(xt, yt, zt) dWt ,

dzt =
[
1 + h(xt, yt, zt)

]
dt+ σ′H(xt, yt, zt) dWt ,

(5.1.140)

where h = O(‖yt‖2+‖xt−xdet
t ‖2) and the characteristic multipliers associated

with the periodic matrix ∂yg(xdet
t , 0, zdet

t , ε) are strictly smaller than one in
modulus. As linear approximation of the dynamics of ξt = xt − xdet

t and
ηt = yt − ydet

t = yt we take

dξ0t =
1
ε
A(zdet

t )ξ0t dt+
σ√
ε
F0(zdet

t ) dWt ,

dη0
t =

[
B(zdet

t )η0
t + C(zdet

t )ξ0t
]
dt+ σ′G0(zdet

t ) dWt ,

dz0t = dt+ σ′H0(zdet
t ) dWt ,

(5.1.141)

which depends periodically on time. One can again compute the covariance
matrix of the Gaussian process (ξ0t , η

0
t , z

0
t ) as a function of the principal solu-

tions U and V associated with A and B. In particular, the covariance matrix
Y (t) of η0

t still obeys the ODE

Ẏ = B(z)Y + Y B(z)T + C(z)Z + ZTC(z)T + ρ2G0(z)G0(z)T ,
ż = 1 . (5.1.142)

This is now a linear, inhomogeneous ODE with time-periodic coefficients. It is
well known that such a system admits a unique periodic solution Y per

t , which
is of order ρ2 + ε since Z is of order ρ

√
ε + ε and ρ2G0G

T
0 is of order ρ2.

We can thus define an asymptotic covariance matrix Z(t) of (ξ0t , η
0
t ), which

depends periodically on time. If ζt = (ξt, ηt), Theorem 5.1.18 shows that on
timescales of order 1 (at least), the paths ζt are concentrated in a set of the
form 〈ζt,Z(t)−1ζt〉 < h2 (Fig. 5.3), while zt remains h-close to zdet

t .
On longer timescales, the distribution of paths will be smeared out along

the periodic orbit. However, the same line of reasoning as in Section 5.1.2,
based on a comparison with different deterministic solutions on successive
time intervals of order 1, can be used to show that ζt remains concentrated in
the set 〈ζt,Z(t)−1ζt〉 < h2 up to exponentially long timescales.
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5.2 Periodic Orbits

In this section, we consider the effect of noise on slow–fast systems in which
the fast system admits, for each value of the slow variable, an asymptotically
stable periodic orbit. We have seen in Section 2.3.1 that solutions of the slow–
fast system then track the slowly varying periodic orbit at a distance of order ε,
while the dynamics of the slow variables is well-approximated by the system
averaged over the fast motion along the orbit.

We will start, in Section 5.2.1, by considering the dynamics of the fast
variables only, for frozen slow variables. We establish concentration and re-
duction results similar to those of the previous section. Then we pass to the
general slow–fast case in Section 5.2.2.

5.2.1 Dynamics near a Fixed Periodic Orbit

We consider here an SDE of the form

dxs = f(xs) ds+ σF (xs) dWs , (5.2.1)

where Ws is a k-dimensional Brownian motion, in the case where the deter-
ministic system ẋ = f(x) admits an asymptotically stable periodic orbit. More
precisely, we will make the following assumptions.

Assumption 5.2.1 (Asymptotically stable periodic orbit).

• Domain and differentiability: There are integers n, k � 1 such that f ∈
C2(D,R n), and F ∈ C1(D,R n×k), where D is an open subset of R n. We
further assume that f , F and all their partial derivatives up to order 2,
respectively 1, are uniformly bounded in norm in D by a constant M .

• Periodic orbit: There is a periodic function γ� : R → R n, of period T ,
such that

γ̇�(s) = f(γ�(s)) (5.2.2)

for all s ∈ R .
• Stability: Let A(s) = ∂xf(γ�(s)), and let U(s) be the principal solution

of ξ̇ = A(s)ξ. Then all eigenvalues but one of U(T ) are strictly smaller
than 1 in modulus.

In a neighbourhood of the periodic orbit, we may introduce a system of
coordinates which separates the motions along the orbit, and transversal to
it, setting for instance

x = γ�(Tθ) + r , (5.2.3)

where r is perpendicular to γ̇�(Tθ). In the deterministic case, drawing on the
fact that f(γ�(Tθ) + r) = γ̇�(Tθ) + A(Tθ)r + O(r2), one obtains evolution
equations of the form
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θ̇ =
1
T

+ O(‖r‖2) ,

ṙ = A(Tθ)r + O(‖r‖2) .
(5.2.4)

Applying Itô’s formula in the stochastic case yields a system of the form

dθs =
[

1
T

+ bθ(θs, rs;σ)
]

ds+ σFθ(θs, rs) dWs ,

drs =
[
A(Tθs)rs + br(θs, rs;σ)

]
ds+ σFr(θs, rs) dWs .

(5.2.5)

The functions bθ and br contain terms of order r2 and nσ2. In principle, it
would be possible to eliminate the terms of order nσ2 in br, which are due to
the second-order terms in Itô’s formula, by a further change of variables. But
this will not be necessary for our purposes.

As we expect rt to remain small, it seems reasonable to approximate the
dynamics of (5.2.5) by the linear equation

dr0s = A(Tθdet
s )r0s ds+ σFr(θdet

s , 0) dWs , (5.2.6)

where θdet
s = θ0 + s/T . The process r0t is Gaussian, with zero mean and

covariance matrix σ2Xs, where Xs satisfies the linear ODE with periodic
coefficients

Ẋ = A(Tθdet
s )X +XA(Tθdet

s )T + Fr(θdet
s , 0)Fr(θdet

s , 0)T . (5.2.7)

This equation admits a unique periodic solution Xper(s), which describes the
asymptotic covariance of r0s . We are thus led to introducing the set

B(h) =
{
(θ, r) : 〈r,Xper(Tθ)−1r〉 < h2

}
, (5.2.8)

which has the shape of a filled torus surrounding the periodic orbit. In doing
so, we assumed that Xper(Tθ) is nonsingular for every θ. In the sequel, we will
need to assume that in addition, Xper(Tθ)−1 is uniformly bounded in norm.
A sufficient condition for this to hold true is that FFT be positive definite
along the orbit.

Theorem 5.2.2 (Stochastic motion near an asymptotically stable pe-
riodic orbit). If Xper(Tθ)−1 is bounded in norm, then there exist constants
ε0,∆0, h0, c1, L > 0 such that for all ε � ε0, ∆ � ∆0, h � h0, γ ∈ (0, 1), and
all s > 0

Pθ0,0
{
τB(h) < s

}
� C+

h/σ,n,γ,∆(s)e−κ+h
2/2σ2

, (5.2.9)

where the exponent κ+ is uniform in time and satisfies

κ+ = γ
[
1 − c1

(
h|log h| +∆+ σ2/h2

)]
, (5.2.10)

and the prefactor is given by

C+
h/σ,n,γ,∆(s) = L

(1 + s)2

∆

[
(1 − γ)−n + en/4

](
1 +

h2

σ2

)
. (5.2.11)



174 5 Multi-Dimensional Slow–Fast Systems

Proof. The proof resembles the proof of Theorem 5.1.6 for ε = 1. One first
bounds the probability that 〈rs, Xper(Tθdet

s )−1rs〉 exceeds h2, in a similar way
as in Proposition 5.1.11. Bounding the probability of θs−θdet

s becoming larger
than h1 is much simpler as in Proposition 5.1.12, because the linear part of the
equation for θs − θdet

s vanishes. As a consequence, the functions χ(i)(s) grow
only linearly with s. Another difference arises for the analogue of the endpoint
estimate in Lemma 5.1.14, because the last error term in the exponent is of
order e−2K0T0/(1 − γ) instead of e−2K0T0/ε/(1 − γ). When completing the
proof by restarting the process at multiples of T0, the optimal error term is
obtained by choosing T0 proportional to |log h|, which yields an error of order
h|log h| in the exponent. ��

This result confirms that sample paths are likely to stay in B(h) up to
times of order eh

2/2σ2
. One is thus tempted to approximate the dynamics of

the phase θs by the reduced equation

dθ0s =
1
T

ds+ σFθ(θ0s , 0) dWs . (5.2.12)

Note that since θ0 lives on a circle, an examination of the Fokker–Planck
equation with periodic boundary conditions shows that this equation admits a
an invariant density of the form 1+O(σ2). One expects that the distribution of
θ0s behaves approximately like a Gaussian with expectation s/T and variance
of order σ2s (which then has to be folded back to the circle). It is not difficult
to adapt Theorem 5.1.17 to obtain the following estimates.

Theorem 5.2.3 (Reduction to phase dynamics). There exist constants
κ1, κ2, L such that, for any choice of h, h1 at most up to order 1/s,

Pθ0,0
{

sup
0�u�s∧τB(h)

∥∥θu − θ0u
∥∥ � h

}
� L

(
1 + s

)
exp

{
− κ1h

2
1

σ2(h2 + h2
1)s

}
,

(5.2.13)
and

Pθ0
{

sup
0�u�s

∥∥θ0u − θdet
u

∥∥ � h1

}
� L

(
1 + s

)
exp

{
−κ2h

2
1

σ2s

}
. (5.2.14)

Proof. (5.2.13) follows from the fact that ζs = θs − θ0s satisfies an equation of
the form

dζs = bθ(θ0s + ζs, rs) ds+ σ
[
Fθ(θ0s + ζs, rs) − Fθ(θ0s , rs)

]
dWs . (5.2.15)

For s � τB(h), the diffusion term is of order h+ |ζs|, and so the result follows
as in Proposition 5.1.12. The proof of (5.2.14) is similar (but much easier,
since the equation for θ0s − θdet

s contains no drift term). ��
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Estimate (5.2.14) shows that the spreading of the approximate phase θ0s
indeed grows like σ

√
s around θdet

s = θ0 + s/T . It thus takes a time of order
1/σ2 for sample paths to spread uniformly along the periodic orbit.2

Since the probability to leave τB(h) before time s is small whenever h� σ,
and the upper bound (5.2.13) becomes small as soon as h2

1 � σ2h2s � σ4s,
θ0s approximates the real phase θs up to order σ2

√
s, and is thus a better

approximation of the real dynamics of θs than θdet
s .

5.2.2 Dynamics near a Slowly Varying Periodic Orbit

We return now to slow–fast SDEs of the form

dxt =
1
ε
f(xt, yt) dt+

σ√
ε
F (xt, yt) dWt ,

dyt = g(xt, yt) dt+ σ′G(xt, yt) dWt ,

(5.2.16)

where we assume that the deterministic system x′ = f(x, y) admits an asymp-
totically stable periodic orbit for each fixed y. More precisely, we shall make
the following assumptions.

Assumption 5.2.4 (Slowly varying asymptotically stable periodic or-
bit).

• Domain and differentiability: There are integers n,m, k � 1 such that
f ∈ C2(D,R n), g ∈ C2(D,Rm) and F ∈ C1(D,R n×k), G ∈ C1(D,Rm×k),
where D is an open subset of R n×Rm. We further assume that f , g, F , G
and all their partial derivatives up to order 2, respectively 1, are uniformly
bounded in norm in D by a constant M .

• Periodic orbit: There are an open subset D0 ⊂ Rm, constants T2 > T1 > 0,
and continuous functions T : D0 → [T1, T2], γ� : R ×D0 → R n, such that
γ�(t+ T (y), y) = γ�(t, y) and

∂tγ
�(t, y) = f(γ�(t, y), y) (5.2.17)

for all (t, y) in R × D0.
• Stability: Let A(t, y) = ∂xf(γ�(t, y), y) denote the linearisation of the fast

vector field at the periodic orbit. Then all characteristic multipliers but one
of the linear time-periodic equation ξ′ = A(t, y)ξ, for fixed y, are strictly
smaller than one in modulus.

Recall from Section 2.3.2 that there exists an invariant tube tracking the
family of periodic orbits, whose parametrisation we denote by Γ (θ, y, ε) =
γ�(T (y)θ, y) + O(ε). The change of variables x = Γ (θ, y, ε) + r, with r per-
pendicular to the orbit, yields a system of the form

2This fact is also compatible with spectral-theoretic results, which show that the
generator of (5.2.12) has a spectral gap of order σ2.
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dθt =
1
ε

[
1

T (yt)
+ bθ(θt, rt, yt)

]
dt+

σ√
ε
Fθ(θt, rt, yt) dWt ,

drt =
1
ε

[
A(θt, yt)rt + br(θt, rt, yt)

]
dt+

σ√
ε
Fr(θt, rt, yt) dWt , (5.2.18)

dyt = g̃(θt, rt, yt) dt+ σ′G̃(θt, rt, yt) dWt ,

where we have set A(θ, y) = ∂xf(Γ (θ, y, ε), y). The remainders br(θ, r, y) and
bθ(θ, r, y) contain terms of order ‖r‖2 and terms of order (n+m)σ2 stemming
from Itô’s formula. The functions g̃ and G̃ are obtained by expressing g and
G in the new variables.

The dynamics of rt may be approximated by the linear equation

dr0t =
1
ε
A(θdet

t , ydet
t )r0t dt+

σ√
ε
Fr(θdet

t , 0, ydet
t ) dWt , (5.2.19)

where (θdet
t , ydet

t ) is a solution of the deterministic system, restricted to the in-
variant tube parametrised by Γ (θ, y, ε). The process r0t is Gaussian, with zero
mean and covariance matrix σ2Xt, where Xt is a solution of the deterministic
slow–fast system

εẊ = A(θ, y)X +XA(θ, y)T + F (θ, 0, y)F (θ, 0, y)T ,

εθ̇ =
1

T (y)
, (5.2.20)

ẏ = g̃(θ, 0, y) .

We already know from the previous section that for fixed y, this system admits
a periodic solution Xper(θ, y). This solution is asymptotically stable because
the principal solution associated with A is contracting. We may thus conclude
from Theorem 2.3.1 that (5.2.20) admits a solution of the form

X(θ, y, ε) = Xper(θ, y) + O(ε) . (5.2.21)

We thus proceed to define the concentration domain of paths as

B(h) =
{
(θ, r, y) : 〈r,X(θ, y, ε)−1r〉 < h2

}
, (5.2.22)

assuming again that X(θ, y, ε) is invertible. This set is now a macaroni-shaped
object, with thickness of order h, surrounding the invariant tube (Fig. 5.4).
The following concentration result is proved exactly as Theorem 5.1.6.

Theorem 5.2.5 (Stochastic motion near a slowly varying asymptoti-
cally stable periodic orbit). If Xper(θ, y)−1 is bounded in norm, there exist
constants ε0,∆0, h0, c, c1, L > 0 such that for all ε � ε0, ∆ � ∆0, h � h0 and
all γ ∈ (0, 1),

Pθ0,0,y0
{
τB(h) < t

}
� C+

h/σ,n,m,γ,∆(t, ε)e−κ+h
2/2σ2

, (5.2.23)
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x1

y

x2

B(h)

Fig. 5.4. Example of a macaroni-shaped domain of concentration of paths B(h)
around a family of asymptotically stable periodic orbits, for one slow dimension and
two fast dimensions.

where the exponent κ+ is uniform in time and satisfies

κ+ = γ
[
1 − c1

(
h+∆+ (n+m)σ2/h2 + e−c/ε/(1 − γ)

)]
, (5.2.24)

and the prefactor is given by

C+
h/σ,n,m,γ,∆(t, ε) = L

(1 + t)2

∆ε

[
(1 − γ)−n + en/4 + em/4

](
1 +

h2

σ2

)
. (5.2.25)

Remark 5.2.6. A natural question to ask is whether the dynamics of the full
system (5.2.18) can be approximated by the dynamics of the reduced system

dθ0t =
1
ε

[
1

T (y0
t )

+ bθ(θ0t , 0, y
0
t )

]
dt+

σ√
ε
Fθ(θ0t , 0, y

0
t ) dWt ,

dy0
t = g̃(θ0t , 0, y

0
t ) dt+ σ′G̃(θ0t , 0, y

0
t ) dWt . (5.2.26)

It turns out, however, that due to the coupling with the slow variables via
the period T (y), the deviation θt − θ0t can grow relatively fast (on the slow
timescale). In the worst case, all information on the phase is lost after a time
of order ε|log σ|.

Remark 5.2.7. Another interesting question, which we do not pursue in detail
here, is whether the dynamics of the slow variables can be approximated by
a reduced equation. A natural candidate is the averaged reduced equation

dȳ0
t = ḡ(ȳ0

t ) dt+ σ′G(ȳ0
t ) dWt , (5.2.27)

obtained by averaging g̃ and G̃ over the angle θ. To analyse the accuracy of
the approximation, one should start from Equation (5.2.18), and construct
a change of variables decreasing the order in ε of the θ-dependent terms.
One can then estimate deviations of the resulting process from the reduced
process ȳ0

t .
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5.3 Bifurcations

In this section, we turn to the effect of noise on slow–fast systems admitting
bifurcation points. We have already studied the effect of noise on the most
generic one-dimensional bifurcations in Chapter 3, and so we concentrate here
on specifically multidimensional effects. In Section 5.3.1, we consider situations
in which the number q of bifurcating modes is smaller than the dimension n
of the fast variable. We give results on the concentration of sample paths near
invariant manifolds of dimension q, and on a possible reduction to a lower-
dimensional equation, containing only q fast variables. In Section 5.3.2 we
consider the effect of noise on dynamic Hopf bifurcations.

5.3.1 Concentration Results and Reduction

Let us consider a slow–fast SDE in the usual form

dxt =
1
ε
f(xt, yt) dt+

σ√
ε
F (xt, yt) dWt ,

dyt = g(xt, yt) dt+ σ′G(xt, yt) dWt ,

(5.3.1)

in the case where the associated system admits a bifurcation point. More
precisely, we shall make the following assumptions.

Assumption 5.3.1 (Dynamic bifurcation).

• Domain and differentiability: There are integers n,m, k � 1 such that
f ∈ C2(D,R n), g ∈ C2(D,Rm) and F ∈ C1(D,R n×k), G ∈ C1(D,Rm×k),
where D is an open subset of R n×Rm. We further assume that f , g, F , G
and all their partial derivatives up to order 2, respectively 1, are uniformly
bounded in norm in D by a constant M .

• Bifurcation point: There is a point (x̂, ŷ) ∈ D such that f(x̂, ŷ) = 0 and
the Jacobian matrix A = ∂xf(x̂, ŷ) admits q eigenvalues on the imaginary
axis, with 1 � q < n. The n−q other eigenvalues of A have strictly negative
real parts.

As in Section 2.2.1, we introduce coordinates (x−, z) ∈ R n−q × R q, with
x− ∈ R n−q and z ∈ R q, in which the matrix ∂xf(x̂, ŷ) becomes block-
diagonal, with a block A− ∈ R (n−q)×(n−q) having eigenvalues in the left
half-plane, and a block A0 ∈ R q×q having eigenvalues on the imaginary axis.
We call the components of z bifurcating modes and those of x− stable modes.
In the deterministic case σ = 0, we established in Section 2.2.1 the existence
of a locally attracting invariant centre manifold

M̂ε = {(x−, z, y) : x− = x̄−(z, y, ε), (z, y) ∈ N} (5.3.2)

in a sufficiently small neighbourhood N of (ẑ, ŷ) ∈ R q × Rm.
We can rewrite the system (5.3.1) in (x−, z, y)-coordinates as
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dx−t =
1
ε
f−(x−t , zt, yt) dt+

σ√
ε
F−(x−t , zt, yt) dWt ,

dzt =
1
ε
f0(x−t , zt, yt) dt+

σ√
ε
F 0(x−t , zt, yt) dWt ,

dyt = g(x−t , zt, yt) dt+ σ′G(x−t , zt, yt) dWt .

(5.3.3)

Since x−t describes the stable modes, we expect it to remain close to the func-
tion x̄−(z, y, ε) parameterising the invariant manifold M̂ε. We thus consider
the deviation ξ−t = x−t − x̄−(zt, yt, ε) of sample paths from M̂ε. It satisfies an
SDE of the form

dξ−t =
1
ε
f̂−(ξ−t , zt, yt) dt+

σ√
ε
F̂−(ξ−t , zt, yt) dWt , (5.3.4)

where a straightforward computation, using Itô’s formula, shows that

f̂−(ξ−, z, y) = f−(x̄−(z, y, ε) + ξ−, z, y) (5.3.5)

− ∂zx̄
−(z, y, ε)f0(x̄−(z, y, ε) + ξ−, z, y)

− ε∂yx̄
−(z, y, ε)g(x̄−(z, y, ε) + ξ−, z, y) + O((m+ q)σ2) ,

the last term being due to the second-order term in Itô’s formula. The invari-
ance of M̂ε implies that all terms in (5.3.5) except for the last one vanish for
ξ− = 0, compare (2.2.4). The linearisation of f̂− at ξ− = 0 can be approxi-
mated by the matrix

A−(z, y, ε) = ∂x−f−(x̄−(z, y, ε), z, y) − ∂zx̄
−(z, y, ε)∂x−f0(x̄−(z, y, ε), z, y)

− ε∂yx̄
−(z, y, ε)∂x−g(x̄−(z, y, ε), z, y) . (5.3.6)

Since A−(ẑ, ŷ, 0) = ∂x−f−(x̂−, ẑ, ŷ) = A−, the eigenvalues of A−(z, y, ε) have
negative real parts, bounded away from zero, provided we take N and ε small
enough. In the sequel, we shall no longer indicate the ε-dependence of A−.

We now approximate the dynamics of (ξ−t , zt, yt) by the linear system

dξ0t =
1
ε
A−(zdet

t , ydet
t )ξ0t dt+

σ√
ε
F−

0 (zdet
t , ydet

t ) dWt ,

dzdet
t =

1
ε
f0(x̄−(zdet

t , ydet
t , ε), zdet

t , ydet
t ) dt ,

dydet
t = g(x̄−(zdet

t , ydet
t , ε), zdet

t , ydet
t ) dt ,

(5.3.7)

where F−
0 (z, y) = F̂−(0, z, y) is the value of the diffusion coefficient on the

invariant manifold. The process ξ0t is Gaussian with zero mean and covariance
matrix X−

t , where X−
t obeys the slow–fast ODE

εẊ− = A−(z, y)X− +X−A−(z, y)T + F−
0 (z, y)F−

0 (z, y)T ,

εż = f0(x̄−(z, y, ε), z, y) ,

ẏ = g(x̄−(z, y, ε), z, y) .

(5.3.8)
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x− y

z

B(h)

cMε

(bx−, bz, by)

Fig. 5.5. Example of a bifurcation point, for one slow and two fast variables. The
bifurcation shown here is a saddle–node bifurcation, with arrows indicating the
stability of the equilibrium branches. Sample paths are concentrated in a set B(h)
surrounding the deterministic invariant manifold cMε.

Since all eigenvalues of A−(z, y) have negative real parts, this system admits
a locally attracting invariant manifold X− = X−(z, y, ε) for (z, y) ∈ N and ε
small enough. We use this manifold to define the domain of concentration of
paths

B−(h) =
{
(x−, z, y) : (z, y) ∈ N ,〈
x− − x̄−(z, y, ε), X−(z, y, ε)−1(x− − x̄−(z, y, ε))

〉
< h2

}
. (5.3.9)

In the sequel, we will need the stopping times

τB−(h) = inf
{
t > 0: (x−t , zt, yt) �∈ B−(h)

}
, (5.3.10)

τN = inf
{
t > 0: (zt, yt) �∈ N

}
. (5.3.11)

Then the following result shows that sample paths are concentrated in B−(h)
as long as (zt, yt) remains in N .

Theorem 5.3.2 (Multidimensional bifurcation). Assume that the norms
‖X−(z, y, ε)‖ and ‖X−(z, y, ε)−1)‖ are uniformly bounded in N . Choose a
deterministic initial condition (z0, y0) ∈ N , x−0 = x̄−(z0, y0, ε). Then, there
exist constants h0,∆0, L > 0 and ν ∈ (0, 1] such that for all h � h0, all
∆ � ∆0 and all 0 < γ < 1,

Px
−
0 ,z0,y0{τB−(h) < t ∧ τN } � Ch/σ,n,m,q,γ,∆(t, ε)e−κh

2/2σ2
, (5.3.12)

provided ε|log(h(1 − γ))| � 1. Here the exponent satisfies

κ = γ
[
1 − O(∆) − O(hν(1 − γ)1−ν |log(h(1 − γ))|)

]
, (5.3.13)

and the prefactor is given by
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Ch/σ,n,m,q,γ,∆(t, ε) = L

(
1 +

t

∆ε

)(
1 +

t

ε

)(
1 +

h2

σ2

)
(5.3.14)

×
[
(1 − γ)−(n−q) + e(n−q)/4 + em/4 + eq/4

]
.

Proof. Given constants hy, hz > 0, we introduce stopping times

τy = inf
{
s > 0: ‖ys − ydet

s ‖ � hy
}
, (5.3.15)

τz = inf
{
s > 0: ‖zs − zdet

s ‖ � hz
}
. (5.3.16)

Using similar ideas as in Proposition 5.1.11, one starts by proving that for ξ−0
satisfying 〈ξ−0 , X−(y0, z0, ε)−1ξ−0 〉 � h2, one has

Pξ
−
0 ,z0,y0

{
sup

0�s�t∧τB−(h)∧τz

‖ys − ydet
s ‖ � hy

}

� 2
⌈
t

∆ε

⌉
em/4 exp

{
−κ0

h2
y(1 − O(∆ε))

σ2(ρ2 + ε)χ(2)(t)

×
[
1 − O

(
χ(1)(t)hy

(
1 +

h2

h2
y

+
h2
z

h2
y

+ (m+ q)
σ2

h2
y

))]}
, (5.3.17)

where the χ(i)(t) are the quantities introduced in (5.1.66) and (5.1.67), which
measure the growth of perturbations in the y-direction. Similarly,

Pξ
−
0 ,z0,y0

{
sup

0�s�t∧τB−(h)∧τy

‖zs − zdet
s ‖ � hz

}
� 2

⌈
t

∆ε

⌉
eq/4 exp

{
−κ0

εh2
z(1 − O(∆ε))

σ2χ
(2)
z (t)

×
[
1 − O

(
χ(1)
z (t)hz

(
1 +

h2

h2
z

+
h2
y

h2
z

+ (m+ q)
σ2

h2
z

))]}
, (5.3.18)

where the χ(i)
z (t) are defined analogously as the χ(i)(t), but for perturbations

in the z-direction.
Let T > 0 be a constant that we will specify below. Choosing hy propor-

tional to h, hz proportional to (1+χ(2)
z (T )/ε)1/2h, and proceeding as in Propo-

sitions 5.1.11 and 5.1.13, one obtains that for 〈ξ−0 , X−(y0, z0, ε)−1ξ−0 〉 � α2h2,

Pξ
−
0 ,z0,y0

{
sup

0�s�T∧τN

〈
ξ−s , X

−(ys, zs, ε)−1ξ−s
〉

� h2
}

� Ch/σ,n,m,q,γ,∆(T, ε)e−κ
+(α)h2/2σ2

(5.3.19)

holds with an exponent

κ+(α) = γ

[
1 − α2 − O(∆) − O

((
1 +

χ
(2)
z (T )
ε

)
h

)]
. (5.3.20)
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The probability that
〈
ξ−T , X

−(yT , zT , ε)−1ξ−T
〉

exceeds h satisfies a similar
bound as in Lemma 5.1.14, with an exponent of the form

κ′ = γ

[
1 − O(∆) − O

((
1 +

χ
(2)
z (T )
ε

)
h

)
− O

(
e−2K0T/ε

1 − γ

)]
. (5.3.21)

The main difference with the end of the proof of Theorem 5.1.6 lies in
the choice of the time T at which we restart the process when considering
longer timescales. It has to be such that both error terms χ(2)

z (T )h/ε and
e−2K0T/ε/(1− γ) in the exponents are small. In the worst case, perturbations
in the z-direction grow like eK+t/ε for some K+ > 0, and then χ(2)

z (T ) is of
order T e2K+T/ε. The optimal choice of T is then close to εθ, where

e−θ =
[
h(1 − γ)

]1/(2(K0+K+))
, (5.3.22)

and this yields the error term hν(1 − γ)1−ν |log(h(1 − γ))| in the expo-
nent (5.3.13), with ν = K0/(K0 +K+). ��

Theorem 5.3.2 shows that sample paths tend to concentrate in a neighbour-
hood of order σ of the invariant manifold M̂ε. This suggests to approximate
the original system by its projection

dz0t =
1
ε
f0(x̄−(z0t , y

0
t , ε), z

0
t , y

0
t ) dt+

σ√
ε
F 0(x̄−(z0t , y

0
t , ε), z

0
t , y

0
t ) dWt ,

dy0
t = g(x̄−(z0t , y

0
t , ε), z

0
t , y

0
t ) dt+ σ′G(x̄−(z0t , y

0
t , ε), z

0
t , y

0
t ) dWt ,

(5.3.23)

called the reduced stochastic system. Being of smaller dimension, this system is
in general easier to analyse than the original equation. In particular, if σ′ = 0
and z is one-dimensional (that is, q = 1), we recover equations of the type
studied in Chapter 3.

In order to quantify the deviations of ζ0
t = (z0t , y

0
t ) from (zt, yt), we can

proceed similarly as in Section 5.1.3. However, we would like to avoid having to
compare with the deterministic solution, and instead compare both processes
directly. To do this, we need to take into account the fact that ζ0

t is a random
process. For a fixed initial condition ζ0

0 ∈ N , we define the (random) matrices

B(ζ0
t , ε) =

(
∂zf

0 ∂yf
0

ε∂zg ε∂yg

)∣∣∣∣
x−=x̄−(z0t ,y

0
t ,ε),z=z

0
t ,y=y

0
t

, (5.3.24)

C(ζ0
t , ε) =

(
∂x−f0

ε∂x−g

)∣∣∣∣
x−=x̄−(z0t ,y

0
t ,ε),z=z

0
t ,y=y

0
t

. (5.3.25)

Observe that C((ẑ, ŷ), 0) = 0 because of our choice of coordinates, so that
‖C(ζ0

t , ε)‖ will be small in a neighbourhood of the origin. We denote, for each
realisation ζ0(ω), by Vω the principal solution3 of

3Note that we may assume that almost all realisations ζ0(ω) are continuous.
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dζt(ω) =
1
ε
B(ζ0

t (ω), ε)ζt(ω) dt . (5.3.26)

We need to assume the existence of deterministic functions ϑ(t, s), ϑC(t, s),
and a stopping time τ � τB−(h) such that∥∥Vω(t, s)

∥∥ � ϑ(t, s) ,
∥∥Vω(t, s)C(ζ0

s (ω), ε)
∥∥ � ϑC(t, s) (5.3.27)

hold for all s � t � τ(ω) and (almost) all paths (ζ0
u(ω))u�0 of (5.3.23). Then

we define

χ(i)(t) = sup
0�s�t

1
ε

∫ s

0

ϑ(s, u)i du ,

χ
(i)
C (t) = sup

0�s�t

1
ε

∫ s

0

(
sup

u�v�s
ϑC(s, v)i

)
du

(5.3.28)

for i = 1, 2, and the following result holds.

Theorem 5.3.3 (Reduction near bifurcation point). Assume that there
exist constants ∆,ϑ0 > 0 (of order 1) such that ϑ(s, u) � ϑ0 and ϑC(s, u) � ϑ0

whenever 0 < s−u � ∆ε. Then there are constants h0, κ0, L > 0 such that for
all h � h0[χ(1)(t) ∨ χ(1)

C (t)]−1 and all initial conditions (x−0 , z
0
0 , y

0
0) ∈ B−(h),

Px
−
0 ,z

0
0 ,y

0
0

{
sup

0�s�t∧τ

∥∥(zs, ys) − (z0s , y
0
s)

∥∥ � h
}

� Cm,q(t, ε) exp
{
−κ0

h2

2σ2

1

χ
(2)
C (t) + hχ

(1)
C (t) + h2χ(2)(t)

}
, (5.3.29)

where

Cm,q(t, ε) = L

(
1 +

t

ε

)
e(m+q)/4 . (5.3.30)

Proof. The deviation ζt = (zt − z0t , yt − y0
t ) satisfies an SDE of the form

dξ−t =
1
ε

[
A−(ζ0

t )ξ
−
t + b(ξ−t , ζt, ζ

0
t )

]
dt+

σ√
ε
F̃ (ξ−t , ζt, ζ

0
t ) dWt , (5.3.31)

dζt =
1
ε

[
C(ζ0

t )ξ
−
t +B(ζ0

t )ζt + c(ξ−t , ζt, ζ
0
t )

]
dt+

σ√
ε
G̃(ξ−t , ζt, ζ

0
t ) dWt ,

where ‖b‖ is of order ‖ξ−‖2 + ‖ζ‖2 + (m+ q)σ2, ‖c‖ is of order ‖ξ−‖2 + ‖ζ‖2

and ‖G̃‖ is of order ‖ξ−‖ + ‖ζ‖, while ‖F̃‖ is bounded.
For a given continuous sample path {ζ0

t (ω)}t�0, we denote by Uω and Vω
the principal solutions of εξ̇− = A−(ζ0

t (ω))ξ− and εζ̇ = B(ζ0
t (ω))ζ. If we

further define

Sω(t, s) =
1
ε

∫ t

s

Vω(t, u)C(ζ0
u(ω))Uω(u, s) du , (5.3.32)
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we can write the solution of (5.3.31) as

ζt(ω) =
σ√
ε

∫ t

0

Vω(t, s)G̃(ξ−s (ω), ζs(ω), ζ0
s (ω)) dWs(ω)

+
σ√
ε

∫ t

0

Sω(t, s)F̃ (ξ−s (ω), ζs(ω), ζ0
s (ω)) dWs(ω)

+
1
ε

∫ t

0

Vω(t, s)c(ξ−s (ω), ζs(ω), ζ0
s (ω)) ds

+
1
ε

∫ t

0

Sω(t, s)b(ξ−s (ω), ζs(ω), ζ0
s (ω)) ds . (5.3.33)

Concerning the first two summands in (5.3.33), note that the identities

Vω(t, s) = Vω(t, 0)Vω(s, 0)−1 ,

Sω(t, s) = Sω(t, 0)Uω(s, 0)−1 + Vω(t, 0)Sω(s, 0)−1
(5.3.34)

allow to rewrite the stochastic integrals in such a way that the integrands
are adapted with respect to the filtration generated by {Ws}s�0. Now the
remainder of the proof follows closely the proof of Proposition 5.1.12, using
the relations (5.3.27). ��

Theorem 5.3.3 shows that typical solutions of the reduced system (5.3.23)
approximate solutions of the initial system (5.3.5) up to order σχ(2)

C (t)1/2 +
σ2χ

(1)
C (t), as long as χ(1)(t) 
 1/σ. Checking the validity of Condition (5.3.27)

for a reasonable stopping time τ is, of course, not straightforward, but it
depends only on the dynamics of the reduced system, which is usually easier
to analyse.

Example 5.3.4 (Pitchfork bifurcation). Assume the reduced equation has the
form

dz0t =
1
ε

[
y0
t z

0
t − (z0t )

3
]
dt+

σ√
ε

dWt,

dy0
t = dt,

(5.3.35)

i.e., there is a pitchfork bifurcation at the origin. We fix an initial time t0 < 0
and choose an initial condition (z0, y0) with y0 = t0, so that y0

t = t. In
Section 3.4 we proved that if σ � √

ε, the paths {zs}s�t0 are concentrated,
up to time

√
ε, in a strip of width of order σ/(|y0|1/2 ∨ ε1/4) around the

corresponding deterministic solution.
Using for τ the first-exit time from a set of this form, one finds that

χ
(2)
C (

√
ε) is of order

√
ε+σ2/ε and that χ(1)

C (
√
ε) is of order 1+σ/ε3/4. Thus,

up to time
√
ε, the typical spreading of zs around reduced solutions z0s is

at most of order σε1/4 + σ2/
√
ε, which is smaller than the spreading of z0s

around a deterministic solution. Hence the reduced system provides a good
approximation to the full system up to time

√
ε.
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From then on, however, χ(2)
C (t) grows like et

2/ε until the paths leave a
neighbourhood of the unstable equilibrium z = 0, which typically occurs at a
time of order

√
ε|log σ|. Thus the spreading is too fast for the reduced system

to provide a good approximation to the dynamics. This shows that Theo-
rem 5.3.3 is not quite sufficient to reduce the problem to a one-dimensional
one, and a more detailed description has to be used for the region of instability.

5.3.2 Hopf Bifurcation

In this section, we consider the case where the fast system admits a Hopf bi-
furcation point. In order to keep the discussion reasonably simple, rather than
considering the most general case, we will restrict our attention to situations
in which

• the diffusion coefficient for the fast variable depends only on the slow
variable,

• there is no noise term acting on the slow variable,
• the slow variable is one-dimensional, while the fast variable and the Brow-

nian motion are two-dimensional.

We shall thus consider slow–fast SDEs of the form

dxt =
1
ε
f(xt, yt) dt+

σ√
ε
F (yt) dWt ,

dyt = g(xt, yt) dt ,
(5.3.36)

under the following assumptions.

Assumption 5.3.5 (Hopf bifurcation).

• Domain and differentiability: There is an open set D ⊂ R 2 × R and an
open interval I ⊂ R such that f : D → R 2, g : D → R and F : I → R 2×2

are real-analytic, and uniformly bounded in norm by a constant M .
• Slow manifold: There is a function x� : I → R 2 such that (x�(y), y) ∈ D

and f(x�(y), y) = 0 for all y ∈ I.
• Hopf bifurcation: The Jacobian matrix A�(y) = ∂xf(x�(y), y) has complex

conjugate eigenvalues a�(y)± iω∗(y). There is a y0 ∈ I such that a�(y) has
the same sign as y − y0, and dya�(y0) is strictly positive. The imaginary
part ω�(y) is bounded away from 0 in I. Finally, g(0, y) > 0 for y ∈ I.

• Non-degeneracy of noise term: F (y)F (y)T is positive definite for all y ∈ I.

Neishtadt’s theorem (Theorem 2.2.12) shows that in the deterministic case
σ = 0, (5.3.36) admits a solution tracking the slow manifold at a distance of
order ε, provided we make I small enough. Performing a translation of the
fast variables to this particular solution, we can achieve that the drift term f
vanishes in x = 0. The system can thus be written in the form
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dxt =
1
ε

[
A(yt)xt + b(xt, yt)

]
dt+

σ√
ε
F (yt) dWt ,

dyt = g(xt, yt) dt ,
(5.3.37)

where A(y) is ε-close to A�(y), and b(x, y) is of order ‖x‖2. We denote the
eigenvalues of A(y) by a(y) ± iω(y).

We still have the possibility of further simplifying the system by perform-
ing an appropriate linear transformation. We may choose this transformation
either in such a way that the diffusion coefficient becomes the identity matrix,
or in such a way that the linear part of the drift term assumes some canonical
form. We will opt for the second possibility.

Lemma 5.3.6. There exists a nonsingular linear transformation x = S(y, ε)x̃,
casting the system (5.3.37) into the form

dx̃t =
1
ε

[
Ã(yt)x̃t + b̃(x̃t, yt)

]
dt+

σ√
ε
F̃ (yt) dWt ,

dyt = g̃(x̃t, yt) dt ,
(5.3.38)

where Ã(y) has the canonical form

Ã(y) =
(
ã(y) −ω̃(y)
ω̃(y) ã(y)

)
, (5.3.39)

with ã(y) = a(y) + O(ε) and ω̃(y) = ω(y) + O(ε).

Proof. For any invertible matrix S(y), the transformation x = S(y)x̃ yields a
system of the form (5.3.38) with

Ã(y) = S(y)−1A(y)S(y) − εS(y)−1S′(y)g̃(x̃, y) . (5.3.40)

It is always possible to choose S(y) in such a way that S−1AS =
(
a −ω
ω a

)
is in

canonical form. We may thus assume that A(y) is already in canonical form,
up to corrections of order ε, but with different correction terms depending on
the matrix element (e.g., the diagonal elements differ slightly). It then remains
to eliminate these differences. This can be done by constructing S =

(
1 s2
s1 1

)
and Ã in such a way that the system

εṠ = AS − SÃ (5.3.41)

admits a bounded solution. Writing out this system in components, one ob-
tains two algebraic and two closed differential equations, which can then be
analysed by the methods we previously developed. ��

In the sequel, we shall drop the tildes in (5.3.38), which amounts to con-
sidering the system (5.3.37) with A(y) in canonical form. We may further
assume, by translating y if necessary, that a(y) vanishes for y = 0.
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Consider now the linear approximation

dx0
t =

1
ε
A(ydet

t )x0
t dt+

σ√
ε
F (ydet

t ) dWt ,

dydet
t = g(0, ydet

t ) dt .
(5.3.42)

The Gaussian process x0
t has zero expectation and covariance matrix σ2X(t),

where X(t) satisfies the slow–fast ODE

εẊ = A(y)X +XA(y)T + F (y)F (y)T ,
ẏ = g(0, y) .

(5.3.43)

For negative y, bounded away from zero, we know from Section 5.1.1 that this
system admits an invariant manifold X = X(y, ε), where the matrix elements
of X(y, ε) remain of order 1. The question now is to know what happens as yt
approaches zero, where the ODE (5.3.43) admits a bifurcation point.

Lemma 5.3.7. The system (5.3.43) admits a solution X(yt, ε) whose eigen-
values grow like 1/|yt| for yt < −

√
ε, and stay of order 1/

√
ε for |yt| � √

ε.
For yt >

√
ε, the eigenvalues of X(yt, ε) grow exponentially fast in y2

t /ε.

Proof. Writing

X =
(
x1 x2

x2 x3

)
, F (y)F (y)T =

(
d1(y) d2(y)
d2(y) d3(y)

)
, (5.3.44)

and substituting into (5.3.43), one obtains the system

εẋ1 = 2a(y)x1 + 2ω(y)x2 + d1(y) ,
εẋ2 = 2a(y)x2 + ω(y)(x3 − x1) + d2(y) ,
εẋ3 = 2a(y)x3 − 2ω(y)x2 + d3(y) .

(5.3.45)

In particular, the trace of X satisfies the equation

ε
d
dt

TrX = 2a(y) TrX + Tr
(
F (y)F (y)T

)
. (5.3.46)

By our non-degeneracy assumption, the last term on the right-hand side is pos-
itive, bounded away from zero. Thus TrX behaves just as ζ(t) in Lemma 3.4.2.
It remains to prove that the eigenvalues of X behave like its trace. The eigen-
values can be expressed in terms of TrX, x2 and z = x3 − x1 as

1
2

[
TrX ±

√
z2 + 4x2

2

]
. (5.3.47)

The variables x2 and z satisfy the system

ε

(
ẋ2

ż

)
=

(
2a(y) ω(y)

−4ω(y) 2a(y)

) (
x2

z

)
+

(
d2(y)

d3(y) − d1(y)

)
. (5.3.48)
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x1

x2

y

B(h)

√
ε

S(h)

Fig. 5.6. Concentration sets of paths near a dynamic Hopf bifurcation point.

The square matrix has eigenvalues 2(a(y)± iω(y)), and is thus invertible near
y = 0. Equation (5.3.48) describes a particular (linear) case of a dynamic
Hopf bifurcation. Neishtadt’s theorem can thus be applied to show that both
variables remain of order 1 in a neighbourhood of y = 0, which completes the
proof. ��

This lemma shows that the domain

B(h) =
{
(x, y) ∈ D : y ∈ I, 〈x,X(y, ε)−1x〉 < h2

}
(5.3.49)

has a diameter of order h for negative y, bounded away from zero, which
then grows and reaches order h/ε1/4 for |y| � √

ε (Fig. 5.6). For larger y, the
diameter of B(h) grows exponentially fast. Our aim is now to compare the
first-exit time τB(h) of sample paths from B(h) with the first time

τ̄(y) = inf{t > 0: yt > y} (5.3.50)

at which yt reaches a given value y. The following result shows that sample
paths are concentrated in B(h) as long as yt � √

ε, provided σ � √
ε.

Theorem 5.3.8 (Stochastic Hopf bifurcation – stable phase). Fix an
initial condition (0, y0) ∈ B(h) with y0 � √

ε. Then there exist constants
ε0,∆0, h0, c1, L > 0 such that for all ε � ε0, all ∆ � ∆0, all γ ∈ (0, 1) and all
h � h0

√
ε,

P0,y0
{
τB(h) < τ̄(

√
ε)

}
� L

∆ε

1
1 − γ

e−κ+h
2/2σ2

, (5.3.51)

where the exponent κ+ satisfies

κ+ = γ
[
1 − c1(∆+ h2/ε)

]
. (5.3.52)

Proof. The proof resembles the proof of Proposition 5.1.13. The main differ-
ence lies in the estimate of the effect of nonlinear terms, see in particular
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Equation (5.1.65) in Proposition 5.1.11. On the one hand, the cubic nature of
the nonlinearity causes h to appear with a higher power. On the other hand,
the norm of X(y, ε) and the term Θ(t) grow as yt approaches zero. The ef-
fect of this growth can be controlled by replacing the bounds K± by bounds
K±(t, s), valid on the particular time interval under consideration. This yields
the error term h2/ε. ��

Consider now the dynamics after yt has reached
√
ε, still assuming that

σ � √
ε. We now expect sample paths to leave the vicinity of the equilibrium

branch at x = 0 exponentially fast. The escape is diffusion-dominated in a set
of the form

S(h) =
{
(x, y) : y >

√
ε, y ∈ I, ‖x‖ � hρ(y)

}
, (5.3.53)

where the appropriate definition of ρ(y) turns out to be

ρ(y) =

√
Tr(F (y)F (y)T)

2a(y)
. (5.3.54)

Then one can prove the following analogue of Theorem 3.2.2 and Theo-
rem 3.4.4:

Theorem 5.3.9 (Stochastic Hopf bifurcation – diffusion-dominated
escape). Let µ > 0, and set Cµ = (2 + µ)−(1+µ/2). Then, for any h and any
initial condition (x0, y0) ∈ S(h) such that σ < h < (y2

0Cµσ
1+µ)1/(3+µ), and

any y ∈ I with y � y0 ∨
√
ε,

Px0,y0
{
τS(h) � τ̄(y)

}
�

(
h

σ

)2µ

exp
{
−κµ

α(y, y0)
ε

}
, (5.3.55)

where α(y, y0) =
∫ y
y0
a(z) dz, and the exponent κµ is given by

κµ =
2µ

1 + µ

[
1 − O

(
ε
1 + µ

µ

)
− O

(
1

µ log(1 + h/σ)

)]
. (5.3.56)

Proof. As in Proposition 3.2.5 and Proposition 3.2.6, we introduce a partition
of [y0, y] by setting α(yk, yk−1) = ε∆. On each interval of the partition, we ap-
proximate xt by a Gaussian process xk,0t , obeying the linear equation (5.3.42)
with initial condition (xτ̄(yk−1), yk−1). The main difference with the proof of
Proposition 3.2.6 lies in the estimation of the term Pk,0, bounding the prob-
ability that the linear approximation xk,0t remains small (compare (3.2.26)
and (3.2.40)). A simple endpoint estimate shows that

Pk,0(x,H0) � Px,yk−1

{
‖xk,0τ̄(yk)‖ < H0ρ(yk)

}
� πH2

0ρ(yk)
2

2π
√

det Cov
(
xk,0τ̄(yk)

) . (5.3.57)
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Using the same representation of the eigenvalues of the covariance matrix as
in Lemma 5.3.7, we get√

detCov
(
xk,0τ̄(yk)

)
� σ2

2
ρ(yk)2

[
e2∆ − 1

]
inf

yk−1�z�yk

ρ(z)2

ρ(yk)2

×
[
1 − O

(
1

ρ(yk)4e4∆

)]
. (5.3.58)

The remainder of the proof is similar to the proof of Proposition 3.2.6. ��

The probability in (5.3.55) becomes small as soon as y is such that
α(y, y0) � ε(1 + µ) log(h/σ). Since α(y, y0) grows quadratically with y, we
can conclude that sample paths are likely to leave the domain S(h) after a
time of order

√
ε log(h/σ).

To complete the discussion, we should show that sample paths leave a
neighbourhood of order

√
y of the equilibrium branch as soon as y reaches

order
√
ε|log σ|, and then, if the Hopf bifurcation is supercritical, approach

the periodic orbit originating in the bifurcation. This analysis having not yet
been worked out in detail, we shall limit ourselves to giving an idea of how
one could proceed.

Using the Itô formula to pass to polar coordinates, one obtains a system
of the form

drt =
1
ε

[
a(yt)rt + br(rt, θt, yt)

]
dt+

σ√
ε
Fr(θt, yt) dWt ,

dθt =
1
ε

[
ω(yt) + bθ(rt, θt, yt)

]
dt+

σ√
ε

Fθ(θt, yt)
rt

dWt ,

(5.3.59)

where br contains terms of order r2 and σ2/r, and bθ contains terms of order
r and σ2/r2, while Fr and Fθ are of order 1. Note, in particular, that outside
S(σ), the terms of order σ2/r and σ2/r2, which are due to the second-oder
term in Itô’s formula, become negligible with respect to the leading part of
the corresponding drift term.

In the analysis, we are mainly interested in the dynamics of rt. As the
motion of θt occurs on a faster timescale as the motion of rt for small yt, we
expect the system (5.3.59) to be well-approximated by its averaged version

dr̄t =
1
ε

[
a(yt)r̄t + b̄r(r̄t, yt)

]
dt+

σ√
ε
Fr(yt) dWt . (5.3.60)

Now this equation is similar to the equation describing a dynamic pitchfork
bifurcation, studied in Section 3.4.

Bibliographic Comments

The results in Sections 5.1 and 5.3.1 have been developed in [BG03], while
the results of the other sections are presented here for the first time.
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There exist various related results on reduction of slow–fast stochastic
differential equations. The reduction to low-dimensional effective equations
near bifurcation points of stochastic ODEs or PDEs has been considered, e.g.,
in [Blö03, BH04]. The effect of noise on dynamic Hopf bifurcations has been
addressed in [SRT04] in the context of bursting in neural dynamics (see also
Section 6.3.2). The questions concerning averaging, encountered in particular
in situations with periodic orbits, are related to stochastic averaging, discussed
in particular in [Kif01a, Kif01b, Kif03, BK04].



6

Applications

In this last chapter, we illustrate the methods developed in Chapters 3 and 5,
by applying them to a few concrete examples. This will show what kind of
information can be obtained from the sample-path approach, and also which
aspects of the theory still need to be developed further.

In order to concentrate on physical implications, the examples we present
have been arranged by field of application, rather than by the type of mathe-
matical problem involved. In fact, it turns out that the same type of equation,
admitting an S -shaped slow manifold, appears in very different fields.1

• In Section 6.1, we consider two important examples of second-order differ-
ential equations perturbed by noise: The overdamped Langevin equation,
for which we examine the accuracy of the Smoluchowski approximation,
and the van der Pol oscillator forced by noise.

• In Section 6.2, we describe some simple climate models, which aim at estab-
lishing connections between the North-Atlantic thermohaline circulation
and warming events during Ice Ages. Here noise, modelling the influence
of unresolved degrees of freedom, may trigger transitions between climate
regimes, with far-reaching consequences.

• Section 6.3 reviews some of the basic models for action-potential genera-
tion in neurons, and discusses the phenomena of excitability and periodic
bursting.

• Finally, in Section 6.4 we examine the effect of noise on hysteresis in
a mean-field model of ferromagnets, and on the slow–fast dynamics of
Josephson junctions.

1This may be due, in part, to the fact that such bistable situations are in some
sense generic, especially the presence of saddle–node bifurcation points. It may also
be related to a widespread (and generally rewarding) tendency, when modelling a
specific system, to seek inspiration from similar phenomena in other fields.
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6.1 Nonlinear Oscillators

6.1.1 The Overdamped Langevin Equation

Langevin discussed the motion of a particle subject to viscous drag and white
noise [Lan08] (see [LG97] for a translation and comments), in order to provide
an alternative derivation of Einstein’s formula for the mean square displace-
ment of a Brownian particle [Ein05].

More generally, consider a particle of unit mass moving in a potential U(x),
subject to a viscous drag with coefficient γ and white noise of intensity σ0.
Its dynamics is governed by the SDE

d2xs
ds2

+ γ
dxs
ds

+ ∇U(xs) = σ0
dWs

ds
, (6.1.1)

also called Langevin equation by extension. For large damping, one often
considers this equation to be equivalent to the first-order equation

dxs
ds

= − 1
γ
∇U(xs) +

σ0

γ

dWs

ds
. (6.1.2)

The associated forward Kolmogorov equation is also called Smoluchowski
equation. Can we quantify how well the second-order system is approximated
by the first-order system?

As we have seen in Example 2.1.3, for large damping γ, and without the
noise term, one can write (6.1.1) in slow–fast form, using t = s/γ as slow time.
Incorporating the noise term one arrives at the SDE

dxt =
1
ε
(yt − xt) dt ,

dyt = −∇U(xt) dt+ σ dWt ,
(6.1.3)

where σ = σ0γ
−1/2 and ε = 1/γ2. This system is almost in the standard

form (5.0.1) considered in Chapter 5, the only particularity being that there
is no noise acting on the fast variables. Thus we cannot directly apply The-
orem 5.1.6 on concentration and Theorem 5.1.17 on reduction, which require
the noise term acting on the slow variables to be dominated by a noise term
acting on the fast ones. However, owing to the relatively simple form of the
system, it is still possible to derive analogous concentration and reduction
results.

We showed in Example 2.1.9 that in the deterministic case, the sys-
tem (6.1.3) admits an invariant manifold x = x̄(y, ε), where x̄(y, ε) satisfies
the PDE

ε∂yx̄(y, ε)∇U(x̄(y, ε)) = x̄(y, ε) − y , (6.1.4)

and admits an expansion of the form

x̄(y, ε) = y + ε∇U(y) + O(ε2) . (6.1.5)
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Thus if we can show that sample paths of the stochastic process are concen-
trated near the invariant manifold, solutions of the original system should be
well-approximated by those of the reduced system

dy0
t = −∇U(x̄(y0

t , ε)) dt+ σ dWt . (6.1.6)

In the limit ε→ 0, i.e., γ → ∞, this system becomes

dy0
t = −∇U(y0

t ) dt+ σ dWt , (6.1.7)

which validates (6.1.2) since x = y on the slow manifold.
The following result estimates the probability of sample paths deviating

from the invariant manifold. For simplicity, we shall assume that second-order
derivatives of the potential are uniformly bounded in R n. The result is easily
extended to situations where the derivatives are only bounded in an open
subset D ⊂ R n, by introducing an appropriate first-exit time.

Proposition 6.1.1. Assume that U : R n → R is twice continuously differen-
tiable, and all its derivatives up to order 2 are uniformly bounded. Then there
exist h0,∆0, c1 > 0 such that for any ρ ∈ (0, 1), ∆ � ∆0 and h � h0,

P x̄(y0,ε),y0
{

sup
0�s�t

‖xs − x̄(ys, ε)‖ > h

}
� Cn,ρ,∆(t, ε) exp

{
−κ h

2

εσ2

}
, (6.1.8)

where
κ = ρ

[
1 − c1(∆+ nε(εσ2/h2)h+ ε)

]
, (6.1.9)

and the prefactor is given by

Cn,ρ,∆(t, ε) =
(

1 +
t

∆ε

)[
(1 − ρ)−n/2 + en/4

]
. (6.1.10)

Proof. The deviation ξt = xt − x̄(yt, ε) satisfies an SDE of the form

dξt =
1
ε

[
−ξt + b(ξt, yt)

]
dt+ σ

[
1l + εG1(yt)

]
dWt , (6.1.11)

where b(ξ, y) contains terms of order ε‖ξ‖ and nε2σ2 (the latter stemming from
second-order terms in Itô’s formula), and G1(y) is bounded. The solution can
be represented as

ξt = σ

∫ t

0

e−(t−s)/ε dWs

+
1
ε

∫ t

0

e−(t−s)/εb(ξs, ys) ds+ εσ

∫ t

0

e−(t−s)/εG1(ys) dWs , (6.1.12)

where the first term on the right-hand side is an Ornstein–Uhlenbeck process
with asymptotic covariance (εσ2/2)1l. The probability of this term becoming
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large can be estimated by splitting the time interval and then proceeding as
in Lemma 5.1.8. The remainder of the proof follows along the lines of the
proof of Proposition 5.1.13. Since the domain of concentration considered has
a constant diameter, and the linear term in (6.1.11) does not depend on y,
there is however no need to control the deviation of yt from its deterministic
counterpart. Also, it is not necessary to restart the process after times of order
1, as in the general case. ��

The proposition shows that xt is unlikely to deviate from x̄(yt, ε) by much
more than σε1/2 = σ0γ

−3/2. Note that this is smaller than in the standard
case, where the typical spreading of paths has order σ, which is due to the
fact that the noise only acts indirectly on the fast variables via the coupling
with the slow ones.

Since xt is likely to remain close to x̄(yt, ε), the reduced system (6.1.6)
should give, as expected, a good approximation of the slow dynamics. Esti-
mating the deviation of the slow variables directly shows that there exists a
constant L such that

‖yt − y0
t ‖ � L

[
h2χ(1)(t) + (h2 + nεσ2)χ(1)

C (t)
]

(6.1.13)

holds, whenever t < τB(h) is such that χ(1)(t) and χ(1)
C (t) are at most of or-

der 1/h, where χ(1)(t) and χ(1)
C (t) are the analogues of the quantities defined

in (5.3.28), measuring the divergence of neighbouring solutions of the reduced
deterministic system. Thus, we can conclude that the Smoluchowski approxi-
mation is reliable with a precision of order σ2ε[χ(1)(t) + (n+ 1)χ(1)

C (t)] up to
these times t.

6.1.2 The van der Pol Oscillator

Van der Pol introduced the equation now bearing his name in order to describe
the dynamics of a triode [vdP20, vdP27], and was also the first to use the term
relaxation oscillations [vdP26]. See, for instance, [PRK01] for a brief historical
account of the oscillator’s discovery.

The van der Pol oscillator can be realised by the equivalent electric RCL
circuit depicted in Fig. 6.1. Its particularity is the nonlinear resistor denoted
r(v), whose resistance decreases when the voltage increases. Kirchhoff’s laws
imply that the voltage at the inductance, at the capacitor as well as at the
nonlinear resistor is given by

v = Ri+ u = R(i1 + i2 + i3) + u , (6.1.14)

so that

dv
dt

= R
d
dt

(
i1 + i2 + i3

)
+

du
dt

= R

(
v

L
+ C

d2v

dt2
+

d
dt

v

r(v)

)
+

du
dt

. (6.1.15)
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i1 i2 i3 R
i

L C r(v) u

Fig. 6.1. Van der Pol’s oscillating circuit includes an inductance L, a capacitor C
and two resistors, one of them with a resistance depending on the voltage.

This second-order differential equation can be rewritten as

d2v

dt2
+

1
RC

d
dt

(
Rv

r(v)
− v

)
+ ω2

0v = − 1
RC

du
dt

, (6.1.16)

where ω2
0 = 1/LC. Scaling time by a factor ω0 eliminates the factor ω2

0 from
the equation. The nonlinear resistance r(v) is a decreasing function of v, and
one usually assumes that r(v) is proportional to R/v2, where the propor-
tionality factor may be chosen equal to 1/3 by rescaling v. This yields the
dimensionless equation

d2x

dt2
+ γ

d
dt

(
1
3
x3 − x

)
+ x = −γ du

dt
, (6.1.17)

with γ = ω0/RC. For large damping γ (cf. Example 2.1.6), this equation is
equivalent to the slow–fast first-order system

εẋ = y + x− x3

3
,

ẏ = −x− u̇ ,

(6.1.18)

where ε = 1/γ2, and we have scaled time by a factor γ. The slow manifold of
this equation consists of three parts, connected by two saddle–node bifurcation
points, and the system displays relaxation oscillations (cf. Example 2.2.3).

Assume now that this system is perturbed by noise. If the noise term
were to act on the fast variable x, we would be in the situation considered
in Section 3.3, where we studied the saddle–node bifurcation with noise. In
particular, for noise intensities σ >

√
ε, sample paths would be likely to switch

between stable slow manifolds already at a time of order σ4/3 before reaching
the bifurcation point. This would decrease the size of typical cycles.

Another situation arises when, say, the voltage u of the power supply is
random and described by white noise. Consider the SDE

dxt =
1
ε

(
yt + xt −

x3
t

3

)
dt ,

dyt = −xt dt+ σ dWt .

(6.1.19)
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(a) (b)x

y

x�
0(y)

x�
−(y)

x�
+(y) x

y

x�
0(y)

x�
−(y)

x�
+(y)

Fig. 6.2. Sample paths of the van der Pol Equation (6.1.19) with noise added on
the slow variable y, for ε = 0.001 and (a) σ = 0.2, (b) σ = 0.8.

The interesting part of the dynamics takes place near the saddle–node bifur-
cation points. Let (xc, yc) denote one of them, say, (xc, yc) = (1,− 2

3 ). The
local dynamics of (x̃t, ỹt) = (xt− xc,−(yt− yc)) near this bifurcation point is
a small perturbation

dx̃t =
1
ε

(
−ỹt − x̃2

t

)
dt ,

dỹt = dt+ σ dWt

(6.1.20)

of the normal form. Recall that in the deterministic case σ = 0, there is
an adiabatic solution x̄(ỹt, ε), tracking the slow manifold x�(y) = |y|1/2 at
a distance increasing like ε/|ỹt| for ỹt � −ε2/3. The noise-induced deviation
ξt = x̃t − x̄(ỹt, ε) from this solution satisfies the SDE

dξt =
1
ε

[
a(ỹt)ξt − ξ2t − 1

2
σ2ε∂yyx̄(ỹt, ε)

]
dt+ σg(ỹt) dWt , (6.1.21)

where the linearised drift term

a(y) = −2x̄(y, ε) (6.1.22)

behaves like −|y|1/2 for y � −ε2/3, and the effective noise intensity

g(y) = −∂yx̄(y, ε) (6.1.23)

behaves like |y|−1/2 for y � −ε2/3. The linear approximation

dξ0t =
1
ε
a(ỹdet

t )ξ0t dt+ σg(ỹdet
t ) dWt (6.1.24)

turns out to have a variance growing like σ2ε/|ỹdet
t |3/2, so that the typical

spreading of sample paths around the adiabatic solution in the fast direction
is of order σε1/2/|ỹt|3/4. There are thus two situations to be considered:
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• If σ < ε1/3, the maximal spreading of paths near the bifurcation point is
simply of order σ, and thus smaller than the distance between adiabatic
solutions tracking the stable and unstable equilibrium branches, which
has order ε1/3. As a consequence, sample paths are unlikely to make a
transition to the other stable slow manifold before passing the bifurcation
point (Fig. 6.2a).

• If σ > ε1/3, the typical spreading of paths becomes comparable to the
distance between stable and unstable adiabatic solutions for yt of order
−σ4/5ε2/5, and transitions to the other stable slow manifold become pos-
sible (Fig. 6.2b).

The situation is thus similar to the situation of noise acting on the fast
variable, only the threshold noise intensity necessary for early transitions to
happen is much higher, due to the fact that noise only enters indirectly via
the coupling with to the slow variables.

6.2 Simple Climate Models

Describing the evolution of the Earth’s climate over time spans of several
millennia seems an impossible task. Nonetheless, numerous models have been
developed, which try to capture the dynamics of the more relevant quantities,
for instance atmosphere and ocean temperatures averaged over long time in-
tervals and large volumes (for an overview of various climate models, see, for
instance, [Olb01]). Among these models, one distinguishes the following:

• General Circulation Models (GCMs), which are discretised versions of par-
tial differential equations governing the atmospheric and oceanic dynamics,
and including the effect of land masses, ice sheets, etc.

• Earth Models of Intermediate Complexity (EMICs), which concentrate
on certain parts of the climate system, and use a more coarse-grained
description of the remainder.

• Simple conceptual models, such as box models, whose variables are quan-
tities averaged over very large volumes, and whose dynamics are based on
global conservation laws.

While the first two types of models can only be analysed numerically, mod-
els of the third type are usually chosen in such a way that they are accessible
to analytic methods, and can be used to gain some insight into the basic
mechanisms governing the climate system. Still, even the most refined GCMs
have limited resolution, with high-frequency and short-wavelength modes be-
ing neglected.

Several means exist to include the effect of unresolved degrees of freedom
in the model. A first method, called parametrisation, assumes that the unre-
solved degrees of freedom can be expressed as a function of the resolved ones
(like fast variables are enslaved by the slow ones on a stable slow manifold
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of a slow–fast system). The parametrisation is then chosen on more or less
empirical grounds. This procedure is analogous to the one used in the kinetic
theory of gases. A second method consists in averaging the equations for the
resolved degrees of freedom over the unresolved ones, using, if possible, an
invariant measure of the unresolved system in the averaging process.

A third approach, which was – in the context of climate models – proposed
by Hasselmann in 1976 ([Has76], see also [Arn01]), is to model the effect of
unresolved degrees of freedom by a noise term. This approach has not yet been
rigorously justified, though some partial results exist (e.g. [Kha66, Kif01a,
Kif01b, Kif03, BK04, JGB+03]); in particular, deviations from the averaged
equations can often be proved to obey a central limit theorem. Anyhow, the
stochastic approach has by now been used in numerous case studies, and
has the advantage of providing a plausible model for certain rapid transition
phenomena observed in the climate system. The examples presented here have
partly been discussed in [BG02c].

6.2.1 The North-Atlantic Thermohaline Circulation

The dynamics of the Earth’s oceans is characterised by a complicated system
of surface, intermediate-depth and bottom currents, driven by thermal and
haline (i.e., salinity) differences. In particular, the North-Atlantic thermoha-
line circulation (THC) transports enormous quantities of heat from the tropics
as far North as the Barents Sea, causing the comparatively mild climate of
Western and Northern Europe. The northward Gulf Stream is compensated
by southward deep currents of cold water, originating for the most part from
deep-water-formation regions located in the Greenland and Labrador Seas.

It is believed, however, that the situation has not always been like that in
the past, and that during long time spans, the THC was locked in a stable state
with far less heat transported to the North (see for instance [Cro75, Rah95,
Mar00]). This on-and-off switching of the THC might be responsible for the
repeated occurrence of minor Ice Ages during the last several ten thousand
years, the so-called Dansgaard–Oeschger events.

A simple model for oceanic circulation exhibiting bistability is Stommel’s
box model [Sto61], where the North Atlantic is represented by two boxes,
a low-latitude box with temperature T1 and salinity S1, and a high-latitude
box with temperature T2 and salinity S2 (Fig. 6.3). Here we will follow the
presentation in [Ces94], where the intrinsic dynamics of salinity and of tem-
perature are not modelled in the same way. The differences ∆T = T1−T2 and
∆S = S1 − S2 are assumed to evolve in time s according to the equations

d
ds
∆T = − 1

τr
(∆T − θ) −Q(∆ρ)∆T ,

d
ds
∆S =

F

H
S0 −Q(∆ρ)∆S .

(6.2.1)
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low latitudes
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Q(∆ρ)

F

Fig. 6.3. Stommel’s box model for the North-Atlantic thermohaline circulation.
Differences in insolation and an atmospheric freshwater flux induce differences in
temperature and salinity between low- and high-latitude boxes. The resulting density
difference drives a northward surface current and a southward bottom current.

Here τr is the relaxation time of ∆T to its reference value θ, S0 is a reference
salinity, and H is the depth of the model ocean. F is the freshwater flux, mod-
elling imbalances between evaporation (which dominates at low latitudes) and
precipitation (which dominates at high latitudes). The dynamics of ∆T and
∆S are coupled via the density difference ∆ρ, approximated by the linearised
equation of state

∆ρ = αS∆S − αT∆T , (6.2.2)

which induces an exchange of mass Q(∆ρ) between the boxes. We will use
here Cessi’s model [Ces94] for Q,

Q(∆ρ) =
1
τd

+
q

V
∆ρ2 , (6.2.3)

where τd is the diffusion timescale, q the Poiseuille transport coefficient and V
the volume of the box. Stommel uses a different relation, with ∆ρ2 replaced
by |∆ρ|, but we will not make this choice here because it leads to a singularity
(and thus adds some technical difficulties which do not lie at the heart of our
discussion here).

Using the dimensionless variables x = ∆T/θ and y = αS∆S/(αT θ), and
rescaling time by a factor τd, (6.2.1) can be rewritten as

εẋ = −(x− 1) − εx
[
1 + η2(x− y)2

]
,

ẏ = µ− y
[
1 + η2(x− y)2

]
,

(6.2.4)

where ε = τr/τd, η2 = τd(αT θ)2q/V , and µ is proportional to the freshwater
flux F , with a factor αSS0τd/(αT θH). Cessi uses the estimates η2 � 7.5,
τr � 25 days and τd � 219 years. This yields ε � 3×10−4, implying that (6.2.4)
is a slow–fast system.
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µµ+µ−

y strong circulation

weak circulation

Fig. 6.4. Bifurcation diagram of the reduced equation, shown here for η2 = 7.5. For
freshwater fluxes in an interval µ ∈ (µ−, µ+), there are two possible stable states
for the thermohaline circulation. The upper branch corresponds to larger salinity
differences, and thus to a more important mass (and heat) transport to the North
Atlantic.

As already pointed out in Example 2.1.5, the slow–fast system (6.2.4)
admits a slow manifold of the form x�(y) = 1 + O(ε), which is uniformly
asymptotically stable (for y in a bounded set). By Fenichel’s theorem, there
exists an invariant manifold x = x̄(y, ε) = 1 + O(ε), on which the flow is
governed by the reduced equation

ẏ = ḡ(y, ε) , with ḡ(y, ε) = µ− y
[
1 + η2(x̄(y, ε) − y)2

]
. (6.2.5)

Note that an affine transformation brings ḡ(y, 0) = µ− y
[
1 + η2(1− y)2

]
into

a more familiar cubic form, namely

g(u, 0) := ηḡ
(

2
3

+
u

η
, 0

)
= η

[
µ− 2

3
− 2

27
η2

]
+

[
1
3
η2 − 1

]
u− u3 . (6.2.6)

Thus ḡ(y, 0) admits three roots if η2 > 3 and µ belongs to an interval centred
in (µ−, µ+), where

µ± =
2
3

+
2
27
η2 ± 2

3
√

3η

[
1
3
η2 − 1

]3/2

, (6.2.7)

and one root if µ �∈ [µ−, µ+]. For µ = µ±, the system admits two saddle–node
bifurcation points. In other words, Stommel’s box model displays bistability
for freshwater fluxes in a certain range. If the freshwater flux, i.e., µ, is too
small, then there is only one equilibrium point, corresponding to a small salin-
ity difference, and thus to a small mass exchange. If µ is too large, then there
also is only one equilibrium, but this time it corresponds to large ∆S and Q.

Let us now turn to random perturbations of the equations (6.2.4), in which
the additional noise term will enable transitions between the stable states. We
consider the situation where the freshwater flux is perturbed by white noise,
modelling weather fluctuations which are basically uncorrelated, while the
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temperature dynamics is perturbed by an Ornstein–Uhlenbeck process.2 The
resulting equations read

dxt =
1
ε

[
−(xt − 1) − εxt

(
1 + η2(xt − yt)2

)]
dt+ dξt ,

dyt =
[
µ− yt

(
1 + η2(xt − yt)2

)]
dt+ σ2 dW 2

t ,
(6.2.8)

where the Ornstein–Uhlenbeck process ξt is given by

dξt = −γ
ε
ξt dt+

σ1√
ε

dW 1
t . (6.2.9)

Note that we chose to adapt the noise intensity and relaxation time to the fast
timescale. This system can be rewritten in canonical form for fast variables
(x, ξ) and one slow variable y, with a fast drift term

f(x, ξ, y) =
(
−(x− 1) − εx

(
1 + η2(x− y)2

)
− γξ
− γξ

)
, (6.2.10)

a slow drift term
g(x, y) = µ− y

(
1 + η2(x− y)2

)
, (6.2.11)

and diffusion matrices

F =
(

1 0
1 0

)
, G =

(
0 1

)
. (6.2.12)

The linearisation of the fast drift coefficient around the invariant manifold has
the form A (x, ξ)T, with

A =
(
−1 −γ

0 −γ

)
+ O(ε) , (6.2.13)

and a direct computation shows that the solution of the Lyapunov equation
AX +XAT + FFT = 0 is given by

X� =

⎛⎜⎜⎝
1

2(1 + γ)
1

2(1 + γ)
1

2(1 + γ)
1
2γ

⎞⎟⎟⎠ + O(ε) . (6.2.14)

Recall that the asymptotic covariance of the process linearised around the
slow manifold is of the form σ2

1(X� + O(ε)). The term σ2
1/2γ is simply the

asymptotic variance of the Ornstein–Uhlenbeck process ξt. The other matrix
elements describe the variance of xt − 1, and the covariance of xt − 1 and ξt

2A different scaling of noise intensities arises when the perturbation acts on the
mass exchange term, as for instance in [Mon02].
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in the linear approximation. Theorem 5.1.6 then shows that sample paths of
the nonlinear system are concentrated in a set of the form

B(h) =
{
(x, ξ, y) : (x− x̄(y, ε), ξ)X(y, ε)−1(x− x̄(y, ε), ξ)T < h2

}
, (6.2.15)

where X(y, ε) = X�(y) + O(ε), whenever h � σ1. We see in particular that
larger damping γ yields a smaller spreading of typical sample paths.

The reduced stochastic equation has the form

dy0
t =

[
µ− y0

t

(
1 + η2(1 − y0

t )
2
)

+ O(ε)
]
dt+ σ2 dW 2

t , (6.2.16)

and describes, for appropriate µ, a bistable one-dimensional system with noise.
There will thus be rare transitions between the two stable states, unless the
freshwater flux µ is close to one of the two thresholds µ±, and the probability
of transitions (in one direction) increases. The closer µ gets to its lower critical
value µ−, the more likely transitions from warm to cold climate in Northern
Europe become.

6.2.2 Ice Ages and Dansgaard–Oeschger Events

We already mentioned in Chapter 4 that the discovery of stochastic resonance
originated in an attempt to model the regular occurrence of major Ice Ages by
a stochastic differential equation. The climate during major Ice Ages, however,
has not been uniformly cold. The analysis of ice cores from the Greenland ice
sheet has revealed the existence of repeated sudden warming events, in a time
span between roughly 80 000 and 10 000 years before present (Fig. 6.5). These
temperature increases are called Dansgaard–Oeschger (DO) events . A remark-
able aspect of DO events is that they appear to be governed by a 1470-year
cycle: Although they do not occur periodically, the time spans between DO
events are close to multiples of 1470 years [DJC93, Sch02b, Sch02a, Rah03].

One of the hypotheses that have been put forward to explain this cycle is
that DO events are caused by periodic changes in the freshwater flux driving
the North-Atlantic thermohaline circulation. Such a periodic change can have
various origins (cf. [TGST03]):

• Feedback: The atmospheric temperature gradient between low and high
latitude, which depends on the intensity of the THC, influences the north-
ward moisture transport (see for instance [PS02]).

• External periodic forcing : The system is driven by a periodic change of
some external factor, e.g., the insolation (Milankovitch factors).

• Internal periodic forcing: The climate system itself displays a periodic
oscillation, due to its intrinsic dynamics, for instance as a consequence of
a Hopf bifurcation (see, e.g., [SP99]).

To describe the first situation, i.e., feedback, consider the following modi-
fication of (6.2.8):
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Fig. 6.5. Oxygen isotope (δ18O) record from the GISP2 Greenland ice core
drilling [GS97]. The isotope concentration gives an indication of the average temper-
ature in Greenland, shown here for a period between 60 000 and 10 000 years before
present. The vertical lines are equally spaced by 1470 years. Dansgaard–Oeschger
(DO) events are represented by rapid increases in the temperature. (Data provided
by the National Snow and Ice Data Center, University of Colorado at Boulder,
and the WDC-A for Paleoclimatology, National Geophysical Data Center, Boulder,
Colorado. http://arcss.colorado.edu/data/gisp grip.)

dxt =
1
ε0

[
−(xt − 1) − ε0xt

(
1 + η2(xt − yt)2

)]
dt+

σ√
ε0

dW 0
t ,

dyt =
[
zt − yt

(
1 + η2(xt − yt)2

)]
dt+ σ1 dW 1

t , (6.2.17)

dzt = εh(xt, yt, zt) dt+
√
εσ2 dW 2

t ,

where we have chosen a white-noise perturbation of x for simplicity. The
new feature is that the freshwater flux zt changes according to some, as
yet unspecified, function h of all variables. We also introduced three well-
separated timescales for the variations of temperature, salinity and freshwater
flux, whose ratios are measured by small parameters ε0 and ε.

By Theorem 5.1.17, we may consider, at least up to some timescale, the
stochastic system projected onto the adiabatic manifold x = x̄(y, z, ε0), where
x̄(y, z, ε0) = 1+O(ε0). Speeding up time by a factor ε, we arrive at the system

dyt =
1
ε

[
zt − yt

(
1 + η2(1 − yt)2

)
+ O(ε0)

]
dt+

σ1√
ε

dW 1
t ,

dzt = h(1 + O(ε0), yt, zt) dt+ σ2 dW 2
t .

(6.2.18)

The drift term for the (now) fast variable y vanishes on the S -shaped curve
of equation z = y(1+η2(1−y)2)+O(ε0), which contains two saddle–node bi-
furcation points. In fact, up to an affine transformation, (6.2.18) is equivalent
to the van der Pol oscillator, at least as far as the fast dynamics is concerned.
If the function h is positive in a neighbourhood of the upper stable equilib-
rium branch, and negative in a neighbourhood of the lower stable branch,
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(a) (b)

Fig. 6.6. Examples of residence-time distributions in the cold stadial (a) and warm
interstadial state (b), for a period T = 7 and values of the Kramers times chosen
to fit the observations.

the system will display relaxation oscillations (compare Section 6.1.2). For
sufficiently large noise intensity, Theorem 3.3.4 shows that transitions from
one stable state to the other one are likely to occur before the saddle–node
bifurcation is reached, that is, before the freshwater flux reaches its critical
value µ+ or µ−.

In order to describe the situations with external or internal periodic forc-
ing, rather than feedback, we take, instead of an additional dynamic variable z,
a time-periodic freshwater flux µ(t) (see, e.g., [VBAC+01, GR02]). This yields
a reduced equation

dyt =
1
ε

[
µ(t) − yt

(
1 + η2(1 − yt)2

)
+ O(ε0)

]
dt+

σ1√
ε

dW 1
t . (6.2.19)

The adiabatic parameter ε is given by the ratio of the diffusion time scale
τd (219 years) and the forcing period of 1470 years, that is, ε � 0.15. The
behaviour depends essentially on the range of the freshwater flux µ(t). If it
remains within the interval (µ−, µ+) in which the frozen system is bistable,
we are in a situation where stochastic resonance can occur.3

In Section 4.1.4 we computed the residence-time distribution for a sym-
metric bistable system subject to a periodic forcing. The only new feature
in the asymmetric case is that the first-passage-time distributions from the
left to the right equilibrium state and from the right to the left equilibrium
state can differ, due in particular to different values of the quasipotential. The
general expression for the densities of the residence-time distributions in the
two equilibrium states is

q±(t) =
1

N±
e−t/T

±
K (σ)

T±
K (σ)

f±trans(t)Q
∆±
λT (t/T ) . (6.2.20)

Here N± is the normalisation making q±(t) a probability density. The T±
K (σ)

are the Kramers times for leaving the respective equilibrium state, f±trans(t)

3Note that SR has been proposed as a mechanism at work in other related fields,
e.g., in geodynamo models [LSCDM05].
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are transient terms approaching 1 in a time of order |log σ|, λ is the Lyapunov
exponent of the unstable orbit separating the basins of attraction of the two
stable states, and T is the period of the forcing. The two quantities ∆+ and
∆− = T −∆+ are phase shifts depending on the location of the most probable
exit paths, and the Q∆

λT are universal periodic modulations given by

Q∆
λT (t) =

λT

2

∞∑
k=−∞

1
cosh2(λT (t+∆/T − k))

. (6.2.21)

The difference between the residence-time distributions q±(t) in the two equi-
librium states is mainly due to the different values of the Kramers times
T±

K (σ), which control the decay of the peaks. It is possible to find parameter
values reproducing the behaviour seen in Fig. 6.5, where the system typically
spends only half a period in the warm state, while in can spend several periods
in the cold state.

Note that both for a freshwater flux influenced by feedback or by external
periodic forcing, we started with a three-timescale system, that we reduced in
two successive steps. The climate system is characterised by a whole hierar-
chy of further timescales, with different periodic behaviours influencing each
other (see, for instance, [SPT02, KST04]). Singular perturbation theory al-
lows these timescales to be treated successively, provided they are sufficiently
well separated.

6.3 Neural Dynamics

Neurons communicate by generating action potentials, that is, abrupt changes
in the electrical potential across the cell’s membrane. These potential changes
then propagate away from the cell body along axons, essentially without
changing their shape. It is commonly admitted in neuroscience that the shape
of these spikes does not carry any information; rather, it is the frequency of
successively emitted spikes that is responsible for information transmission
between neurons.

Much effort has gone into the mathematical modelling of the generation of
action potentials. These are built up by flows of ions, mainly sodium, calcium
and potassium, through the cell membrane. The fast activation of ion channels
triggers a relatively slower process of inactivation, responsible for the ultimate
decay of the spike.

One of the first mathematical models capturing the dynamics of action-
potential generation is a four-dimensional ODE introduced by Hodgkin and
Huxley in 1952 [HH52], which is based on an equivalent electric circuit.4 The

4Another class of neural models are the integrate-and-fire models, also based
on an equivalent electric circuit. In these models, firing occurs upon the membrane
potential reaching a threshold, and the membrane potential is reset afterwards. We
will not discuss this class of models here.



208 6 Applications

evolution of the action potential v is modelled by the equation

Cv̇ = GNam
3h(VNa − v) +GKn

4(VK − v) +GL(VL − v) + i(t) , (6.3.1)

where the Gx, x ∈ {Na,K,L}, are constant conductivities, the Vx are constant
reference potentials, and i(t) is an external current. The dynamic variables
m, h and n control, respectively, sodium activation, sodium inactivation and
potassium activation. They obey linear ODEs

τm(v) ṁ = m�(v) −m ,

τh(v) ḣ = h�(v) − h , (6.3.2)
τn(v) ṅ = n�(v) − n ,

in which the v-dependence of relaxation times τx(v), x ∈ {m,h, n}, and equi-
librium values x�(v) are fitted to experimental data. The equilibrium values
are monotonous in v and approach constants in both limits v → ±∞.

This model was later simplified to yield various two-dimensional approxi-
mations. These are based, firstly, on the experimental observation that τm(v)
is much shorter than τh(v) and τn(v). The system can thus be reduced to
the slow manifold m = m�(v). Secondly, one observes that h + n is approxi-
mately constant, so that it suffices to keep one of these variable. This yields
a two-dimensional approximation of general dimensionless form

εẋ = f(x, y) + i(t) ,
ẏ = g(x, y) ,

(6.3.3)

where x is proportional to the action potential v, and y is proportional to n.
The parameter ε turns out to be (moderately) small because the relaxation
time of v is somewhat shorter than τh(v) and τn(v). For instance, the Morris–
Lecar model [ML81], which was devised for giant barnacle (Balanus nubilus)
muscle fibres, assumes that

f(x, y) = c1m
�(x)(1 − x) + c2y(V2 − x) + c3(V3 − x) ,

g(x, y) =
(
w�(x) − y

)
cosh

(
x− x3

x4

)
,

(6.3.4)

where the ci, Vi and xi are constants, and

m�(x) =
1
2

[
1 + tanh

(
x− x1

x2

)]
,

w�(x) =
1
2

[
1 + tanh

(
x− x3

x4

)]
.

(6.3.5)

The function f(x, y) is also often fitted to experimental data rather than
deduced from the Hodgkin–Huxley equations. In particular, the Fitzhugh–
Nagumo model [Fit61, NAY62] postulates
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f(x, y) = x− x3 + y ,

g(x, y) = α− βx− γy ,
(6.3.6)

yielding a generalisation of the van der Pol equations.
Among the typical behaviours of action potentials, the following are of

particular interest to the mathematical modeller.

1. Excitability: A weak perturbation of a system at rest (called quiescent)
causes the generation of a spike, i.e., an abrupt increase of the action
potential, at the end of which the system returns to rest.

2. Bursting: The neuron activity alternates between quiescent phases and
phases of repetitive spiking, during which the period and amplitude of
spikes are slowly modulated.

An extensive classification of bifurcation scenarios in ODEs leading to
these and other spiking behaviours can be found in [Izh00]. Among the pos-
sible perturbations causing an excitable system to spike, one may consider
stochastic perturbations. See, for instance, [Tuc89] for an overview of stochas-
tic models in neuroscience, and [Lon93, PM04] for studies of specific noise-
induced phenomena.

6.3.1 Excitability

A dynamical system is called excitable if it admits an asymptotically stable
equilibrium point, but is such that a small change in a parameter would make
the point unstable, while creating a stable periodic orbit. In other words, an
excitable system operates close to a bifurcation point, and is thus sensitive to
small perturbations away from the stable equilibrium.

One distinguishes between two types of excitability. In Type I, the period of
the stable periodic orbit diverges as the bifurcation parameter approaches its
threshold value. In Type II excitability, orbits of finite period appear as soon
as the bifurcation parameter crosses its threshold. The type of excitability dis-
played by a specific system depends on the nature of the involved bifurcation.

A typical bifurcation yielding Type I excitability is the saddle–node-to-
invariant-circle bifurcation. It occurs in the Morris–Lecar model for certain
parameter values. The slow manifold f(x, y) = 0 is typically S -shaped, con-
sisting of one unstable and two stable branches. These branches meet at
saddle–node bifurcation points. Assume the nullcline g(x, y) = 0 intersects
the unstable branch twice and one of the stable branches once (Fig. 6.7a).
The intersection with the stable branch is a stable equilibrium point of the
equations (usually a node), while the other intersections are unstable, at least
one of them being of saddle type. Assume further that both unstable mani-
folds of the saddle closest to the node are attracted by the node. When the
nullcline g(x, y) = 0 moves towards the saddle–node bifurcation point, one of
the two unstable manifolds shrinks until the saddle and the node meet and
then vanish. In the process, the unstable manifolds have been replaced by a
periodic orbit.
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(a) (b)x

yf(x, y) = 0

g(x, y) = 0 x

yf(x, y) = 0

g(x, y) = 0

Fig. 6.7. Typical examples of excitable slow–fast systems. The intersections of
nullclines g(x, y) = 0 (dotted curves) and stable (full heavy curves) or unstable
(broken heavy curves) branches of the slow manifold f(x, y) = 0 are equilibrium
points, marked by small circles. (a) For Type I excitability, both unstable manifolds
of the saddle point are attracted by a close-by node. (b) For Type II excitability,
certain trajectories pass close to a stable equilibrium point, but then make a large
excursion before converging to this point. In both cases, a small displacement of the
nullcline can produce a periodic orbit.

It is possible to describe this bifurcation by an equivalent one-dimensional
equation for a variable θ, measuring the position on the unstable manifolds
or periodic orbit, respectively. A nonlinear transformation of space and time
brings the equation for θ into canonical form

θ̇ = (1 − cos θ) + (1 + cos θ)λ , (6.3.7)

where λ is the bifurcation parameter (see, for instance, [Izh00, Theorem 1,
p. 1180]). Note that the right-hand side derives from a “washboard potential”

U(θ) = −(1 + λ)θ + (1 − λ) sin θ . (6.3.8)

For λ > 0, the right-hand side of (6.3.7) is always positive, so that θ increases
monotonously, meaning that, in this case, there is a periodic orbit, and U(θ)
is a monotonously decreasing function of the position θ. For λ < 0, pairs
of stable and unstable equilibrium points appear, meaning that U(θ) admits
pairs of minima and maxima. In that case, there are thus potential barriers,
placed periodically, of height of order |λ|1/2 (for small |λ|).

Adding noise to the equation (6.3.7) makes it possible for solutions to
overcome the potential barriers, the expected time between transitions being
exponentially large in |λ|1/2/σ2 for noise intensity σ. Each time a potential
barrier is crossed, the system relaxes to the bottom of the next potential well.
In the original variables, all potential wells correspond to the unique stable
equilibrium point, and the barrier crossings and subsequent relaxation events
correspond to spiking behaviour.
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One can determine the relation of the fictive bifurcation parameter λ
in (6.3.7) to the actual parameters in the Morris–Lecar model in the fol-
lowing way. Assume that the nullcline g(x, y) = 0 lies at a horizontal distance
δ from the saddle–node bifurcation point (xc, yc) of the slow manifold. The lo-
cal dynamics near this bifurcation point is a small perturbation of the normal
form

ε ˙̃x = −ỹ − x̃2 ,

˙̃y = −δ − ỹ ,
(6.3.9)

where x̃ = x − xc and ỹ = −(y − yc). The equilibrium points of the normal
form are located at x̃ = ±δ1/2, ỹ = −δ. If noise of intensity σ/

√
ε is added to

the fast variable x̃, the effective dynamics is governed by the equation

dx̃t =
1
ε

[
δ − x̃2

t

]
dt+

σ√
ε

dWt . (6.3.10)

The drift term δ− x̃2
t derives from a potential with a barrier of height propor-

tional to δ3/2. In analogy with the results of Section 4.2.2, we conclude that
spikes are rare if σ 
 δ3/4, and frequent if σ � δ3/4.

A typical bifurcation yielding Type II excitability is the Hopf bifurcation.
It occurs, e.g., in the (unforced) Fitzhugh–Nagumo equations

εẋ = x− x3 + y ,

ẏ = α− βx− γy .
(6.3.11)

The slow manifold is given by the S -shaped curve of equation y = x3 − x.
The dynamics depends crucially on the location of the nullcline βx+ γy = α.
If it only intersects the unstable part of the slow manifold, then the system
performs relaxation oscillations like the van der Pol oscillator. If, however, the
nullcline intersects one of the stable branches of the slow manifold (Fig. 6.7b),
this intersection is a stable equilibrium point (of focus type if the intersection
is close to the saddle–node point on the slow manifold). Though it may not
be obvious from the picture, when the nullcline moves below the saddle–
node point, the system undergoes a Hopf bifurcation, and a periodic orbit of
rapidly growing diameter appears. The most important fact is that before the
bifurcation, there can be trajectories closely missing the stable equilibrium,
and making a large excursion before actually reaching the equilibrium point.
A small perturbation can induce another excursion, corresponding to a spike.

Consider for instance the case α = xc + δ, β = 1, γ = 0, where (xc, yc) =
(1/

√
3,−2/3

√
3), is the location of the saddle–node bifurcation point, and δ

is a small parameter. The local dynamics near the bifurcation point can be
described by the normal form

ε ˙̃x = −ỹ − x̃2 ,

˙̃y = x̃− δ̃ ,
(6.3.12)
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(a) (b)x̃

ỹ

z�

bx(ỹ, ε)

x̃

ỹ

Fig. 6.8. Dynamics of the normal form (6.3.12) describing the dynamics, near a
saddle–node bifurcation point, of a system displaying Type II excitability. (a) With-
out noise, trajectories starting above and to the left of the particular solution bx(ỹ, ε),
which delimits spiking and non-spiking behaviour, are attracted by the equilibrium
point z�. Those starting below and to the right escape a neighbourhood of the bifur-
cation point. In the original system (6.3.11), they ultimately converge to z�, having
made a large excursion which corresponds to a spike. (b) Noise can cause sample
paths to leave the vicinity of z�, cross bx(ỹ, ε) and thus produce a spike.

where x̃ =
√

3(x− xc), ỹ = −
√

3(y − yc), and δ̃ =
√

3δ. Trajectories tracking
the stable slow manifold x̃ =

√
−ỹ converge to a stable equilibrium point

z� = (δ̃,−δ̃2). A special rôle is played by the trajectory of equation x̃ =
x̂(ỹ, ε) tracking the unstable slow manifold x̃ = −

√
−ỹ. It separates the (local)

basins of attraction of z� and the orbits escaping to negative x̃ (Fig. 6.8a).
In the global system (6.3.11), of course, these orbits ultimately return to the
equilibrium point, but only after having followed the lower stable branch of
the slow manifold. We can thus consider the trajectory x̂(ỹ, ε) as delimiting
spiking and non-spiking behaviour.

Adding noise to the system results in sample paths making excursions
away from z�. Occasionally, a sample path will reach and cross x̂(ỹ, ε), and
the system will spike (Fig. 6.8b). Shape and duration of spikes will be close
to their deterministic value, but the time between spikes will be random, as
it is related to the activation process of going from z� to x̂(ỹ, ε).

6.3.2 Bursting

A neuron is said to exhibit periodic bursting behaviour if it switches period-
ically between quiescent phases, and phases of repetitive spiking. Often the
shape and frequency of the spikes are slowly modulated, on a timescale which
is much longer than the timescale of individual spike generation. In this case,
the system can be modelled by a slow–fast ODE of the form

εẋ = f(x, u) ,
u̇ = g(x, u) ,

(6.3.13)
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u1

u2

u

Fig. 6.9. Bifurcation scenario leading to elliptic bursting. For u1 < u < u2, the
system admits a stable equilibrium point, corresponding to a quiescent neuron, and
a stable limit cycle, corresponding to spiking. The slow dynamics increases u near the
quiescent state, driving the system to a Hopf bifurcation point. Near the limit cycle,
it decreases u, driving the system to a saddle–node bifurcation point of periodic
orbits. As a result, the system alternates between quiescent and spiking phases.

where x now stands for the dynamic variables associated with action-potential
generation, and u describes slowly changing parameters of the system, such
as the current i(t).

Periodic bursting can occur when the associated system d
dsxs = f(xs, u)

admits a stable equilibrium point and a limit cycle for certain values of u. A
typical example is shown in Fig. 6.9, where x ∈ R 2 and u ∈ R :

• For u < u1, all orbits converge to a globally asymptotically stable equilib-
rium point x�(u).

• At u = u1, a pair of periodic orbits of opposite stability is created in a
saddle–node bifurcation of periodic orbits.

• For u1 < u < u2, the system admits a stable equilibrium point x�(u), an
unstable and a stable periodic orbit.

• At u = u2, the unstable periodic orbit collapses on the equilibrium point
in a subcritical Hopf bifurcation.

• For u > u2, the system admits a limit cycle and an unstable equilibrium
point.

Assume now that the slow vector field g(x, u) is positive near x�(u), and
negative near the stable periodic orbit. A solution starting near x�(u0) for
some u0 < u1 will track the equilibrium branch x�(u) adiabatically: The neu-
ron is in a quiescent state. Owing to the phenomenon of bifurcation delay it
keeps tracking x�(u) for some time after passing the Hopf bifurcation point
at u = u2. Ultimately, however, the solution will depart from x�(u) and ap-
proach the periodic orbit: The neuron enters the spiking phase. Since g is
negative near the limit cycle, u decreases while the trajectory spirals around
the set of periodic orbits, yielding the slow modulation of the spikes. Finally,
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as u reaches u1, the periodic orbit disappears, and the neuron returns to its
quiescent state. Then the whole cycle starts over again.

Adding a noise term of small intensity σ/
√
ε to the fast variables has two

main effects:

• The bifurcation delay occurring after the passage through the Hopf bifur-
cation point is decreased from order 1 to order

√
ε|log σ|, shortening the

quiescent phase.
• For sufficiently strong noise, there is a chance that sample paths cross

the unstable orbit and approach the quiescent state, some time before the
saddle–node bifurcation of the periodic orbits.

The overall effect of noise is thus to shorten both the quiescent and the
spiking phases. The main reason for this shortening is the fact that noise
decreases the Hopf bifurcation delay. For σ �

√
ε, it even becomes possible

for sample paths to escape from the quiescent state through the unstable orbit,
some time before the Hopf bifurcation point is reached.

6.4 Models from Solid-State Physics

Stochastic models appear in various fields of solid-state physics, e.g. in lasers,
which present many phenomena similar to neurons (see, for instance, [HN79]).
In this section, we discuss stochastic models occurring in two other fields of
solid-state physics, namely in mean-field models for ferromagnets, and in the
dynamics of Josephson junction.

6.4.1 Ferromagnets and Hysteresis

For a long time, hysteresis in ferromagnets was considered a purely static
phenomenon. As a consequence, it has been modelled by various integral op-
erators relating the “output” of the system to its “input”, for operators not
depending on the speed of variation of the input (see for instance [May91]
and [MNZ93] for reviews).

This situation changed drastically in 1990, when Rao and coauthors pub-
lished a numerical study of the effect of the input’s frequency on shape and
area of hysteresis cycles [RKP90]. They proposed in particular that the area A
of a hysteresis cycle, which measures the energy dissipation per period, should
obey a scaling law of the form

A � Aαεβ (6.4.1)

for small amplitude A and frequency ε of the periodic input (e.g. the magnetic
field), and some model-dependent exponents α and β. This work triggered a
substantial amount of numerical, experimental and theoretical studies, aiming
at establishing the validity of the scaling law (6.4.1) for various systems, a
problem which has become known as dynamical hysteresis.
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The first model investigated in [RKP90] is a Langevin partial differential
equation for the spatially extended, N -component order parameter (e.g., the
magnetisation), in a (Φ2)2-potential with O(N)-symmetry, in the limit N →
∞. Their numerical experiments suggested that (6.4.1) holds with α � 2/3
and β � 1/3. Various theoretical arguments [DT92, SD93, ZZ95] indicate that
the scaling law should be valid, but with α = β = 1/2.

The second model considered in [RKP90] is an Ising model with Monte-
Carlo dynamics. Here the situation is not so clear. Different numerical simula-
tions (for instance [LP90, AC95, ZZL95]) suggested scaling laws with widely
different exponents. More careful simulations [SRN98], however, showed that
the behaviour of hysteresis cycles depends in a complicated way on the mecha-
nism of magnetisation reversal, and no universal scaling law of the form (6.4.1)
should be expected. Though much progress has been made in recent years on
the mechanism of magnetisation reversal for quenched field (see [SS98], for in-
stance, and [dH04] for a recent review), only few rigorous results on hysteresis
in the Ising model are available so far.

A third kind of models for which scaling laws of hysteresis cycles have
been investigated, belong to the mean field class, and include the Curie–
Weiss model. In the limit of infinite system size (see, for instance, [Mar79]),
the dynamics of the magnetisation can be described by the equation

εẋ = −x+ tanh
(
β(x+ λ(t))

)
, λ(t) = A cos t , (6.4.2)

sometimes called Suzuki–Kubo (SK) equation. The right-hand side vanishes
on the slow manifold λ = β−1 tanh−1 x − x, which is S -shaped for β > 1.
There are two saddle–node bifurcation points at ±(xc, λc), where

xc =
√

1 − β−1 , λc = β−1 tanh−1
√

1 − β−1 −
√

1 − β−1 . (6.4.3)

The equation (6.4.2) was examined numerically by Tomé and de Oliveira
in [TdO90], where it was shown that the behaviour changes drastically when
the amplitude of the forcing crosses a threshold close to |λc|, a phenomenon
the authors termed “dynamic phase transition”.

We have seen several examples of periodically forced bistable systems, such
as the Ginzburg–Landau (GL) equation

εẋ = x− x3 + λ(t) , λ(t) = A cos t , (6.4.4)

whose slow manifolds contain saddle–node bifurcation points. When passing
such bifurcation points, the solutions react after a delay of order ε2/3 by
jumping to the other stable slow manifold. As a result, they converge to a
cycle in the (λ, x)-plane, enclosing an area which obeys the scaling law

A � A0 + ε2/3 (6.4.5)

for sufficiently large driving amplitude A. Here A0 is a constant independent
of ε, called the static hysteresis area. The same relation holds for (6.4.2), with
a different A0.
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As pointed out in [Rao92], the difference between the scaling laws (6.4.1)
and (6.4.5) can be attributed to the existence of a potential barrier for the
one-dimensional order parameter, which is absent in higher dimensions. The
deterministic equation, however, neglects both thermal fluctuations and the
finite system size, whose effects may be modelled by additive white noise
(see for instance [Mar77, Mar79]). Noise, however, may help to overcome the
potential barrier and thus change the scaling law.

Let us thus consider SDEs of the form

dxt =
1
ε
f(xt, t) dt+

σ√
ε

dWt , (6.4.6)

where f(x, t) is either equal to x − x3 + λ(t), in the case of the GL equa-
tion, or to −x + tanh(β(x + λ(t))), for the SK equation. In each case,
we assume that the periodic driving has the form λ(t) = A cos t. Let
Ac = |λc| be the critical driving amplitude allowing to reach the saddle–
node bifurcation point, that is, Ac = 2/3

√
3 for the GL equations, and

Ac =
√

1 − β−1 − β−1 tanh−1
√

1 − β−1 for the SK equations. We introduce
a parameter δ = A − Ac, measuring the “imperfection of the bifurcation”
(cf. Section 4.2.1): For δ = 0, the system effectively sees a transcritical bi-
furcation point. For δ < 0, it encounters an avoided transcritical bifurcation,
while for δ > 0, it successively passes two saddle–node bifurcation points,
separated by a distance of order δ1/2.

We already analysed the deterministic case for A < Ac in Section 4.2.1, see
Proposition 4.2.2. The case A > Ac can be analysed by very similar means.
One obtains the existence of constants γ1 > γ0 > 0 such that

• If δ = A − Ac � γ0ε, the deterministic equation εẋ = f(x, t) has exactly
two stable periodic solutions xper,+

t and xper,−
t , and one unstable periodic

solution xper,0
t . These solutions track, respectively, the two stable equi-

librium branches and the unstable equilibrium branch, at a distance not
larger than O(ε|δ|−1/2 ∧

√
ε), and enclose an area

A(ε) � εA . (6.4.7)

All solutions which do not start on xper,0
t are attracted either by xper,+

t or
by xper,−

t .
• If δ = A−Ac � γ1ε, the deterministic equation εẋ = f(x, t) admits exactly

one periodic solution xper
t , tracking the upper stable branch for decreasing

λ, and the lower stable branch for increasing λ. This solution is stable and
encloses an area A(ε) satisfying

A(ε) − A0 � ε2/3δ1/3 . (6.4.8)

For γ0ε < δ < γ1ε, the situation is more complicated, as there may be more
than three coexisting periodic orbits.

We return now to the study of Equation (6.4.6) with positive noise inten-
sity σ. For A < Ac, we know from Theorem 4.2.3 and Theorem 4.2.4 that
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(a) (b) (c)

Fig. 6.10. Hysteresis cycles in the three parameter regimes. (a) Small-amplitude
regime: If δ = A − Ac � γ0ε and σ 
 (|δ| ∨ ε)3/4, typical cycles enclose an area
of order εA. (b) Large-amplitude regime: If δ = A − Ac � γ1ε and σ 
 ε1/2δ1/4,
typical cycles enclose an area of order A0 + ε2/3δ1/3. (c) Strong-noise regime: In
cases of large noise intensity, typical cycles enclose an area of order A0−σ4/3, which
is smaller than the static hysteresis area A0.

sample paths are likely to stay close to the same stable equilibrium branch if
σ 
 σc = (|δ| ∨ ε)3/4 (Fig. 6.10a). They are likely to switch from one branch
to the other if σ � σc (Fig. 6.10c). The switching typically occurs at a time
of order σ2/3 before |λ(t)| = A, that is, when A− |λ(t)| � σ4/3.

We also know from Theorem 3.3.3 and Theorem 3.3.4 that for A − Ac of
order one, a transition from late jumps (Fig. 6.10b) to early crossings occurs
when σ becomes larger than σc = ε1/2. It is not difficult to extend this result
to all A > Ac, in which case one obtains a threshold noise intensity of the
form σc = ε1/2(δ ∨ ε)1/4. Again, for σ � σc, transitions already occur as soon
as A− |λ(t)| � σ4/3.

Since the area of hysteresis cycles measures the energy dissipation per
period, it is of interest to determine its dependence on the parameters ε, δ
and σ. This turns out to be possible, thanks to our relatively precise knowledge
of the sample paths’ behaviour. In the stochastic case, the hysteresis area is
itself a random variable, that can be defined as

A(ε, δ, σ;ω) = −
∫ 1/2

−1/2

xt(ω)λ′(t) dt . (6.4.9)

A key observation is that the deviation of the area from its deterministic
counterpart is given by

A(ε, δ, σ;ω) − A(ε, δ, 0) = −
∫ 1/2

−1/2

(xt(ω) − xdet
t )λ′(t) dt , (6.4.10)

which is accessible because of the information we have on the behaviour of xt−
xdet
t . Without entering into technical details, which can be found in [BG02b],

we may summarise the results as follows. There are three main parameter
regimes to be considered (Fig. 6.11), see also [BG02a].
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−ε 0 ε δ = A − Ac

σ

|δ|3/4

ε3/4
ε1/2δ1/4

ε1/2/|log|δ||

ε5/6δ5/12small amplitude

large amplitude

strong noise

Fig. 6.11. Parameter regimes for dynamical hysteresis, shown, for fixed ε, in the
plane (δ = A − Ac, σ). For noise intensities σ below a threshold depending on δ
and ε, the behaviour resembles the deterministic behaviour. For noise intensities
above this threshold, typical hysteresis cycles shrink by an amount depending on σ.
Broken curves subdivide the three main regimes into smaller zones, in which we
obtain estimates of variable degree of precision.

• Small-amplitude regime: δ = A−Ac � γ0ε and σ � (|δ|∨ε)3/4 (Fig. 6.10a).
The random area A(ε, δ, σ) is concentrated around its deterministic limit
A(ε, δ, 0) � Aε. More precisely, one can show that
– if δ � −ε or σ � ε1/2/|log|δ||, the distribution of A(ε, δ, σ) is close to

a normal distribution, with variance of order σ2ε;
– if δ < −ε and σ > ε1/2/|log|δ||, the distribution of A(ε, δ, σ) is not nec-

essarily close to a Gaussian, but its expectation differs from A(ε, δ, 0)
by at most O(σ2|log|δ||), and the standard deviation of A(ε, δ, σ) is of
the same order at most. Finally, the tails of the distribution of A(ε, δ, σ)
decrease exponentially with an exponent of order σ2|log|δ||.

• Large-amplitude regime: δ = A−Ac � γ1ε and σ � ε1/2δ1/4 (Fig. 6.10b).
The random area A(ε, δ, σ) is concentrated around its deterministic coun-
terpart A(ε, δ, 0), which satisfies A(ε, δ, 0)−A0 � ε2/3δ1/3. More precisely,
one can show that
– if σ � ε5/6δ5/12, the distribution of A(ε, δ, σ) is close to a normal

distribution, with variance of order σ2ε1/3δ1/6;
– if ε5/6δ5/12 < σ � ε1/2δ1/4, the distribution of A(ε, δ, σ) is not neces-

sarily close to a Gaussian, but it is concentrated in an interval of size
ε2/3δ1/3 around A(ε, δ, 0).

• Strong-noise regime: Either δ � ε and σ > (|δ| ∨ ε)3/4, or δ > ε and
σ > ε1/2δ1/4 (Fig. 6.10c).
The random area A(ε, δ, σ) is concentrated around a deterministic refer-
ence value Â, satisfying Â − A0 � −σ4/3. More precisely, one can show
that
– if either δ � ε or σ > δ3/4, the tail probability P{A(ε, δ, σ) − Â > H}

decays exponentially, with an exponent of order H/σ2|log σ|; while the
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Fig. 6.12. The resistive-capacitive-inductively shunted model of a Josephson junc-
tion. The ideal junction is traversed by a current ic sin ϕ. The other elements of the
equivalent circuit model imperfections in the junction and its wiring.

tail probability P{A(ε, δ, σ) − Â < −H} decays exponentially with an
exponent of order H3/2/σ2;

– if δ > ε and σ � δ3/4, the tail probability P{A(ε, δ, σ) − Â > H} decays
exponentially, with an exponent of order H/σ2|log(σ4/3δ−1/2)|; while
the tail probability P{A(ε, δ, σ)−Â < −H} decays exponentially with
an exponent of order H3/2/σ2.

The most interesting aspect of these estimates is that noise of sufficient
intensity decreases the hysteresis area, and thus reduces the energy dissipation
per period.

6.4.2 Josephson Junctions

Josephson junctions are devices made of two pieces of superconductor, which
present nontrivial current–voltage characteristics. The state of the junction is
described by the so-called Josephson phase ϕ, which corresponds to the phase
difference of the complex wave functions of Cooper pairs in the two supercon-
ductors. An ideal junction can function in two states: In the superconducting
state, the Josephson phase ϕ is constant, and a current proportional to sinϕ
flows through the junction without any resistance. In the resistive state, the
phase ϕ is not constant, and a voltage proportional to the derivative ϕ̇ appears
across the junction.

In practice, Josephson junctions do not behave in this idealised way, but
show some parasite resistance, capacitance and inductance. We consider here
the resistive-capacitive-inductively shunted junction (RCLSJ) model, which
is based on the equivalent circuit of Fig. 6.12. The ideal Josephson junction
is traversed by a current ic sinϕ, where ic is a constant. The voltage v at
the junction is given by the phase-voltage relation (�/2e)(dϕ/dt). Kirchhoff’s
laws thus yield the equations
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(a) (b)ψ

u

ψ

u

Fig. 6.13. Solutions of equations (6.4.16), describing the dynamics of a Josephson
junction in the overdamped regime, for bα = 5, J = 1.5 and ε = 0.01, (a) without
noise, (b) with noise of intensity σ = 0.5 added to the fast variable.

i = C
dv
dt

+
v

R
+ ic sinϕ+ is ,

v =
�

2e
dϕ
dt

= L
dis
dt

+ isRs ,

(6.4.11)

for the dynamic variables, i.e., the Josephson phase ϕ and the current is
(cf. [NP03]). Passing to dimensionless variables, and rescaling time, this sys-
tem can be rewritten in the form

βγ2ϕ̈+ γϕ̇+ sinϕ = J − Is ,

ϕ̇ = αİs + Is .
(6.4.12)

Here J = i/ic and Is = is/ic are dimensionless currents, α = 2eicL/� repre-
sents a dimensionless inductance, β = 2eicR2C/� is called Stewart–McCumber
parameter , its inverse measures the dissipation, and γ = Rs/R. Introducing
the variable

u = J − Is +
1 + γ

α
ϕ+

βγ2

α
ϕ̇ (6.4.13)

allows the system (6.4.12) to be rewritten in the form

βγ2ϕ̈+
(

1 +
βγ

α

)
γϕ̇+

1 + γ

α
ϕ+ sinϕ = u ,

αu̇ = J − sinϕ .
(6.4.14)

Note that u̇ vanishes if and only if all the current flows through the ideal
junction. The parameters α and γ measure, respectively, the relaxation times
of u and of ϕ . If γ 
 α, (6.4.14) is a slow–fast system. Scaling time by a
factor α and setting ε = γ/α, we can rewrite it as

βεϕ̇ = ψ − (1 + βε)ϕ ,

εψ̇ = u− α̂−1ϕ− sinϕ , (6.4.15)
u̇ = J − sinϕ ,
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(a) (b)

Fig. 6.14. The potential ψ �→ U(ψ, u), for bα = 10, and (a) u = π/bα  0.31,
and (b) u = 0.46, slightly before the leftmost well disappears in a saddle–node
bifurcation.

where α̂−1 = α−1 + ε. The slow manifold is thus given by the two equations
ψ = (1 + βε)ϕ and u = α̂−1ϕ + sinϕ. If α̂ > 1, it admits several stable and
unstable branches, connected by saddle–node bifurcation points.

The simplest situation to analyse is the strong-damping case β 
 1. Then
the variable ϕ is an order of magnitude faster than ψ, and converges to
ψ + O(β). One can thus replace (6.4.15) by the reduced system (written for
simplicity for β = 0)

εψ̇ = u− α̂−1ψ − sinψ = − ∂

∂ψ
U(ψ, u) ,

u̇ = J − sinψ ,
(6.4.16)

where we have introduced a potential

U(ψ, u) =
(ψ − α̂u)2

2α̂
− cosψ . (6.4.17)

The dynamics depends crucially on the value of the current J . If |J | < 1,
the system has at least one asymptotically stable equilibrium point, which
corresponds to a superconducting state since ϕ̇ = 0. If |J | > 1, then u varies
monotonously, and ψ tries to track the slow manifold. If α̂ > 1, the phase
repeatedly jumps from one stable branch of the slow manifold to the next
one, each time it passes a bifurcation point (Fig. 6.13a).

Adding noise to the system allows the sample paths to jump from one piece
of stable slow manifold to the next one, already some time before reaching
the saddle–node bifurcation point (Fig. 6.13b). This is the same effect as
discussed for stochastic resonance in Chapter 4 and can be analysed by the
same methods.

For weak damping, the dynamics can be more complicated. The associ-
ated fast system then describes the underdamped motion of a particle in the
potential (6.4.17), and inertial effects may cause the particle to cross several
potential valleys in a row. This can be seen by analysing the behaviour of the
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unstable manifold of a saddle, when approaching a saddle–node bifurcation.
While for large damping the unstable manifold is always attracted by the
next potential minimum, for smaller damping it may bridge several potential
wells before reaching an equilibrium. When weak noise is added to the system,
sample paths escaping from the potential well slightly before the bifurcation
occurs are likely to track the unstable manifold of the saddle, ending up in
the same potential well as the deterministic system would have. Again, the
methods developed in the course of the book will allow for a description of
the sample-path behaviour when overcoming the potential barrier.



A

A Brief Introduction to Stochastic Differential
Equations

A.1 Brownian Motion

Brownian motion can be constructed as a scaling limit of a symmetric random
walk,

Wt = lim
n→∞

1√
n

�nt�∑
i=1

Xi , (A.1.1)

where theXi are independent, identically distributed real-valued random vari-
ables of zero mean and unit variance, and the limit is to be understood as
convergence in distribution. An equivalent definition of Brownian motion is
the following one.

Definition A.1.1 (Brownian motion). A one-dimensional standard Brow-
nian motion, or Wiener process, is a stochastic process {Wt}t�0, i.e., a col-
lection of real-valued random variables, satisfying the three conditions

1. W0 = 0;
2. Independent increments: For all t > s � 0, the increment Wt − Ws is

independent of {Wu}0�u�s;
3. Gaussian increments: For all t > s � 0, the increment Wt−Ws is normally

distributed with zero mean and variance t− s.

Using, for instance, Kolmogorov’s continuity theorem, one shows that
{Wt}t�0 admits a continuous version. Thus we may assume that the sam-
ple paths t �→ Wt(ω) are continuous, and use (Ω,F ,P) as probability space,
where Ω = C0([0,∞),R ) is the space of continuous functions f : [0,∞) → R

with f(0) = 0. However, the sample paths of a Brownian motion are almost
surely nowhere differentiable.

In the sequel we will also deal with Brownian motion starting at an arbi-
trary time t0 in some point x0. Such a Brownian motion is easily constructed
from standard Brownian motion {Wt}t�0 by considering {x0 + Wt0+t}t�0.
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Whenever not starting in (t0, x0) = (0, 0), we indicate this by writing Pt0,x0

instead of P = P0,0.
The following properties follow immediately from the definition A.1.1:

• Markov property: {Wt}t�0 is a Markov process, i.e.,

P
{
Wt+s ∈ A

∣∣ Wu, u � t
}

= P
{
Wt+s ∈ A

∣∣ Wt

}
, (A.1.2)

for any Borel set A and all t, s � 0, and the transition probabilities are
Gaussian:

P
{
Wt+s ∈ A

∣∣ Wt = x
}

= Pt,x
{
Wt+s ∈ A

}
=

∫
A

e−(y−x)2/2s
√

2πs
dy (A.1.3)

for any Borel set A, and all t, s � 0.
• Scaling property: For any c > 0, {cWt/c2}t�0 is a standard Brownian mo-

tion.
• Gaussian process: {Wt}t�0 is a Gaussian process (i.e., all its finite-

dimensional marginals are Gaussian random variables), of zero mean, and
covariance matrix

Cov{Wt,Ws} := E0,0{WtWs} = t ∧ s (A.1.4)

for all t, s � 0. Conversely, any mean-zero Gaussian process satisfy-
ing (A.1.4) is a standard Brownian motion.

Let Ft = σ{Ws, 0 � s � t} ⊂ F be the σ-algebra generated by all events
of the form {a � Ws < b}, 0 � s � t, a < b, that is, events depending only on
the behaviour of the Brownian motion up to time t. Then Fs ⊂ Ft, whenever
s � t. The family {Ft}t�0 is called the canonical filtration generated by the
Brownian motion.

A random variable τ : Ω → [0,∞] is called a stopping time with respect
to the filtration {Ft}t�0 if τ−1([0, t]) :={ω ∈ Ω : τ(ω) � t} ∈ Ft for all t > 0.
A typical example of a stopping time is the first-exit time

τA = inf{t > 0: Wt �∈ A} (A.1.5)

from an open1 set A � 0: Indeed, the knowledge of the Brownian motion up
to time t suffices to decide whether or not τ � t. By contrast, the last time
sup{t � 1: Wt ∈ A} the Brownian motion is in a (measurable) set A, is an
example of a random time which is no stopping time, as in order to decide
whether τ(ω) � t holds we would have “to look into the future” beyond time t.
With a stopping time τ , we associate the pre-τ σ-algebra Fτ , defined by

A ∈ Fτ if and only if A ∩ {τ � t} ∈ Ft for all t � 0. (A.1.6)

A stochastic process having the so-called strong Markov property can be
“restarted” at any stopping time τ :

1For a general Borel-measurable set A, the first-exit time τA is still a stopping
time, provided the canonical filtration is completed by the null sets.
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Theorem A.1.2 (Strong Markov property). For any bounded measurable
function f : R → R , and any stopping time τ satisfying P{τ <∞} = 1,

E0,0
{
f(Wτ+t)

∣∣ Fτ

}
= E0,Wτ

{
f(Wt)

}
. (A.1.7)

A k-dimensional standard Brownian motion is a vector (W (1)
t , . . . ,W

(k)
t )

of k independent one-dimensional standard Brownian motions, and the un-
derlying probability space can thus be chosen as the k-fold product space of
the space (Ω,F ,P) of {Wt}t�0.

A.2 Stochastic Integrals

In order to give a meaning to a stochastic differential equation which is gen-
erally understood as an integral equation, one starts by defining integrals of
the form ∫ t

0

h(s, ω) dWs , (A.2.1)

where the integrand may depend on the realisation of the Brownian motion
only up to time s, that is, ω �→ h(s, ω) is assumed to be measurable with
respect to Fs for each s. Since the Brownian motion is almost surely nowhere
differentiable, and thus not of bounded variation, the integral (A.2.1) cannot
be defined as a Riemann–Stieltjes integral. The following construction is due
to Itô. As usual in integration theory, one starts by defining the integral for
elementary integrands, and then extends the definition to a larger class of
integrands by a limiting procedure.

Definition A.2.1 (Elementary function). Fix a constant T > 0. A func-
tion e : [0, T ] × Ω → R is called elementary if there is a (deterministic)
partition 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ] such that, for
all s ∈ [0, T ],

e(s, ω) =
N−1∑
k=0

ek(ω)1[tk,tk+1)(s) , (A.2.2)

where ek : Ω �→ R is Ftk -measurable for all k.

Definition A.2.2 (Itô integral for elementary functions). Let e : [0, T ]×
Ω → R be elementary. Then the Itô integral of e on [0, T ] is defined by∫ T

0

e(s) dWs =
∫ T

0

e(s, ω) dWs(ω) :=
N−1∑
k=0

ek(ω)
[
Wtk+1(ω) −Wtk(ω)

]
.

(A.2.3)

Proposition A.2.3 (Itô isometry). Let e be an elementary function of the
form (A.2.2), such that ek ∈ L2(P) for all k. Then

E

{(∫ T

0

e(s) dWs

)2}
=

∫ T

0

E
{
e(s)2

}
ds . (A.2.4)
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The Itô isometry, which is an isometry between the two Hilbert spaces
L2(λ[0,T ] ⊗ P) and L2(P),2 allows to extend the definition of the Itô integral
to the class of all functions h : [0, T ] ×Ω → R such that

• (t, ω) �→ h(t, ω) is jointly measurable, i.e., measurable with respect to
B([0, T ]) ⊗ F , where B([0, T ]) denotes the Borel σ-algebra on the time
interval [0, T ];

• h is Ft-adapted, that is, ω �→ h(t, ω) is Ft-measurable for each t ∈ [0, T ];
• h satisfies the integrability assumption∫ T

0

E
{
h(s)2

}
ds <∞ . (A.2.5)

Any h of this form can be approximated by a sequence of elementary
functions {e(n)}n�1, in the sense that

lim
n→∞

∫ T

0

E
{(
h(s) − e(n)(s)

)2} ds = 0 . (A.2.6)

Proposition A.2.3 shows that the limit

lim
n→∞

∫ T

0

e(n)(s) dWs =:
∫ T

0

h(s) dWs (A.2.7)

exists in L2(P), and does not depend on the particular choice of the approxi-
mating sequence {e(n)}n�1.

Definition A.2.4 (Itô integral). The limit (A.2.7) is called the Itô integral
of h on [0, T ]. For any interval [a, b] ⊂ [0, T ], one sets∫ b

a

h(s) dWs :=
∫ T

0

1[a,b](s)h(s) dWs . (A.2.8)

Obviously, the Itô integral defines a linear, additive functional on the space
of admissible integrands. Moreover, the random variable Xt =

∫ t
0
h(s) dWs is

Ft-measurable, has zero expectation, and variance

Var{Xt} =
∫ t

0

h(s)2 ds , (A.2.9)

and there exists a continuous version of the stochastic process {Xt}t�0, so
that we may assume that Xt(ω) depends continuously on t. Furthermore, the
stochastic process {Xt}t�0 is a martingale, meaning that Xt is Ft-measurable
for all t and E{Xt|Fs} = Xs holds, whenever s � t.

2Here λ[0,T ] denotes Lebesgue measure on the interval [0, t].
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Remark A.2.5. The definition of the Itô integral can be extended to integrands
satisfying only

P

{∫ T

0

h(s)2 ds <∞
}

= 1 (A.2.10)

instead of (A.2.7) by defining the stochastic integral as the limit in proba-
bility of stochastic integrals of elementary functions, but then the properties
involving expectations, in particular (A.2.9), may no longer hold true.

Remark A.2.6. Multidimensional Itô integrals can be defined component-wise
in the obvious way.

Consider now the process

Xt = X0 +
∫ t

0

f(s) ds+
∫ t

0

g(s) dWs , (A.2.11)

where f, g : [0, T ] × Ω → R satisfy the same measurability assumptions as h
above, and

P

{∫ T

0

|f(s)|ds <∞
}

= P

{∫ T

0

g(s)2 ds <∞
}

= 1 . (A.2.12)

For simplicity, we assume here that the initial value X0 is not random. One
may include the case of random initial values, independent of the Brownian
motion, by adequately enlarging the filtration {Ft}t�0.

Theorem A.2.7 (Itô formula). Let u : R ×[0, T ] → R be twice continuously
differentiable in its first argument, and continuously differentiable in its second
argument. Then the process Yt = u(Xt, t) satisfies

Yt = u(X0, 0) +
∫ t

0

[
∂u

∂t
(Xs, s) +

∂u

∂x
(Xs, s)f(s) +

1
2
∂2u

∂x2
(Xs, s)g(s)2

]
ds

+
∫ t

0

∂u

∂x
(Xs, s)g(s) dWs . (A.2.13)

It is customary to write (A.2.11) and (A.2.13) in differential form as

dXt = f(t) dt+ g(t) dWt (A.2.14)

dYt =
∂u

∂t
dt+

∂u

∂x
dXt +

1
2
∂2u

∂x2
(dXt)2

=
[
∂u

∂t
+
∂u

∂x
f(t) +

1
2
∂2u

∂x2
g(t)2

]
dt+

∂u

∂x
g(t) dWt . (A.2.15)

The first two terms on the right-hand side of (A.2.15) are natural, since they
also exist in the deterministic case. The additional term containing the second
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derivative of u with respect to x is interpreted as reflecting the fact that
“(dXt)2 = g(t)2(dWt)2 = g(t)2dt”.

In the case of an n-dimensional stochastic processes (X(1)
t , . . . , X

(n)
t ), de-

fined component-wise, with the help of the same Brownian motion,

dX(i)
t = f (i)(t) dt+ g(i)(t) dWt , (A.2.16)

and a function u : R n× [0, T ] → R , satisfying the analogous assumptions, the
real-valued stochastic process Yt = u(X(1)

t , . . . , X
(n)
t , t) satisfies

dYt =
∂u

∂t
dt+

n∑
i=1

∂u

∂xi
dX(i)

t +
1
2

n∑
i,j=1

∂2u

∂xi∂xj
g(i)(t)g(j)(t) dt . (A.2.17)

Finally, should the X(i)
t , i = 1, . . . , n, involve different, independent Brown-

ian motions W (j)
t , j = 1, . . . , n, then Ytt = u(X(1)

t , . . . , X
(n)
t , t) is calculated

according to the general scheme

dYt =
∂u

∂t
dt+

n∑
i=1

∂u

∂xi
dX(i)

t +
1
2

n∑
i,j=1

∂2u

∂xi∂xj
(dX(i)

t )(dX(j)
t ) , (A.2.18)

using the substitution rules (dt)(dt) = (dt)(dW (i)
t ) = (dW (i)

t )(dt) = 0 and
(dW (i)

t )(dW (j)
t ) = δijdt.

Example A.2.8. A few classical examples where the Itô formula allows to com-
pute specific stochastic integrals are the following.

1. The relation d(W 2
t ) = dt+ 2Wt dWt implies∫ t

0

Ws dWs =
1
2
W 2
t − 1

2
t . (A.2.19)

2. The relation d(tWt) = Wt dt + tdWt yields the integration-by-parts for-
mula ∫ t

0

sdWs = tWt −
∫ t

0

Ws ds . (A.2.20)

3. Let dXt = h(t) dWt − 1
2h(t)

2 dt. Then Yt = eXt satisfies the equation

dYt = h(t)Yt dWt . (A.2.21)

In particular, Yt = eWt−t/2 obeys the equation dYt = Yt dWt. The expo-
nential martingale Yt is thus to be considered as the exponential of the
Brownian motion Wt. It is called the Doléans exponential of Wt.
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A.3 Strong Solutions

Having defined stochastic integrals, we can finally give a meaning to stochastic
differential equations of the form

dxt = f(xt, t) dt+ F (xt, t) dWt , (A.3.1)

where f, F : R × [0, T ] → R are jointly measurable deterministic functions of
x and t.

Definition A.3.1 (Strong solution). A stochastic process {xt}t∈[0,T ] is
called a strong solution of the SDE (A.3.1) with initial condition x0 if

• {xt}t∈[0,T ] is {Ft}t∈[0,T ]-adapted;
• The integrability condition

P

{∫ T

0

|f(xs, s)|ds <∞
}

= P

{∫ T

0

F (xs, s)2 ds <∞
}

= 1 (A.3.2)

is satisfied;
• For any t ∈ [0, T ],

xt = x0 +
∫ t

0

f(xs, s) ds+
∫ t

0

F (xs, s) dWs (A.3.3)

holds with probability 1.

The following result is obtained by Picard iterations, as in the deterministic
case.

Theorem A.3.2 (Existence and uniqueness of strong solutions). As-
sume that the following conditions hold for all t ∈ [0, T ]:

• Local Lipschitz condition: For any compact A ⊂ R , there is a constant
KA such that

|f(x, t) − f(y, t)| + |F (x, t) − F (y, t)| � KA|x− y| (A.3.4)

for all x, y ∈ A and all t ∈ [0, T ].
• Bounded-growth condition: There is a constant L such that

xf(x, t) + F (x, t)2 � L2(1 + x2) (A.3.5)

for all x, y ∈ R and all t ∈ [0, T ].

Then the SDE (A.3.1) admits an almost surely continuous strong solution
{xt}t∈[0,T ]. This solution is pathwise unique, in the sense that if {xt}t∈[0,T ]

and {yt}t∈[0,T ] are two almost surely continuous solutions, then

P

{
sup

0�t�T
|xt − yt| > 0

}
= 0 . (A.3.6)
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We denote by Pt0,x0 the law of the solution of (A.3.1), starting in x0 at
some time t0 ∈ [0, T ], and by Et0,x0 expectations with respect to Pt0,x0 . The
solution xt satisfies the strong Markov property, that is, for any almost surely
finite stopping time τ , and any bounded measurable function f : R → R ,

E0,0
{
f(xt)

∣∣ Fτ

}
= E0,xτ

{
f(xt)

}
on the set {τ � t}. (A.3.7)

Example A.3.3 (Linear SDE). Let a, b, F : [0, T ] → R be bounded, measur-
able deterministic functions. Then the linear SDE

dxt =
[
a(t)xt + b(t)

]
dt+ F (t) dWt (A.3.8)

admits a strong solution. Let α(t, s) =
∫ t
s
a(u) du. Itô’s formula shows that

the solution with initial condition xt0 = x0 can be written as

xt = x0eα(t,t0) +
∫ t

t0

eα(t,s)b(s) ds+
∫ t

t0

eα(t,s)F (s) dWs . (A.3.9)

In the particular case a(t) ≡ −γ, b(t) ≡ 0, F (t) ≡ 1, its solution

xt = x0e−γ(t−t0) +
∫ t

t0

e−γ(t−s) dWs (A.3.10)

is called an Ornstein–Uhlenbeck process .

A.4 Semigroups and Generators

Consider, for simplicity, an autonomous, n-dimensional SDE

dxt = f(xt) dt+ F (xt) dWt , (A.4.1)

admitting a pathwise unique strong solution {xt}t�0 for any initial condition
(0, x). One can associate with it a family {Tt}t�0 of linear operators, acting
on bounded, measurable functions ϕ : R n → R , as

Ttϕ(x) = E0,x
{
ϕ(xt)

}
. (A.4.2)

The Markov property, together with time homogeneity, implies that the
{Tt}t�0 form a semigroup:

TtTs = Tt+s ∀t, s � 0 . (A.4.3)

Each linear operator Tt has the following properties:

1. It preserves the constant functions.
2. It maps non-negative functions to non-negative functions.
3. It is a contraction with respect to the supremum norm.
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4. It maps the set of bounded, continuous functions into itself (weak Feller
property).

5. Under additional assumptions, for instance if the matrix F (x)F (x)T is
positive definite for all x, it maps bounded, measurable functions to con-
tinuous ones for t > 0 (strong Feller property).

The (infinitesimal) generator of the semigroup is defined as the operator L
such that

Lϕ(x) = lim
t→0

Ttϕ(x) − ϕ(x)
t

, (A.4.4)

for all ϕ for which this limit exists for all x. Itô’s formula, and the fact that
stochastic integrals have zero expectation, imply that the generator is the
differential operator

L =
n∑
i=1

fi(x)
∂

∂xi
+

1
2

n∑
i,j=1

dij(x)
∂2

∂xi∂xj
, (A.4.5)

where dij(x) are the matrix elements of D(x) :=F (x)F (x)T. Indeed,

Ttϕ(x) − ϕ(x) = E0,x
{
ϕ(xt)

}
− ϕ(x) = E0,x

{∫ t

0

Lϕ(xs) ds
}
. (A.4.6)

Note that u(x, t) = Ttϕ(x) satisfies the partial differential equation

∂

∂t
u(x, t) = Lu(x, t) , (A.4.7)

called Kolmogorov’s backward equation. Under suitable regularity assump-
tions, (A.4.7) admits, for each y, a particular solution with initial condition
u(x, 0) = δy(x). Denote this solution by p(y, t|x, 0). In that case,

P0,x
{
xt ∈ A

}
= Tt1A(x) =

∫
A

p(y, t|x, 0) dy , (A.4.8)

which shows that y �→ p(y, t|x, 0) is the density of the transition probability
of the Markov process defined by x �→ xt.

The semigroup {Tt}t�0 admits a dual semigroup {St}t�0, acting on σ-finite
measures on R n, as

Stµ(A) =
∫

R n

P0,x
{
xt ∈ A

}
µ(dx) =: P0,µ

{
xt ∈ A

}
. (A.4.9)

Its generator is the formal adjoint of L, given by

L∗ϕ(y) = −
n∑
i=1

∂

∂yi

(
fi(y)ϕ(y)

)
+

1
2

n∑
i,j=1

∂2

∂yi∂yj

(
dij(y)ϕ(y)

)
. (A.4.10)
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For probability measures admitting a sufficiently smooth density ρ, the time-
evolved density ρ(y, t) :=Stρ(y) satisfies Kolmogorov’s forward equation, or
Fokker–Planck equation,

∂

∂t
ρ(y, t) = L∗ρ(y, t) , (A.4.11)

and so does the transition-probability density p(y, t|x, 0), considered as a func-
tion of (y, t). If the stochastic process xt admits an invariant density ρ0, then
it obeys the equation L∗ρ0 = 0.

Example A.4.1 (Gradient system). Consider an SDE of the form

dxt = −∇U(x) dx+ σ dWt , (A.4.12)

where U is a twice differentiable potential, and σ is a constant. The generator
and its adjoint are given by

L = −∇U · ∇ +
σ2

2
∆ and L∗ = ∆U + ∇U · ∇ +

σ2

2
∆ . (A.4.13)

If the potential grows sufficiently quickly at infinity, the stochastic process
admits an invariant density given by

ρ0(x) =
1
N e−2U(x)/σ2

, (A.4.14)

where N is the normalisation. In particular, the Ornstein–Uhlenbeck pro-
cess (A.3.10) admits a Gaussian invariant density as the potential U(x) is
quadratic.

A.5 Large Deviations

Let W σ
t = σWt denote the scaled Brownian motion. By the Laplace method,

P{W σ
T ∈ A} behaves like exp{− infx∈A x2/2σ2T} for small σ, in the sense

that
lim
σ→0

σ2 log P{W σ
T ∈ A} = − 1

2T
inf
x∈A

x2 (A.5.1)

holds for all sufficiently regular sets A with non-empty interior. Similarly, the
reflection principle shows that

lim
σ→0

σ2 log P

{
sup

0�t�T
W σ
t > L

}
= −L

2

2T
. (A.5.2)

The relations (A.5.1) and (A.5.2) are two examples of large-deviation esti-
mates.

In the sequel, C = C([0, T ],R n) denotes the set of continuous functions
from [0, T ] to R n, and H1 = H1([0, T ],R n) is the Sobolev space of abso-
lutely continuous functions ϕ : [0, T ] → R n, possessing a square-integrable
derivative and satisfying ϕ(0) = 0.
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Definition A.5.1 (Large-deviation principle). A functional I : C →
[0,∞] is said to be a good rate function if it is lower semi-continuous and
has compact level sets. A stochastic process {xσt }t∈[0,T ] is said to satisfy a
large-deviation principle with rate function I if

− inf
Γ◦
I � lim inf

σ→0
σ2 log P

{
xσ ∈ Γ

}
� lim sup

σ→0
σ2 log P

{
xσ ∈ Γ

}
� − inf

Γ
I

(A.5.3)
holds for any measurable set of paths Γ ⊂ C.

In many applications, the infima over the interior Γ ◦ and the closure Γ
coincide, and thus the limit of σ2 log P{xσ ∈ Γ} exists and is equal to their
common value.

Theorem A.5.2 (Schilder’s Theorem). The scaled Brownian motion
{W σ

t }t∈[0,T ] satisfies a large-deviation principle with the good rate function

I(ϕ) =

⎧⎨⎩
1
2

∫ T

0

‖ϕ̇t‖2 dt , if ϕ ∈ H1,

+∞ , otherwise.
(A.5.4)

The Euler–Lagrange equations show that the minimisers of I are lin-
ear functions ϕt = ct. This can be interpreted as meaning that the “most
probable paths” in Γ are straight lines. For instance, in (A.5.1), Γ =
{ϕ : ϕT ∈ A}, and the minimiser is ϕt = (t/T ) infx∈A x. In (A.5.2), one has
Γ = {ϕ : sup0�t�T ϕt > L}, and the minimiser is ϕt = Lt/T .

Consider now a general diffusion of the form

dxσt = f(xσt ) dt+ σF (xσt ) dWt (A.5.5)

with an initial condition x0. We assume that f and F satisfy the Lipschitz
and bounded-growth conditions of Theorem A.3.2, and that the diffusion ma-
trix D(x) = F (x)F (x)T is positive definite.3 Then the analogue of Schilder’s
Theorem A.5.2 is the following.

Theorem A.5.3 (Large-deviation principle for solutions of SDEs).
The stochastic process {xσt }t∈[0,T ] satisfies a large-deviation principle with the
good rate function

J(ϕ) =

⎧⎨⎩
1
2

∫ T

0

(ϕ̇t − f(ϕt))TD(ϕt)−1(ϕ̇t − f(ϕt)) dt , if ϕ ∈ x0 +H1,

+∞ , otherwise.
(A.5.6)

3If the diffusion matrix happens to be positive semi-definite only, {xσ
t }t∈[0,T ]

still satisfies a large-deviation principle with a good rate function J , but J is given
by a variational principle and can generally not be represented in an explicit form
like (A.5.6).
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The minimisers of J satisfy Euler–Lagrange equations, which are equiva-
lent to the Hamilton equations deriving from the Hamiltonian

H(ϕ,ψ) =
1
2
ψTD(ϕ)ψ + f(ϕ)Tψ . (A.5.7)

Here ψ = D(ϕ)−1(ϕ̇ − f(ϕ)) is the conjugate momentum of ϕ, so that the
rate function takes the form

J(ϕ) =
1
2

∫ T

0

ψT
t D(ϕt)ψt dt . (A.5.8)

A.6 The Exit Problem

Consider again the family of diffusions

dxσt = f(xσt ) dt+ σF (xσt ) dWt , (A.6.1)

with f and F satisfying the same conditions as in the previous sections. In
addition, we assume that the diffusion matrix D(x) = F (x)F (x)T is uniformly
positive definite. Let D ⊂ R n be a bounded, open set with smooth boundary,
and fix an initial condition xσ0 = x0 in D. The aim of the exit problem is to
determine the distributions of the first-exit time

τσ = τσD = inf{t > 0: xσt /∈ D} (A.6.2)

of xσ from D, and of the first-exit location xστσ ∈ ∂D. In principle, the laws
of τσ and xστσ can be determined by solving PDEs, involving the generator
L = Lσ of the diffusion.

Proposition A.6.1. Let c : D → (−∞, 0], g : D → R and ψ : ∂D → R be
bounded, continuous functions, and let yσt =

∫ t
0
c(xσs ) ds. Then

u(x) = E0,x

{
ψ(xστσ )ey

σ
τσ −

∫ τσ

0

g(xσt )ey
σ
t dt

}
(A.6.3)

is the unique solution of the Dirichlet problem{
Lσu(x) + c(x)u(x) = g(x) for x ∈ D,
u(x) = ψ(x) for x ∈ ∂D.

(A.6.4)

Two special cases are of particular interest for the exit problem.

1. u(x) = E0,x{τσ} is the unique solution of the PDE{
Lσu(x) = −1 for x ∈ D,
u(x) = 0 for x ∈ ∂D.

(A.6.5)
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2. For a continuous function ψ : ∂D → R , v(x) = E0,x{ψ(xστσ )} is the unique
solution of the PDE {

Lσv(x) = 0 for x ∈ D,
v(x) = ψ(x) for x ∈ ∂D.

(A.6.6)

Solving equation (A.6.6) for a sufficiently large set of functions ψ allows
to determine the law of first-exit locations. This, however, is possible only in
very specific cases.

An alternative approach is the theory of large deviations, which yields
partial information on the exit problem, without the need to solve a PDE.
Indeed, let

V (x, y; s) = inf{J(ϕ) : ϕ ∈ C([0, s],R n), ϕ0 = x, ϕs = y} (A.6.7)

be the “cost” required to bring the system from x to y in time s. Then
Theorem A.5.3 implies

lim
σ→0

σ2 log P0,x{τσ � t} = inf
{
V (x, y; s) : s ∈ [0, t], y /∈ D

}
. (A.6.8)

In order to obtain more precise information, one needs to make additional
assumptions. Consider the case where D is contained in the basin of attraction
of an isolated, asymptotically stable equilibrium point x� of the deterministic
system ẋ = f(x). The function

V (x�, y) = inf
t>0

V (x�, y; t) (A.6.9)

is called the quasipotential of the system.4 An important rôle is played by its
infimum

V = inf
y∈∂D

V (x�, y) (A.6.10)

on the boundary of the domain D.

Theorem A.6.2. For all initial conditions x ∈ D and all δ > 0,

lim
σ→0

P0,x
{
e(V−δ)/σ2

< τσ < e(V+δ)/σ2}
= 1 (A.6.11)

and
lim
σ→0

σ2 log E0,x
{
τσ

}
= V . (A.6.12)

Moreover, for any closed subset N ⊂ ∂D satisfying infy∈N V (x�, y) > V ,

lim
σ→0

P0,x
{
xστσ ∈ N

}
= 0 . (A.6.13)

If y �→ V (x�, y) has a unique minimum y� on ∂D, then, for all δ > 0,

lim
σ→0

P0,x
{
‖xστσ − y�‖ < δ

}
= 1 . (A.6.14)

4Note that, so far, we dealt with a finite time horizon T only. The rate functions
J = J[0,T ] depend on T , and the infimum in (A.6.9) actually involves different rate
functions for different t.
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This theorem shows that sample paths are likely to leave D near the point
on the boundary with the lowest value of quasipotential, in a mean time of
order eV /σ

2
. This does not completely characterise the distribution of τσ.

However, Day has shown that this distribution tends to an exponential one in
the limit of vanishing noise, that is

lim
σ→0

P0,x
{
τσ > sE0,x{τσ}

}
= e−s . (A.6.15)

Example A.6.3 (Gradient system – continued). Consider again the case f(x) =
−∇U(x) and F (x) = 1l. If x� is a non-degenerate minimum of the poten-
tial U , and y is such that U(y) � minz∈∂D U(z), then the function ϕ with
limt→−∞ ϕt = x�, ϕT = y, and going against the deterministic flow, i.e.,
ϕ̇t = ∇U(ϕt) is the unique minimiser of the rate function, contributing to the
quasipotential V (x�, y).5 The resulting value for the quasipotential is simply
given by twice the potential difference,

V (x�, y) = 2
(
U(y) − U(x�)

)
. (A.6.16)

The expected first-exit time is thus of the order e2H/σ2
, where H is the min-

imal potential difference to be overcome to leave D. This result is known as
Arrhenius’ law .

Many generalisations of the above results exist. In particular, for gradient
systems, the subexponential behaviour of the expected time needed to leave
a potential well, by crossing a saddle, was first determined by Eyring [Eyr35]
and Kramers [Kra40]. The geometry of well and saddle enter into the prefactor
in the following way:

E0,x0{τσ} � 2π
λ1(z)

√
|det ∂xxU(z)|
det ∂xxU(x�)

e2[U(z)−U(x�)]/σ2
(A.6.17)

holds in the weak-noise limit σ → 0, where ∂xxU(z) and ∂xxU(x�) denote the
Hessian matrices of the potential function U at the bottom x� of the well and
at the saddle z, respectively, and λ1(z) is the unique negative eigenvalue of
∂xxU(z).
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Zygmund [PWZ33] for non-random integrands, and by Itô [Itô44] in the gen-
eral case presented here. Nowadays, there is a broad choice of literature on
stochastic integration, also with respect to more general processes than Brow-
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on the monographs by McKean [McK69], Karatzas and Shreve [KS91] and
Øksendal [Øks85], which provide detailed information on stochastic differen-
tial equations from a mathematical point of view. A more physical approach
can be found in [HL84], [Ris89] or [vK81], for example.

Classical references on the general theory of large deviations are the mono-
graphs by Deuschel and Stroock [DS89] and by Dembo and Zeitouni [DZ98].
Large-deviation results for solutions of stochastic differential equations have
first been established by Wentzell and Freidlin in a series of papers in-
cluding [VF69, VF70]. The theory is explained in detail in their mono-
graph [FW98]. As a first introduction, we also recommend the corresponding
part of the excellent lecture notes by Varadhan [Var80].

The earliest insights into the exit problem are due to Arrhenius [Arr89],
Eyring [Eyr35] and Kramers [Kra40]. The mathematical results by Wentzell
and Freidlin have been extended in several directions. Asymptotic expansions
of exit probabilities have been considered by Azencott [Aze85], and by Fleming
and James [FJ92]. In the case of gradient systems, very precise results relating
expected first-exit times, capacities, and small eigenvalues of the diffusion have
been obtained by Bovier, Eckhoff, Gayrard and Klein [BEGK04, BGK05], see
also the recent developments by Helffer, Klein and Nier [HKN04, HN05].

The dynamics near a hyperbolic fixed point has been considered by
Kifer [Kif81] and Day [Day95]. Day has in particular extensively studied the
exit from a domain with characteristic boundary (i.e., a boundary that is in-
variant under the deterministic dynamics, instead of being attracted by the
equilibrium point) [Day90a, Day92, Day94, Day96]. See also related results
by Maier and Stein [MS93, MS97].
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Some Useful Inequalities

B.1 Doob’s Submartingale Inequality and a Bernstein
Inequality

Definition B.1.1 (Submartingale). Let (Ω,F ,P) be probability space with
a filtration {Ft}t�0 of F , and let {Mt}t�0 be an {Ft}t�0-adapted, integrable
stochastic process on that probability space, i.e., Mt is Ft-measurable and
E|Mt| <∞ for all t. The stochastic process {Mt}t�0 is called a submartingale,
if E{Mt|Fs} � Ms for all s � t.

The following classical estimate allows to estimate the probability that a
positive submartingale exceeds a level during the time interval [0, t] with the
help of its expected value at the endpoint.

Lemma B.1.2 (Doob’s submartingale inequality). Let {Mt}t�0 be a
positive submartingale with (right-)continuous paths. Then, for any L > 0
and t > 0,

P

{
sup

0�s�t
Ms � L

}
� 1
L

E
{
Mt

}
. (B.1.1)

As a consequence of the preceding inequality, we obtain the following es-
timate for stochastic integrals with deterministic integrands.

Lemma B.1.3 (Bernstein-type inequality). Let ϕ(u) be a Borel-measur-
able deterministic function such that

Φ(t) =
∫ t

0

ϕ(u)2 du (B.1.2)

exists. Then

P

{
sup

0�s�t

∫ s

0

ϕ(u) dWu � δ
}

� exp
{
− δ2

2Φ(t)

}
. (B.1.3)
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Proof. Let P denote the left-hand side of (B.1.3). For any γ > 0, we have

P = P

{
sup

0�s�t
exp

{
γ

∫ s

0

ϕ(u) dWu

}
� eγδ

}
� P

{
sup

0�s�t
Ms � eγδ−

γ2

2 Φ(t)
}
,

(B.1.4)
where

Ms = exp
{∫ s

0

γϕ(u)dWu − 1
2

∫ s

0

γ2ϕ(u)2 du
}

(B.1.5)

is an (exponential) martingale, satisfying E{Mt} = E{M0} = 1, which implies
by Doob’s submartingale inequality, that

P

{
sup

0�s�t
Ms � λ

}
� 1
λ

E
{
Mt

}
=

1
λ
. (B.1.6)

This gives us

P � e−γδ+
γ2

2 Φ(t) , (B.1.7)

and we obtain the result by optimising (B.1.7) over γ. ��

B.2 Using Tail Estimates

Consider a random variable τ which has a density with respect to Lebesgue
measure. Given an upper bound on the tails of the distribution of τ , we want to
estimate E{1[0,t)(τ)g(τ)} for sufficiently well-behaved functions g. Integration
by parts allows to express the expectation with the help of the distribution
function, and enables us to use the bound on the tails of the distribution. The
following lemma provides such an estimate, without assuming the existence
of a density.

Lemma B.2.1 (Using tail estimates). Let τ � 0 be a random variable
satisfying Fτ (s) = P{τ < s} � G(s) for some continuously differentiable
function G. Then,

E
{
1[0,t)(τ)g(τ)

}
� g(s)

[
Fτ (s) −G(s)

]∣∣t
s=0

+
∫ t

0

g(s)G′(s) ds (B.2.1)

holds for all t > 0, and all piecewise differentiable, non-decreasing functions g.

Proof. First note that, whenever g is differentiable on an interval (s, t), Fu-
bini’s theorem allows to write∫ t

s

g′(u)P{τ � u}du = E

{∫ t∧τ

s∧τ
g′(u) du

}
= E

{
g(t ∧ τ)

}
− E

{
g(s ∧ τ)

}
(B.2.2)

= E
{
1[s,t)(τ)g(τ)

}
+ g(t)P{τ � t} − g(s)P{τ � s}.
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Then, integration by parts then shows

E{1[s0,t)(τ)g(τ)} =
∫ t

s

g′(u)
[
1 − Fτ (u)

]
du− g(u)

[
1 − Fτ (u)

]∣∣t
u=s

�
∫ t

s

g(u)G′(u) du+ g(u)
[
Fτ (u) −G(u)

]∣∣t
u=s

, (B.2.3)

where we have used Fτ (u) � G(u). By additivity, the same estimate holds on
any interval (0, t), which proves (B.2.1). ��

B.3 Comparison Lemma

In the context of stochastic differential equations, the following variant of
Gronwall’s lemma is particularly useful, as it does not require differentiability.

Lemma B.3.1 (Gronwall’s inequality). Let φ, ψ : [0,∞) → [0,∞) be a
continuous functions, satisfying

φ(t) � L+K

∫ t

0

ψ(s)φ(s) ds for all t � 0, (B.3.1)

with constants K,L � 0. Then,

φ(t) � K exp
{
L

∫ t

0

ψ(s) ds
}

for all t � 0. (B.3.2)

The following lemma allows to compare the relative position of solutions
to two different stochastic differential equations, where initial conditions and
drift coefficients can be different, while the diffusion coefficients are assumed
to be the same.

Lemma B.3.2 (Comparison lemma). Let

x
(i)
t = x

(i)
0 +

∫ t

0

fi(x(i)
s , s) ds+

∫ t

0

F (x(i)
s , s) dWs , i = 1, 2 , (B.3.3)

denote the solutions of two one-dimensional stochastic differential equations,
where we assume that the drift and diffusion coefficients are Lipschitz contin-
uous,1 uniformly in t. If both,

• the initial conditions are almost surely ordered: x(1)
0 � x

(2)
0 P-almost surely,

• the drift coefficients are ordered: f1(x, t) � f2(x, t) for all (x, t),

then
P
{
x

(1)
t � x

(2)
t ∀t

}
= 1 . (B.3.4)

1The assumption of Lipschitz continuity of drift and diffusion coefficient in the
preceding lemma can actually be relaxed, see [KS91, Proposition 2.18 of Section 5.2].
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B.4 Reflection Principle

Consider a Brownian motion Wt, starting in some −b < 0. We are interested
in its first-passage time τ0 = inf{t > 0: Wt � 0} at level x = 0. Using the
strong Markov property and starting Brownian motion “afresh” at time τ0
shows

P0,−b{τ0 < t}
= P0,−b{τ0 < t,Wt � 0} + P0,−b{τ0 < t,Wt < 0} (B.4.1)

= E0,−b{1{τ0<t}P
τ0,0{Wt � 0}

}
+ E0,−b{1{τ0<t}P

τ0,0{Wt < 0}
}
.

The distribution of the Brownian sample path, starting in 0, being invari-
ant under reflection at level x = 0, immediately implies André’s reflection
principle for Brownian motion,

P0,−b{τ0 < t} = 2E0,−b{1{τ0<t}P
τ0,0{Wt � 0}

}
= 2P0,−b{Wt � 0} , (B.4.2)

which allows to express the distribution of the first-passage time to a constant
level with the help of a Gaussian distribution. Also note that differentiating
the right-hand side with respect to t yields an exact expression for the first-
passage density; cf. Appendix C on first-passage densities to non-constant
boundaries.

The preceding argument only uses the strong Markov property and the
symmetry of the distribution of the sample paths with respect to the level to
be crossed. Thus the following generalisation is immediate.

Lemma B.4.1 (Reflection principle). Let xt be a (real-valued) strong
Markov process with continuous sample paths. Assume that the distribution
of xt, if started in 0, is symmetric, i.e., that the processes xt and −xt (both
starting in 0) have the same distribution in path space. Then, when starting
in −b < 0, the first-passage time τ0 at the level x = 0, satisfies

P0,−b{τ0 < t} = 2P0,−b{xt � 0} . (B.4.3)

Remark B.4.2. We will typically apply the reflection principle for processes
xt, which are given as the solution of a SDE

dxt = f(xt, t) dt+ F (xt, t) dWt , x0 = −b < 0 . (B.4.4)

Then the symmetry assumption of the preceding lemma amounts to assuming
f(−x, t) = −f(x, t) and |F (x, t)| = |F (−x, t)| for all x and t. Note that the
requirement of the drift coefficient being odd is in particular satisfied for linear
drift coefficients f(x, t) = a(t)x.
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First-Passage Times for Gaussian Processes

C.1 First Passage through a Curved Boundary

Let v(t) be continuously differentiable on [0,∞) and satisfy v(0) = 0 and
v′(t) � v0 > 0 for all t � 0. Consider the Gaussian process

zt = σ

∫ t

0

√
v′(s) dWs , (C.1.1)

whose variance is σ2v(t). We will consider zt as a Markov process and intro-
duce the notation Ps,x{zt ∈ ·} = P{zt ∈ · |zs = x}, t > s, for its transition
probabilities. Their densities are given by

y �→ ϕ(t, y|s, x) :=
∂

∂y
Ps,x{zt < y}

=
1
σ

1√
2πv(t, s)

e−(y−x)2/2σ2v(t,s) , (C.1.2)

where v(t, s) = v(t) − v(s).
Let d(t) be continuously differentiable on [0,∞) and satisfy d(0) > 0. The

object of the “first-passage problem” is to determine the density

ψ(t) =
d
dt

P0,0{τ < t} (C.1.3)

of the first-passage time τ = inf{s > 0: zs > d(s)}. For the sake of brevity, we
will call ψ(t) the first-passage density of zt to d(t). Note that in the case of a
constant boundary d(t) ≡ d0, the first-passage density ψ(t) can be obtained
exactly from the reflection principle (Lemma B.4.1). For Brownian motion, the
problem of determining the first-passage density to a straight line, i.e., a linear
boundary, is equivalent to finding the density of an inverse Gaussian random
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variable, and in case the boundary is declining, the exact expression is known.1

The case of general boundaries is often referred to as curved boundary .
For curved boundaries, the first-passage density can be estimated with the

help of certain integral equations satisfied by ψ(t). Let φ(t) = ϕ(t, d(t)|0, 0)
denote the value of the density of zt at d(t) and let φ(t|s) = ϕ(t, d(t)|s, d(s))
denote the transition density at y = d(t) for paths starting at time s in
x = d(s). For any y > d(t), the Markov property enables us to write

P0,0{zt � y} =
∫ t

0

Ps,d(s){zt � y}ψ(s) ds . (C.1.4)

Differentiating with respect to y and taking the limit y ↘ d(t) yields

φ(t) =
∫ t

0

φ(t|s)ψ(s) ds . (C.1.5)

A second integral equation satisfied by ψ(t) can be obtained by differentiat-
ing (C.1.4) twice with respect to y, before again taking the limit y ↘ d(t).
Combing the resulting equation with (C.1.5) yields

ψ(t) = b0(t)φ(t) −
∫ t

0

b̃(t, s)φ(t|s)ψ(s) ds , (C.1.6)

where

b0(t) = v′(t)
[
d(t)
v(t)

− d′(t)
v′(t)

]
= −v(t) ∂

∂t

(
d(t)
v(t)

)
, (C.1.7)

b̃(t, s) = v′(t)
[
d(t, s)
v(t, s)

− d′(t)
v′(t)

]
= −v(t, s) ∂

∂t

(
d(t, s)
v(t, s)

)
, (C.1.8)

with d(t, s) = d(t) − d(s). In the particular case of a standard Brownian
motion, that is for σ = 1 and v(t) ≡ t, Equation (C.1.6) has been established
in [Dur92, Appendix by D. Williams]. The general case is easily obtained from
the fact that zt = σWv(t) in distribution.

Equation (C.1.6) suggests that the first-passage density can be written in
the form

ψ(t) =
1
σ
c(t)e−d(t)

2/2σ2v(t) , (C.1.9)

where c(t) is a subexponential prefactor. In fact, the following bound on c(t)
follows immediately from (C.1.5) and (C.1.6).

Lemma C.1.1. Let c0(t) = b0(t)/
√

2πv(t). Then (C.1.9) holds with∣∣c(t) − c0(t)
∣∣ � 1√

2πv(t)
sup

0�s�t

∣∣b̃(t, s)∣∣ . (C.1.10)

1If the boundary is linear but ascending instead of declining, the first-passage
distribution is improper in the sense, that there is positive probability of not hitting
the boundary at all.
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Remark C.1.2. Note that Lemma C.1.1 does not require v′(t) to be bounded
away from zero as t varies.

If, for instance, v(t) and d(t) are twice continuously differentiable, then
s �→ b̃(t, s) is easily seen to be bounded, and thus c(t) behaves like v(t)−3/2

near t = 0.
Taking advantage of the fact that σ is a small parameter, we can compute

an asymptotic expansion for c(t), valid on a finite, but exponentially long
time interval. Writing c̃(t, s) = b̃(t, s)/

√
2πv(t, s), we see from (C.1.6) that

c(t) must be a fixed point of the operator

(T c)(t) = c0(t) −
1
σ

∫ t

0

c̃(t, s)c(s)e−r(t,s)/2σ
2
ds , (C.1.11)

where

r(t, s) =
d(s)2

v(s)
− d(t)2

v(t)
+
d(t, s)2

v(t, s)
=
v(t)v(s)
v(t, s)

[
d(s)
v(s)

− d(t)
v(t)

]2

. (C.1.12)

Remark C.1.3. The exponent r(t, s) is non-negative and vanishes for s = t.
If r(t, s) does not vanish anywhere else, then the main contribution to the
integral in (C.1.11) comes from s close to t. In the generic case ∂sr(t, t) �= 0,
the integral is at most of order σ2. If the functions involved are sufficiently
smooth, one easily sees that the integral is of order σ3. If r(t, s) vanishes in
a quadratic minimum in s = t or elsewhere, then the integral is at most of
order σ.

The most probable path reaching z at time t is represented by a straight
line in the (v, z)-plane, cf. Section A.5. Thus r(t, s) vanishes for some s �= t
if and only if the most probable path reaching d(t) as already reached d(s).
In that case, there exists a time u ∈ (0, t) such that the tangent to the curve
(v(s), d(s))s�0 at (v(u), d(u)) goes through the origin, i.e., (d(u)/v(u))′ = 0.
This situation can be excluded under a convexity assumption on d(t), which
is automatically satisfied in the adiabatic case.

The following lemma establishes the existence and some properties of a
fixed point of (C.1.11).

Lemma C.1.4. Assume that there are constants ∆,M1,M2 > 0 such that the
conditions

d(s)v′(s) − v(s)d′(s) � ∆v′(s)
(
1 +

√
v(s)

)
, (C.1.13)

|c̃(t, s)| � M1 , (C.1.14)
M2v

′(s) � 1 + v(s) , (C.1.15)

hold for all 0 � s � t. Then (C.1.9) holds with a prefactor c(t) satisfying

|c(t) − c0(t)| � ε

1 − ε

1 + v(t)3/2

v(t)3/2
sup

0�s�t

∣∣∣∣ v(s)3/2

1 + v(s)3/2
c0(s)

∣∣∣∣ , (C.1.16)
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whenever

ε := 2M1

(
e−∆

2/4σ2

σ
t+

4M2σ

∆2

)
< 1 . (C.1.17)

Proof. We shall prove that T is a contraction on the Banach space X of
continuous functions c : [0, t] → [0,∞), equipped with the norm

‖c‖ = sup
0�s�t

∣∣∣∣ v(s)3/2

1 + v(s)3/2
c(s)

∣∣∣∣ . (C.1.18)

For any two functions c1, c2 ∈ X , we have by (C.1.14)

|T c2(t) − T c1(t)| � ‖c2 − c1‖
M1

σ

∫ t

0

1 + v(s)3/2

v(s)3/2
e−r(t,s)/2σ

2
ds . (C.1.19)

Using Assumption (C.1.13), we obtain

d(s)
v(s)

− d(t)
v(t)

=
∫ t

s

d(u)v′(u) − v(u)d′(u)
v(u)2

du

� ∆

[
v(t, s)
v(t)v(s)

+ 2

√
v(t) −

√
v(s)√

v(t)v(s)

]
, (C.1.20)

and thus

r(t, s) � ∆2

[
v(t, s)
v(t)v(s)

+ 4
(
√
v(t) −

√
v(s))2

v(t, s)

]
� ∆2 v(t, s)

v(t)

[
1 +

1
v(s)

]
.

(C.1.21)
For the sake of brevity, we restrict our attention to the case v(t) > 2. We
split the integral in (C.1.19) at times s1 and s2 defined by v(s1) = 1 and
v(s2) = v(t)/2. By (C.1.15), the integral on the first interval is bounded by

2
∫ s1

0

1
v(s)3/2

e−∆
2/4σ2v(s) ds � 4M2σ

∆

∫ ∞

∆2/4σ2

e−y
√
y

dy � 8M2σ
2

∆2
e−∆

2/4σ2
.

(C.1.22)
The second part of the integral is smaller than 2te−∆

2/4σ2
because r(t, s) �

∆2/2 for s1 < s < s2, while the last part is bounded by∫ t

s2

e−∆
2v(t,s)/2σ2v(t) ds � 23/2M2

v(t)

∫ t

s2

v′(s)e−∆
2v(t,s)/2σ2v(t) ds � 25/2M2σ

2

∆2
.

(C.1.23)
This shows that T is a contraction with contraction constant ε, and the result
follows by bounding ‖c − c0‖ = ‖T nc − T 0‖ by a geometric series. Here 0
denotes the function which is zero everywhere. ��

Remark C.1.5. The proof shows that if, in addition to (C.1.13)–(C.1.15), the
bound
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M ′
2v

′(s) � 1 + v(s) (C.1.24)

is satisfied for all s such that v(t)/2 � v(s) � v(t), then (C.1.16) holds with

ε = 2M1

(
4M2σ

∆2
+
t

σ

)
e−∆

2/4σ2
+

8M1M
′
2σ

∆2
. (C.1.25)

This result is useful in certain situations involving bifurcations, in which one
may obtain a substantially smaller value of M ′

2 than of M2.

Corollary C.1.6. Let the assumptions of Lemma C.1.4 be satisfied and as-
sume in addition that there exists a constant M3 > 0 such that

d(t)v′(t) − v(t)d′(t) � M3(1 + v(t)3/2) for all t � 0. (C.1.26)

Then

c0(t)
[
1 − ε

1 − ε

M2M3

∆

]
� c(t) � c0(t)

[
1 +

ε

1 − ε

M2M3

∆

]
(C.1.27)

holds for all t > 0 such that ε = ε(t) < 1, where ε is defined by (C.1.17).

Proof. The proof follows directly from the bounds (C.1.26) and

1 + v(t)3/2

v(t)3/2
1

c0(t)
�

√
2πM2

∆
, (C.1.28)

the latter being a consequence of (C.1.13) and (C.1.15). ��

C.2 Small-Ball Probabilities for Brownian Motion

For d-dimensional standard Brownian motion Wt, the distribution function of
the first-exit time τr = τB(0,r) from a centred sphere B(0, r) of radius r can
be expressed with the help of an infinite series, see [CT62, Theorem 2].

Theorem C.2.1. Fix r > 0. Then, for any t > 0,

P{τr > t} = P{ sup
0�s�t

‖Ws‖ < r} =
∞∑
l=1

ξd,l e−q
2
d,lt/2r

2
, (C.2.1)

where qd,l, l � 1, are the positive roots of the Bessel function Jν , for ν =
d/2 − 1, and the prefactors are given by

ξd,l =
1

2ν−1Γ (ν + 1)
qν−1
d,l

Jν+1(qd,l)
. (C.2.2)
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We apply the preceding theorem to one-dimensional Brownian motion, i.e.,
for d = 1. In that case, the positive roots of Jν are q1,l = (2l− 1)π/2, and we
find Jν+1(q1,l) = 2

π (2l− 1)−1/2(−1)l−1. Thus the series (C.2.1) is alternating,
and the summands decrease in absolute value. This immediately implies the
following estimate, which is useful for “small balls”, namely for small r.

Corollary C.2.2. For d = 1 and any r > 0,

P{ sup
0�s�1

|Ws| < r} � 4
π

e−π
2/8r2 . (C.2.3)
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The set-up considered in Section C.1 is tailored to applications for which ε,
defined in (C.1.17), is small, so that we obtain approximations which hold uni-
formly for t from a large region. The application in Section 3.1.2 corresponds
to passage of Brownian motion to a boundary which approaches a multiple of
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namiques: développements asymptotiques. Bull. Sci. Math. (2),
109:253–308, 1985.
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[Nĕı88] A. I. Nĕıshtadt. Persistence of stability loss for dynamical bifurcations
II. Differential Equations, 24:171–176, 1988.

[Nei95] A. I. Neishtadt. On calculation of stability loss delay time for dynamical
bifurcations. In XIth International Congress of Mathematical Physics
(Paris, 1994), pages 280–287. Internat. Press, Cambridge, MA, 1995.

[Nen80] G. Nenciu. On the adiabatic theorem of quantum mechanics. J. Phys.
A, 13:L15–L18, 1980.

[NN81] C. Nicolis and G. Nicolis. Stochastic aspects of climatic transitions—
additive fluctuations. Tellus, 33(3):225–234, 1981.

[NP03] E. Neumann and A. Pikovsky. Slow–fast dynamics in Josephson junc-
tions. Eur. Phys. J. B, 34:293–303, 2003.



258 References

[NSASG98] Alexander Neiman, Alexander Silchenko, Vadim Anishchenko, and
Lutz Schimansky-Geier. Stochastic resonance: Noise-enhanced phase
coherence. Phys. Rev. E, 58:7118–7125, 1998.
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Aτ (h) concentration domain of paths Section 3.4.3
A(y) Jacobian matrix Section 5.1.4
B(h) concentration domain of paths Section 3.1.1
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Cr r-times continuously
differentiable functions

D, D0 open sets (domains)
F , {Ft}t σ-algebra, canonical filtration
F0(y) diffusion coefficient Section 5.1.4
J (v) Section 5.1.4
K(δ), K(κ) drift-dominated region Section 3.2.2
M, M± slow manifolds Definition 2.1.1
Mε, M̂ adiabatic manifolds Theorem 2.1.8
N neighbourhood
O(x) Landau symbol:

‖O(x)‖ � K‖x‖ for ‖x‖ � δ
Ox(1) Landau symbol:

limx→0 Ox(1) = 0
P Newton polygon Section 2.2.4
Q(t) matrix related to covariance Section 5.1.4
S(h) diffusion-dominated region Section 3.2.1
Sω(t, s) entry of principal solution Section 5.3.1
T contraction Appendix C
U(t, s) principal solution Section 5.1.4
Vω(t, s) principal solution Section 5.3.1
X Banach space Appendix C
Z(t) asymptotic covariance matrix Section 5.1.4

C complex numbers
E{·}, Ex0,y0{·} expectation; with initial value
Eµ{·} expectation, initial distribution µ
N positive integers
N 0 non-negative integers
P{·}, Px0,y0{·} probability; with initial value
Q rational numbers
R real numbers
R n n-dimensional space
R n×m n by m real matrices
Z integers

α(t, s) integral of a(u) over [s, t]
α(T ) albedo Section 4.1.1
αk, βk integral of xpk(x) Section 4.1.2
αT , αS thermal-expansion coefficients Section 6.2.1
β relaxation parameter Section 4.1.1
γ damping coefficient Examples 2.1.3, 2.1.6
γ spacing of partition Section 3.1.1
γ exponent, 0 < γ < 1 Chapter 5
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γ�(y, s) periodic solution Section 2.3.1
γ(T ) atmospheric response Section 4.1.1
δ small constant
δ size of neighbourhood Section 3.2.2
δ bifurcation imperfection Section 4.2
ε adiabatic parameter
ε0 maximal value of ε
ε contraction constant Appendix C
ζ(y, ε) integral (scaling function) Lemma 2.2.8
ζ(t) width of B(h) Section 3.1.1
ζ̂(t) sups:s�t ζ(s) Section 3.3.1
ζt ζT

t = (ξTt , η
T
t ) Section 5.1.4

η parameter
η(σ) spectral power amplification Section 4.1.2
ηt, η0

t yt − ydet
t , linear approximation Chapter 5

θ intermediate value Theorem 2.2.9
θ angle on periodic orbit Section 2.3
θ(t) natural time Section 4.1.4
ϑ(t, s) bound on ‖Vω(t, s)‖ Section 5.3.1
κ, κ± exponents
λ exponential time scale Section 4.1.3
λ Lyapunov exponent Section 4.1.4
λk eigenvalues of −L Section 4.1.2
λ, µ parameters
ξ deviation from periodic orbit Section 2.3.1
ξt, ξ0t xt − x̄(yt, ε), linear approx. Chapter 5
ρ σ′/σ Chapter 5
ρ(y) remainder Example 2.2.10
ρ(t) width of S(h) Section 3.2.1
� spacing of partition Proposition 3.3.5
σ noise intensity
σ′ noise intensity, slow variables Chapter 5
σc critical noise intensity Section 4.2
τ , τB(h), . . . first-exit times
τκ0 first-passage time at 0
ϕ angle, auxiliary function
φt phase Section 2.3.1
φk(x) eigenfunctions of L Section 4.1.2
φ(t, x, λ) deterministic limiting function Section 4.1.3
χ(1)(t), χ(2)(t) growth measures of V (t, 0) Chapter 5
ψ(t) arrival-phase density Section 4.1.4
ψ(t) first-passage density Appendix C
ψκ(t; s, y) first-passage density, Section 3.2.2

initial cond. (s, y)
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ω realisation (ω ∈ Ω)
ω(y) imaginary part of eigenvalue Section 2.2.5
ω frequency Section 4.1.2
ωi(t)2 curvature of potential Section 4.1.2

Γ �(y, ϕ) periodic orbit, parametrized Section 2.3.1
Γ (θ, y, ε) invariant cylinder Section 2.3.2
∆ discriminant of a quadratic eq. Example 2.2.10
∆ spacing of partition Theorem 3.2.2
∆(t) difference of well depths Section 4.1.2
∆S salinity difference Section 6.2.1
∆T temperature difference Section 6.2.1
∆ρ density difference Section 6.2.1
Θ(t) related to ‖U(t, u)‖ Section 5.1.2
Λ integral of λ1(t) Section 4.1.2
Ξ auxiliary variable Lemma 3.2.11
Ξt submartingale Lemma 5.1.10
Π(t0) bifurcation-delay time Section 2.2.3, 2.2.5
Σ covariance of Qs(t)Υ 0

t Lemma 5.1.8
Υu U(s, u)ξu Section 5.1
Φ(x) normal law distribution function
Φt(s, y) exit probability Theorem 3.2.8
Φ(t), Φ̂(t) related to U(t, u), U(t, u) Section 5.1
Ψ(t) integral of a(s) + iω(s) up to t Section 2.2.5
Ψ(t), Ψ̂(t) related to U(t, u), U(t, u) Section 5.1
Ω probability space
Ω forcing frequency Section 4.1.2
Ω1(ϕ, r, y, ε) angular fast vector field Section 2.3.1

a ∧ b minimum of a and b
a ∨ b maximum of a and b
�a� smallest integer k � a
 a! largest integer k � a
x := y x is defined by y
x=: y x is denoted y
x(t, ε) � y(t, ε) x scales as y Notation 2.2.1
h� σ, σ 
 h h = h(σ) is of larger order

than σ: h(σ)/σ → ∞ as σ → 0
x � y x is approximately y
x(σ) ∼= y(σ) x(σ)/y(σ) = 1 + O(σ2) Section 4.1.2
x(σ) ∼ y(σ) limσ→0 σ

2 log(x(σ)/y(σ)) = 1
‖x‖ Euclidean norm of x
〈x, y〉 scalar product of x and y
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〈x, y〉W−1 scalar prod. weighted by W (x)−1 Section 4.1.2
‖A‖ operator norm: sup‖x‖=1‖Ax‖
‖A‖I supt∈I‖A(t)‖
‖A‖∞ ‖A‖I , I = R or context-dep.
AT transposed matrix

∂xf(x) derivative, Jacobian matrix
∂xxf(x) 2nd derivative, Hessian matrix
∇f(x) gradient

1l identity matrix
1A(x) indicator function on the set A

Acronyms

DO Dansgaard–Oeschger
EMIC Earth Model of Intermediate Complexity
GCM General Circulation Model
GL Ginzburg–Landau
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RCLSJ Resistive-Capacitive-Inductively Shunted Junction
SDE Stochastic Differential Equation
SK Suzuki–Kubo
SQUID Superconducting Quantum Interference Device
SR Stochastic Resonance
THC Thermohaline Circulation
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σ-algebra 224
pre-τ 224

action
functional 4, 128
potential 207

activation time 2
adiabatic

limit 19, 120, 128
manifold 24, 27, 145, 164, 205
solution 51, 69, 90, 134, 148, 198
theorem 48

Airy function 32
Aristotle’s law 20
Arrhenius’ law 236
associated system 17, 20, 28, 33, 45,

178, 213
assumption

asymptotically stable periodic orbit
172

avoided transcritical bifurcation 133
Hopf bifurcation 185
multidimensional bifurcation 178
multidimensional stable case 144,

148
saddle–node bifurcation 85
slowly varying stable periodic orbit

175
stable case 53
symmetric pitchfork bifurcation 97
unstable case 69

asymptotically stable
equilibrium branch 53
equilibrium point 5, 6, 209, 221, 235

periodic orbit 45, 170, 172, 175
slow manifold 19, 23, 54, 202

attractive
locally 25, 28

autocorrelation function 116
averaged system 46, 190
averaging 45, 177
avoided bifurcation 28, 132, 139, 216

backward Kolmogorov equation 231
Balanus nubilus 208
barnacle 208
Bernoulli process 11, 141
Bernstein inequality 58, 239
Bessel

function 247
process 153

bifurcation
avoided 28, 132, 139, 216
concentration of paths 180
delay 7, 11, 34, 43, 70, 98, 213
diagram 19
dynamic 27, 178
Hopf 43, 185, 213
pitchfork 8, 34, 42, 97, 184
point 22, 27, 51, 178
reduction 183
saddle–node 8, 28, 84
saddle–node of periodic orbits 213
saddle–node-to-invariant-circle 209
transcritical 41, 105

boundary
characteristic 128
curved 59, 60, 243, 244
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bounded-growth condition 66, 229
box model 21, 199, 200
branch

equilibrium 11, 19, 22, 51, 68
Brownian motion 223
buffer time 44
bursters 212
bursting 209, 212

Cauchy’s formula 26
Cayley–Hamilton theorem 147
centre manifold 27, 178
centre-manifold theorem 27
characteristic

boundary 128
exponent 45, 118, 128
multiplier 45, 171

climate model 112, 199
comparison lemma 241
concentration

of sample paths 53, 145, 166, 178
near bifurcation point 180

condition
bounded-growth 66, 229
Lipschitz 229

controllability Grammian 147
Curie–Weiss model 215
curved boundary 59, 60, 243, 244
cycling 128

Dansgaard–Oeschger events 200, 204
delayed bifurcation 7, 11, 34, 43, 70,

98, 213
density

first-passage 243
invariant 3, 8, 232

distribution
Gumbel 129
residence-time 126, 206

Doléans exponential 228
Doob’s submartingale inequality 58,

153, 154, 239
double-well potential 8, 97, 111, 113,

139
dynamic

bifurcation 27, 178
hysteresis 214
phase transition 215

elementary function 225
energy-balance model 112
equation

Euler–Lagrange 233, 234
Fitzhugh–Nagumo 13, 208
Fokker–Planck 3, 117, 232
Ginzburg–Landau 215
Hamilton 234
Hodgkin–Huxley 13, 207
Kolmogorov 3, 117, 231, 232
Langevin 194, 215
Lyapunov 146
Morris–Lecar 208
Riccati 32, 135
Smoluchowski 194
Suzuki–Kubo 215

equilibrium
branch 11, 19, 22, 51

asymptotically stable 53
stable 29, 53
tame 38
unstable 29, 68
with exponent q 37

point
asymptotically stable 209, 221

escape
diffusion-dominated 71, 101, 189
drift-dominated 78, 102

Euler Gamma function 129
Euler–Lagrange equation 233, 234
excitability 13, 209
exit problem 3, 127, 234
exponent

characteristic 45, 118, 128
Lyapunov 45, 128, 165, 170
of exit probability 63, 78, 88, 100,

104, 106, 136
exponential martingale 228

fast
system 17, 221
time 6, 17, 24, 47, 112
variable 17

Feller property 231
Fenichel’s theorem 24, 69
first-exit

location 4, 127, 234
time 3, 53, 58, 62, 72, 224, 234

first-passage
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density 243
time 60, 126, 243

Fitzhugh–Nagumo equation 13, 208
Floquet theory 118, 170
Fokker–Planck equation 3, 117, 232
formula

Cauchy 26
Itô 55, 86, 145, 227
Stirling 27

Fourier series 129
function

Airy 32
autocorrelation 116
Bessel 247
elementary 225
Gamma 129
Lyapunov 23
rate 4

Gamma function 129
Gaussian

martingale 58, 73, 152
process 56, 71, 79, 166, 179, 187, 224,

243
generator 2, 117, 231
Ginzburg–Landau equation 215
good rate function 233
gradient system 5, 148, 232, 236
Gronwall’s inequality 155, 241
Gumbel distribution 129

Hamilton equation 234
Hodgkin–Huxley equation 13, 207
Hopf bifurcation 43, 185, 213
hyperbolic slow manifold 19
hysteresis 7, 125

cycles 10
dynamic 214
static area 215

ice age 112, 200, 204
implicit-function theorem 26, 29, 41,

43, 86
inequality

Bernstein 58, 239
Doob 58, 153, 154, 239
Gronwall 155, 241
Schwarz 67

integral

Itô 56, 225, 226
Riemann–Stieltjes 225
stochastic 225

integration by parts 66, 71, 228, 240
invariant

circle 209
density 3, 8, 232
manifold 24, 47
positively 3, 150
set 3, 128, 150
tube 175

Ising model 215
isometry

Itô 225
Itô

formula 55, 86, 145, 227
integral 56, 225, 226
isometry 225

Josephson junction 219

Kirchhoff’s law 196, 219
Kolmogorov’s

backward equation 3, 231
continuity theorem 223
forward equation 3, 117, 232

Kramers’ time 2, 54, 115, 206
Kronecker product 147

Langevin equation 194, 215
Laplace method 4, 39, 121, 232
large deviations 2, 59, 66, 124, 128, 232
large-deviation principle 233
law

Arrhenius 236
Kirchhoff 196, 219
Stefan–Boltzmann 113

limit
adiabatic 19, 120, 128

linear stochastic differential equation
56, 145, 230

Lipschitz condition 229
locally

attractive 25, 28
invariant 24

location
first-exit 4, 127, 234

Lyapunov
equation 146
exponent 45, 128, 165, 170
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function 23
time 6

macaroni 177
manifold

adiabatic 24, 27, 145, 164, 205
centre 27, 178
invariant 47
locally invariant 24
slow 18, 144

hyperbolic 19
stable 19, 23, 144
unstable 19

stable 144
Markov

process 1, 53, 224, 243
property 61, 73, 93, 162, 224, 244

strong 225, 230
martingale 226

exponential 228
Gaussian 58, 73, 152

metastability 1, 54, 59
model

climate 112, 199
Curie–Weiss 215
energy-balance 112
Ising 215
Stommel 21, 200

moments of one-dimensional process
66

monodromy matrix 170
Morris–Lecar equation 208
multiplier

characteristic 45, 171

neural dynamics 207
Newton polygon 37
noise-induced

deviation 55
transition 108, 111

non-autonomous stochastic differential
equation 51, 56

orbit
periodic 45, 170, 172, 173, 175, 176

Ornstein–Uhlenbeck process 9, 195,
203, 230, 232

oscillation
relaxation 7, 22, 33

oscillator
nonlinear 194
van der Pol 12, 21, 33, 196

overdamped motion 20, 26, 51, 194

palm tree 201
periodic

bursting 212
orbit 45

asymptotically stable 45, 170, 172,
175

concentration of paths 173, 176
pitchfork bifurcation 8, 34, 97

asymmetric 42, 108
avoided 139
multidimensional 184
symmetric 34, 97

Poincaré map 134
Poisson point process 115
potential 20, 26, 51, 54, 59, 69, 85, 97,

194, 221
(Φ2)2 215
action 207
double-well 8, 97, 111, 113, 139
washboard 210

power spectrum 116
pre-τ σ-algebra 224
principal

curvature 148
solution 45, 146

principle
large-deviation 233
reflection 81, 94, 105, 232, 242

process
Bernoulli 11, 141
Bessel 153
Gaussian 56, 71, 79, 166, 179, 187,

224, 243
Markov 1, 53, 224, 243
Ornstein–Uhlenbeck 9, 195, 203,

230, 232
Poisson 115
Wiener 52, 223

property
Feller 231
Markov 61, 73, 93, 162, 224, 244
scaling 52, 224
semigroup 230
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quasipotential 128, 235
quasistatic regime 124

rate function 4
good 233

reduced system 19, 24, 28, 43
stochastic 164, 177, 182

reduction
near bifurcation point 27, 182, 183
near periodic orbit 174, 177
to phase dynamics 174
to slow variables 164, 178

reflection principle 81, 94, 105, 232,
242

regime
large-amplitude 218
quasistatic 124
semiadiabatic 123
small-amplitude 218
stochastic resonance 114
strong-noise 90, 101, 138, 218
superadiabatic 123, 125
synchronisation 10, 112, 131, 132
weak-noise 96, 101, 135

relaxation oscillation 7, 22, 33
residence time 126, 206
Riccati equation 32, 135
Riemann–Stieltjes integral 225

saddle–node bifurcation 8, 28, 84
of periodic orbits 213
to invariant circle 209

sample paths 2
approach 132
concentration 53, 145, 166, 178
of Brownian motion 223

scaling
behaviour 30
law 7, 30, 37
property 52, 224

Schilder’s theorem 233
Schwarz inequality 67
semiadiabatic regime 123
semigroup 230
signal-to-noise ratio 119
slow

manifold 18, 144
asymptotically stable 19, 23, 54,

144, 202

hyperbolic 19
unstable 19

system 19
time 9, 19, 51
variable 17

reduction 164, 178
slow–fast system 6

deterministic 17
stochastic 143

small-ball probability 71, 73, 247
Smoluchowski equation 194
Sobolev space 4, 232
solution

principal 146
strong 52, 229

space
Sobolev 4, 232

spectral
gap 2
power amplification 119
theory 2, 116

stability matrix 19
stable

asymptotically 19, 53, 54, 202, 209,
221

equilibrium branch 53
manifold 23, 144
structurally 28

static hysteresis area 215
Stefan–Boltzmann law 113
Stewart–McCumber parameter 220
Stirling’s formula 27
stochastic

integral 225
resonance 10, 111, 206
synchronisation 132

stochastic differential equation
linear 56, 145, 230
non-autonomous 51, 56
reduced 164
slow–fast 143

Stommel’s box model 21, 200
stopping time 53, 93, 224
strong

Feller property 231
Markov property 225, 230
solution 52, 229

structural stability 28
submartingale 153, 154, 239
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superadiabatic regime 123, 125
Suzuki–Kubo equation 215
synchronisation

noise-induced 132
regime 10, 112, 131, 132
stochastic 132

system
associated 17, 20, 28, 33, 45, 178, 213
fast 17, 221
gradient 5, 232, 236
reduced 19, 24, 28, 43
slow 19
slow–fast 6, 17

tame equilibrium branch 38
theorem

adiabatic 48
Cayley–Hamilton 147
centre-manifold 27, 178
concentration around a deterministic

solution 168
dynamic Hopf bifurcation 44
dynamic pitchfork bifurcation 35
dynamic saddle–node bifurcation 31
Fenichel 24, 69
implicit-function 26, 29, 41, 43, 86
Itô 227
Kolmogorov 223
multidimensional bifurcation 180
multidimensional stochastic stable

case 149
reduction near bifurcation point 183
reduction to phase dynamics 174
reduction to slow variables 164
Schilder 233
slowly varying periodic orbit 46
stochastic avoided transcritical

bifurcation 136, 138
stochastic Hopf bifurcation 188, 189
stochastic linear stable case 59
stochastic motion far from equilibria

65
stochastic motion near stable periodic

orbit 173, 176
stochastic nonlinear stable case 63
stochastic pitchfork bifurcation

100–102, 104
stochastic saddle–node bifurcation

88, 91, 96

stochastic transcritical bifurcation
106, 107

stochastic unstable case 72, 78
strong Markov property 225
strong solutions of SDE 229
Tihonov 23, 56, 70
Wiener–Khintchin 116

theory
Floquet 118, 170
large-deviation 2, 59, 66, 124, 128,

232
spectral 2, 116
Wentzell–Freidlin 4, 59, 124, 232

thermohaline circulation 200
Tihonov’s theorem 23, 56, 70
time

activation 2
bifurcation delay 35, 44, 98
buffer 44
fast 6, 17, 24, 47, 112
first-exit 3, 53, 58, 62, 72, 224, 234
first-passage 60, 126, 243
Kramers 2, 54, 115, 206
Lyapunov 6
residence 126, 206
slow 9, 19, 51
stopping 53, 93, 224

transcritical bifurcation 41, 105
avoided 132

transformation of variables 55
transition

noise-induced 108, 111
probability 116, 231, 243

Union Jack 201
unstable

equilibrium branch 68
slow manifold 19

van der Pol oscillator 12, 21, 33, 196
variables

fast 17
slow 17

washboard potential 210
weak Feller property 231
Wentzell–Freidlin theory 4, 59, 124,

232, 235
Wiener process 52, 223
Wiener–Khintchin theorem 116


