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Preface

On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely
and unexpectedly.

He was one of the most influential mathematicians in the mechanics of fluids,
and will be remembered for his outstanding results that had, and still have, a con-
siderably significant influence in the field. Among his many achievements, we recall
that he was the founder of the modern mathematical theory of the Navier-Stokes
equations describing one- and two-dimensional motions of a viscous, compressible
and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions
to science is provided in the following article “Scientific portrait of Alexander
Vasil’evich Kazhikhov”.

This volume is meant to be an expression of high regard to his memory,
from most of his friends and his colleagues. In particular, it collects a selection of
papers that represent the latest progress in a number of new important directions
of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers
are written by world renowned specialists. Most of them were friends, students or
colleagues of Professor Kazhikhov, who either worked with him directly, or met
him many times in official scientific meetings, where they had the opportunity of
discussing problems of common interest.

We shall not give the detailed description of the results presented in this vol-
ume, but, rather, we shall only give a short list of the main areas where these results
have been obtained. These areas range from boundary value problems for different
types of fluid dynamic equations, to certain models describing the properties of
compressible flows, to limits of different kind with vanishing parameters. They also
include control problems for fluid flow, stability problems for equilibrium figures
of a liquid, problems connected with elastic bodies, Poisson-Boltzmann equation,
and problems with insufficient information about initial and/or boundary data.

In many articles the reader will find an account of the state-of-the-art of the
corresponding disciplines that may serve as a stimulating starting point for further
research.

Also for this reason, we believe that this volume could be helpful to specialists
as well as to researchers who would like to become acquainted with certain aspects
of Mathematical Fluid Mechanics.

Moscow, Pittsburgh, and Novosibirsk, September 2009

Andrei V. Fursikov Giovanni P. Galdi Vladislav V. Pukhnachev
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Scientific Portrait of
Alexander Vasilievich Kazhikhov

Alexander Vasilievich Kazhikhov was born on the 28th of August in 1946 in the
village of Proskokovo, Kemerovo Region. In 1947 his family moved to the town of
Kolyvan, Novosibirsk Region, where he graduated from a secondary school. In 1964
Alexander Kazhikhov entered the Mechanics and Mathematics Department at the
Novosibirsk State University. Upon graduation in 1969, he continued his education
as a post graduate student. In 1971 Alexander Kazhikhov defended his Candidate
of Science thesis entitled “Global solvability of some boundary value problems in
hydrodynamics”, and occupied a position at the Theoretical Department of the
Institute for Hydrodynamics of the Siberian Branch of the Soviet Union Academy
of Sciences, where he had been working as a full-time scientific researcher for the
whole of his academic career. The degree of Doctor of Science was awarded to him
in 1982 on the basis of a successful defence of the thesis entitled “Boundary value
problems for the viscous gas equations and equations of nonhomogeneous fluids”.

Alexander Kazhikhov published about 80 scientific works, the monograph
“Boundary value problems in mechanics of nonhomogeneous fluids” written in
1983 in collaboration with S.N. Antontsev and V.N. Monakhov being the most
known among them. All of Alexander Kazhikhov’s works belong to the field of
mathematical hydrodynamics. This field descends from the works of L. Euler,
who in 1750 derived his famous equations of an ideal liquid. Later C.L. Navier
(1822) and G.G. Stokes (1845) generalized Euler’s equations taking into account
viscosity effects. Since then, great progress has been achieved in understanding of
the classical models of fluids. However, to date, there still remains unanswered a
set of important mathematical questions regarding solvability of these equations,
as well as uniqueness and stability of their solutions. Differential equations of fluid
mechanics are of the greatest interest in applied mathematics, due to numerous
applications in meteorology, aerodynamics, thermodynamics, physics of plasma,
and many other fields. The contribution of Alexander Kazhikhov is very significant
and has been widely internationally recognized.

Three major directions can be distinguished in Kazhikhov’s studies.
He constructed the theory of boundary value problems for the Navier-Stokes

equations of one-dimensional motion of viscous heat-conducting gas. His pioneering
results in this field were established in the 1970s, by means of a priori estimates
techniques. Alexander Kazhikhov became a master of those techniques.
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Further, one of the first ever results on global solvability for equations of
multi-dimensional motions of viscous gas is due to him; it was published in 1995 in
a joint article with V.A. Weigant. Also, Kazhikhov established the fundamentals of
the contemporary theory of viscous nonhomogeneous incompressible fluids, which
was solidly demonstrated in the world-famous monograph of P.-L. Lions entitled
“Mathematical topics in fluid mechanics” (1996).

One more set of remarkable results of Alexander Kazhikhov relates to the
classical Euler equations of an ideal incompressible liquid. It must be emphasized
that the question about well-posedness of boundary value problems for Euler’s
equations is nontrivial, even within the local setting. The theory built by N.M.
Gunter, L. Lichtenstein, W. Wolibner, and N.E. Kochin left open an important
question on well-posedness of the boundary value problem on flow of liquid through
a given domain. In particular, it was unclear whether it was legitimate to impose
boundary conditions on the velocity vector at the entrance of the flow region.
Kazhikhov justified the well-posedness of this boundary value problem and of
some closely related formulations proposed for modeling of liquid flows through
given domains.

As a matter of fact, the words “for the first time” characterize many of
Alexander Kazhikhov’s results. The notion of renormalized solutions to the dif-
ferential mass conservation law was introduced in 1989 by P.-L. Lions and R.J.
DiPerna and remains rooted in one of the earlier works of Kazhikhov on equations
of viscous nonhomogeneous fluids (1974). This notion aims at improving conver-
gence of approximate solutions. In his work, Kazhikhov found that the weakly
convergent sequence of approximate densities converges, in fact, strongly. This
was verified by an analysis of the equation whose solution is the weak limit of the
sequence of squares of approximate densities. Further generalization of this result
became a basis of contemporary theory. The generalization consists in replacing
the quadratic expression with a proper convex function.

The scientific achievements of Alexander Kazhikhov were honored, in 1978
and 1984, by the Prize of the Siberian Branch of the Soviet Union Academy of Sci-
ences, and, in 1989, by the Silver Medal of the All Soviet Industrial Exposition. In
2003 he became Laureate of the Lavrentiev Prize of the Russian Academy of Sci-
ences. Within the community of specialists on the Navier-Stokes equations he was
outstanding for his persistent tackling of the most complicated and fundamental
problems.

Alexander Kazhikhov frequently lectured abroad. He participated in all sig-
nificant international conferences on mathematical hydrodynamics. One of the
conferences was organized by Japanese mathematicians in Fukuoka in honor of his
50th anniversary.

Alexander Kazhikhov devoted much time and effort to scientific, administra-
tive, and pedagogical activities. He was a member of the editorial boards of “Jour-
nal of Mathematical Fluid Mechanics”, “Siberian Mathematical Journal”, and
“Vestnik – Quarterly Journal of Novosibirsk State University”. For many years he
actively participated in functions of various dissertation expertise councils and of
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the United scientific board for mathematics and mechanics at the Siberian Branch
of the Russian Academy of Sciences. Starting from 1971, Alexander Kazhikhov
taught at the Novosibirsk State University. From 1986 till 1991 he was Dean of
the Mathematics and Mechanics Department. His lectures were always lucid and
interesting. He took an enthusiastic interest Mathematical and Physical Olympiads
for secondary school students. Many current researchers chose the profession of sci-
entist under the influence of Professor Kazhikhov’s charisma. Among his students,
there are 16 Candidates and 5 Doctors of Science.

The science community around the world recognizes that the scientific legacy
of Professor Alexander Vasilievich Kazhikhov will influence the progress of math-
ematical hydrodynamics for many more years.
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Boundary Control Problems for
Stationary Equations of Heat Convection

G.V. Alekseev and D.A. Tereshko

Abstract. Boundary control problems for the stationary Boussinesq equa-
tions under nonhomogeneous Dirichlet boundary condition for the velocity
and mixed boundary conditions for the temperature are considered. Velocity
vector on the boundary and heat flux on a part of the boundary are used
as controls. Quadratic tracking-type functionals for the velocity or vorticity
fields play the role of cost functionals. Solvability and uniqueness theorem
for the considered boundary value problem is formulated. Optimality sys-
tems describing first-order necessary optimality conditions are derived and
analyzed. Sufficient conditions to the data ensuring the local uniqueness and
stability of optimal solutions for concrete cost functionals and controls are es-
tablished. Numerical algorithm based on Newton’s method for the optimality
system and finite element method for linearized boundary value problems is
proposed. Some computational results connected with the vortex reduction in
the backward-facing-step channel by means of the heat flux on a part of the
boundary are given and analyzed.

Mathematics Subject Classification (2000). 35B37, 76D55.

Keywords. Heat convection, flow control, uniqueness and stability estimates.

1. Introduction. Statement of extremum problem

Much attention has recently been given to statement and investigation of new prob-
lems for the models of hydrodynamics and heat convection. The control problems
for Navier-Stokes and Boussinesq equations are examples of this kind of problems.
A significant number of papers is devoted their study (see for example [1–6]).

Along with control problems, the inverse problems for models of heat and
mass transfer play an important role. In these problems the unknown densities of
boundary or distributed sources or the coefficients of model differential equations
or boundary conditions are recovered from additional information on the solution
to the original boundary value problem [7–12]. We note that inverse problems can
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be reduced to corresponding extremum problems by choosing a suitable minimized
cost functional that adequately describes the inverse problem under consideration.
As a result, both control and inverse problems can be analyzed by applying a uni-
fied approach based on the constrained optimization theory in Hilbert spaces [13].

The goal of this paper is a theoretical analysis of inverse extremum problems
for the following model of heat transfer in a viscous incompressible heat-conducting
fluid:

−νΔu+ (u · ∇)u+∇p = f − β̃TG, divu = 0 Ω u = g Γ, (1.1)

λΔT + u · gradT = f Ω, T = ψ ΓD, λ(∂T/∂n+ αT ) = χ ΓN . (1.2)

Here Ω is a bounded domain in Rd (d = 2, 3) with a Lipschitz boundary Γ
consisting of two parts ΓD and ΓN ; u and T are the velocity and temperature;
p = P/ρ, where P is the pressure and ρ = const > 0 is the density of the medium;
ν = const > 0, λ = const > 0 are the viscosity and thermal conductivity, re-
spectively; f and f are the volume densities of the external body forces and heat
sources; G = (0, 0,−G) is the acceleration of gravity, and β̃, g, ψ, α and χ are
given functions. In what follows, problem (1.1), (1.2) with given f , g, β̃, f , ψ, α
and χ are referred to as problem 1. We note that all the quantities in (1.1), (1.2)
are dimensional and their dimensions are defined in terms of SI units.

In this paper an inverse extremum problem will be formulated for the system
(1.1), (1.2). It consists of finding a triple (u, p, T ) and boundary functions (g, χ)
from (1.1), (1.2) and conditions on the minimum of the specific cost functional
which depends on u, p, T , g and χ. Our main attention is focused on analysis of
the local uniqueness and stability of solutions to the inverse extremum problems in
question. We also discuss results of numerical experiments for concrete extremum
problems.

As in [8] we shall use the Sobolev spaces Hs(D) with s ∈ R and Lr(D) with
r ≥ 2 where D denotes Ω, its subset Q, Γ or its part Γ0 with positive measure. The
corresponding spaces of vector functions are denoted by Hs(D) and Lr(D). The
norms and inner products in Hs(Q), Hs(Γ) and their vector analogies are denoted
by ‖ · ‖s,Q, ‖ · ‖s,Γ and (·, ·)s,Q, (·, ·)s,Γ. The inner products and norms in L2(Q)
or L2(Q) are denoted by (·, ·)Q and ‖ · ‖Q. If Q = Ω then we set ‖ · ‖Ω = ‖ · ‖,
(·, ·)Ω = (·, ·). The inner product and norm in L2(ΓN ) are denoted by (·, ·)ΓN and
‖ · ‖ΓN . The norm and seminorm in H1(Ω) and H1(Ω) are denoted by ‖ · ‖1 and
| · |1. The duality relation for the pair of dual spaces X and X∗ is denoted by
〈·, ·〉X∗×X or simply 〈·, ·〉. Let the following assumptions hold.

(i) Ω is a bounded domain in Rd, d = 2, 3 with a boundary Γ ∈ C0,1 consisting
of N connected components Γi, i = 1, 2, . . . , N . The open segments ΓD and ΓN of
Γ obey the conditions ΓD ∈ C0,1, ΓN ∈ C0,1, ΓD �= ∅, ΓD ∩ΓN = ∅, Γ = ΓD ∪ΓN .

Let D(Ω) be the space of infinitely differentiable finite in Ω functions, H1
0 (Ω)

be a closure of D(Ω) in H1(Ω), H1
0(Ω) = H

1
0 (Ω)

d, V = {v ∈ H1
0(Ω) : divv = 0},

H−1(Ω) = H1
0(Ω)

∗, L20(Ω) = {p ∈ L2(Ω) : (p, 1) = 0}, T = H1(Ω,ΓD) ≡ {S ∈
H1(Ω) : S|ΓD = 0}. We shall use the following inequalities which are implied by
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the embedding theorems and the continuity of the trace operator
‖rotu‖ ≤ C1‖u‖1, ‖divu‖ ≤ C2‖u‖1,

‖u‖Q ≤ C3‖u‖1, ‖u‖1/2,Γ ≤ CΓ‖u‖1 ∀u ∈ H1(Ω).
(1.3)

Here C1, C2, C3, CΓ are constants depending on Ω.
Together with H1(Ω) and H1/2(Γ) we shall consider their closed subspaces

H̃1(Ω) = {u ∈ H1(Ω) : u · n|ΓN = 0, (u,n)Γi = 0, i = 1, N}, H̃1
div(Ω) = {v ∈

H̃1(Ω) : divv = 0}, H̃1/2(Γ) = {u|Γ : u ∈ H̃1(Ω)}, and also duals H̃1(Ω)∗,
H̃1/2(Γ)∗ of the spaces H̃1(Ω), H̃1/2(Γ). Let us introduce the following bilinear
and trilinear forms: a0 : H1(Ω)2 → R, b : H1(Ω)× L20(Ω)→ R, a1 : H1(Ω)2 → R,
b1 : H1(Ω)×H1

0(Ω)→ R, c : H1(Ω)3 → R, c1 : H1(Ω)×H1(Ω)×H1(Ω)→ R by

a0(u,v) = (∇u,∇v), b(v, q) = −(divv, q), c(u,v,w) = ((u · grad)v,w),
a1(T, S) = (∇T,∇S), b1(S,v) = (bS,v), c1(u, T, S) = (u · ∇T, S), b = β̃G.

We note that forms c and c1 possess the next properties [14, 15]

c(u,v,w) = −c(u,w,v), c(u,v,v) = 0 ∀u ∈ H̃1
div(Ω), (v,w) ∈ H1

0(Ω)×H1(Ω),
(1.4)

c1(u, T, S) = −c1(u, S, T ), c1(u, T, T ) = 0 ∀u ∈ H̃1
div(Ω), (T, S) ∈ T ×H1(Ω).

(1.5)
Besides all the forms are continuous and the following technical lemma holds [15].

Lemma 1. Under conditions (i) there exist constants δ0, γ0, γ1, γ2 and β1 depend-
ing on Ω such that

|a0(u,v)| ≤ ‖u‖1‖v‖1 ∀(u,v) ∈ H1(Ω)2, a0(v,v) ≥ δ0‖v‖21 ∀v ∈ H1
0(Ω), (1.6)

|a1(T, S)| ≤ ‖T ‖1‖S‖1 ∀(T, S) ∈ H1(Ω)×H1(Ω), a1(T, T ) ≥ δ1‖T ‖21 ∀T ∈ T ,
(1.7)

|c(u,v,w)| ≤ γ0‖u‖1‖v‖1‖w‖1 ∀(u,v,w) ∈ H1(Ω)3, (1.8)
|c1(u, T, S)| ≤ γ1‖u‖1‖T ‖1‖S‖1 ∀u ∈ H1(Ω), (T, S) ∈ H1(Ω)×H1(Ω), (1.9)

|b1(T,v)| ≤ β1‖T ‖1‖v‖1 ∀T ∈ H1(Ω),v ∈ H1
0(Ω), (1.10)

|(χ, T )ΓN | ≤ ‖χ‖ΓN‖T ‖ΓN ≤ γ2‖χ‖ΓN‖T ‖1 ∀T ∈ H1(Ω). (1.11)
Bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈L2

0(Ω),q �=0
sup

v∈H1
0(Ω),v �=0

b(v, q)
‖v‖1‖q‖

≥ β = const > 0. (1.12)

Let in addition to (i) the following conditions hold:
(ii) f ∈ H−1(Ω), f ∈ L2(Ω), b ∈ L2(Ω), ψ ∈ H1/2(ΓD), α ∈ L2(ΓN );
(iii) g ∈ H̃1/2(Γ), χ ∈ L2(ΓN ).
Now we divide the set of all input data in problem (1.1), (1.2) into two groups.

One consists of the control functions g and χ, and the other consists of fixed data,
namely f , f , b, ψ and α. Assume that controls g, χ vary over some sets K1 and
K2 such that

(j) K1 ⊂ H̃1/2(Γ), K2 ∈ L2(ΓN ) are nonempty convex closed subsets.
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Let X = H̃1(Ω) × L20(Ω) × H1(Ω), Y = H−1(Ω) × L20(Ω) × H̃1/2(Γ) ×
T ∗ × H1/2(ΓD), K = K1 × K2, x = (u, p, T ) ∈ X . Introduce an operator
F ≡ (F1, F2, F3, F4, F5) : X ×K → Y , defined by

〈F1(x, u),v〉 = νa0(u,v) + c(u,u,v) + b(v, p) + b1(T,v)− 〈f ,v〉,

〈F2(x, u), s〉 = b(u, s) ≡ −(divu, s), F3(x, u) = u|Γ − g, F5(x, u) = T |ΓD − ψ,

〈F4(x, u), S〉 = λa1(T, S) + λ(αT, S)ΓN + c1(u, T, S)− (f, S)− (χ, S)ΓN .

We multiply the first equation in (1.1) by v ∈ H1
0(Ω), the equation in (1.2) by

S ∈ T , integrate the results over Ω with use of Green formulas, and use boundary
conditions in (1.1), (1.2) to obtain a week formulation of problem 1. It consists of
finding a triple x = (u, p, T ) ∈ X satisfying the relations

νa0(u,v) + c(u,u,v) + b(v, p) + b1(T,v) = 〈f ,v〉 ∀v ∈ H1
0(Ω), (1.13)

λa1(T, S)+λ(αT, S)ΓN + c1(u, T, S) = 〈l, S〉 ≡ (f, S)+ (χ, S)ΓN ∀S ∈ T , (1.14)

divu = 0 in Ω, u|Γ = g, T |ΓD = ψ, (1.15)

which one can rewrite in equivalent form

F (x, u) ≡ F (u, p, T,g, χ) = 0. (1.16)

This triple (u, p, T ) ∈ X will be called the weak solution to problem 1.
Let I : X → R be a weakly lower semicontinuous functional. Setting K =

K1 × K2, u = (g, χ), u0 = (f , f,b, ψ, α) we formulate the following constrained
minimization problem:

J(x, u) = (μ0/2)I(x) + (μ1/2)‖g‖21/2,Γ + (μ2/2)‖χ‖2ΓN
→ inf,

F (x, u) = 0, (x, u) ∈ X ×K.
(1.17)

Here μ0 > 0 and μ1 ≥ 0, μ2 ≥ 0 are positive dimensional parameters which serve to
regulate the relative importance of each of the terms in (1.17). Another purpose of
introducing μl is to ensure the uniqueness and stability of solutions to the control
problems under consideration (see below).

The possible cost functionals are defined as

I1(u) = ‖u− vd‖2Q, I2(u) = ‖u− vd‖21,Q, I3(u) = ‖rotu− ζd‖2Q. (1.18)

Here Q is a subset of Ω, vd ∈ L2(Q) (or vd ∈ H1(Q)) and ζd ∈ L2(Q) are
functions which are interpreted as measured velocity and vorticity fields. Define
Zad = {(x,u) ∈ X ×K : F (x,u) = 0, J(x,u) < ∞}. Let us assume in addition to
(j) that

(jj) μ0 > 0, μ1 ≥ 0, μ2 ≥ 0 and K is a bounded subset or μ0 > 0, μ1 > 0,
μ2 > 0 and I is bounded from below.

According to the general theory of extremum problems (see [13]) we introduce
an element y∗ = (ξ, σ, ζ, θ, ζc) ∈ Y ∗ = H1

0(Ω)×L20(Ω)×H̃1/2(Γ)∗×T ×H1/2(ΓD)∗
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which is referred to as the adjoint state, and we define the Lagrangian L : X ×
K × R+ × Y ∗ → R, where R+ = {λ ∈ R : λ ≥ 0}, by the formula

L(x, u, λ0,y∗) = λ0J(x, u) + 〈F1(x, u), ξ〉+ (F2(x, u), q)

+〈ζ, F3(x, u)〉Γ + κ〈F4(x, u), θ〉+ κ〈ζc, F5(x, u)〉ΓD .

Here

〈ζ,g〉Γ = 〈ζ,g〉H̃1/2(Γ)∗×H̃1/2(Γ) for ζ ∈ H̃1/2(Γ)∗,

〈ζc, ψ〉ΓD = 〈ζc, ψ〉H1/2(ΓD)∗×H1/2(ΓD) for ζc ∈ H1/2(ΓD),

κ is a dimensional parameter. Let the dimension [κ] be chosen so that the di-
mensions of ξ, s, θ at the adjoint state y∗ coincide with those at the basic state,
i.e.,

[ξ] = [u] = L0/T0, [θ] = [T ] = K0, [s] = [p] = L20/T
2
0 . (1.19)

Here L0, T0, M0, K0 denote the SI dimensions of the length, time, mass and tem-
perature units expressed in meters, seconds, kilograms and degrees Kelvin respec-
tively. A simple analysis of (1.19) shows that a necessary condition for fulfillment
of (1.19) is [κ] = L20/T

2
0K

2
0 .

Below we shall use some results concerning problem 1 and extremum problem
(1.17). The proofs of the theorems are similar to those in [15].

Theorem 1. Let conditions (i), (ii) be satisfied. Then for any u ∈ K problem 1
has a weak solution (u, p, T ) ∈ X that satisfies the estimates ‖u‖1 ≤ Mu(u0, u),
‖p‖ ≤ Mp(u0, u), ‖T ‖1 ≤ MT (u0, u). Here Mu(u0, u), Mp(u0, u) and MT (u0, u)
are nondecreasing continuous functions of the norms ‖f‖−1, ‖f‖, ‖b‖, ‖α‖ΓN ,
‖g‖1/2,Γ, ‖ψ‖1/2,ΓD

, ‖χ‖ΓN . If the functions f , f,g, ψ, χ are small (or the viscosity
ν is high) in the sense that

γ0Mu(u0, u)
δ0ν

+
1
δ0ν

β1γ1M
0
T (u0, u)
δ1λ

< 1, (1.20)

then the weak solution to problem 1 is unique. Here δ0, δ1, γ0, γ1, β1 are the con-
stants from (1.6)–(1.10).

Theorem 2. Under conditions (i), (ii), (j) and (jj) let I : X → R be a weakly lower
semicontinuous functional and Zad �= ∅. Then, control problem (1.17) has at least
one solution.

Theorem 3. Under conditions (i), (ii), (j) let μ0 > 0, μl > 0 or μ0 > 0, μl ≥ 0
and Kl be the bounded sets, l = 1, 2. Then, control problem (1.17) has at least one
solution for I = Ik, k = 1, 2, 3.

Theorem 4. Under conditions (i), (ii), (j), (jj) let (x̂, û) ≡ (û, p̂, T̂ , ĝ, χ̂) ∈ X ×K
be a local minimizer in problem (1.17) and let the functional I, not depending
on pressure p, be continuously differentiable at the point x̂. Then, there exists
a nonzero Lagrange multiplier (λ0,y∗) = (λ0, ξ, σ, ζ, θ, ζc) ∈ R+ × V × L20(Ω) ×
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H̃1/2(Γ)∗×T ×H1/2(ΓD)∗ that satisfies the Euler-Lagrange equation F ′x(x̂, û)
∗y∗ =

−λ0J ′x(x̂, û), which is equivalent to the identities

νa0(w, ξ) + c(û,w, ξ) + c(w, û, ξ) + κc1(w, T̂ , θ) + b(w, σ) + 〈ζ,w〉Γ

= −λ0(μ0/2)〈I ′u(x̂),w〉 ∀w ∈ H̃1(Ω), (1.21)

κ[λa1(τ, θ) + λ(ατ, θ)ΓN + c1(û, τ, θ) + 〈ζc, τ〉ΓD ]

+b1(τ, ξ) = −λ0(μ0/2)〈I ′T (x̂), τ〉 ∀τ ∈ H1(Ω), (1.22)

and satisfies the minimum principle L(x̂, û, λ0,y∗) ≤ L(x̂, u, λ0,y∗) for all u ∈ K,
which is equivalent to the variational inequality

λ0μ1(ĝ,g− ĝ)1/2,Γ − 〈ζ,g − ĝ〉Γ + λ0μ2(χ̂, χ− χ̂)ΓN

−κ(θ, χ− χ̂)ΓN ≥ 0 ∀u = (g, χ).
(1.23)

Theorem 5. Let the assumptions of Theorem 4 be satisfied and inequality (1.20)
hold for all u ∈ K. Then: 1) homogeneous problem (1.21), (1.22) (under λ0 = 0)
has only a trivial solution y∗ ≡ (ξ, σ, ζ, θ, ζc) = 0; 2) any nontrivial Lagrange
multiplier satisfying (1.21), (1.22) is regular, i.e., it has the form (1,y∗).

Relations (1.21), (1.22), together with variational inequality (1.23) and oper-
ator constraint (1.16), constitute an optimality system. It consists of three parts.
The first part has the form of weak statement (1.13)–(1.15) of problem 1, which
is equivalent to operator equation (1.16). The second part consists of identities
(1.21), (1.22) for the Lagrange multipliers ξ, σ, ζ, θ and ζc. Finally, the last part
represents the minimum principle, which is equivalent to inequality (1.23) with
respect to the controls g and χ.

2. General property of the optimality system solutions

Let us consider control problem (1.17). Denote by (x1, u1) ≡ (u1, p1, T1,g1, χ1) ∈
X×K its solution. By (x2, u2) ≡ (u2, p2, T2,g2, χ2) ∈ X×K we denote a solution
of problem

J̃(x, u) =
μ0
2
Ĩ(x) +

μ1
2
‖g‖21/2,Γ +

μ2
2
‖χ‖2ΓN

→ inf, F (x,u) = 0, (x,u) ∈ X ×K,
(2.1)

which is obtained from (1.17) by replacing a functional I in (1.17) with another
one Ĩ. In view of Theorem 1 the following estimates for pairs (ui, pi) hold:

‖ui‖1 ≤M0
u = sup

u∈K
Mu(u0, u),

‖pi‖ ≤M0
p = sup

u∈K
Mp(u0, u),

‖Ti‖1 ≤M0
T = sup

u∈K
MT (u0, u).

(2.2)
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Let us introduce “model” Reynolds number Re, Rayleigh number Ra and Prandtl
number P by

Re = γ0M
0
u

δ0ν
, Ra = γ1

δ0ν

β1M
0
T

δ1λ
, P =

δ0ν

δ1λ
(2.3)

and assume that

Re+Ra ≡ γ0M
0
u

δ0ν
+
γ1
δ0ν

β1M
0
T

δ1λ
< 1/2. (2.4)

Denote by (1,y∗i ) ≡ (1, ξi, σi, ζi, θi, ζ
c
i ), i = 1, 2, the Lagrange multipliers corre-

sponding to the solutions (xi, ui) (these multipliers are uniquely determined under
condition (2.4)). By definition elements (ξi, σi, ζi, θi, ζ

c
i ) satisfy relations

νa0(w, ξi) + c(ui,w, ξi) + c(w,ui, ξi) + κc1(w, Ti, θi) + b(w, σi) + 〈ζi,w〉Γ

= −(μ0/2)〈(Ii)′u(xi),w〉 ∀w ∈ H̃1(Ω), (2.5)

κ[λa1(τ, θi) + λ(ατ, θi) + c1(ui, τ, θi) + 〈ζc
i , τ〉ΓD ] + b1(τ, ξi)

= −(μ0/2)〈(Ii)′T (xi), τ〉 ∀τ ∈ H1(Ω). (2.6)

Here we renamed I = I1, Ĩ = I2. Let g = g1 − g2, χ = χ1 − χ2, u = u1 − u2,
p = p1 − p2, T = T1 − T2, ξ = ξ1 − ξ2, σ = σ1 − σ2, ζ = ζ1 − ζ2, θ = θ1 − θ2,
ζc = ζc

1 − ζc
2. Subtracting equations (1.13)–(1.15), written for u2, p2, T2, u2 from

the corresponding equations (1.13)–(1.15) for u1, p1, T1, u1 gives

νa0(u,v) + c(u,u1,v) + c(u2,u,v) + b(v, p) + b1(T,v) = 0 ∀v ∈ H1
0(Ω), (2.7)

λa1(T, S) + λ(αT, S) + c1(u, T1, S) + c1(u2, T, S) = (χ, S)ΓN ∀S ∈ T , (2.8)

divu = 0 in Ω, u|Γ = g, T |ΓD = 0. (2.9)

Setting g = g1, χ = χ1 in (1.23) under λ0 = 1, written for ĝ = g2, χ̂ = χ2, ζ = ζ2
and setting g = g2, χ = χ2 in (1.23) written for ĝ = g1, χ̂ = χ1, ζ = ζ1, we
obtain μ1(g2,g)1/2,Γ − 〈ζ2,g〉Γ + μ2(χ2, χ)ΓN − κ(θ2, χ)ΓN ≥ 0, −μ1(g1,g)1/2,Γ +
〈ζ1,g〉Γ − μ2(χ1, χ)ΓN + κ(θ1, χ)ΓN ≥ 0. Adding up these inequalities yields the
relation

−〈ζ,g〉Γ − κ(θ, χ)ΓN ≤ −μ1‖g‖21/2,Γ − μ2‖χ‖2ΓN
. (2.10)

Subtract equations (2.5), (2.6) written for (x2, u2,y∗2) from corresponding
equations for (x1, u1,y∗1). We obtain

νa0(w, ξ) + c(u1,w, ξ) + c(u,w, ξ2) + c(w,u1, ξ)

+c(w,u, ξ2) + κc1(w, T1, θ) + κc1(w, T, θ2) + b(w, σ)

= −〈ζ,w〉Γ − (μ0/2)〈I ′u(x1)− Ĩ ′u(x2),w〉 ∀w ∈ H̃1(Ω), (2.11)

κ[λa1(τ, θ) + λ(ατ, θ)ΓN + c1(u1, τ, θ) + c1(u, τ, θ2) + 〈ζc, τ〉ΓD ]

+b1(τ, ξ) = −(μ0/2)〈I ′T (x1)− I ′T (x2), τ〉 ∀τ ∈ H1(Ω). (2.12)
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Set w = u, τ = T in (2.11), (2.12) and add up the results. Taking into account
(2.9) we obtain

νa0(u, ξ)+c(u1,u, ξ)+2c(u,u, ξ2)+c(u,u1, ξ)+κc1(u, T1, θ)+κc1(u, T, θ2)+〈ζ,g〉Γ
+κ[λa1(T, θ) + λ(αT, θ)ΓN + c1(u1, T, θ) + c1(u, T, θ2)]

+b1(T, ξ) + b(ξ, p) = −(μ0/2)〈I ′u(x1)− Ĩ ′u(x2),u〉 − (μ0/2)〈I ′T (x1)− Ĩ ′T (x2), T 〉.
(2.13)

Set v = ξ in (2.7), S = κθ in (2.8) and subtract the results from (2.13). Using
(2.10) and identities

2c(u,u, ξ2) + c(u1,u, ξ)− c(u2,u, ξ) = 2c(u,u, ξ2) + c(u,u, ξ) = c(u,u, ξ1 + ξ2),

2c1(u, T, θ2) + c1(u, T1, θ)− c1(u, T2, θ) = c1(u, T, θ1 + θ2),
we obtain

c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) + (μ0/2)〈I ′u(x1)− Ĩ ′u(x2),u〉
+(μ0/2)〈I ′T (x1)− Ĩ ′T (x2), T 〉 ≤ −μ1‖g‖21/2,Γ − μ2‖χ‖2ΓN

. (2.14)

Thus the following result holds.

Theorem 6. Let, under conditions of Theorem 4 for I1 = I and I2 = Ĩ, pairs
(x1, u1) = (u1, p1, T1,g1, χ1) and (x2, u2) = (u2, p2, T2,g2, χ2) be solutions to
problems (1.17) and (2.1) respectively; y∗i = (ξi, σi, ζi, θi, ζ

c
i ), i = 1, 2, are the

Lagrange multipliers corresponding to these solutions (xi, ui). Then the relation
(2.14) for differences u = u1 − u2, p = p1 − p2, T = T1 − T2, g = g1 − g2,
χ = χ1 − χ2 holds.

Denote by u0 ∈ H1(Ω) a function such that divu0 = 0, u0|Γ = g, ‖u0‖1 ≤
C0‖g‖1/2,Γ. Here a constant C0 depends on Ω. The existence of u0 follows from [14,
p. 24]. Set u ≡ u1−u2 = u0+ũ where ũ ∈ V is a specific function. Set u = u0+ũ,
v = ũ in (2.7). Taking into account (1.4) we obtain

νa0(ũ, ũ) = −νa0(u0, ũ)− c(u0,u1, ũ)− c(ũ,u1, ũ)− c(u2,u0, ũ)− b1(T, ũ).
Using estimates (1.6), (1.8), (1.10), (2.2) and this relation we deduce, that

δ0ν‖ũ‖21 ≤ ν‖u0‖1‖ũ‖1 + γ0M0
u‖ũ‖21 + 2γ0M0

u‖u0‖1‖ũ‖1 + β1‖T ‖1‖ũ‖1. (2.15)

It follows from (2.4) that

(δ0ν/2) < δ0ν − γ0M0
u −

β1γ1
δ1λ

M0
T ≤ δ0ν − γ0M0

u. (2.16)

Rewriting (2.15) in view of (2.16) as

(δ0ν/2)‖ũ‖21 ≤ (δ0ν − γ0M0
u)‖ũ‖21 ≤ (ν + 2γ0M0

u)‖u0‖1‖ũ‖1 + β1‖T ‖1‖ũ‖1,
we obtain that

‖ũ‖1 ≤ (2/δ0ν)(ν + 2γ0M0
u)‖u0‖1 + (2β1/δ0ν)‖T ‖1 ≤ (2δ−10 + 4Re)‖u0‖1

+(2β1/δ0ν)‖T ‖1 ≤ 2M‖u0‖1 + (2β1/δ0ν)‖T ‖1, M ≡ δ−10 + 2Re.
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Taking into account that u = u0 + ũ, we deduce the estimate

‖u‖1 ≤ ‖u0‖1 + ‖ũ‖1 ≤ (2M + 1)‖u0‖1 + (2β1/δ0ν)‖T ‖1
≤ C0(2M + 1)‖g‖1/2,Γ + (2β1/δ0ν)‖T ‖1. (2.17)

An analogous estimate holds for the pressure difference p = p1−p2. We make
use of inf-sup condition (1.12) to obtain this estimate. By (1.12) for the function
p = p1 − p2 and any (small) number δ > 0 there exists a function v0 ∈ H1

0(Ω),
v0 �= 0 such that b(v0, p) ≥ β0‖v0‖1‖p‖, β0 = (β − δ) > 0. Set v = v0 in the
identity for u in (2.7). Using this estimate and (1.6), (1.8) we have

β0‖v0‖1‖p‖ ≤ b(v0, p) ≤ (ν + 2γ0M0
u)‖v0‖1‖u‖1 + β1‖T ‖1‖v0‖1.

As ‖v0‖1 �= 0 we deduce from this relation that

‖p‖ ≤ ν + 2γ0M0
u

β0
‖u‖1 +

β1
β0
‖T ‖1 =

δ0ν

β0
M‖u‖1 +

β1
β0
‖T ‖1. (2.18)

Using (2.17) we obtain the following estimate for ‖p‖:

‖p‖ ≤ δ0ν
β0
C0M(2M + 1)‖g‖1/2,Γ +

β1
β0
(2M + 1)‖T ‖1. (2.19)

Based on Theorem 6 and estimates (2.17)–(2.19) we establish in the next section
sufficient conditions to input data which provide uniqueness and stability of the
solution (x̂, û) to problem (1.17) for a number of concrete cost functionals and
controls.

Remark 2.1. Let us note that if u = g (or u = χ) then this extremum prob-
lem can be considered as a particular case of the general extremum problem
(1.17) corresponding to the situation when K2 (or K1) is singleton: K2 = {χ}
(or K1 = {g}).

3. Uniqueness and stability of solutions of extremum problems

In this section we firstly consider the problem (1.17) in the case when I = I1 and
u = q ∈ K1, i.e., we consider the extremum problem

J(v,q) ≡ μ0
2
‖v − vd‖2Q +

μ1
2
‖q‖21/2,Γ → inf,

F (x,q) = 0, x = (v, q, S) ∈ X,q ∈ K1.
(3.1)

Let (x1, u1) ≡ (u1, p1, T1,g1) be a solution to problem (3.1) which corresponds to
a function vd ≡ u(1)d ∈ L2(Q), (x2, u2) ≡ (u2, p2, T2,g2) that is a solution to (3.1)
which corresponds to another function ṽd ≡ u(2)d ∈ L2(Q). Setting ud = u(1)d −u(2)d ,
we note that

〈(I1)′u(ui),w〉 = (ui − u(i)d ,w)Q,

〈(I1)′u(u1)− (I1)′u(u2),u〉 = (u− ud,u)Q

= ‖u‖2Q − (u,ud)Q, (I1)′T = 0.

(3.2)
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The relations (2.7), (2.9) for problem (3.1) do not change while relations (2.8),
(2.5), (2.6) and the main inequality (2.14) take subject to (3.2) form

λa1(T, S) + λ(αT, S)ΓN + c1(u, T1, S) + c1(u2, T, S) = 0 ∀S ∈ T , (3.3)

νa0(w, ξi) + c(ui,w, ξi) + c(w,ui, ξi) + κc1(w, Ti, θi) + b(w, σi) + 〈ζi,w〉Γ
= −μ0(ui − u(i)d ,w)Q ∀w ∈ H̃1(Ω), (3.4)

κ[λã(τ, θi)+λ(ατ, θi)+c1(ui, τ, θi)+ 〈ζc
i , τ〉ΓD ]+b1(τ, ξi) = 0 ∀τ ∈ H1(Ω), (3.5)

c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) + μ0(‖u‖2Q − (u,ud)Q) ≤ −μ1‖g‖21/2,Γ. (3.6)
It follows from (2.9) that T ∈ T . Set S = T in (3.3). Using (1.5) we obtain that

λa1(T, T ) + λ(αT, T )ΓN = −c1(u, T1, T ). (3.7)

It follows from (1.9), (1.10), (2.2) that

|c1(u, T1, T )| ≤ γ1M0
T ‖u‖1‖T ‖1, |b1(T,u)| ≤ β1‖u‖1‖T ‖1. (3.8)

Taking into account (1.7), (3.8), we obtain from (3.7) that

δ1λ‖T ‖2 ≤ γ1M0
T‖u‖1‖T ‖1.

From this inequality we deduce the following estimate for ‖T ‖1:

‖T ‖1 ≤
γ1M

0
T

δ1λ
‖u‖1. (3.9)

Using (2.17) and (3.9) we have

‖u‖1 ≤ C0(2M + 1)‖g‖1/2,Γ +
2β1
δ0ν

γ1M
0
T

δ1λ
‖u‖1. (3.10)

It follows from (3.10) and (2.3) that (1−2Ra)‖u‖1 ≤ C0(2M +1)‖g‖1/2,Γ. Taking
into account that 2Ra < 1 by (2.4) we obtain from this estimate, (3.9) and (2.19)
that

‖u‖1 ≤
C0(2M + 1)
1− 2Ra ‖g‖1/2,Γ, (3.11)

‖T ‖1 ≤
γ1C0M

0
T (2M + 1)

δ1λ(1 − 2Ra) ‖g‖1/2,Γ, ‖p‖ ≤
C0δ0ν(2M + 1)(M +Ra)

β0(1− 2Ra) ‖g‖1/2,Γ.
(3.12)

Set w = ξi, τ = θi in (3.4), (3.5). Using (1.4), (1.5) and conditions ξi ∈ V,
θi ∈ T we deduce that

νa0(ξi, ξi) = −c(ξi,ui, ξi)− κc1(ξi, Ti, θi)− μ0(ui − u(i)d , ξi)Q, (3.13)

κ[λa1(θi, θi) + λ(αθi, θi)ΓN ] = −b1(θi, ξi), i = 1, 2. (3.14)
It follows from (1.6)–(1.10), (1.3), (2.2) that

a0(ξi, ξi) ≥ δ0‖ξi‖21, |c(ξi,ui, ξi)| ≤ γ0‖ui‖1‖ξi‖21 ≤ γ0M0
u‖ξi‖21, (3.15)

a1(θi, θi) ≥ δ1‖θi‖21, |b1(θi, ξi)| ≤ β1‖θi‖1‖ξi‖1, |c1(ξi, Ti, θi)| ≤ γ1M0
T ‖ξi‖1‖θi‖1,

(3.16)
|(ui − u(i)d , ξi)Q| ≤ ‖ui − u(i)d ‖Q‖ξi‖Q ≤ C3(C3M0

u + ‖u
(i)
d ‖Q)‖ξi‖1. (3.17)
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Taking into account (3.15)–(3.17) we deduce from (3.13) and (3.14) that

‖θi‖1 ≤
β1
δ1λκ

‖ξi‖1,(
δ0ν − γ0M0

u −
β1γ1
δ1λ

M0
T

)
‖ξi‖21 ≤ μ0C3(C3M0

u + ‖u
(i)
d ‖Q)‖ξi‖1.

Combining these inequalities with (2.16) and (2.3) gives

‖ξi‖1 ≤
2μ0C
γ0

(Re+Re0), ‖θi‖1 ≤
β1
δ1λκ

2μ0C
γ0

(Re+Re0), (3.18)

where
C = C23 , Re0 =

γ0
δ0νC3

max(‖u(1)d ‖Q, ‖u(2)d ‖Q). (3.19)

Taking into account (1.8), (1.9), (3.9), (3.18) and (2.3) we have

|c(u,u, ξ1 + ξ2)| ≤ γ0‖u‖21(‖ξ1‖1 + ‖ξ2‖1) ≤ 4μ0C(Re+Re0)‖u‖21,
κ|c1(u, T, θ1 + θ2)| ≤ κγ1‖u‖1‖T ‖1(‖θ1‖1 + ‖θ2‖1)

≤ γ1M
0
T

δ1λ

γ1β1
δ1λ

4μ0C(Re+Re0)
γ0

‖u‖21 = 4μ0C(Re +Re0)
γ1
γ0
PRa‖u‖21

which yields

|c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2)| ≤ 4μ0C(Re+Re0) [1 + (γ1/γ0)PRa] ‖u‖21.
(3.20)

Using (3.11) we deduce from (3.20) that

|c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2)|

≤ 4μ0C20C(2M + 1)2(Re+Re0)[1 + (γ1/γ0)PRa]
(1− 2Ra)2 ‖g‖21/2,Γ. (3.21)

Let input data for problem (3.1) and parameters μ0, μ1 be such that

(1− ε)μ1 ≥
4μ0C20C(2M + 1)2(Re+Re0)[1 + (γ1/γ0)PRa]

(1− 2Ra)2 , ε = const > 0.

(3.22)
Here and further ε > 0 is a constant. In view of (3.22) we find from (3.21) that

|c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2)| ≤ (1− ε)μ1‖g‖21/2,Γ. (3.23)

Taking into account (3.23) we come from (3.6) to the inequality

μ0(‖u‖2Q − (u,ud)Q) ≤ −c(u,u, ξ1 + ξ2)− κc1(u, T, θ1 + θ2)− μ1‖g‖21/2,Γ
≤ −εμ1‖g‖21/2,Γ. (3.24)

It follows from (3.24) that ‖u‖2Q ≤ (u,ud)Q ≤ ‖u‖Q‖ud‖Q, which yields ‖u‖Q ≤
‖ud‖Q. As u = u1 − u2, ud = u(1)d − u(2)d we deduce the estimate

‖u1 − u2‖Q ≤ ‖u(1)d − u(2)d ‖Q. (3.25)

The estimate (3.25) under condition Q = Ω has the sense of the stability estimate
of the component û of the solution (û, p̂, T̂ , ĝ) to problem (3.1) with respect to
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small disturbances in the L2(Ω) norm of the function vd ∈ L2(Ω) which enters
into the expression for the functional I1 in (1.18). In the case where u(1)d = u(2)d

it follows from (3.25) that u1 = u2. This yields together with (3.9), (2.18) and
condition u|Γ = g ≡ g1 − g2 in (2.7), that T1 = T2, p1 = p2 and g1 = g2. The
latter means the uniqueness of the solution to problem (3.1) when Q = Ω and
(3.22) holds.

We note that the uniqueness and stability of the solution to problem (3.1)
under condition (3.22) holds, as it also does in the case where Q ⊂ Ω, i.e., Q is a
part of Ω. In order to prove this fact let us consider the inequality (3.24). Using
(3.25) rewrite it in the form

εμ1‖g‖21/2,Γ ≤ c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) + μ1‖g‖21/2,Γ
≤ −μ0‖u‖2Q + μ0‖u‖Q‖ud‖Q ≤ μ0‖ud‖2Q.

From this relation, (3.11) and (3.12) we deduce the following stability estimates:

‖g1 − g2‖1/2,Γ ≤
√
μ0
εμ1

‖u(1)d − u(2)d ‖Hs(Q),

‖u1 − u2‖1 ≤
C0(2M + 1)
1− 2Ra

√
μ0
εμ1

‖u(1)d − u(2)d ‖Hs(Q),

‖T1 − T2‖1 ≤
γ1C0M

0
T (2M + 1)

δ1λ(1 − 2Ra)

√
μ0
εμ1

‖u(1)d − u(2)d ‖Hs(Q),

‖p1 − p2‖ ≤
C0δ0ν(2M + 1)(M +Ra)

β0(1− 2Ra)

√
μ0
εμ1

‖u(1)d − u(2)d ‖Hs(Q) (M ≡ δ−10 + 2Re)
(3.26)

where s = 0. Thus we have proved the following theorem.

Theorem 7. Let, under conditions (i), (ii), (j) and (2.4), the quadruple (ui, pi, Ti,gi)
be the solution to problem (3.1) corresponding to a given function u(i)d ∈ L2(Q),
i = 1, 2, and let the condition (3.22) hold where C and Re0 are defined in (3.19).
Then stability estimates (3.25) and (3.26) under s = 0 hold true.

We emphasize that the uniqueness and stability of the solution to problem
(3.1) both under Q = Ω, and under Q ⊂ Ω is proved only if parameter μ1 in
(3.1) is positive and satisfies (3.22). This means that term (μ1/2)‖g‖21/2,Γ in the
expression for the minimized functional J in (3.1) has a regularizing effect on the
extremum problem (3.1).

In the same manner one can study uniqueness and stability of solutions to
extremum problems for other cost functionals depending on the velocity u. Let us
consider for example the extremum problem

J(v,q) ≡ μ0
2
‖v− vd‖21,Q +

μ1
2
‖q‖21/2,Γ → inf,

F (x,q) = 0, x = (v, q, S) ∈ X, q ∈ K1,
(3.27)

which corresponds to the cost functional I2(v) = ‖v − vd‖21,Q.
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Denoting by (xi, ui) ≡ (ui, pi, Ti,gi) the solution to problem (3.27) corre-
sponding to a function vd ≡ u(i)d ∈ H1(Q), i = 1, 2, and setting ud = u(1)d − u(2)d

we note that

〈(I2)′u(ui),w〉 = (ui − u(i)d ,w)1,Q,

〈(I2)′u(u1)− (I2)′u(u2),u〉 = (u− ud,u)1,Q

= ‖u‖21,Q − (u,ud)1,Q, (I2)′T = 0.

(3.28)

In view of (3.28), relations (2.9), (3.3), (3.5), (3.14) and estimates (3.9), (3.11),
(3.12) do not change, while (2.14) and (2.5) under w = ξi take instead of (3.6),
(3.13) the form

c(u,u, ξ1+ξ2)+κc1(u, T, θ1+θ2)+μ0(‖u‖1,Q−(u,ud)1,Q) ≤ −μ1‖g‖21/2,Γ, (3.29)

νa(ξi, ξi) = −c(ξi,ui, ξi)− κc1(ξi, Ti, θi)− μ0(ui − u(i)d , ξi)1,Q. (3.30)

Using the estimates (3.30) we deduce (instead of (3.17)) that

|(ui − u(i)d , ξi)1,Q| ≤ ‖ui − u(i)d ‖1,Q‖ξi‖1,Q ≤ (M0
u + ‖u

(i)
d ‖1,Q)‖ξi‖1.

Proceeding as above we obtain (3.18) for ‖ξi‖1, ‖θi‖1 and inequality (3.21) where

C = 1, Re0 = (γ0/δ0ν)max(‖u(1)d ‖1,Q, ‖u(2)d ‖1,Q). (3.31)

Let us assume that the condition (3.22) takes place where C and Re0 are defined
in (3.31). Using (3.22) we deduce (3.23). Taking into account (3.23) we obtain
from (3.29) that

μ0(‖u‖21,Q − (u,ud)1,Q) ≤ −c(u,u, ξ1 + ξ2)− κc1(u, T, θ1 + θ2)− μ1‖g‖21/2,Γ
≤ −εμ1‖g‖21/2,Γ. (3.32)

It follows from (3.32) that ‖u‖21,Q ≤ (u,ud)1,Q which yields ‖u‖1,Q ≤ ‖ud‖1,Q or

‖u1 − u2‖1,Q ≤ ‖u(1)d − u(2)d ‖1,Q. (3.33)

In the case where Q = Ω we deduce, from (3.33), relation u|Γ = g = g1−g2, (1.3),
(3.9) and (2.18), the following estimates:

‖u1 − u2‖1 ≤ ‖u(1)d − u(2)d ‖1, ‖g1 − g2‖1/2,Γ ≤ CΓ‖u(1)d − u(2)d ‖1,

‖T1−T2‖1 ≤
γ1M

0
T

δ1λ
‖u(1)d −u(2)d ‖1, ‖p1−p2‖ ≤

δ0ν(M +Ra)
β0

‖u(1)d −u(2)d ‖1. (3.34)

The estimates (3.34) have the sense of stability estimates for the solution
(û, p̂, T̂ , ĝ) to problem (3.27) under Q = Ω with respect to small disturbances
in the H1(Ω) norm of the function vd which enters into the expression for the
functional I2. In the case where u(1)d = u(2)d we deduce from (3.34) that u1 = u2,
g1 = g2, T1 = T2, p1 = p2 which means the uniqueness of the solution to problem
(3.27) under Q = Ω. If Q ⊂ Ω, the estimates (3.34) do not hold true but using
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(3.32) one can obtain instead of them rougher estimates such as (3.26). In fact
rewriting (3.32) in view of (3.33) in the form

εμ1‖g‖21/2,Γ ≤ −μ0‖u‖21,Q + μ0‖u‖1,Q‖ud‖1,Q ≤ μ0‖ud‖21,Q
and using (3.11), (3.12) we come to the estimates (3.26) under s = 1. Thus we
have proved the following result.

Theorem 8. Let, under conditions (i), (ii), (j) and (2.4), the quadruple (ui, pi, Ti,gi)
be a solution to problem (3.27) corresponding to the given function u(i)d ∈ H1(Q),
i = 1, 2, and let the condition (3.22) hold where C and Re0 are defined in (3.31).
Then stability estimates (3.33) and (3.26) under s = 1 hold true. Furthermore
(3.34) holds if Q = Ω.

We again note that the uniqueness and stability of the solution to problem
(3.27) both under Q = Ω and under Q ⊂ Ω is proved above under the condition
that the parameter μ1 in (3.27) satisfies (3.22). We can not prove stability of the
solution to problem (3.27) as we did for problem (3.1) in the case where μ1 = 0.
But we can establish the local uniqueness of the solution to problem (3.27) under
μ1 = 0 in the case where Q = Ω. In fact setting μ1 = 0, Q = Ω, u(1)d = u(2)d in
(3.29) we obtain the inequality

c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) ≤ −μ0‖u‖21. (3.35)

Let input data for problem (3.27) be such that

4(Re+Re0)[1 + (γ1/γ0)PRa] < 1. (3.36)

It follows from (3.20) under C = 1 and (3.35) that u = 0, and from (3.9), (2.18)
and relation u|Γ = g we deduce that T1 = T2, p1 = p2, g1 = g2. So the next
theorem holds.

Theorem 9. Let, under conditions (i), (ii), (j) and (2.4), vd ∈ H1(Ω) be a given
function, μ0 > 0, μ1 ≥ 0 and let the condition (3.36) hold where

Re0 = (γ0/δ0ν)‖vd‖1.
Then the solution (û, p̂, T̂ , ĝ) to problem (3.27) under Q = Ω is unique.

Let us consider the extremum problem

J(v,q) ≡ μ0
2
‖rotv − ηd‖2Q +

μ1
2
‖q‖21/2,Γ → inf,

F (x,q) = 0, x = (v, q, S) ∈ X, q ∈ K1,
(3.37)

corresponding to the cost functional I3(v) = ‖rotv−ηd‖2Q. Denoting by (xi, ui) =
(ui, pi, Ti,gi), i = 1, 2, the solution to problem (3.37) corresponding to the function
ηd = ζ

(i)
d ∈ L2(Q), i = 1, 2, and setting ζd = ζ

(1)
d − ζ(2)d , we note that

〈(I3)′u(ui),w〉 = (rotui − ζ(i)d , rotw)Q,

〈(I3)′u(u1)− (I3)′u(u2),u〉 = (rotu− ζd, rotu)Q, (I3)′T = 0.
(3.38)
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In view of (3.38), relations (2.9), (3.3), (3.5), (3.14) and estimates (3.9), (3.11),
(3.12) do not change, while (2.14) and (2.5) under w = ξi transform to

c(u,u, ξ1 + ξ2) + κQ1(u, T, θ1 + θ2) + μ0(‖rotu‖2Q − (ζd, rotu)Q) ≤ −μ1‖g‖21/2,Γ,
(3.39)

νa0(ξi, ξi) = −c(ξi,ui, ξi)− κc1(ξi, Ti, θi)− μ0(rotui − ζ(i)d , rot ξi)Q. (3.40)
Using (1.3) and (2.2) we have

|(rotui − ζ(i)d , rot ξi)Q| ≤ (‖rotui‖Q + ‖ζ(i)d ‖Q)‖rot ξi‖Q

≤ C1(C1M0
u + ‖ζ

(i)
d ‖Q)‖ξi‖1.

(3.41)

Taking into account (3.15), (3.16), (3.41) we deduce from (3.40) and (3.14) that

‖θi‖1 ≤
β1‖ξi‖1
δ1λκ

, (δ0ν − γ0M0
u −

β1γ1
δ1λ

M0
T )‖ξi‖21 ≤ μ0C1(C1M0

u + ‖ζ
(i)
d ‖Q)‖ξi‖1.

In view of (2.16), from this inequality we obtain ‖ξi‖1 ≤ (2μ0/δ0ν)C21 (M
0
u +

C−11 ‖ζ(i)d ‖Q) which yields (3.18), (3.20) and (3.21) where

C = C21 , Re0 =
γ0
δ0νC1

max(‖ζ(1)d ‖Q, ‖ζ(2)d ‖Q). (3.42)

Let us assume that the condition (3.22) holds where C and Re0 are defined in
(3.42). Using (3.22) we deduce (3.23). Taking into account (3.23) we obtain from
(3.39) that

μ0(‖rotu‖2Q − (rotu, ζd)Q) ≤ −εμ1‖g‖21/2,Γ. (3.43)

It follows from (3.43) that ‖rotu‖2Q ≤ (rotu, ζd)Q which yields ‖rotu‖Q ≤ ‖ζd‖Q

or
‖rotu1 − rotu2‖Q ≤ ‖ζ(1)d − ζ(2)d ‖Q. (3.44)

Rewriting (3.43) in the form εμ1‖g‖21/2,Γ ≤ μ0‖ζd‖2Q and using (3.11), (3.12) we
obtain the following stability estimates:

‖g1 − g2‖1/2,Γ ≤
√
μ0
εμ1

‖ζ(1)d − ζ(2)d ‖Q,

‖u1 − u2‖1 ≤
C0(2M + 1)
1− 2Ra

√
μ0
εμ1

‖ζ(1)d − ζ(2)d ‖Q,

‖T1 − T2‖1 ≤
γ1M

0
T

δ1λ

C0(2M + 1)
1− 2Ra

√
μ0
εμ1

‖ζ(1)d − ζ(2)d ‖Q,

‖p1 − p2‖ ≤
C0δ0ν(2M + 1)(M +Ra)

β0(1 − 2Ra)

√
μ0
εμ1

‖ζ(1)d − ζ(2)d ‖Q. (3.45)

Thus we have proved the following theorem.

Theorem 10. Let, under conditions (i), (ii), (j) and (2.4), the quadruple (ui, pi,
Ti,gi) be the solution to problem (3.37) corresponding to a given function ζ(i)d ∈
L2(Q), i = 1, 2, and let the condition (3.22) hold where C and Re0 are defined in
(3.42). Then the stability estimates (3.44), (3.45) hold true.
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We can not prove the stability of the solution to problem (3.37) in the case
where μ1 = 0. But we can establish the local uniqueness of the solution to problem
(3.37) under more strict conditions on Ω and boundary vector g if we replace
condition (j) by

(j′) Ω is a simply connected domain with the boundary Γ ∈ C1,1; K ⊂
H̃1/2(Γ) is a convex closed set consisting of functions g which satisfy the condition
g · n|Γ = q where q ∈ H1/2(Γ) is a given function.

Indeed let us note that (3.39) takes, under μ1 = 0, ζ(1)d = ζ(2)d , Q = Ω, the
form

c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) ≤ −μ0‖rotu‖2. (3.46)

Under the first condition in (j′) the difference g = g1 − g2 has a zero normal
component on Γ. Therefore taking into account the simple connectedness of the
domain Ω we have the estimate ‖u‖1 ≤ C4‖rotu‖ with the constant C4 depending
on Ω [14]. Using this estimate we deduce from (3.20), (3.42) that

|c(u,u, ξ1+ξ2)+κc1(u, T, θ1+θ2)| ≤ 4μ0C21C
2
4 (Re+Re0)[1+(γ1/γ0)PRa]‖rotu‖2.

(3.47)
Let input data for problem (3.37) be such that

4C21C
2
4 (Re+Re0)[1 + (γ1/γ0)PRa] < 1. (3.48)

It follows from (3.46) and (3.47) that rotu = 0 which yields u = 0 or u1 = u2.
From (3.9), (2.18) and the condition u|Γ = g we deduce that T1 = T2, p1 = p2,
g1 = g2. Thus we have proved the following theorem.

Theorem 11. Let, under conditions (i), (ii), (j′) and (2.4), ηd ∈ L2(Ω) be a
given function, μ0 > 0, μ1 ≥ 0 and let the condition (3.48) hold where Re0 =
(γ0/δ0νC1)‖ηd‖. Then the solution (û, p̂, T̂ , ĝ) to problem (3.37) under Q = Ω is
unique.

In conclusion let us consider the case where I = I1 in (1.17) and u = χ ∈
K2 ⊂ L2(ΓN ), i.e., we consider the extremum problem

J(v, χ) ≡ μ0
2
‖v−vd‖2Q+

μ2
2
‖χ‖2ΓN

→ inf, F (x, χ) = 0, x = (v, q, S) ∈ X,χ ∈ K2.

(3.49)
Let (x1, u1) ≡ (u1, p1, T1, χ1) be a solution to problem (3.49) which corresponds
to a function vd ≡ u(1)d ∈ L2(Q), and let (x2, u2) ≡ (u2, p2, T2, χ2) be a solution to
problem (3.49) which corresponds to another function ṽd ≡ u(2)d ∈ L2(Q). Setting
ud = u(1)d − u(2)d , we note that for problem (3.49) the relations (3.2) hold true. In
view of (3.2), relations (3.4), (3.5), (3.13), (3.14) and estimates (3.18), (3.19) do
not change, while (2.14) and (2.9) take the form

c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) + μ0(‖u‖2Q − (u,ud)Q) ≤ −μ2‖χ‖2ΓN
, (3.50)

divu = 0 in Ω, u|Γ = g = 0, T |ΓD = 0, (3.51)
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and instead of (3.3) we have to use the original identity (2.8). It follows from (3.51)
that T ∈ T . Setting S = T in (2.8) we obtain from (1.5) that

λa1(T, T ) + λ(αT, T )ΓN = −c1(u, T1, T ) + (χ, T )ΓN . (3.52)

Using (1.7), (1.11) and the first estimate in (3.8) we deduce from (3.52) that
δ1λ‖T ‖2 ≤ γ1M0

T ‖u‖1‖T ‖1+ γ2‖χ‖ΓN‖T ‖1. This yields the following estimate for
‖T ‖1:

‖T ‖1 ≤
γ1M

0
T

δ1λ
‖u‖1 +

γ2
δ1λ

‖χ‖ΓN . (3.53)

As g = 0 in view of (3.51) the estimates (2.17) and (2.19) take the form

‖u‖1 ≤
2β1
δ0ν

‖T ‖1, ‖p‖ ≤
β1(2M + 1)

β0
‖T ‖1. (3.54)

Taking into account the first estimate in (3.54) we obtain from (3.53) that

‖T ‖1 ≤
2β1
δ0ν

γ1MT

δ1λ
‖T ‖1 +

γ2
δ1λ

‖χ‖ΓN .

In view of (2.3) and (3.54) we deduce the following estimates for T , u and p:

‖T ‖1 ≤
γ2‖χ‖ΓN

δ1λ(1 − 2Ra) , ‖u1 ≤
2β1γ2‖χ‖ΓN

δ0νδ1λ(1− 2Ra) , ‖p‖ ≤
β1γ2(2M + 1)‖χ‖ΓN

β0δ1λ(1 − 2Ra) .

(3.55)
It follows from (1.8), (1.9), (3.18) and (3.55) that

|c(u,u, ξ1+ ξ2)| ≤ γ0‖u‖21(‖ξ1‖1+ ‖ξ2‖1) ≤ 4μ0C
(
2β1
δ0ν

γ2
δ1λ

)2 (Re+Re0)
(1 − 2Ra)2 ‖χ‖

2
ΓN
,

κ|c1(u, T, θ1 + θ2)| ≤ κγ1‖u‖1‖T ‖1(‖θ1‖1 + ‖θ2‖1)

≤ 4μ0C
2β1
δ0ν

(
γ2
δ1λ

)2
γ1β1
δ1λ

(Re+Re0)
γ0(1− 2Ra)2 ‖χ‖

2
ΓN
.

Here C and Re0 are defined in (3.19). From these inequalities and (2.3) we deduce
that

|c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2)|

≤ 2μ0C(
2β1
δ0ν

γ2
δ1λ

)2
(Re+Re0)
(1 − 2Ra)2 (

2Pγ0 + γ1
Pγ0

)‖χ‖2ΓN
.

(3.56)

Let the input data for problem (3.49) be such that

(1 − ε)μ2 ≥ 2μ0C(
2β1
δ0ν

γ2
δ1λ

)2
(Re+Re0)
(1− 2Ra)2

(
2Pγ0 + γ1
Pγ0

)
‖χ‖2ΓN

, ε = const > 0.

(3.57)
In view of (3.57) we find from (3.56) that

|c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2)| ≤ (1− ε)μ2‖χ‖2ΓN
. (3.58)
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Combining (3.50) and (3.58) we obtain the inequality

μ0(‖u‖2Q − (u,ud)Q) ≤ −c(u,u, ξ1 + ξ2)− κc1(u, T, θ1 + θ2)− μ2‖χ‖2ΓN

≤ −εμ2‖χ‖2ΓN
. (3.59)

Using (3.59) we deduce (3.25) which holds under condition (3.57). The uniqueness
of the solution to problem (3.49) follows from this estimate and (3.57) whenQ = Ω.

Rewriting (3.59) in view of (3.25) in the form

εμ2‖χ‖2ΓN
≤ c(u,u, ξ1 + ξ2) + κc1(u, T, θ1 + θ2) + μ2‖χ‖2ΓN

≤ −μ0‖u‖2Q + μ0‖u‖Q‖ud‖Q ≤ μ0‖ud‖2Q,
and using (3.55) we obtain the following stability estimates:

‖χ1 − χ2‖ΓN ≤
√
μ0
εμ2

‖u(1)d − u(2)d ‖Q,

‖u1 − u2‖1 ≤
2β1γ2

δ0νδ1λ(1 − 2Ra)

√
μ0
εμ2

‖u(1)d − u(2)d ‖Q,

‖T1 − T2‖1 ≤
γ2

δ1λ(1− 2Ra)

√
μ0
εμ2

‖u(1)d − u(2)d ‖Q,

‖p1 − p2‖ ≤
β1γ2(2M + 1)
β0δ1λ(1 − 2Ra)

√
μ0
εμ2

‖u(1)d − u(2)d ‖Q (M ≡ δ−10 + 2Re). (3.60)

So the next theorem holds.

Theorem 12. Let under conditions (i), (ii), (j) and (2.4), the quadruple (ui, pi, Ti, χi)
be the solution to problem (3.49) corresponding to a given function u(i)d ∈ L2(Q),
i = 1, 2, and let the condition (3.57) hold where C and Re0 are defined in (3.19).
Then the stability estimates (3.25) and (3.60) hold true.

In the same manner one can study the extremum problem

J(v, χ) ≡ μ0
2
‖rotv − ζd‖2Q +

μ2
2
‖χ‖2ΓN

→ inf,

F (x, χ) = 0, x = (v, q, S) ∈ X,χ ∈ K2.
(3.61)

The following theorem holds.

Theorem 13. Let, under conditions (i), (ii), (j) and (2.4), the quadruple (ui, pi,
Ti, χi) be the solution to problem (3.61) corresponding to a given function ζ(i)d ∈
L2(Q), i = 1, 2, and let the condition (3.57) hold where C and Re0 are defined in
(3.42). Then the estimates (3.44) and the stability estimates

‖χ1 − χ2‖ΓN ≤
√
μ0
εμ2

‖ζ(1)d − ζ(2)d ‖Q,

‖u1 − u2‖1 ≤
2β1γ2

δ0νδ1λ(1− 2Ra)

√
μ0
εμ2

‖ζ(1)d − ζ(2)d ‖Q,
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‖T1 − T2‖1 ≤
γ2

δ1λ(1− 2Ra)

√
μ0
εμ2

‖ζ(1)d − ζ(2)d ‖Q,

‖p1 − p2‖ ≤
β1γ2(2M + 1)
β0δ1λ(1− 2Ra)

√
μ0
εμ2

‖ζ(1)d − ζ(2)d ‖Q (M ≡ δ−10 + 2Re) (3.62)

hold true.
We emphasize that the uniqueness and stability of solutions to problem (3.49)

or (3.61) both under Q = Ω and under Q ⊂ Ω is proved only if the parameter μ2 in
(3.49) or (3.61) is positive and satisfies (3.57). This means that term (μ2/2)‖χ‖2ΓN

in the expression for the minimized functional in (3.49) or (3.61) has a regularizing
effect on the extremum problem (3.49) or (3.61).

4. Numerical analysis

The authors have developed algorithms for numerical solution of extremum prob-
lems studied in Section 2. These algorithms are based on using the Newton method.
A separate paper by the authors will be devoted to the convergence analysis of
these algorithms. Below we limit ourselves to discussion of the numerical results
for extremum problem (3.49) with I = I1 considered in a back-facing-step channel.

We consider the case where the function g is fixed and the set K2 coincides
with the entire space L2(ΓN ). Then the minimum will be reached in an internal
point of set K2 and it is possible to replace the minimum principle (1.23) with
the identity (μχ − θ, φ)ΓN = 0 for all φ ∈ L2(ΓN ). Having expressed χ from
this relation by the formula χ = θ/μ, we can eliminate the control χ from the
optimality system. The received relations we shall write down in the form of the
operator equation Φ(u, p, T, ξ, σ, θ) = 0. For its numerical solution the iterative
algorithm based on the Newton method is proposed. This algorithm consists of
the following steps:

1. For given (u0, p0, T0, ξ0, σ0, θ0) and supposing un, pn, Tn, ξn, σn and θn
are known, we define ũ, p̃, T̃ , ξ̃, σ̃, θ̃ by solving the following problem:

Φ′(un, pn, Tn, ξn, σn, θn)(ũ, p̃, T̃ , ξ̃, σ̃, θ̃) = −Φ(un, pn, Tn, ξn, σn, θn).

2. Then we calculate new approximations un+1, pn+1, Tn+1, ξn+1, σn+1, θn+1
for u, p, T , ξ, σ, θ as

un+1 = un + ũ, pn+1 = pn + p̃, Tn+1 = Tn + T̃ ,

ξn+1 = ξn + ξ̃, σn+1 = σn + σ̃, θn+1 = θn + θ̃.
3. If the condition ‖Tn+1 − Tn‖ < ε for some sufficiently small number ε is

not satisfied, then we go to step 1.
We used free software freeFEM++ (www.freefem.org) for the discretization

of direct boundary-value problems by the finite element method.
The computational experiments showed that if the initial guess is selected

sufficiently close to the exact solution, then the algorithm converges for several
iterations. The regularization parameter μ2 plays an important role. If its values
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are relatively large then we can not obtain small values of the functional I1. But,
on the other hand, very small values of the regularization parameter can lead to
instability and oscillations in the numerical solution.

The following example is connected with the vortex reduction in the back-
ward-facing-step channel by means of the “temperature” boundary control χ. The
initial flow without controls is the solution of the nonlinear problem (1.1) with
f = 0, β̃ = 0 and Reynolds number Re = 200. The streamlines for this case are
shown in Figure 1.

Figure 1. Streamlines for uncontrolled flow (Re=200)

One can see that it is a complicated flow with a vortex in the corner. The
desired flow vd is the solution of the linear Stokes equations.

We want to find the solution u of the nonlinear problem (1.1), (1.2) with
Reynolds number Re = 200, Rayleigh number Ra = 105 closed to the desired
velocity field vd. For this purpose we solve the extremum problem (3.49) with the
functional I1 and the boundary control χ. The received flow is shown in Figure 2.

Figure 2. Streamlines for controlled flow (Re=200)

Similar results have been received for the functional I3 in the case of the vorticity
minimization (ζd = 0). Looking at this flow we can see that the “temperature”
control χ allows us to create a velocity field with desired properties.
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Homogenization of the
Poisson–Boltzmann Equation

Youcef Amirat and Vladimir Shelukhin

Abstract. By the homogenization approach we justify a two-scale model of ion
equilibrium between solid layers. By up-scaling, the electric potential equation
in nanoslits separated by thin solid layers is approximated by a homogenized
macroscale equation in the form of the Poisson equation for an induced vertical
electrical field.

Mathematics Subject Classification (2000). 78A35, 35B27.

Keywords. Nonlocal Poisson-Boltzmann equation, existence, homogenization

1. Introduction

The spontaneous separation of charge at solid-liquid interfaces is ubiquitous in
microfluidic devices, and is central to electrokinetic actuation of flow [5]. Several
chemical mechanisms can give rise to the spontaneous separation of charge between
two phases. The most relevant to microfluidics are ionization of surface groups and
preferential adsorption of ions of one charge or the other. The surface charge gen-
erates an electric field, which pulls oppositely charged ions (counterions) toward
the surface, and pushes like charges (co-ions) away from it. Counterions preferen-
tially concentrate near the surface, effectively shielding the bulk solution from the
surface charge. The shielding layer is often referred to as the double electric layer.

Detailed descriptions of the internal structure of the double electric layer
are often based on the Gouy-Chapman-Stern model [4], where the double electric
layer is comprised of a Stern layer and a diffuse layer. The Stern layer consists
of counterions which are immobilized on the surface, and its thickness is dictated
by the size of the ions. The diffuse layer lies just beyond the Stern layer, and is
responsible for the electrokinetic phenomena relevant to microfluidic devices.

For description of electroosmosis, it is sufficient to treat the diffuse layer ion
distribution in the Boltzmann limit in which ions are treated as point particles in
a mean field. The Nernst ionic flux equations coupled with the Poisson equation
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for electrical field give rise to the Poisson–Boltzmann equation for the electric
potential ϕ. We perform derivation of this equation for a layered structure to
explain why it is a non-local equation.

We develop an asymptotic approach for the qualitative analysis of the Pois-
son–Boltzmann equation. To this end we consider a vertical membrane, and we
treat this membrane as a number of thin horizontal liquid layers of the same
thickness hf separated by thin solid layers of the same thickness hs. IfN is the total
number of liquid layers, the total membrane thickness is equal to L = N(hf +hs).
In our study the total thickness L is fixed and the ratio δ = (hf +hs)/L is a small
parameter.

Our asymptotic analysis is the well-known homogenization procedure based
on two-scale asymptotic expansions [1, 2, 7, 10] to up-scale the micromechanical
picture of ion distribution near solid surfaces. We derive both microscale and
macroscale equations. The first equations serve to identify constant coefficients in
the second equations.

Proofs of the mathematical results below are strongly based on a priori esti-
mates, independent of δ, of the norm ‖ϕ‖H1 for solutions of the nonlinear nonlocal
Poisson–Boltzmann equation

(ε(z)ϕz)z = −f(ϕ), 0 < z < L, (1.1)

where ε(z) is a discontinuous stepwise periodic function with the periodicity cell
an < z < an+1, an+1−an = O(δ); given a liquid interval an < z < bn (bn < an+1),
the nonlocal term f(ϕ) is defined as

f(ϕ)|an<z<an+1 = 4π1|an<z<bn

∑
±
c−i qie

qi
kT

(
ϕ(dn)−ϕ(z)

)
, dn =

an + bn
2

,

where 1(z)|ω is the characteristic function of the set ω. The theory that we develop
for equation (1.1) reveals that there are three types of electrolytes depending on
the sign of the number E =

∑
± c

−
i qi. Particularly, in the case of the “convex”

electrolyte when E < 0, any solution of (1.1) satisfies the alternative property:
either ϕ is monotone or there is a unique point zc such that ϕz(zc) = 0 and
(z − zc)ϕz(z) > 0 for z �= zc. To study the potential of the convex electrolyte in
the alternative case when ϕ is not monotone, we pass to a rearrangement function
ϕ′(z′), which is a shift transformation of the function ϕ(z), such that

εfϕ
′
z′z′ = −f ′(ϕ′), 0 < z′ < L′ = ΦL, (1.2)

f ′(ϕ′)|a′
n<z′<a′

n+1
= 4π

∑
±
c−i qie

qi
kT

(
ϕ′(d′

n)−ϕ′(z′)

)
, d′n =

a′n + a
′
n+1

2
,

where εf = const is the value of ε(z) on the liquid domain and the points a′n are
chosen in such a way that a′n+1 − a′n = bn − an and a0 = a′0. It is essential that
ϕ′z′(z′) = ϕz(z) at the corresponding points z′ and z, and the function ϕ′z′(z′) is
continuous everywhere, whereas ϕz(z) has jumps at the points an and bn. Next,
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we introduce the local function w′(n)(z′) = ϕ′(z′) − ϕ′(d′n) which solves on each
interval a′n < z

′ < a′n+1 the “local” equation

εfwz′z′ = −4π
∑
±
c−i qie

− qi
kT w, w(d′n) = 0. (1.3)

Taking into account the fact that the right-hand side of the equation in (1.3) is a
convex function of w, we establish a comparison inequality for any two solutions
of (1.3). We find that the local function w′(m)(z′) is given by an explicit formula
at the interval (a′m, a′m+1) containing the point zc, that enables us to estimate the
norm of w′(m)(z′) in H1(a′m < z

′ < a′m+1). Applying the comparison inequality we
verify that there is an extension W ′(z′) of local solution w′(m)(z′) onto the entire
interval 0 < z′ < L′ such that W ′(z′) serves as a majorant for any local function
w′(n)(z′). In this way, we estimate the norm of ϕ′(z′) in H1(0, L′) using the local
equality w′(n)z′ (z′) = ϕ′z′(z′).

2. Basic equations

When in equilibrium, ion components in a binary electrolyte solution satisfy the
Nernst equation [11]

0 = −ciqidψ − kTdci, E = −∇ψ, i = +,−, (2.1)

where ci is the ion molar concentration, ψ is the potential of the electric field E, k
is the Boltzmann constant, qi is the ion charge, e > 0 is the elementary charge, qi =
zie, zi is the valency of each ionic species, and T is the temperature. Equality (2.1)
implies that the chemical potentials are constant when all the contact components
are in equilibrium.

The charge conservation law is the Poisson equation

divD = 4π
∑
±
ciqi, D = εfE, E = −∇ϕ, (2.2)

where D is the electric induction vector and εf is the dielectric permittivity of the
electrolyte. Inside the solid dielectric, the electrical field obeys the equations

divD = 0, D = εsE, E = −∇ϕ, (2.3)

where εs is the dielectric permittivity of the solid dielectric.
We consider the potential field in the layer of thickness L consisting of N thin

fluid layers an < z < bn of the same thickness hf separated by slits bn < z < an+1

of a solid dielectric of the same thickness hs. The central points dn of the liquid
intervals an < z < bn are the points of reference where the ion concentrations ci
take the prescribed values c−i .
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Let Qf and Qs stand for fluid and solid domain

Qf = {x, z : −∞ < x < +∞, z ∈ Ωf}, Qs = {x, z : −∞ < x < +∞, z ∈ Ωs},

Ωf =
N−1⋃
n=0

{an < z < bn}, Ωs =
N−1⋃
n=0

{bn < z < an+1},

an = n(hf + hs), bn = an + hf , dn = an + hf/2.

We look for a solution (ϕ, c+, c−) which depends on the variable z ∈ [0, L].
In the fluid domain Ωf , such a solution solves the system

−ciqiϕz − kT ciz = 0, (2.4)

εfϕzz = −4π
∑
±
ciqi. (2.5)

In the solid domain Ωs the potential ϕ solves the equation

εsϕzz = 0. (2.6)

Conditions of continuity of the potential ϕ and the induction field D are

at z = an and z = bn : [ϕ] = [εϕz ] = 0, at z = dn : ci = c−i , (2.7)

where n = 1, . . . , N−1 and [ϕ]|z=z0 stands for the jump of a discontinuous function
ϕ at the point z0:

[ϕ]|z=z0 = lim
σ→0

(ϕ(z0 + σ)− ϕ(z0 − σ)).

We assume that ϕ satisfies the external boundary conditions

ϕ|z=0 = ζ0, ϕ|z=L = ζL, (2.8)

Let us derive some consequence of the above formulation. In what follows we
assume that the dielectric permittivity function

ε =

{
εf , z ∈ Ωf ,

εs, z ∈ Ωs,
(2.9)

is extended periodically on R.
Let us exclude the concentrations ci. One can write equation (2.4) as

d

dz
(qiϕ+ kT ln ci) = 0.

Integrating between dn and z ∈ (an, bn), we obtain

ci = c−i exp
[ qi
kT

(ϕ(dn)− ϕ(z))
]
. (2.10)

Hence, the potential ϕ solves in each liquid domain (an, bn) the Poisson–Boltzmann
equation [11]

εfϕzz = −4π
∑
±
c−i qi exp

[ qi
kT

(ϕ(dn)− ϕ(z))
]
. (2.11)
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With [z]e standing for the entire part of a number z, the functions

Ha(z) = h
[ z
h

]
e
, Hd(z) =

hf

2
+ h

[ z
h

]
e
, Hb(z) = hf + h

[ z
h

]
e
, (2.12)

where h ≡ hf + hs, take the constant values an, dn, and bn if an < z < an+1. Let
χ be the characteristic function of the liquid domain Ωf . Thus to define ϕ on the
whole interval 0 < z < L, one should solve the equation

(εϕz)z = −4πχ(z)
∑
±
c−i qi exp

[ qi
kT

(ϕ(Hd(z))− ϕ(z))
]
, (2.13)

jointly with the conditions (2.7) and (2.8). Observe that the function ξd = Hd(z)−z
is periodic, and ξd = hf/2− z on the interval of periodicity 0 < z < h.

3. Scaling and identification of a small parameter

We look for an asymptotic solution of problem (2.13), (2.7),(2.8) assuming that
the ratio

h

L
=

1
N

= δ

is a small parameter for some positive entire number N . We argue by the homog-
enization approach, so the interval Ω = {0 < z < L} is fixed and δ varies in (0, 1).
In that case

h(δ) = δL, hf = δh̄f , hs = δh̄s, h̄f + h̄s = L, Φ := h̄f/L.

Here, Φ is porosity.
We call z ∈ Ω a macro-variable and we introduce the micro-variable y =

z/(δL). With δ being small, the periodic functions ε(z) and χ(z) oscillate strongly
and they can be represented as functions of the micro-variable

ε(z) = ε̃
( z
δL

)
, χ(z) = χ̃

( z
δL

)
,

where

ε̃(y) =

{
εf , 0 < y < Φ,
εs, Φ < y < 1,

and χ̃(y) =

{
1, 0 < y < Φ,
0, Φ < y < 1,

are periodic functions with period equal to 1. In what follows the functions

ξ̃a(y) = −Ly, ξ̃d(y) = L(Φ/2− y), ξ̃b(y) = L(Φ− y), y ∈ Y ≡ (0, 1),

are extended periodically. One can verify easily that the functions Ha(z), Hd(z),
and Hb(z) defined in (2.12) can be represented as

Ha(z) = z + δξ̃a
( z
δL

)
, Hd(z) = z + δξ̃d

( z
δL

)
, Hb(z) = z + δξ̃b

( z
δL

)
.
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With the above notations at hand, the function ϕ(z) solves on the entire
interval 0 < z < L the problem

(ε̃
( z
δL

)
ϕz)z = −f(ϕ), (3.1)

f = 4πχ̃
( z
δL

)∑
±
c−i qi exp

( qi
kT

{
ϕ
(
z + δξ̃d

( z
δL

))
− ϕ(z)

})
,

with the boundary conditions (2.8).
Let us perform scaling, using the bar-sign f̄ for a reference value of the

variable f and the prime-sign f ′ for a dimensionless value of f , i.e., f = f̄f ′. The
special scaling notations are accepted for the following variables:

z = Lz′, ci = c̄c′i, qi = q̄q′i, ϕ = ϕ̄ϕ′, Hd(z) = LH ′d(z
′).

The length

ld =
(εlkT
2c̄q̄2

)1/2
(3.2)

is known as the Debye length. In terms of dimensionless variables, equation (3.1)
in the fluid domain becomes ( l2d

L2

)
2

( q̄ϕ̄
kT

)
1
ϕ′z′z′ (3.3)

= −4π
∑
±
c′iq

′
i exp

(
q′i
( q̄ϕ̄
kT

)
1
{ϕ′(H ′d(z′))− ϕ′(z′)}

)
.

In the solid domain, equation (3.1) becomes (εs)3ϕ′z′z′ = 0.
Assuming that the dimensionless quantities (·)i satisfy the equalities

(·)i = δni , i = 1, 2, 3, (3.4)

we obtain a hierarchy of problems to study. In this paper we restrict ourselves to the
case when all the powers ni are equal to zero, i.e., (·)i = O(1). The meaning of these
hypotheses is the following. The relation (·)1 = O(1) implies that electroosmotic
force and thermal force are of the same order. Observe that the relation (·)1 = O(1)
holds, for example, for the symmetric electrolyte (where z+ = z− and c−+ = c−−) in
water at T = 298K, z = 1, with the ζ-potential equal to 25[mV ] [5]. When (·)1 is
not small, the Debye-Hückel linearization of the Poisson–Boltzmann equation does
not work. Under the condition (·)1 = O(1) the Debye length ld can no longer be
compared to the electrical double layer, moreover double layer overlapping could
occur. Indeed, it is a useful rule of thumb [5] that ld = 9.6/(z

√
c̄). For the above

mentioned electrolyte with the counterion molar concentration c̄ = 0, 01[mM ]
we have ld = 100[nm], whereas the double electric layer is normally only a few
nanometers thick [5] and the nanocapillary membrane may have a pore diameter
of 15 [nm] [3]. For such cases the hypothesis (·)2 = O(1) is natural. For water with
low electrolyte concentration c̄ the hypothesis (·)3 = O(1), i.e., εs/εf = O(1), is
natural.

We close this section by recalling the Debye-Hückel approach to the Poisson–
Boltzmann equation (2.11) in the single layer z > 0 with boundary conditions
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ϕ → 0 and ϕz → 0 as z → ∞ and ϕ|z=0 = ζ0. In the case of a symmetric
electrolyte, the linearized equation (2.11), in the SI system of units where 4π is
replaced by 1, becomes l2dϕzz = −ϕ, since the nonlocal term ϕ(d) vanishes as
d→∞. Clearly, ϕ = ζ0e−z/ld is a solution. This explains the notion (3.2).

4. A priori estimates

We proceed by returning to the dimensional variables. First, we study how solu-
tions of problem (3.1),(2.8) depend on δ. We call the electrolyte concave, linear or
convex if ∑

±
c−i qi > 0,

∑
±
c−i qi = 0,

∑
±
c−i qi < 0,

respectively. We recall that q1 = q+ > 0 and q2 = q− < 0. We write

p1 =
4πq1c−1
εf

, p2 =
4π|q2|c−2
εf

, r1 =
q1
kT
, r2 =

|q2|
kT
. (4.1)

With these notations at hands, equation (2.11) in the fluid domain becomes

ϕzz = p2er2[ϕ(z)−ϕ(Hd(z))] − p1e−r1[ϕ(z)−ϕ(Hd(z))].

We prove that there is a positive constant B0 such that∫ L

0

ϕ2z(z)dz ≤ B0, max
0≤z≤L

|ϕ(z)| ≤ B0. (4.2)

Here and in what follows, constants Bi do not depend on δ.

Linear electrolyte. First, we consider the case when p1 = p2 = p. Given an interval
[an, bn], we prove that ϕz �= 0 for any z ∈ [an, bn] otherwise ϕ = const on this
interval. Assume that there is a point z0 ∈ [an, bn], such that ϕz(z0) = 0. When
z0 < dn the function w(n)(z) = ϕ(z)− ϕ(dn) solves the problem

w(n)zz = g1(w(n)), w(n)z (z0) = 0, w(n)(dn) = 0, (4.3)

where

g1(w) =
dg(w)
dw

, g(w) =
p

r1
e−r1w +

p

r2
er2w − p

r1
− p

r2
.

We multiply equation (4.3) by w(n) and integrate between the points z0 and dn

using the inequality wg1(w) ≥ 0. As a result we obtain
dn∫

z0

(
|w(n)z |2 + w(n)g1(w(n))

)
dz = 0 and

dn∫
z0

|w(n)z |2dz ≤ 0.

Hence, ϕz(dn) = 0. The case z0 > dn can be considered similarly. Thus, ϕz(dn) = 0
if ϕz(z0) = 0 for some z0 ∈ [an, bn].

It follows from (4.3)1 that

d

dz

(
|w(n)z |2 − 2g(w(n))

)
= 0. (4.4)
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Integrating between dn and z we see that w(n) solves the Cauchy problem

w2z = 2g(w), w(dn) = 0.

The function
√
g(w) is Lipschitz continuous and g(0) = 0. By uniqueness, w(n) ≡ 0

on the interval [an, bn].
Let us consider the next interval [an+1, bn+1]. Due to the boundary condition

ϕz|bn− = ϕz|an+1+, (4.5)

the derivatives w(n)z (bn) and w
(n+1)
z (an+1) have the same sign.

By the above discussions, the solution ϕ of the problem (2.7), (2.8), (2.13) is
monotone on the whole interval 0 < z < L. Hence,

max
0<z<L

|ϕ(z)| ≤ B1, B1 = max{|ζ0|, |ζL|}. (4.6)

We multiply the equation

(ε(z)ϕz)z = −4πχ(z)
∑
±
c−i qi exp

( qi
kT
{ϕ(Hd(z))− ϕ(z)}

)
≡ f(ϕ), (4.7)

by the function ϕ(z)− ϕ0(z),

ϕ0(z) =
ζL − ζ0
L

z + ζ0,

and, because of the estimate (4.6), we obtain the inequality∫ L

0

ε(z)ϕ2z(z)dz ≤ B2 +
∫ L

0

ε(z)ϕzϕ0zdz. (4.8)

Now, to derive the first estimate in (4.2), it suffices to apply the Young inequality

|ϕzϕ0z | ≤
μ

2
ϕ2z +

1
2μ
ϕ20z . (4.9)

Convex electrolyte.We consider a “convex” electrolyte with the condition p2 > p1.
Given a fluid interval an < z < bn, the function w = ϕ(z) − ϕ(dn) is continuous
and

wzz = g1(w), w(dn) = 0, (4.10)
where

g1(w) =
dg(w)
dw

, g(w) =
p1
r1
e−r1w +

p2
r2
er2w − p1

r1
− p2
r2
.

Observe, that the function g is convex, g′(0) = p2 − p1 > 0, and

g(0) = g(w∗) = 0, g|w>0,w<w∗ > 0, inf g = g(w0) ≡ g0 < 0, g′(w0) = 0,

for some w∗ and w0, such that w∗ < w0 < 0.
It follows from (4.10) that

wz = ±
√
κ2 + 2g(w), wz(dn) = κ. (4.11)

Step 1. All the solutions of problem (4.10) can be arranged in seven types
depending on the value of κ.
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Class 1. When κ = 0 the solution is given by the representation formula
w(z)∫
0

dω√
2g(ω)

= |z − dn|, wz =
√
2g(w) sign(z − dn). (4.12)

Note that the above integral does converge. It is the crucial property of w that
(z − dn)wz > 0 and wz(dn) = 0.
Class 2. Assume that κ > 0 and κ2 + 2g(w0) > 0. Then

wz =
√
κ2 + 2g(w) > 0, z ∈ (an, bn). (4.13)

Thus, w is an increasing function.
Class 3. Assume that κ > 0 and κ2+2g(w0) = 0. Clearly, wz > 0 for z > dn since
g(w) > 0 for w > 0. If w > w0 on the interval [an, dn], the derivative wz is positive
and satisfies formula (4.13). In this case the solution w belongs to Class 2. If there
is a point z0 ∈ (an, dn) such that w(z0) = w0, we have that wz > 0 for z > z0 and
wz = 0 for z ≤ z0.
Class 4. Assume that κ > 0 and κ2 + 2g(w0) < 0. Again, wz > 0 for z > dn. If
κ2 + 2g(w) > 0 on the interval [an, dn], the solution w belongs to Class 2. Let
zc(< dn) be a point closest to dn such that wz(zc) = 0 and κ2 + 2g(wc) = 0,
where wc = w(zc), w0 < wc < 0. Clearly, (z − zc)wz > 0. Moreover, the solution
w satisfies the formula

w(z)∫
wc

dω√
2 [g(ω)− g(wc)]

= |z − zc|, z ∈ [an, bn]. (4.14)

Formula (4.14) coincides with (4.13) if wc = 0. Hence, Class 2 can be treated as a
subset of Class 4.
Class 5. Assume that κ < 0 and κ2 + 2g(w0) > 0. In that case wz < 0 on the
whole interval, i.e., w is a decreasing function.
Class 6. Assume that κ < 0 and κ2 + 2g(w0) = 0. In that case the solution
belongs to Class 5, otherwise there is a point z0 ∈ (dn, bn) such that w(z0) = w0,
wz < 0 for z < z0, and wz = 0 for z ≥ z0.
Class 7. Assume that κ < 0 and κ2+2g(w0) < 0. We have that wz < 0 for z < dn.
If κ2 + 2g(w) > 0 on the interval [dn, bn], the solution w belongs to Class 5. Let
zc(> dn) be a point closest to dn such that wz(zc) = 0 and κ2 + 2g(wc) = 0,
where wc = w(zc), w0 < wc < 0. Clearly, (z − zc)wz > 0. Moreover, the solution
w satisfies formula (4.14). One can treat Class 4 and Class 7 as identical.

To construct a global solution ϕ(z) on the entire interval [0, L], one should
put together the above elements ϕ(n)(z), z ∈ [an, bn], taking into account the
boundary conditions (4.5). Due to these conditions, there are two possibilities.
The function ϕ(z) is monotone (maybe not strictly) otherwise there is a unique
interval [an, bn] and a point zc ∈ (an, bn) such that

(z − zc)ϕz(z) > 0, ϕz(zc) = 0. (4.15)
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Moreover, the corresponding function w(n)(z) is given by the representation for-
mula (4.14).

Step 2. (Exclusion of solid domain.) Let us consider the alternative case
(4.15). We exclude the solid domain by passing to a rearrangement function ϕ′(z′),
0 < z′ < ΦL = L′ as follows. We divide the interval 0 < z′ < L′ intoN subintervals
of the same length δh̄l by the points a′i = iδh̄l, i = 0, . . . , N , a′0 = 0, a′N = L′. We
define

ϕ′(z′)|a′
0<z′<a′

1
= ϕ(z′),

ϕ′(z′)|a′
i<z′<a′

i+1
= ϕ(z′ + ai − a′i)−

i∑
k=1

(ϕ(ak)− ϕ(bk−1)), if i ≥ 1.

Writing d′i = a′i + δh̄l/2 and taking into account the no-jump conditions (2.7),
we see that the function ϕ′(z′) belongs to C1[0, L′] ∩W 2,∞(0, L′) and solves the
problem

ϕ′z′z′ = g1 (ϕ′(z′)− ϕ′(H ′d(z′))) ,

ϕ′(0) = ζ0, ϕ′(L′) = ζL −
N∑

k=1

(ϕ(ak)− ϕ(bk−1)),
(4.16)

where H ′d(z
′) is a step-wise function such that

H ′d(z
′) = d′i if a′i < z

′ < a′i+1.

Because of the equalities

ϕ(ak)− ϕ(bk−1) =
ak∫

bk−1

ϕzdξ =
εfδh̄sϕz(bk−1 − 0)

εs
=
εfδh̄sϕ

′
z′(a′k)
εs

,

the boundary condition at z′ = L′ in (4.16) becomes

ϕ′(L′) = ζL −
εf(1 − Φ)L

εs

N∑
k=1

ϕ′z′(a′k). (4.17)

One can verify that correspondence between the functions ϕ(z) and ϕ′(z′) is bi-
jective.

The condition (4.15) means that

ϕ′z′(z′c) = 0, (z′ − z′c)ϕz′(z′) > 0 ∀z′. (4.18)

Clearly, the function w′(n)(z′) = ϕ′(z′)− ϕ′(d′n) is given by the formula
w′(n)(z′)∫

wc

dω√
2[g(ω)− g(wc)]

= |z′− z′c|, w
′(n)
z′ =

√
2[g(w′(n))− g(wc)] sign(z′− z′c).

(4.19)
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The above integral is well defined. The functionW ′(z′) defined by the formula
W ′(z′)∫
wc

dω√
2[g(ω)− g(wc)]

= |z′ − z′c|, 0 < z′ < L′, (4.20)

is an extension of the function w′(n)(z′) given by (4.19). Clearly, W ′(z′) solves
equation wz′z′ = g1(w) on the whole interval 0 < z < L′.

Step 3. We claim that W ′
z′(z′) ≥ w′(m)

z′ (z′) ≥ 0 for any interval a′m < z′ <
a′m+1, m > n, and W ′

z′(z′) ≤ w′(m)
z′ (z′) ≤ 0 for any interval a′m < z′ < a′m+1,

m < n. To this end we first prove the following comparison inequalities.

Lemma 4.1. Let w1 and w2 be two solutions of the equation wzz = g1(w) on
the interval a < z < b such that w1(a) > w2(a) and w1z(a) ≥ w2z(a). Then
w1(z) > w2(z) and w1z(z) ≥ w2z(z) for any a < z < b.
Proof. Let us write w = w1 − w2. Given z > a, we integrate the equality wzz =∫ w1(z)

w2(z)
g′′(s)ds over the interval (a, z) to obtain that

wz(z) = wz(a) +

z∫
a

ds

w1(s)∫
w2(s)

g′′(ξ)dξ, w(z) = w(a) +

z∫
a

wz(ξ)dξ. (4.21)

By continuity, the inequality w1(z) > w2(z) is valid not only for z = a but on
some interval a ≤ z < z0. Due to convexity of the function g(w), the inequality
wz(z) ≥ 0 holds for a ≤ z ≤ z0. Hence, w(z0) > 0, wz(z0) ≥ 0 and one can extend
the interval a ≤ z < z0. Assume that the maximal interval a ≤ z < z∗ does not
coincide with the interval a ≤ z < b. It means that w(z∗) = 0 and wz(z) ≥ 0 for
a ≤ z ≤ z∗. But this claim contradicts the second equality in (4.21). The lemma
is proved. �

Let us compareW ′(z′) and w′(n+1)(z′) on the interval a′n+1 < z
′ < a′n+2. Due

to (4.18) and (4.19) we have w′(n+1)(a′n+1) < 0 and W ′(a′n+1) > 0. The continuity
of ϕ′z′(z′) implies that W ′

z′(a′n+1) = w
′(n)
z′ (a′n+1) = w

′(n+1)
z′ (a′n+1). By Lemma 5.1,

W ′(z′) > w′(n+1)(z′) and W ′
z′(z′) ≥ w′(n+1)z′ (z′) for a′n+1 < z

′ < a′n+1. The same
arguments are applied for the functions W ′

z′ (z′) and w′(n+2)(z′) on the interval
a′n+2 < z

′ < a′n+3, and etc. Thus,

L′∫
0

|ϕ′z′ |2dz′ =
N−1∑
k=0

a′
k+1∫

a′
k

|w′(k)z′ |2dz′ ≤
L′∫
0

|W ′
z′ |2dz′ ≤ sup

w0<wc<0

L′∫
0

|W ′
z′ |2dz′ ≡ B1,

(4.22)
and

|ϕ′(z′)| = |ζ0 +
z′∫
0

ϕ′z′(s)ds| ≤ B2. (4.23)



34 Y. Amirat and V. Shelukhin

It follows from the identity

w(n)(z)− w(n)(dn) =

z∫
dn

w(n)z (s)ds

that |w(n)(z)| ≤ B3 for any interval an < z < bn. Then one obtains estimates (4.2)
as in the linear electrolyte case. The case of a concave electrolyte (p2 < p1) can be
considered similarly.

One can write the Poisson–Boltzmann equation as

(ε(z)ϕz)z = εfχ(z)g1(w(z)) = εf (p2−p1)χ(z)+εfχ(z)
(
g1(w(z))−g1(0)

)
, (4.24)

where w(z) = ϕ(z)− ϕ(Hd(z)) and g1(0) = p2 − p1. It follows from (4.2) that

N−1∑
n=0

an+1∫
an

w2z(z)dz ≤ B4, max
0≤z≤L

|w(z)| ≤ B5.

We prove that there is a constant B6 independent of δ such that

|g1(w(z)) − g1(0)| ≤ B6δ. (4.25)

To this end, we pass to the function ϕ′(z′) solving the problem (4.16). By definition,

g1(w(z))− g1(0) = g1(ϕ′(z′)− ϕ′(H ′d(z′)))− g1(0).
Let z′ be in the interval a′n < z

′ < a′n+1, then

g1(w′(z′))− g1(0) =
z′∫

d′
n

gww(w′(z′))ϕ′z′(z′)dz′. (4.26)

We integrate the identity

ϕ′z′(z′)− ϕ′z′(z′1) =

z′∫
z′
1

ϕ′z′z′(x)dx

over the variable z′1 to obtain that

L′ϕ′z′(z′) = ζL − ζ0 −
N∑
1

(
ϕ(ak)− ϕ(bk−1)

)
+

L′∫
0

dz′1

z′∫
z′
1

ϕ′z′z′(x)dx.

Observe that

|
N∑
1

(
ϕ(ak)− ϕ(bk−1)

)
| ≤

L∫
0

|ϕz|dz.
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It follows from equation (4.16) that |ϕ′z′z′ | is bounded uniformly in δ, hence |ϕ′z′ |
verifies this property also. Now, estimate (4.25) results from (4.26) and from the
inequality

∣∣∣∣
z′∫

d′
n

gww(w′(z′))ϕ′z′ (z′)dz′
∣∣∣∣ ≤ δh̄f max

|ω|≤2B1

|gww(ω)| max
0<z′<L′

|ϕ′z′(z′)|/2.

5. Existence

Here we consider the question of solvability of problem (2.13), (2.7), (2.8) for any
fixed value of δ. We apply the Leray-Schauder fixed point theorem [6] and to this
end we define operators Aλ, 0 ≤ λ ≤ 1, as follows. Given a Hölder continuous
function v ∈ Cα(Ω̄), 0 < α < 1/2, we find a function ϕ(z) ∈ H1(Ω), ϕ = Aλv, as
a unique solution of the linear boundary-value problem∫

Ω

ε(z)ϕz(z)ψz(z)dz = −λεf
∫
Ω

χ(z)g1
(
v(z)− v(Hd(z))

)
ψ(z)dz, (5.1)

for any test function ψ ∈ H1
0 (Ω) where ϕ(0) = ζ0 and ϕ(L) = ζL. Clearly, ϕ ∈

C2+α[an, bn] and ϕ ∈ C2+α[bn, an+1] for any n. Thus, the operators Aλ : Cα(Ω̄)→
Cα(Ω̄) are well defined and a fixed point of A1 solves the problem (2.13), (2.7),
(2.8).

Because of the a priori estimates (4.2) and the continuous embedding of
H1(Ω) into C1/2(Ω̄) there is a constant M such that ‖ϕλ‖C1/2 ≤M for any fixed
point ϕλ of Aλ. Given a constant M ′ > M , we introduce the ball

U = {v ∈ Cα(Ω̄) : ‖v‖ ≤M ′}

in the Banach space Cα(Ω̄). The restrictions Aλ : U → Cα(Ω̄) enjoy the following
properties. By construction, the boundary of U does not contain fixed points of Aλ,
0 ≤ λ ≤ 1. The set ∪λ∈[0,1]Aλ(U) is compact in Cα(Ω̄) because of the compact
imbedding of C1/2(Ω̄) into Cα(Ω̄) for 0 < α < 1/2. The family of maps {v →
Aλv}λ∈[0,1] is equicontinuous on U . The mapping (λ, v)→ Aλv is continuous from
[0, 1]×U to Cα(Ω̄). The operator A0 has a unique fixed point in the interior of U ,
and the mapping v → v − A0(v) has an inverse near this fixed point. This means
that we have verified all the conditions of the Leray-Schauder theorem. Thus,
problem (2.13), (2.7), (2.8) has a solution ϕ ∈ H1(Ω) such that ϕ ∈ C2+α[an, bn]
and ϕ ∈ C2+α[bn, an+1] for any 0 < n < N−1. The derivation of a priori estimates
(4.2) independent of δ is justified.
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6. Two-scale compactness

We recall [7, 1] that a sequence uδ ⊂ L2(Ω) is said to two-scale converge to a limit
u ∈ L2(Ω× Y ) if for any ψ ∈ C∞(Ω;C∞per(Y )) one has

lim
δ→0

∫
Ω

uδ(z)ψ
(
z,
z

δ

)
dz →

∫
Ω

∫
Y

u(z, y)ψ(z, y)dzdy. (6.1)

The two-scale limit has the following property [7]. From each bounded sequence
in L2(Ω) one can extract a subsequence which two-scale converges to a limit u ∈
L2(Ω× Y ).

As for derivatives, we will use the following assertion [7]. Let uδ(z) and
uδ

z(z) be bounded sequences in L2(Ω). Then there exist functions u ∈ L2(Ω),
w ∈ L2(Ω;H1

per(Y )) and a subsequence such that both uδ(z) and uδ
z(z) two-scale

converge to u(z) and uz(z) + wy(z, y) respectively.
Because of the estimates (4.2), there are a sequence ϕδ(z) and two functions

ϕ0(z) and ϕ1(z, y) such that ϕ0 ∈ L2(Ω) and ϕ1 ∈ L2(Ω;H1
per(Y )) and∫

Ω

ϕδ(z)ψ
(
z,
z

δL

)
dz →

∫
Ω

∫
Y

ϕ0(z)ψ(z, y)dzdy,

∫
Ω

ϕδ
z(z)ψ

(
z,
z

δL

)
dz →

∫
Ω

∫
Y

(
ϕ0z(z) + ϕ

1
y(z, y)/L

)
ψ(z, y)dzdy,

∀ψ ∈ C∞(Ω;C∞per(Y )) as δ → 0 [7]. Observe that [2], as δ → 0,∫
Ω

f
( z
δL

)
ψ

(
z,
z

δL

)
dz →

∫
Ω

∫
Y

f(y)ψ(z, y)dzdy, ∀ψ ∈ C∞(Ω;C∞per(Y )),

for any function f(y), f ∈ L2(Y ), extended periodically onto R.
We have∫
Ω

ε̃
( z
δL

)
ϕδ

zΨz(z)dz = −εf
∫
Ω

χ̃
( z
δL

)
g1(wδ)Ψ(z)dz ∀Ψ ∈ H1

0 (Ω). (6.2)

Taking Ψ(z) = δψ
(

z
δL

)
, with ψ ∈ H1

per(Y )∩C∞0 (Y ), and sending δ to 0, we obtain
a micro-equation in the cell Y ,∫

Ω

∫
Y

ε̃(y)
(
ϕ0z(z) + ϕ

1
y(z, y)/L

)
ψy(y)dzdy = 0. (6.3)

With the function ϕ0(z) at hand, we find ϕ1(z, y) by the method of separation of
variables in the form ϕ1(z, y) = ϕ0z(z)w1(y), where w1(y) is a periodic solution of
the problem

d

dy

(
ε̃(y)

(
1 +

1
L

dw1
dy

))
= 0,

∫
Y

w1(y)dy = 0. (6.4)
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Clearly, w1 is defined uniquely and

ε̃(y)
(
1 +

1
L

dw1
dy

)
= εh(Φ) = const, εh(Φ) =

( 1∫
0

1/ε̃(y)dy
)−1

=
1

Φ
εf
+ 1−Φ

εs

.

(6.5)
Taking in (6.2) Ψ(z) = ψ(z), with ψ ∈ H1

0 (Ω), and sending δ to 0, we obtain
a macroequation on the interval Ω,∫
Ω

∫
Y

ε̃(y)
(
ϕ0z(z) + ϕ

1
y(z, y)/L

)
ψz(z)dzdy = −εfg1(0)

∫
Ω

∫
Y

χ̃(y)ψ(z)dzdy. (6.6)

Hence, ϕ0(z) is a solution of the boundary value problem

εh(Φ)ϕ0zz = −4πΦ
∑
±
c−i qi, ϕ0(0) = ζ0, ϕ0(L) = ζL. (6.7)

7. A corrector and error estimates

The two-scale limit ϕ0(z) approximates the function ϕδ(z) for small values of δ.
Here, we improve the approximation by finding a corrector to the function ϕ0(z).
We argue by the formal expansion series [10] approach. To this end we assume
that there is a function ϕ2(z, y) defined for 0 < z < L and 1-periodic in y such
that

ϕδ(z) = ϕ0(z) + δϕ0z(z)w1(y) + δ
2ϕ2(z, y) + o(δ2), (7.1)

where ϕ0(z) and w1(y) are defined by (6.7) and (6.4) respectively.
We introduce the flux F δ(z) as follows:

F δ(z) = ε̃
( z
δL

) d
dz
ϕδ(z),

d

dz
F δ = εf χ̃

( z
δL

)
g1(wδ(z)), (7.2)

where wδ(z) ≡ ϕδ(z)−ϕδ(Hd(z)), and we represent it also by the expansion series

F δ(z) = F 0(z, y) + δF 1(z, y) + o(δ), y = z/(δL). (7.3)

Applying the derivative formula
d

dz
ϕ2

(
z,
z

δL

)
= ϕ2z

(
z,
z

δL

)
+

1
δL
ϕ2y

(
z,
z

δL

)
,

we insert the expansions (7.1) and (7.3) into the first equality in (7.2) arriving at
an equality

1∑
−1
δk(· · · )k = o(δ). (7.4)

We conclude that (· · · )k = 0 for each k = −1, 0, 1, . . . . These equalities imply that
ϕ0y(z, y) = 0, F 0(z, y) = ϕ0z(z)ε̃(y)(1 + w1y(y)/L), (7.5)

F 1(z, y) = ε̃(y)(ϕ0zz(z)w1(y) + ϕ
2
y(z, y)/L). (7.6)
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Then we insert the expansions (7.1) and (7.3) into the second equality in (7.2).
Similarly, we obtain (paying attention to the powers δ−1 and δ0) the equalities

ϕ0z(z)
∂

∂y

{
ε̃(y)

(
1 + w1y(y)/L

)}
= 0, (7.7)

ϕ0zz ε̃(y)(1 + w1y(y)/L) +
1
L

∂

∂y

{
ε̃(y)

(
ϕ0zzw1(y) +

1
L
ϕ2y(z, y)

)}
= εf χ̃(y)g1(0).

(7.8)
We find ϕ2(z, y) by the method of separation of variables assuming that there is
a function w2(y) such that ϕ2(z, y) = ϕ0zz(z)w2(y). Inserting this representation
formula into (7.8), we obtain that w2(y) should be a periodic solution of the
equation

εhϕ
0
zz +

1
L
ϕ0zz

d

dy

{
ε̃(y)

(
w1(y) +

1
L

d

dy
w2(y)

)}
= −4πχ(y)

∑
±
c−i qi. (7.9)

Clearly, this equation has a unique solution satisfying the equality
∫ 1
0 w2dy = 0.

Let us introduce a two-scale corrector

ϕc(z, y) = ϕ0(z) + δϕ0z(z)w1(y) + δ
2ϕ0zz(z)w2(y).

Its crucial property is that(
ε̃
( z
δL

)
ϕc,δ

z

)
z
= εf χ̃

( z
δL

)
g1(0), ϕc,δ ≡ ϕc

(
z,
z

δL

)
. (7.10)

This equality can be verified in a straightforward manner.
The difference h = ϕ− ϕc,δ solves the problem∫
Ω

ε̃
( z
δL

)
hz(z)ψz(z)dz = εf

∫
Ω

χ̃
( z
δL

)
ψ(z)

(
g1(wδ)− g1(0)

)
dz, (7.11)

h(0) = −δϕ0z(0)w1(0)− δ2ϕ2zz(0)w2(0) ≡ h0,

h(L) = −δϕ0z(L)w1(1)− δ2ϕ2zz(L)w2(1) ≡ hL,

for any ψ ∈ H1
0 (Ω). Writing

h0(z) = z(hL − h0)/L+ h0,

we insert the function ψ0 = h− h0 ∈ H1
0 (Ω) into (7.11) to obtain that∫

Ω

ε̃ψ20zdz = −
∫
Ω

ε̃ψ0zdz − εf
∫
Ω

χ̃ψ0

(
g1(wδ)− g1(0)

)
dz.

Applying the Young inequality and inequality (4.25), we conclude that

‖ψ0‖H1
0(Ω)

≤ Bδ and ‖ϕδ − ϕc,δ‖H1
0 (Ω)

≤ Bδ. (7.12)
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8. A two-scale model

We can summarize the results as follows. There is a function ϕc(z, y) of the macro-
and micro-variables such that the expansion

ϕδ(z) = ϕc
(
z,
z

δL

)
+O(δ), (8.1)

holds in H1(Ω). The equations (6.4), (6.7), (7.9) constitute a two-scale model.
Being more simple, the two-scale model allows us to distinguish between

micro- and macro-variables. The macro-variable is the mean value of ϕc(z, y) over
the micro-variable y:

ϕ0(z) =
∫
Y

ϕc(z, y)dy. (8.2)

These definitions are natural since, as it follows from the definition of the two-scale
convergence, the above mean value is the weak limit in L2 of ϕδ as δ → 0.
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Superconducting Vortices:
Chapman Full Model
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Abstract. In the article the II-type superconducting mean-field model is inves-
tigated. We consider the physical boundary conditions for this model. Namely
the magnetic field is given on the entire boundary of the domain and on the
inflow part of the boundary an extra condition is required for the vorticity.
This part of the boundary is unknown before resolving the problem. In fact
we investigate the “free boundary problem”.

Mathematics Subject Classification (2000). 78A25, 35D05, 76B47.

Keywords. Mean-field model, superconducting vortices, flux, solvability.

1. Introduction. General model

We study one and two-dimensional reductions of the three-dimensional mean field
model for the motion of superconducting vortices (see, for instance the formulaes
(72), (73), (76), (78) of [9] or the articles [10], [11]). Considering the case in which
all the vortices are rectilinear, aligned and oriented with the x3-direction along
with the magnetic field H, we have that H = (0, 0, h(x, t)) with w = (0, 0, ω(x, t))
being the three-dimensional vortex density. The evolution of non-zero components
h = h(x, t) and ω = ω(x, t) for x := (x1, x2) is governed in a bounded domain of
Ω ⊂ R2 by a system of differential equations (see, the formulaes (93)-(95) of [9]){

ωt + div (ωv) = 0 with v = − sign(ω)∇h,
−Δh+ h = ω for (x, t) ∈ ΩT := Ω× (0, T ), (1.1)

which has to be closed by the natural condition for the magnetic field on the
boundary Γ of the domain Ω,

h = a(x, t), (x, t) ∈ ΓT := Γ× (0, T ) (1.2)
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and by the initial condition on the vorticity

ω(x, 0) = ω0(x), x ∈ Ω. (1.3)

Since the first equation in the system is a first-order hyperbolic equation, the
necessity for an additional boundary condition on ω depends on whether the char-
acteristics are directed into or out of Ω on the boundary Γ. If (v · n) > 0, vortices
leave the sample, and on this outflow section of boundary no extra boundary
conditions are required. Here n denotes the outward normal to Γ.

However if (v · n) < 0, the vortices move into the sample and in [6], [8], the
following boundary condition for the flux of vorticity has been suggested:

−(v · n) ω = k Fn(|∇h|)
|∇h|

∂h

∂n

where k depends on the material, a physical positive constant, and

Fn := max(|∇h| − Jn, 0) with Jn = Jn(x, t) > 0

being a so-called function of the nucleation of the vortices on the boundary. An-
alyzing this condition we can generalize it to the following one: if (v · n) < 0 on
ΓT , then

ω = sign
(
∂h

∂n

)
b

(
x, t,

∂h

∂n

)
(1.4)

for a given positive function b = b(x, t, τ), which is limited by some function
f = f(x, t) independent of the parameter τ , i.e.,

0 � b(x, t, τ) � f(x, t) for ∀τ ∈ R and (x, t) ∈ ΓT .

Let us note that we do not know beforehand, where the vortices go into Ω, since
the restriction (v ·n) < 0 depends on v. In fact we have a “free moving” boundary
condition on ΓT for ω, that is one of the main difficulties in this considered problem.

For the interested reader we note that hyperbolic-elliptic type systems, such
as (1.1), arise in many mathematical models of continuum mechanics and have
been considered in [2, 3, 4, 5, 17].

1.1. Model for positive vorticity. The existence result

In the following sections we study the superconducting vortex model just for pos-
itive values of vorticity. Therefore our model is rewritten as the system{

ωt + div (ωv) = 0 with v = −∇h,
−Δh+ h = ω for (x, t) ∈ ΩT

(1.5)

with the boundary conditions

h = a(x, t), (x, t) ∈ ΓT , (1.6)

ω = b
(
x, t,

∂h

∂n

)
, (x, t) ∈ Γ−T (v) (1.7)

and the initial condition

ω(x, 0) = ω0(x), x ∈ Ω, (1.8)
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where we write

Γ−T (v) := {(x, t) ∈ ΓT : (v · n) (x, t) < 0} .
Let us assume the following regularity on the data for our problem (1.5)–

(1.8). The boundary Γ ∈ C2 and the function b = b(x, t, τ) is measurable for a.e.
(x, t) ∈ ΓT and continuous on τ ∈ R. Moreover there exists a function f = f(x, t),
such that for some p ∈ (3,∞],⎧⎪⎪⎨⎪⎪⎩

f(x, t) ∈ L∞(0, T ;Lp(Ω)),
0 � b(x, t, τ) � f(x, t) on ΓT and ∀τ ∈ R ;
a ∈ L∞(0, T ;W 2

p (Γ)) ∩W 1
∞(0, T ;Lp(Γ));

ω0 � 0 a.e. in Ω and ω0 ∈ Lp(Ω).

(1.9)

In this article we show the following existence result.

Theorem 1. If the data a, b, ω0 satisfy (1.9), then there exists at least one weak
solution {ω, h} of the problem (1.5)–(1.8), such that ω ∈ L∞(0, T ;Lp(Ω)), h ∈
L∞(0, T ; W 2

q (Ω)) (for q := p if p <∞ and for arbitrary q <∞ if p =∞) and the
equalities

−Δh+ h = ω a.e. in ΩT , (1.10)

v = −∇h a.e. in ΩT , (1.11)

h = a a.e. on ΓT , (1.12)∫
ΩT

{ωψt + ω (v · ∇)ψ} dxdt +
∫
Ω

ω0 ψ(x, 0) dx

=
∫
ΓT

(v · n) b(x, t, ∂h
∂n

) ψ dxdt, (1.13)

hold for any function ψ ∈ TF (v). Here we define the set of test functions TF (v),
related with the function v = v(x, t) ∈ C(Ω× [0, T ]) as

TF (v) := {ϕ ∈ C1,1(Ω× [0, T ]) : ϕ(·, T ) = 0 on Ω and ϕ(x, t) = 0 on Γ∗T (v)},
where

Γ∗T (v) := {(x, t) ∈ ΓT : (v · n)(x, t) � 0}.
Remark 1. To satisfy the boundary condition (1.7), because we do not know be-
forehand Γ−T (v), the entrance of the flux of vortices into Ω, we have been compelled
to introduce a set of test functions TF (v) depending on the solution v.

Let us remark that problems similar to (1.5)–(1.8) were considered in [1] and
[12], but for other boundary conditions.
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2. Approximation problem. Leray-Schauder fixed point argument

Let us formulate a well-known result from approximation theory [7].

Lemma 1. Let Q ⊆ Rn, n � 1, be an open set and s ∈ [ 1,+∞]. Then for any
g ∈ Ls (Q) there exist functions gθ ∈ C∞(Q), satisfying the following properties:

||gθ||Ls(Q) � C||g||Ls(Q) ,

||gθ−g||Lr(Q)−→ 0 when θ → 0, (2.1)

for r := s, if s <∞ and for any r <∞, if s =∞. The constant C is independent
of the parameter θ.

Using Lemma 1, we approximate the data a, ω0, b, f by C∞-functions aθ, ωθ
0 ,

bθ, fθ, satisfying the relations (2.1) in the corresponding space Lq(Q), defined by
the regularity conditions (1.9). We can assume that any derivatives of these smooth
approximations are bounded by constants, depending only on a positive parameter
θ. Moreover the functions bθ, ωθ

0 satisfy a so-called compatibility condition

bθ(·, t, ·) = 0 for t ∈ [0, θ] and ωθ
0(x) = 0 for x ∈ Uθ(Γ).

Here we define the neighborhood of Γ as Uθ(Γ) := {x ∈ Ω : d(x) < θ} and the
distance function d = d(x) on Γ for any x ∈ Ω as d(x) := infy∈R2\Ω |x− y|.

In Sections 2–4 we shall work with these approximations aθ, ωθ
0 , b

θ, fθ, instead
of our data a, ω0, b, f , but for simplicity of notation, we suppress the index θ and
continue to write a, ω0, b, f , respectively.

Now we fix a parameter ε ∈ (0, 1) and study the solvability of the following
problem.

Problem Pε. Find ω ∈ W 2,1
2 (ΩT ) and h ∈ L∞(0, T ;W 2

2 (Ω)) satisfying the
coupled two systems{

ωt + div(ωv) = εΔω for (x, t) ∈ ΩT with v := −∇h;
ω(x, t) = b(x, t, ∂h

∂n ), (x, t) ∈ ΓT ; ω(x, 0) = ω0(x), x ∈ Ω
(2.2)

and {
−Δh+ h = ω, (x, t) ∈ ΩT ;

h = a(x, t), (x, t) ∈ ΓT .
(2.3)

The solution {ω, h} of Problem Pε depends on the parameters ε, θ, but for
the simplicity of presentation in the sequel we indicate the dependence of functions
and constants on the parameters ε, θ, if it will be necessary.We show the solvability
of Problem Pε, using the Leray-Schauder fixed point argument (see [15], p. 286,
Theorem 11.6). To do so, we consider the following problem, depending also on an
auxiliary parameter λ ∈ [0, 1].
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Problem Pε,λ. Find ω ∈ W 2,1
2 (ΩT ) and h ∈ L∞(0, T ;W 2

2 (Ω)) satisfying the
coupled two systems{

ωt + λdiv(ωv) = εΔω for (x, t) ∈ ΩT with v := −∇h;
ω = λb(x, t, ∂h

∂n ), (x, t) ∈ ΓT ; ω(x, 0) = λω0(x), x ∈ Ω
(2.4)

and {
−Δh = λ (ω − h) , (x, t) ∈ ΩT ;

h = λa(x, t), (x, t) ∈ ΓT

(2.5)

for any fixed λ ∈ [0, 1].
To apply the Leray-Schauder fixed point argument, first we assume the

existence of a solution of (2.4)–(2.5) and deduce a priori estimates which do
not depend on ε and λ. Below until the end of Section 3, all constants C will
be independent of ε and λ, but may depend on the parameter θ.

Lemma 2. Let us write

m := max
(
||a||L∞(ΓT )

, ||f ||L∞(ΓT ), ||ω0||L∞(Ω)

)
<∞.

For any λ ∈ [0, 1] the solution {ω, h} of Problem Pε,λ fulfills the estimates

0 � ω(x, t) � 2m for (x, t) ∈ ΩT ; (2.6)

‖h‖L∞(0,T ;W 2
q (Ω))

, ‖h‖L∞(0,T ;C1+α(Ω)) � C
(
m+ ‖a‖L∞(0,T ;W 2

q (Γ))

)
(2.7)

for any q ∈ (2,∞) and any α ∈ [0, 1), where C depends only on q and Ω.

Proof. The positivity of ω follows from a maximum principle and the positivity of
f, ω0, in view of (1.9). The details of the proof can be found in Lemma 3 of [1].
Now let us introduce the functions hm := max (h−m, 0) , ωm := max (ω −m, 0)
and rewrite the equation (2.5) in the form

−Δh+ λ(h−m) = λ(ω −m).
Multiplying the last one by hk−1

m for any integer k � 2, we obtain

(k − 1)
∫
Ω

hk−2
m |∇hm|2 dx+ λ ‖hm‖k

Lk(Ω)
� λ ‖hm‖k−1

Lk(Ω)
‖ω −m‖Lk(Ω)

,

which implies for any t ∈ [0, T ],

‖hm(·, t)‖k,Ω � ‖ω −m‖k,Ω �
(
‖ωm(·, t)‖k

Lk(Ω)
+mk |Ω|

) 1
k

. (2.8)

Next, multiplying the equation of (2.4) by ωk−1
m , we have that

1
k

d

dt

∫
Ω

ωk
mdx+ ε(k − 1)

∫
Ω

ωk−2
m |∇ωm|2 dx

+λ
∫
Ω

(ω −m)zmdx = λ
∫
Ω

(h−m)zmdx, (2.9)
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where zm := (1 − 1
k )ω

k
m +mωk−1

m . By the Hölder inequality and the positivity of
hm, we derive that∫
Ω

(h−m)zmdx �
(
1− 1

k

)
‖hm‖Lk+1(Ω)

‖ωm‖k
Lk+1(Ω)

+m ‖hm‖Lk(Ω)
‖ωm‖k−1

Lk(Ω)
.

Substituting this result in (2.9) and taking into account (2.8), we deduce

1
k

d

dt

∫
Ω

ωk
mdx � 2mk+1 |Ω| .

Integrating over the time variable t and passing to the limit as k →∞, we obtain
(2.6).

The estimates (2.7) follow the classical estimates for elliptic equations (see
the book [19])

||h||W 2
q (Ω)

� C(||ω||Lq(Ω) + ‖a‖W 2
q (Γ)

) for any q ∈ (2,∞) (2.10)

applied to the problem (2.5) with a given ω, and from the embedding theorem
W 1

q (Ω) ↪→ Cα(Ω̄) for α := 1− 2
q . The constant C depends only on q and Ω. Above

we have studied the case when λ > 0. The case λ = 0 is trivial. �

Lemma 3. For any fixed ε > 0 there exists at least one solution {ω, h} of Problem
Pε, such that

ω ∈ C2+α,1+α/2(Ω× [0, T ]), h ∈ C2+α,α/2(Ω× [0, T ]) (2.11)

for some α ∈ (0, 1).

Proof. Now we construct a compact operator, which fulfills the Leray-Schauder
fixed point theorem. First we choose some function ω̃ ∈ C(Ω × [0, T ]), satisfying
(2.6). For any fixed λ ∈ [0, 1], the elliptic problem{

−Δh̃ = λ
(
ω̃ − h̃

)
, (x, t) ∈ ΩT ;

h̃ = λa(x, t), (x, t) ∈ ΓT

(2.12)

has a unique solution h̃ ∈ L∞(0, T ;C1+α(Ω)), satisfying (2.7) by (2.10). We
consider the linear parabolic problem⎧⎨⎩ ωt = ε� ω − λdiv (g) , (x, t) ∈ ΩT with g := ω̃ṽ, ṽ := −∇h̃;

ω = λb(x, t, ∂h̃
∂n ), (x, t) ∈ ΓT ; ω(x, 0) = λω0(x), x ∈ Ω.

(2.13)

According to (2.6), (2.7)
‖g‖L∞(ΩT )

� C (2.14)

and Theorem 10.1 of [18], the system (2.13) has a unique solution ω ∈ Cα,α/2(Ω×
[0, T ]) for some α ∈ (0, 1), such that
‖ω‖Cα,α/2(Ω×[0,T ]) � λ C(ε) (‖b‖C1,1(Ω×[0,T ]) + ‖ω0‖C1(Ω) + ‖g‖L∞(ΩT )

) (2.15)
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with the constant C(ε) being dependent on ε. Really the smoothness of solution
for (2.13) is defined only by the smoothness of the boundary and initial data.
Hence we have constructed the operator

ω := B [ω̃, λ] , (2.16)

having the fixed point ω := B [ω, λ] , which is a weak solution of Problem Pε,λ.
Let us note that the estimate (2.6) is valid for all solutions of Problem Pε,λ and
any λ ∈ [0, 1]. By (2.15) B is a compact continuous operator on the Banach
space C(Ω× [0, T ])× [0, 1] into C(Ω× [0, T ]). If λ = 0 the system (2.13) has only
the zero solution. Therefore B fulfills all conditions of the Leray-Schauder fixed
point theorem and Problem Pε,1 ≡ Pε is solvable in the Banach space C(Ω ×
[0, T ]).Moreover, taking into account (2.15) and applying classical results of [19] for
elliptic problem (2.3), we obtain that h ∈ C2+α,α/2(Ω× [0, T ]). As a consequence
of it and Theorem 12.1 of [18], we derive that ω ∈ C2+α,1+α/2(Ω× [0, T ]). �
Lemma 4. The solution {ω, h} of Problem Pε fulfills the estimates

√
ε||∇ω||L2(ΩT ) � C, (2.17)

||∂t (∇h) ||L2(ΩT ) � C (2.18)
with the constants C being independent of ε.

Proof. By extension results [21], there exists an extension ω̂ = ω̂(x, t) ∈ C∞ (ΩT )
of the boundary condition b(x, t, ∂h

∂n ) and the initial condition ω0(x) into the do-
main ΩT , such that{

ω̂
∣∣
t=0

= ω0 and ω̂ = b(x, t, ∂h
∂n (x, t)) for (x, t) ∈ ΓT ,

||ω̂||C2,1(Ω×[0,T ]) � C. (2.19)

The function z := ω − ω̂ satisfies the system{
∂tz + div(z v) = εΔz + F in ΩT ,

z
∣∣
ΓT

= 0 and z
∣∣
t=0

= 0,
(2.20)

where F := εΔω̂ − ∂tω̂ − div(ω̂v), such that

||F ||L∞(ΩT ) � C. (2.21)

Multiplying the equation of (2.20) by z and integrating over ΩT with the help of
(2.6), (2.7), we derive (2.17).

In view of (2.3) the function ht satisfies for t ∈ (0, T ) the elliptic problem{
−Δht + ht = div G on Ω,
ht

∣∣
Γ
= at,

with G := ε∇ω − vω, such that ||G||L2(ΩT ) � C. Then applying the classical
results of [19], we have

‖∂t (∇h)‖L2(Ω)
� C

(
‖G‖L2(Ω)

+ ‖at‖L2(Γ)

)
for t ∈ (0, T ),

which gives the estimate (2.18). �
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By virtue of (2.7) and (2.18), we have that

∇h ∈ � [Ω] := L2
(
0, T ;W 1

2 (Ω)
)
∩W 1

2

(
0, T ;L2(Ω)

)
,

such that
||∇h||	[Ω] � C.

Lemma 5. For the trace value of ∂h
∂n on Γ, we have that

∂h

∂n
∈ P [Γ] := L2

(
0, T ;W

1
2
2 (Γ)

)
∩W

1
2
2

(
0, T ;L2(Γ)

)
and

||∂h
∂n
||P[Γ]� C (2.22)

with the constant C being independent of ε.

Proof. Let us choose a neighborhood G of Γ and an orthogonal coordinate system
(y1, y2), such that G = {y = (y1, y2) : (y1, 0) ∈ Γ, y2 ∈ [0, η]} for some η > 0
and this new coordinate system coincides with the tangential-normal coordinate
system along Γ. The space � [G] can be rewritten as

� [G] =
{
φ(y2, t, y1) ∈ L2(0, η; L2(0, T ;W 1

2 (Γ))) ∩W 1
2 (0, T ;L2(Γ)) :

∂y2 φ ∈ L2
(
0, η;L2(0, T ;L2(Γ))

)}
.

By virtue Theorem 3.2 of [20], the mapping A : φ → φ|y2=0 is well-defined on
� [G] . Furthermore, the operator φ→ A(φ) from � [G] to[

L2
(
0, T ;W 1

2 (Γ)
)
∩W 1

2

(
0, T ;L2(Γ)

)
, L2

(
0, T ;L2(Γ)

)]
1
2

≡ P [Γ]

is continuous and surjective. Here [X,Y ]δ, δ ∈ [0, 1], are the intermediate spaces
of Banach spaces X and Y as defined in [20]. Therefore the value of ∂h

∂n |Γ belongs
to the space P [Γ] and satisfies the estimate (2.22). �

3. Limit transition on ε

In this section the parameter θ continues to be fixed and the limit on ε → 0 of
the solutions {ωε, hε} for Problem Pε will be considered. In view of the estimates
(2.6)–(2.7), (2.17)–(2.18) and (2.22), there exists a subsequence of {ωε, hε}, such
that

hε ⇀ h weakly− ∗ in L∞(0, T ; W 2
q (Ω)) for ∀q <∞,

ε∇ωε → 0 strongly in L2(ΩT ), (3.1)

ωε ⇀ ω weakly− ∗ in L∞(ΩT ),

vε → v strongly in L∞(0, T ;L2(Ω)),

and
∂hε

∂n
−→ ∂h

∂n
strongly in L2(ΓT ). (3.2)
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Obviously the triple {ω, h,v} satisfies the estimates (2.6)–(2.7) and the relations
(1.10)–(1.12).

Now we prove that the pair {ω,v} also satisfies (1.13). First we choose an
arbitrary test function 0 � ψ ∈ TF (v), related with the found v and introduce
the approximation of the unit function on Ω as

1σ(x) :=

⎧⎨⎩
0, if 0 � d(x) < σ,
d−σ

σ , if σ � d(x) < 2σ,
1, if x ∈ Ω and d(x) � 2σ.

(3.3)

Multiplying the equation of (2.2) by ησ := 1σ ψ and integrating it over the domain
ΩT , we obtain

0 =

{∫
ΩT

[ωε(ψt + (vε · ∇)ψ)]1σ − ε (∇ωε · ∇ησ) dxdt+
∫
Ω

ω0(x) ησ(x, 0) dx

}

+
1
σ

∫ T

0

∫
[σ<d<2σ]

ωε (vε · ∇)dψ dxdt = Kε,σ + Lε,σ.

Using (3.1), we have

lim
σ→0

[
lim
ε→0

Kε,σ
]
=

∫
ΩT

ω(ψt + (v · ∇)ψ)dxdt +
∫
Ω

ω0ψ(x, 0) dx.

To take the limit transition ε → 0 in the term Lε,σ we need an additional result.
We have

Lε,σ =
1
σ

∫ T

0

∫
[σ<d<2σ]

(vε · ∇)d zε ψ dxdt

+
1
σ

∫ T

0

∫
[σ<d<2σ]

(vε · ∇)d ω̂ε ψ dxdt = L
ε,σ
1 + Lε,σ

2 .

The functions ω̂ε are defined by (2.19). Multiplying equation (2.20) by signδ(zε) :=
zε

|zε|δ with |zε|δ :=
√
z2ε + δ2, we obtain

∂t( |zε|δ) + div(|zε|δ vε) =
[
εΔzε + Fε

]
signδ(z).

Hence multiplying this equality by an arbitrary test function 0 � ϕ ∈ TF (v),
integrating over ΩT and taking the limit on δ → 0, we derive the inequality

−
∫
ΩT

(vε · ∇ϕ) |zε| dxdt � C
∫
ΩT

(|Fε|ϕ+ |ϕt|+ ε|Δϕ|) dxdt. (3.4)

For ϕ := (1− 1σ)ψ with the above chosen ψ this inequality implies

lim
σ→0

[
lim
ε→0

1
σ

∫ T

0

∫
[σ<d<2σ]

(vε · ∇) d |zε| ψ dxdt
]
= 0, (3.5)

that is limσ→0

[
limε→0L

ε,σ
1

]
= 0.
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By (2.7) the set of functions (vε · ∇) d is uniformly continuous on Ω× [0, T ],
independently of ε and t ∈ [0, T ], such that (vε · ∇) d = −(vε · n) on ΓT and the
smooth functions ω̂ε are equal to b(·, ·, ∂hε

∂n ) on ΓT , hence from (3.2) we have

lim
σ→0

[
lim
ε→0

L ε,σ
2

]
= −

∫ T

0

∫
ΓT

(v · n) b
(
x, t,

∂h

∂n

)
ψ dxdt.

Therefore {ω,v} satisfies the equality (1.13).

4. Limit transition on θ → 0

In this section, we shall complete the proof of our main result through the passage
to the limit, when θ → 0 of the triple {ωθ, hθ,vθ} constructed in Section 3. First
in Subsection 4.1 we see the case when our data satisfy (1.9) with p =∞ and later
on in Subsection 4.2 we investigate the case p ∈ (3,∞).

4.1. The case p =∞. The limit transition on θ → 0
Let us consider that f , b, a, ω0 satisfy (1.9) with p =∞. Hence the approximated
data fθ, bθ, aθ, ω0θ fulfill the conditions (2.1) for s = ∞, i.e., the pair {ωθ, hθ},
constructed in Section 3, satisfies the estimates (2.6)–(2.7) with the constantsm,C
being independent of θ. The function ∂thθ satisfies the elliptic problem for a.e.
t ∈ (0, T ),

−� ∂thθ + ∂thθ = divGθ on Ω,

∂thθ

∣∣
Γ
= ∂taθ

with Gθ := −vθωθ, such that ||Gθ||L∞(0,T ;Lq(Ω)) � C and C is independent of θ.
Therefore applying the classical results of [19] we have

‖∂t (∇hθ)‖Lq(Ω)
� C

(
‖Gθ‖Lq(Ω)

+ ‖∂taθ‖Lq(Γ)

)
for a.e. t ∈ (0, T ) and ∀q <∞, which implies

‖∂t(∇hθ)‖L∞(0,T ;Lq(Ω)) � C (4.1)

with C = C(q), independent of θ. As a consequence of this estimate (4.1) and
(2.6)–(2.7), there exists a subsequence of {ωθ, hθ,vθ}, such that

hθ ⇀ h weakly− ∗ in L∞(0, T ;W 2
q (Ω)),

ωθ ⇀ ω weakly− ∗ in L∞(ΩT ), (4.2)

vθ → v strongly in L∞(0, T ;Lq(Ω))

for ∀q <∞. Using the same argument of Lemma 5, we have also

(vθ · n) ≡
∂hθ

∂n
→ (v · n) ≡ ∂h

∂n
strongly in L2(ΓT ).

Obviously the found triple {ω, h,v} fulfills the relations (1.10)–(1.12).
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Let us show that {ω,v} satisfies (1.13) too. To do it we have to prove {ω,v}
satisfies the equality (1.13) for any test function ψ ∈ TF (v), related with this
found v. Let us fix a small number δ > 0 and introduce a subset of TF (v) as

TF (v, δ) := {ϕ ∈ C1,1(Ω× [0, T ]) : ϕ(·, T ) = 0 on Ω

and ϕ(x, t) = 0 on ΓT (v, δ)},

where
ΓT (v, δ) := {(x, t) ∈ ΓT : (v · n)(x, t) � −δ}.

In view of (2.7), (4.1) and the embedding theorem W 1
q (ΩT ) ↪→ Cα,α(Ω × [0, T ])

with α := 1− 3
q for any q > 3, there exists 0 < θ0 = θ0(δ), such that ∀θ : 0 < θ < θ0,

and we have

TF

(
vθ,
δ

2

)
⊃ TF (v, δ). (4.3)

Let us choose an arbitrary ψ ∈ TF (v, δ). By (4.3) the pair {ωθ,vθ} fulfills (1.13)
with the selected ψ for any θ < θ0. Therefore with the help of (4.2), taking the
limit transition on θ → 0 in (1.13) written for {ωθ,vθ} and this chosen ψ, we
derive that the pair {ω,v} fulfills (1.13) for ∀ ψ ∈ TF (v, δ). Since any function
ψ ∈ TF (v) can be approximated by a sequence ψδ ∈ TF (v, δ), such that

||ψδ−ψ||C1,1(Ω×[0,T ]) → 0, when δ → 0,

we deduce that the pair {ω,v} fulfills (1.13) for any ψ ∈ TF (v) too. This concludes
the proof that {ω, h} is the solution of our problem (1.5)–(1.8) in the case p =∞.

4.2. The case p ∈ (3,∞). Estimates independent of θ
and the limit transition on θ → 0

In this subsection we study the case p ∈ (3,∞). Hence the data f , b, a, ω0 satisfy
(1.9) with p ∈ (3,∞) and the approximated data fθ, bθ, aθ, ω0θ fulfill the con-
ditions (2.1) for s := p, i.e. the pair {ωθ, hθ}, constructed in Section 3, satisfies
the estimates (2.6)–(2.7) with the constants m,C being dependent on θ. By the
last reason we will derive estimates in Lp-spaces which are independent of the
parameter θ. First we prove the following lemma.

Lemma 6. For any fixed θ > 0 the vorticity ωθ has traces on ΓT (vθ) and for t = 0,
which are equal to bθ(x, t, ∂hθ

∂n ) and ωθ
0 , respectively, in the following sense:

1
σ

∫ t

0

∫
[σ<d<2σ]

(vθ · ∇) d |ωθ|p ψ dxdτ −→
σ→0

∫ t

0

∫
Γ

(vθ · n)
∣∣∣∣bθ (

x, t,
∂hθ

∂n

)∣∣∣∣p ψ dxdτ,
(4.4)

1
σ

∫ σ

0

∫
Ω

|ωθ|p ψ dxdτ −→
σ→0

∫
Ω

|ωθ
0 |p ψ dx (4.5)

for any test function 0 � ψ ∈ TF (vθ), t ∈ [0, T ] and p ∈ (3,∞).
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Proof. By the extension results [21], there exists an extension ω̂ = ω̂(x, t) ∈
C∞ (ΩT ) of the boundary condition bθ(x, t, ∂hθ

∂n ) and the initial condition ωθ
0(x)

into the domain ΩT , such that{
ω̂
∣∣
t=0

= ωθ
0 and ω̂ = bθ(x, t, ∂hθ

∂n (x, t)) for (x, t) ∈ ΓT ,

||ω̂||C1,1(Ω×[0,T ]) � C = C(θ).

We see that z := ωθ − ω̂ satisfies the equality∫
ΩT

z (ϕt + vθ · ∇ϕ) dxdt =
∫
ΩT

Fθ ϕdxdt,

for ∀ϕ ∈ TF (vθ) and F := ∂tω̂θ + div( ω̂θvθ) ∈ L∞(0, T ;Lp(Ω)). Applying the
methods of [14] on transport equations, we deduce that the function z satisfies the
equality∫
ΩT

|z|p (ϕt+vθ·∇ϕ) dxdt =
∫
ΩT

(
pFθ |z|p−1 sign(z) + (p− 1)|z|p div(vθ)

)
ϕdxdt.

Now, considering the suitable test function ϕ = (1−1σ(x))ψ(x, t) with 1σ defined
by (3.3) and ψ ∈ TF (vθ), we deduce that

lim
σ→0

1
σ

[∫ T

0

∫
[σ<d<2σ]

(vθ · ∇) d |z|p ψ dxdτ
]
= 0,

which implies the assertion (4.4). Analogously if we choose the test function ϕ =
(1− 1σ(t))ψ(x, t), with 1σ(t) defined by

1σ(t) :=

⎧⎨⎩
0, if −∞ < t < σ,
t−σ
σ , if σ � t < 2σ,
1, if 2σ � t < +∞,

we obtain
1
σ

∫ σ

0

∫
Ω

|z|p ψ dxdτ −→
σ→0

0,

which implies (4.5). �

As a consequence of the previous lemma we can establish a Gronwall type
inequality for ωθ.

Lemma 7. For any fixed θ > 0 and all t ∈ [0, T ], we have∫
Ω

|ωθ(x, t)|p dx+ (p− 1)
∫ t

0

∫
Ω

[ωθ − hθ] |ωθ|p dxdτ

�
∫
Ω

|ωθ
0 |p dx+

∫ t

0

∫
Γ(vθ)

|(vθ · n)|
∣∣∣∣bθ (

x, t,
∂hθ

∂n

)∣∣∣∣p dxdτ. (4.6)

Here Γ(vθ) is the part of Γ where (vθ · n) < 0.
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Proof. Using again the methods of [14], we can verify that the function ωθ satisfies
the equality∫

ΩT

|ωθ|p (ϕt + vθ · ∇ϕ) dxdt = (p− 1)
∫
ΩT

|ωθ|p div(vθ)ϕ dxdt,

for any function ϕ ∈ C1,1(ΩT ) with compact support in ΩT .
The inequality (4.6) follows if we consider the appropriate test function

ϕ(x, τ) = (1δ(τ) − 1δ(τ + δ − t))1σ(x) and pass to the limit when δ → 0 and
σ → 0 according to Lemma 6. �

Now we show the following result.

Lemma 8. The triple {ωθ, hθ,vθ} satisfies the estimates

||ωθ||L∞(0,T ;Lp(Ω)) � C, (4.7)

‖hθ‖L∞(0,T ;W 2
p (Ω))

� C, (4.8)

||∂t (∇hθ) ||L∞(0,T ;Lp(Ω)) � C. (4.9)

Here and below constants C do not depend on θ.

Proof. Let h be the solution of the elliptic problem{
−� hθ + hθ = ωθ on Ω,

hθ

∣∣
Γ
= 0

(4.10)

for a.e. t ∈ (0, T ). Multiplying the equation of (4.10) by h
p
and integrating over

Ω, we obtain
||hθ||Lp+1(Ω) � ||ωθ||Lp+1(Ω),

which with the help of (1.9), (2.1) and (4.6) implies (4.7). The estimates (4.8)
follow the classical results for elliptic equations (see the book [19])

||hθ||W 2
p (Ω)

� C(||ωθ||Lp(Ω) + ‖aθ‖W 2
p (Γ)

)

for any given p ∈ (2,∞), applied to the problem (2.3) with a given ω. The estimate
(4.9) is a direct consequence of (4.1). �

From (1.9), (2.1), (4.7)–(4.9) and Corollary 9 of [22], we conclude that there
exists a subsequence of {ωθ, hθ,vθ}, such that

hθ ⇀ h weakly− ∗ in L∞(0, T ; W 2
p (Ω)),

ωθ ⇀ ω weakly− ∗ in L∞(0, T ;Lp(Ω)),

vθ ⇀ v strongly in L∞(0, T ;W 1
p (Ω)).

Using the same argument of Lemma 5, we derive

(vθ · n) ≡
∂hθ

∂n
→ (v · n) ≡ ∂h

∂n
strongly in L2(ΓT ).

Obviously the limit triple {ω, h, v} fulfills the relations (1.10)–(1.12). By the same
method as in subsection 4.1, we show that {ω,v} satisfies (1.13) too.
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Augmented Lagrangian Method and
Compressible Visco-plastic Flows:
Applications to Shallow Dense Avalanches

D. Bresch, E.D. Fernández-Nieto, I.R. Ionescu and P. Vigneaux

Dedicated to the memory of Professor Alexandre V. Kazhikov

Abstract. In this paper we propose a well-balanced finite volume/augmented
Lagrangian method for compressible visco-plastic models focusing on a com-
pressible Bingham type system with applications to dense avalanches. For the
sake of completeness we also present a method showing that such a system
may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid,
namely for incompressible Bingham type fluid with free surface. When the
fluid is relatively shallow and spreads slowly, lubrication-style asymptotic ap-
proximations can be used to build reduced models for the spreading dynamics,
see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)] . When the mo-
tion is a little bit quicker, shallow water theory for non-Newtonian flows may
be applied, for instance assuming a Navier type boundary condition at the
bottom. We start from the variational inequality for an incompressible Bing-
ham fluid and derive a shallow water type system. In the case where Bingham
number and viscosity are set to zero we obtain the classical Shallow Water or
Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame,
DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in
space model: We study associated static solutions with sufficient conditions
that relate the slope of the bottom with the Bingham number and domain
dimensions. We also propose a well-balanced finite volume/augmented La-
grangian method. It combines well-balanced finite volume schemes for spatial
discretization with the augmented Lagrangian method to treat the associated
optimization problem. Finally, we present various numerical tests.

Mathematics Subject Classification (2000). 35Q30.

Keywords. Compressible flows, shallow-water systems, Bingham flows, ava-
lanches, mixed finite volume/augmented Lagrangian, well-balanced scheme,
visco-plastic flows.
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1. Introduction

Avalanches are natural phenomena that occur in mountainous regions such as the
Alps in France. During these last few years, we have joined with others in real
efforts devoted to the physical understanding of avalanche formation and motion
in complex topography, see [2], [40]. This paper is an attempt to derive a com-
pressible visco-plastic system from depth-averaged processes for dense avalanches
and to provide an accurate numerical scheme for such a model. Our results consist
of two parts: A generalization to compressible flows of the Augmented Lagrangian
method for incompressible Bingham visco-plastic flow initiated by R. Glowinski,
see [22]; A simple method to derive a shallow-water type model for an incompress-
ible Bingham flow with free surface. Note that our numerical scheme may be used
in other applications such as numerical modeling of projectile penetration into
compressible rigid visco-plastic media, see for instance models in [15].

Note that it is very difficult to postulate a constitutive relation for the stress
tensor in terms of a deformation measure that correctly describes avalanche be-
haviour, see for instance [1]. This explains, for instance, why instead of prescribing
a detailed constitutive relation, a Coulomb dry friction law for the basal friction
and a Mohr-Coulomb yield criterion for the interior behavior have been used by
several authors, see [40]. The information obtained in this way is sufficient to de-
rive, more easily, dynamic equations that describe the spatio-temporal evolution
of the height and the depth-averaged horizontal velocity component of a moving
avalanche pile. In our paper, we propose to consider a shallow flow of a rigid vis-
coplastic incompressible fluid, namely a Bingham fluid. More general constitutive
relations may be studied such as those included in [15]. Note also that depending
on the basal boundary condition (slip boundary condition or non-slip boundary
condition), various shallow-water type equations may be obtained, see for instance
[28] and [10] for models coming from incompressible Navier-Stokes equations and
[26] for models coming from Bingham type equations with Dirichlet boundary con-
dition at the bottom. Here, we consider boundary conditions in the spirit of [28]
namely Navier boundary conditions at the bottom. This is dedicated to quicker
flows replacing Dirichlet boundary conditions by a wall law boundary condition
taking into account the boundary layer. Assuming a Navier boundary condition,
we start with the variational inequality for incompressible Bingham fluid and prove
that a shallow-water type system may be obtained using adequate test functions.
Several numerical simulations of avalanching flows in simple configuration are then
proposed to compare our proposed scheme to previous ones. More precisely in our
study, we propose a well-balanced finite volume/augmented Lagrangian method.
It combines well-balanced finite volume schemes for spatial discretization with the
augmented Lagrangian method to treat the optimization problem. The key point
in our result is that there exists a real interaction between the finite volume scheme
and the augmented Lagrangian procedure. This gives a real well-balanced scheme
that allows us to simulate initiation and run-out problems capturing interesting
stationary solutions. Let us say that our numerical scheme will be soon tested in a
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two-dimensional space interacting with C. Ancey’s group for experimental data.
Readers interested by a theoretical studies linked to compressible Bingham type
models are referred to [7], [6], [5], [43] and more recently [36].

This paper is organized as follows: in Section 2 we present the equations that
define the 3D free-surface problem. In Section 3 we deduce the depth-averaged
model from the variational inequality for incompressible Bingham fluid. In Section
4 we present the associated 1D system and sufficient conditions to identify sta-
tionary solutions of the model. The numerical scheme based on the combination
of finite volumes methods and the use of the augmented Lagrangian is shown in
Section 5. Finally, in Section 6 we present three numerical tests. In the first one we
study the convergence to a stationary solution when the initial profile of the free
surface is a rectangular pulse. In this test we compare the results that we obtain
with the proposed numerical scheme with non-well-balanced numerical schemes. In
the second numerical test we study the transition between two different stationary
solutions corresponding to two different Bingham numbers. And in the third test
we present the case of an avalanche over all the domain.

Let us finish the introduction by mentioning that this paper is dedicated
to the Memory of Professor Alexandre V. Kazhikov, one of the most inventive
applied mathematicians in compressible fluid mechanics.

2. Statement of the 3D-problem

We consider here the evolution equations in the time interval (0, T ), T > 0 de-
scribing the flow of an inhomogeneous Bingham fluid in a domain D(t) ⊂ R3 with
a smooth boundary ∂D(t). In the following, the space and time coordinates as
well as all mechanical fields are non-dimensional. The notation u stands for the
velocity field, σ denotes the Cauchy stress tensor field, p = − trace(σ)/3 repre-
sents the pressure and σ′ = σ+ pI is the deviatoric part of the stress tensor. The
momentum balance law in Eulerian coordinates reads

ρ
(
St
∂u

∂t
+ (u · ∇)u

)
− divσ′ +B∇p = 1

Fr2
ρf in D(t), (1)

where ρ = ρ(t, x) ≥ ρ > 0 is the mass density distribution and f denotes the
body forces. We have denoted by St = L/(VcTc),Fr2 = V 2/(Lfc) the Strouhal and
Froude numbers and we introduce B = κc/(ρcV

2
c ), where ρc, Vc, L, κc, Tc are the

characteristic density, velocity, length, stress and time respectively. Since we deal
with an incompressible fluid, we get

div u = 0 in D(t). (2)

The conservation of mass becomes

St
∂ρ

∂t
+ u · ∇ρ = 0 in D(t). (3)

We notice from the above equation that, excepting some special cases, the flow of
an incompressible fluid with inhomogeneous mass density is not stationary.
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If we denote by D(u) = (∇u+∇T u)/2 the rate of deformation tensor, the
constitutive equation of the Bingham fluid can be written as follows:

σ′ =
2
Re
η1D(u) + η2B

D(u)
|D(u)| if |D(u)| �= 0, (4)

|σ′| ≤ η2B if |D(u)| = 0, (5)

where η1 ≥ η0 > 0 is the non-dimensional viscosity distribution depending on
ρ and η2 ≥ 0 is a non-negative continuous function which stands for the non-
dimensional yield limit distribution in D(t). Here Re = ρcVcL/ηc is the Reynolds
number and ηc is a characteristic viscosity. Note that if κc is the characteristic
yield stress, then B = Bi/Re, where Bi = κcL/(ηcVc) is the Bingham number.
The type of behavior described by equations (4–5) can be observed in the case of
some oils or sediments used in the process of oil drilling. The Bingham model, also
denominated “Bingham solid” (see for instance [38]) was considered in order to
describe the deformation of many solid bodies. Recently, the inhomogeneous (or
density-dependent) Bingham fluid was chosen in landslides modeling [20, 14].

When considering a density-dependent model, the viscosity coefficient η1 and
the yield limit η2 depend on the density ρ through two constitutive functions, i.e.,

η1 = η1(ρ), η2 = η2(ρ). (6)

In order to complete equations (1–6) with the boundary conditions we assume
that ∂D(t) is divided into two disjoint parts so that ∂D(t) = Γb(t)∪Γs(t). On the
boundary Γb(t), which corresponds to the bottom part of the fluid, we consider a
Navier condition with a friction coefficient α and a no-penetration condition

σt = −αut, u · n = 0 on Γb. (7)

Here n stands for the outward unit normal on ∂D(t) and we have adopted the
following notation for the tangential and normal decomposition of any velocity
field u and any density of surface forces σn:

u = unn+ ut, with un = u · n, σn = σnn+ σt with σn = σn · n.
The (unknown) boundary Γs(t) is a free surface, i.e., we assume a no-stress con-
dition

σn = 0 on Γs(t), (8)
and the fact that the fluid region is advected by the flow, which can be expressed
by

St
∂1D(t)
∂t

+ u · ∇1D(t) = 0, (9)

where 1D(t) is the characteristic function of the domain D(t).
Finally the initial conditions are given by

u|t=0 = u0, ρ|t=0 = ρ0. (10)

Setting

V(t) =
{
Φ ∈ H1(D(t))3, div Φ = 0 in D(t), Φ · n = 0 on Γb(t)

}
,
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we give the variational formulation of (1), (2), (4), (5) and (7–8) for the velocity
field (see [24]), namely

∀t ∈ (0, T ), u(t, ·) ∈ V(t), ∀Φ ∈ V(t),∫
D(t)

ρ
(
St
∂u

∂t
+ (u · ∇)u

)
· (Φ− u)

+
1
Re

∫
D(t)

2η1(ρ)D(u) : (D(Φ)−D(u))

+B
∫
D(t)

η2(ρ) (|D(Φ)| − |D(u)|)

+
∫
Γb

αut · (Φt − ut) ≥
1
Fr2

∫
D(t)

ρf · (Φ− u).

(11)

We can formulate the same problem in terms of velocity and pressure by
using the space

W(t) =
{
Φ ∈ H1(D(t))3, Φ = 0, Φ · n = 0 on Γb(t)

}
,

to deduce⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀t ∈ (0, T ), u(t, ·) ∈ W(t), p(t, ·) ∈ L2(D(t)), ∀Φ ∈ W(t), ∀q ∈ L2(D(t)),∫
D(t)

ρ
(
St
∂u

∂t
+ (u · ∇)u

)
· (Φ− u)−

∫
D(t)

p(divΦ− divu)

+
1
Re

∫
D(t)

2η1(ρ)D(u) : (D(Φ)−D(u)) +B
∫
D(t)

η2(ρ) (|D(Φ)| − |D(u)|)

+
∫
Γb(t)

αut · (Φt − ut) ≥
1
Fr2

∫
D(t)

ρf · (Φ− u),∫
D(t)

q divu = 0.

(12)

Finally the problem of the flow of an inhomogeneous Bingham fluid becomes:

Find the velocity field u and the mass density field ρ such that conditions (3), (6),
(10) and (11) hold.

or in an equivalent form

Find the velocity field u, the pressure p and the mass density field ρ such that
conditions (3), (6), (10) and (12) hold.

As far as we know there does not exist any uniqueness result for this prob-
lem. Note recent mathematical studies in [7], [6], [5] and [43] dedicated to non-
homogeneous incompressible Bingham flows and compressible Bingham flows in
1-D space.
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3. The plane slope case

We consider here the case of a plane slope. For this let Ω ⊂ R2 be a fixed bounded
domain and

D(t) = {(x, z) ; x ∈ Ω, 0 < z < h(t, x)},
where h(t, x) is the thickness of the fluid and x = (x1, x2). We define by

Γs(t) = {(x, z) ; x ∈ Ω, z = h(t, x)}, Γb(t) = ∂D(t) \ Γs(t)

the free and bottom surfaces. We denote by v = (v1, v2) the horizontal components
of the velocity field and by w the vertical one, i.e., u = (v, w).

Penalization condition averaging. Let us remark that equation (9), for this choice
of the flow geometry, reads

St
∂h

∂t
+ v · ∇h− w = 0, for z = h(t, x). (13)

If we choose q = q(x) dependent only on x in (12) we get

0 =
∫
D(t)

q divu =
∫
Ω

q(x)

(∫ h(t,x)

0

divv(t, x, z) dz + w(t, x, h(t, x))

)
dx

=
∫
Ω

q(x)

(
div

(∫ h(t,x)

0

v(t,x,z)dz

)
−v(t,x,h(t,x)) ·∇h(t,x)+w(t,x,h(t,x))

)
dx,

and using the kinematic conditions (13) we get∫
Ω

q

(
St
∂h

∂t
+ div(hv)

)
dx = 0, for all q ∈ L2(Ω), (14)

where v(t, x) :=
1

h(t, x)

∫ h(t,x)

0

v(t, x, z) dz is the vertical mean value of the hori-

zontal velocity.

Mass equation averaging. Using the same technique as before one can deduce from
the mass equation (3) that∫

Ω

q

(
St
∂ρh

∂t
+ div(hρv)

)
dx = 0, for all q ∈ L2(Ω), (15)

where ρ(t, x) :=
1

h(t, x)

∫ h(t,x)

0

ρ(t, x, z) dz is the vertical mean value of the mass

density and ρv(t, x) :=
1

h(t, x)

∫ h(t,x)

0

ρ(t, x, z)v(t, x, z) dz is the vertical mean

value of the mass flux.
On the other hand the divergence free condition (2) reads

w(t, x, z) = −
∫ z

0

divv(t, x, s) ds, for all (x, z) ∈ D(t). (16)
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Momentum equation rescaling. In order to deduce an asymptotic model in the
shallow flow approximation, we consider ε� 1 a small parameter representing the
aspect ratio of the thickness. Following a standard scaling technique, we write

X := x, Z :=
z

H(t, x)ε
,

H :=
h

ε
, P = Fr2p, β(t, x, Z) :=

α(t, x, z)
ε

,

V (t,X, Z) := v(t, x, z), W (t,X, Z) :=
w(t, x, z)

ε
.

(17)

We denote by Ω0 the domain defined by Df × (0, 1). In these new variables the
equations (14-15) read

St
∂H

∂t
+ div(HV ) = 0, (18)

St
∂(ρH)
∂t

+ div(HρV ) = 0, (19)

where

V (t, x) :=
1

H(t, x)

∫ H(t,x)

0

V (t, x, z) dz

and

ρV (t, x) :=
1

H(t, x)

∫ H(t,x)

0

ρ(t, x, z)V (t, x, z) dz

are mean values on the thickness.

We write now each term of the variational inequality (12) in the scaled vari-
ables. For this we choose the same scaling for the test functions Φ = (Ψ, εθ). We
decompose the left-hand side of (12) in five terms Ii for i = 1, . . . , 5. They read

I1 = ε
∫
Ω0
Hρ

(
St
∂V

∂t
· (Ψ− V ) + ε2St

∂W

∂t
(W − θ)

)
dXdZ

+ ε
∫
Ω0
Hρ(V · ∇xV +

1
H
W∂ZV ) · (Ψ− V )dXdZ

+ ε3
∫
Ω0
Hρ(V · ∇xW +

1
H
W∂ZW )(W − θ)dXdZ,

(20)

I2 =
ε

Fr2

∫
Ω0
HP

(
divxΨ+

1
H
∂Zθ − divV − 1

H
∂ZW

)
dXdZ, (21)

I3 =
ε

Re

∫
Ω0
2η1(ρ)

(
HD(V ) : (D(Ψ)−D(V )) +

1
H
∂ZW (∂Zθ − ∂ZW )

)
dXdZ

+
ε

Re

∫
Ω0

(
2∑

i=1

η1(ρ)
(
ε∂xiW +

1
εH
∂ZVi

)
×

(
1
ε
∂Z(Ψi − Vi) + εH∂xi(θ −Wi)

))
dXdZ, (22)
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I4 = −εB
∫
Ω0
Hη2(ρ)

(√√√√|D(V )|2 + (
1
H
∂ZW )2 +

1
2

2∑
i=1

(ε∂xiW +
1
εH
∂ZVi)2

−

√√√√|D(Ψ)|2 + (
1
H
∂Zθ)2 +

1
2

2∑
i=1

(ε∂xiθ +
1
εH
∂ZΨi)2

)
dXdZ, (23)

I5 =
∫
Df

εβV · (Ψ− V )dX.

Concerning the right-hand side named I6, we get

I6 = ε
∫
Ω0

(
ρHfH · (V −Ψ) + εHρfv(W − θ)

)
dXdZ.

3.1. Momentum equation asymptotic

Let us assume that

St = Re = B = Fr = 0(1), ε� 1.

We also assume that the external forces fH and fv verifies

fH = O(ε) and fv = O(1).

Dividing the variational equation by ε, let us search for solutions, in the
rescaled formulation, under the form

V = V 0 + ε2V 1 + · · · , W =W0 + ε2W1 + · · · ,
P = P0 + ε2P1 + · · · , ρ = ρ0 + ε2ρ1 + · · · .

(24)

We write V 0 = (V 0,1,V 0,2). In what follows we first focus on the terms of order
1/ε2, after we write the terms of order 1 plus the terms of order ε.
� Terms of order 1/ε2.

We get ∫
Ω0

η1(ρ0)
H

∂ZV 0 · ∂Z(Ψ− V 0) = 0.

Assuming η1 > c > 0 in Ω0, this gives, using the boundary conditions,

∂ZV0,1 = ∂ZV0,2 = 0. (25)

� Terms of order 1 plus terms of order ε.

Coming from (18)–(19), we get

St
∂H

∂t
+ div(HV 0) = 0, (26)

St
∂(ρ0H)
∂t

+ div(Hρ0V 0) = 0. (27)
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Moreover we get∫
Ω0
Hρ0

(
St∂tV 0 ·(Ψ−V 0)+V 0 ·∇xV 0(Ψ−V 0)

)
dXdZ

+
∫
Df

βV 0 ·(Ψ−V 0)dX

+
∫
Ω0

(
2
Re
Hη1(ρ0)D(V 0) :D(Ψ−V 0)+

2
Re

1
H
η1(ρ0)∂ZW0(∂Zθ−∂ZW0)

)
dXdZ

+
∫
Ω0
HBη2(ρ0)

(√
|D(Ψ)|2+( 1

H
∂Zθ)2−

√
|D(V 0)|2+(

1
H
∂ZW0)2

)
dXdZ

+
1
Fr2

∫
Ω0
HP0(divΨ+

1
H
∂Zθ)dXdZ−

1
Fr2

∫
Ω0
HP0(divV0+

1
H
∂ZW0)dXdZ

+
∫
Ω0

2∑
i=1

(
η1(ρ0)∂XiW∂Z(Ψi−V0,i)+∂ZV0,i∂Xi(θ−W )

)
dXdZ

≥ 1
Fr2

∫
Ω0
Hρ0fH(Ψ−V 0)dXdZ+

1
Fr2

∫
Ω0
εHρ0fv(θ−W0)dXdZ. (28)

Using (25), div(V 0,W0) = 0 and the boundary conditions, we have

W0 = −ZHdivxV0.

Moreover, in what follows we choose Ψ independent of Z. Finally, we choose the
same relation for the test functions, that is θ = −ZHdivΨ. As Ω0 = Df × (0, 1)
we can also integrate in Z ∈ (0, 1). We write

ηi(ρ0) =
∫ 1

0

ηi(ρ0(Z))dZ, i = 1, 2,

ρ0fH =
∫ 1

0

ρ0(Z)fH(Z)dZ, Zρ0fv =
∫ 1

0

Zρ0(Z)fv(Z)dZ.

And we obtain∫
Df

Hρ0

(
St∂tV 0 · (Ψ− V 0) + V 0 · ∇xV 0(Ψ− V 0)

)
dX

+
∫
Df

βV 0 · (Ψ− V 0)dX

+
∫
Df

2
Re
Hη1(ρ0)D(V 0) : D(Ψ− V 0)dX

+
∫
Df

2
Re
Hη1(ρ0)divxV 0(divxΨ− divxV 0)dX

+
∫
Df

BHη2(ρ0)
(√

|D(Ψ)|2 + (divΨ)2 −
√
|D(V 0)|2 + (divxV 0)2

)
dX

≥ 1
Fr2

∫
Df

Hρ0fH · (Ψ− V 0)−
ε

Fr2

∫
Df

(H)2Zρ0fv(divΨ− divV 0)dX.

(29)
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Equation (29) with (26) and (27) gives a viscous shallow water formulation of
Bingham type.

Remark 1. From (29), when η2 = 0 we obtain an equality. In this case we obtain
the 2D viscous Shallow Water equations.

4. One-dimensional system and stationary solutions

In this section we present the one-dimensional in space system and its stationary
solutions. In the next section, we present a numerical scheme to discretize this
system and we study its well-balanced properties, i.e., conditions allowing us to
preserve the stationary solution of the associated system.

From (26), (27) and (29) we obtain the one-dimensional in space model, if
H = H(x, t), ρ0 = ρ0(x, t) and V 0 = V 0(x, t), with (x, t) ∈ [0, L]× [0, T ].

We consider the external forces

fH = − sin θ, fv = − cos θ.
Then the one-dimensional in space model is defined by:

St
∂H

∂t
+
∂(HV 0)
∂x

= 0, (30)

St
∂(ρ0H)
∂t

+
∂(Hρ0V 0)

∂x
= 0, (31)∫ L

0

Hρ0

(
St∂tV 0(Ψ− V 0) +

1
2
∂x(V 2

0)(Ψ− V 0)
)
dx

+
∫ L

0

βV 0(Ψ− V 0)dx+
∫ L

0

4
Re
Hη1(ρ0)∂x(V 0)∂x(Ψ− V 0)dx

+
∫ L

0

BHη2(ρ0)
√
2
(
|∂x(Ψ)| − |∂x(V 0)|

)
dx

≥ −1
Fr2

∫ L

0

Hρ0 sin θ(Ψ − V 0) +
ε

Fr2

∫ L

0

cos θ
2

(H)2ρ0(∂xΨ− ∂xV 0)dx.

(32)

In what follows we study sufficient conditions to ensure that a solution over
an inclined slope is a stationary solution, with velocity being equal to zero.

By (32) we obtain that such a stationary solution must verify∫ L

0

BHη2(ρ0)
√
2|∂x(Ψ)| ≥ −1

Fr2

∫ L

0

Hρ0 sin θΨ+
ε

Fr2

∫ L

0

cos θ
2

(H)2ρ0∂xΨ. (33)

Furthermore, we will focus on two types of solutions. The first one corresponds
to material at rest, i.e. a stationary solution with velocity being equal zero and
a horizontal free surface (See Figure 1). Let us recall that we did the change of
variable x = εx̃. Consequently, the property of horizontal free surface is defined by

sin θ x+ εH cos θ = cst,
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θ

H

Figure 1. Stationary solution with horizontal free surface

θ

L

H

Figure 2. Stationary solution with constant height

where cst is the height of the free surface. Then, for this stationary solution we
obtain that the right-hand side of (33) is equal to zero for all Ψ.

By the way, we deduce that the stationary solution corresponding to material
at rest is a stationary solution of the model for all values of η2 and θ.

Secondly, we want to study sufficient conditions which ensure that a solution
with a constant height over an inclined slope is stationary (See Figure 2).

We define

F(x) = 1
Fr2

∫ L

0

Hρ0 sin θdx+
ε

Fr2
ρ0
2
H2 cos θ.

Then (33) can be rewritten as∫ L

0

Hη2(ρ0)|∂xΨ|dx ≥
∫ L

0

F(x)∂xΨdx.

And this inequality is satisfied if

|F(x)| ≤ Hη2(ρ0)
√
2. (34)

If H is constant, then

F(x) = 1
Fr2
Hρ0 sin θ x+

ε

Fr2
ρ0
2
H2 cos θ + cst,
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where cst is a constant. Since we assume H to be constant, we can then set

cst = − 1
Fr2
Hρ0 sin θ

L

2
− ε

Fr2
ρ0
2
H2 cos θ.

Finally, we deduce that (34) and then (33) hold if

1
Fr2
ρ0 sin θ

L

2
≤ η2(ρ0)

√
2. (35)

Observe that if ε = H/L, the previous condition can then be written as

ρ0

Fr2
H sin θ ≤ 2

√
2 ε η2(ρ0).

5. A well-balanced finite volume/augmented Lagrangian algorithm

In this section we propose a numerical scheme to discretize the 1D model presented
in the previous section. We consider the case with constant density, in such a way
that the model reduces to the equations (30) and (32) which contain the main
difficulties.

First, we write the semi-discretization in time. Then, following [27], we ob-
serve that the problem (32) can be seen as an optimization problem and we use
an augmented Lagrangian formulation to rewrite (32). This classically leads to the
resolution of a saddle-point problem which involves an iterative method where are
successively solved:

• a linear system associated to a problem on the speed (let us denote it as SU),
• and a minimization problem associated to the Lagrange multiplier (the solu-
tion of this problem is known explicitly).

The key-point of the present paper consists in realizing that the global problem,
which couples “indirectly” (30) and SU, implies that the numerical algorithms
solving these two problems must also be coupled. Namely, their spatial discretiza-
tions have terms in common. This is not obvious a priori, but if we look at the
global problem, (30) and SU lead to an underlying Shallow-Water system with
source terms (linked to topography and Lagrangian terms). Consequently, if one
wants the global scheme to preserve stationary solutions, philosophy inspired by
so-called “well-balanced” methods for Shallow-Water system with source terms,
must be used. Adopting these methods, SU is complemented with terms linked
to the augmented Lagrangian, inducing a coupling which is – to our knowledge
– not mentioned in previous works. In the following, we show that this method
allows us to perform simulations which preserve various stationary solutions (con-
trary to previous approaches for which we show that they are not well-balanced).
Let us note that, actually, this method can be seen as a generalization to com-
pressible flows of the augmented Lagrangian method for incompressible Bingham
visco-plastic flow (applied, in the present paper, to Shallow-Water type equations).
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Let us now make more precise the underlying Shallow-Water ideas which
inspired our approach.

The accurate solution of hyperbolic systems with source terms requires nu-
merical solvers with specific properties. Indeed, an upwind discretization of the
source term, compatible with the one of the flow term, must be performed. Oth-
erwise, a first-order error in space, stemming from the numerical diffusion terms,
takes place. This error, after time iteration, may yield large errors in wave ampli-
tude and speed. Roe in [41] studies the relation between the choice of quadrature
formulae to approximate the average of the source term and the property of pre-
serving the stationary solutions.

Bermúdez and Vázquez-Céndón introduce in [8] some numerical solvers –
with an upwind treatment of the source term for 1D Shallow-Water equations
(1D SWE) – which preserve water at rest. This work originated the so-called
“well-balanced” solvers, in the sense that the discrete source terms balance the
discrete flux terms when computed on some (or all) of the steady solutions of the
continuous systems. Several sequels of this work for 1D SWE followed. See, e.g.,
Greenberg-Leroux [29], Le Veque [35], Castro et al. [13].

This section is organized as follows. In Subsection 5.1 we present the semi-
discretization in time of the model. In Subsection 5.2, we present the associated
reformulation using an augmented Lagrangian method. We also discuss the link
between the system obtained and the classical Shallow Water equations. In Sub-
section 5.3 we detail the iterative algorithm of the augmented Lagrangian. In
Subsection 5.4 we introduce the spatial discretization. And finally, in Subsection
5.4.3 we study the well-balanced properties of the proposed numerical scheme.

5.1. Semi-discretization in time

We denote the variables with superscript n to denote the approximation in time
t = tn and with superscript n+ 1 for the time t = tn +Δt.

Then, we consider the following semi-discretization in time of (30)–(32) :

St
Hn+1 −Hn

Δt
+
∂(HnV n

0 )
∂x

= 0, (36)

∫ L

0

Hnρ0

(
St

V n+1
0 − V n

0

Δt
(Ψ− V n+1

0 ) +
1
2
∂x((V n

0 )
2)(Ψ− V n+1

0 )
)
dx (37)

+
∫ L

0

βV n+1
0 (Ψ− V n+1

0 )dx +
∫ L

0

4
Re
Hnη1(ρ0)∂x(V n+1

0 )∂x(Ψ− V n+1
0 )dx

+
∫ L

0

BHnη2(ρ0)
√
2
(
|∂x(Ψ)| − |∂x(V n+1

0 )|
)
dx

≥ −1
Fr2

∫ L

0

Hnρ0 sin θ(Ψ − V n+1
0 ) +

ε

Fr2

∫ L

0

cos θ
2

(Hn)2ρ0(∂xΨ− ∂xV n+1
0 )dx.
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5.2. Rewriting the system: augmented Lagrangian

We now follow Fortin and Glowinski [27] and rewrite equation (37) as an opti-
mization problem: V n+1

0 is the solution of the minimization problem

J (V n+1
0 ) = min

V
J (V ),

where

J (V ) = F (B(V )) +G(V ),

with

B : V → H, F : H → R, V = H1
0 ([0, L]),

B(V ) = ∂xV , F (λ) =
∫ L

0 BHη2(ρ0)|λ|dx, H = L2([0, L]),

and

G(V ) =
∫ L

0

Hnρ0

(
St

V 2/2− V n
0V

Δt
+
1
2
∂x((V n

0 )
2)V

)
dx

+
∫ L

0

β
V 2

2
dx+

∫ L

0

4
Re
Hnη1(ρ0)

1
2
(∂xV )2dx

+
1
Fr2

∫ L

0

Hnρ0 sin θV +
ε

Fr2

∫ L

0

cos θ
2

(Hn)2ρ0∂xV dx.

Then, we define the Lagrangian by

L : V ×H×H → R,

L(V , q, μ) = F (q) +G(V ) +
∫ L

0

Hnμ(B(V )− q)dx,

and the augmented Lagrangian, for a given value r ∈ R (r > 0), is defined by

Lr(V , q, μ) = L(V , q, μ) + r
2

∫ L

0

Hn(B(V )− q)2dx. (38)

Consequently the initial optimization problem consists now in characterizing
the saddle point of Lr(V , q, μ). On the one hand, let us now begin by deriving
with respect to V in (38). It reads

M(V , q, μ,Ψ) = 0, ∀Ψ,
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where

M(V , q, μ,Ψ) =
∫ L

0

Hnρ0

(
St

V n+1 − V n
0

Δt
Ψ+

1
2
∂x((V n

0 )
2)Ψ

)
dx

+
∫ L

0

βV Ψdx+
∫ L

0

4
Re
Hnη1(ρ0)∂x(V )∂x(Ψ)dx

+
1
Fr2

∫ L

0

Hnρ0 sin θΨdx

− ε

Fr2

∫ L

0

cos θ
2

(Hn)2ρ0∂xΨdx+
∫ L

0

μHnB(Ψ)dx

+ r
∫ L

0

Hn(B(V )− q)B(Ψ)dx.

(39)

On the other hand, as the problem is non-differentiable with respect to q, we obtain
the following variational inequality:∫ L

0

Hnrq(p − q) +HnBη2
√
2(|p| − |q|)−Hn(μ+ rB(V ))(p− q) ≥ 0, ∀p ∈ H

which can be rewritten as the following minimization problem: find q ∈ H, a
solution of

min
p∈H

(
Hnr

2
p2 +HnBη2(ρ0)|p| −Hn(μ+ rB(V ))p

)
. (40)

But this problem can be directly solved and the solution is

q =

⎧⎨⎩ 0 if |μ+ rB(V )| < Bη2(ρ0),
1
r

(
(μ+ rB(V ))− Bη2

√
2SGN(μ+ rB(V ))

)
otherwise.

(41)
Moreover, from (39) we deduce that V verifies

Hnρ0

(
St

V − V n
0

Δt
+
1
2
∂x((V n

0 )
2)

)
+ ∂x(

ε

2Fr2
(Hn)2ρ0 cos θ) = −βV

− 1
Fr2
Hnρ0 sin θ + ∂x(Hn(μ− rq)) + 4∂x

(
Hnη1(ρ0)

Re
∂xV

)
+ r∂x(Hn∂xV ). (42)

Finally, we observe that the new form of system (36)-(37) exhibits a coupling
(through an iterative process described in the next subsection) of the following
equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tH + ∂x(HV ) = 0,

Hρ0St∂tV +
Hρ0
2
∂x(V 2) + ∂x(

ε

2Fr2
H2ρ0 cos θ) = −βV ,

− 1
Fr2
Hρ0 sin θ + ∂x(H(μ− rq)) + 4∂x

(
Hη1(ρ0)
Re

∂xV

)
+ r∂x(H∂xV ).

(43)
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These are precisely the Shallow Water equations in formulation (H,V ), with vis-
cosity, the source term defined by the topography and an extra source term linked
to the augmented Lagrangian, namely :

∂x(H(μ− rq)), (44)

where μ is the Lagrangemultiplier and q is the solution of the optimization problem
(40), defined by (41).

5.3. Iterative algorithm for the saddle-point

We now present (still following [27]) the iterative algorithm used to compute the
saddle-point mentioned in the previous section.

We denote with superscripts k and k + 1 the variables involved in the iter-
ative algorithm. Let us recall that, with superscript n and n + 1, we denote the
approximations of the variables at time t = tn and t = tn +Δt, respectively. The
iterative algorithm is defined through the following steps:

Step I.0: We consider that we know V n
0 , Hn, μn and qn. Then, we impose for

k = 0, V k = V n
0 , μ

k = μn, qk = qn.

Step I.1: Compute qk+1 via:

dk+1 = μk + rB(V k),

qk+1 =

⎧⎨⎩ 0 if ‖dk+1‖ ≤ Bη2,
1
r

(
dk+1 −Bη2 dk+1

‖dk+1‖

)
if ‖dk+1‖ > Bη2. (45)

Step I.2: Compute V k+1 via :

Hn

[
ρ0St

V k+1 − V n
0

Δt
+ ∂x

(
ρ0(V n

0 )2

2
+
ε

Fr2
Hnρ0 cos θ

)]
= −βV k+1

− 1
Fr2
Hnρ0 sin θ + ∂x(Hn(μk − rqk+1)) + ∂x

(
Hn(

4η1(ρ0)
Re

+ r)∂xV k+1

)
.

(46)
Step I.3: Update μk+1 via:

μk+1 = μk + r(B(V k+1)− qk+1). (47)

Loop Steps I.1–I.3: k → k + 1, until (e.g., with tol = 10−2)

‖μk+1 − μk‖
‖μk‖ ≤ tol. (48)

At convergence: We now have determined the value of V at time tn+1, we just
have to set

V n+1
0 = V k+1, (49)

and we also set μn+1 = μk, qn+1 = qk+1.
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5.4. Spatial discretization

In this subsection we describe the discretization in space of equations (36) and
(46). That is, the spatial discretization of the following two equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St
Hn+1 −Hn

Δt
+
∂(HnV n

0 )
∂x

= 0,

Hn

[
ρ0St

V k+1 − V n
0

Δt
+ ∂x

(
ρ0(V n

0 )
2

2
+
ε

Fr2
Hnρ0 cos θ

)]
= −βV k+1 − 1

Fr2
Hnρ0 sin θ + ∂x(Hn(μk − rqk+1))

+∂x

(
Hn(

4η1(ρ0)
Re

+ r)∂xV k+1

)
.

(50)

We observe that usually, to discretize a Bingham system where two equations are
involved, the discretization in space of both equations is uncoupled. See, e.g., [16]
for a compressible Bingham system with variable density. Nevertheless, we propose
a spatial discretization that contains a coupling between previous equations. As
we mentioned previously, we want to obtain well-balanced numerical schemes.
Basically, the difficulty in treating the spatial discretization in the present model
comes from the extra source terms, which depends on μ and q.

In this section, we want to design a numerical scheme that preserves the
following stationary solutions which can be encountered when using the present
model, namely:

• Case η2 = 0: the model degenerates to Shallow Water equations (SWE) and
the so called “water at rest” test case – where the velocity is equal to zero
and the free surface is horizontal – is a classical solution. We thus want our
scheme to degenerate to one of the well-balanced schemes for SWE;

• Case η2 �= 0:
– Case “material at rest”: the solution to be captured for all η2 > 0 is
such that the velocity is equal to zero and the free surface is horizontal
(cf. Figure 1);

– Case where the free surface has a constant height on an inclined slope
(cf. Figure 2) and the velocity is equal to zero, which is also a stationary
solution under condition (35).

We note that the solution of the “water at rest” case and the one of the
“material at rest” case are actually the same. Since our global model degenerates
to the SWE when η2 = 0, we want that, not only the solution in the case of a
free surface with a constant height on an inclined slope is rigorously captured by
our scheme, but also that the solution of the “material at rest” case (which seems
to be rarely studied in the context of a Bingham model). And it is worth noting
that, on the one hand, designing a scheme that captures one or the other of these
two solutions is quite easily achievable. On the other hand, a consistent scheme
for the present model must preserve both solutions and the difficulty of its design
lies behind this feature.
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Let us go back for a while to the case η2 = 0 – when the model reduces to
SWE – and follow the paper [13]. Namely, we remark that for the Shallow Water
model the source term linked to the topography is only present in the momentum
equations and does not appear in the mass conservation equation. Nevertheless,
in well-balanced schemes, the topography term induces a contribution in the dis-
cretization of the mass conservation equation.

Taking into account the “Shallow Water structure” (mentioned in Subsec-
tion 5.2) of the present model, we borrow the aforementioned idea by taking into
account all the source terms of our momentum equation and plugging their contri-
bution in the discretization of the mass conservation equation. In particular, and
this is the key point of present approach, Lagrangian terms μ and q will be in the
discretization of the first equation of (50).

First, we rewrite the second equation of (50) as

Hnρ0St
V k+1

Δt
+ βV k+1 − ∂x

(
Hn(

4η1(ρ0)
Re

+ r)∂xV k+1

)

= −Hn

[
∂x

(
ρ0(V n

0 )2

2
+
ε

Fr2
Hnρ0 cos θ

)
− ρ0St

V n
0

Δt
− 1
Fr2
ρ0 sin θ

]
+∂x(Hn(μk − rqk+1)). (51)

For the right-hand side of the previous equation, we denote by bi ∀i, a given
approximation at the point xi, i.e.,

bi ≈
{
−Hn

[
∂x

(
ρ0(V n

0 )2

2
+
ε

Fr2
Hnρ0 cos θ

)

−ρ0St
V n
0

Δt
− 1
Fr2
ρ0 sin θ

]
+ ∂x(Hn(μk − rqk+1))

}∣∣∣∣
x=xi

. (52)

In Subsection 5.4.1 we will introduce the approximation that we consider to de-
fine bi.

Then, we define the vector b with all components, b := (bi)i. And we solve
the linear system AV = b, where A is the matrix of the system induced by (51). To
define A we consider a second-order finite difference to approximate the left-hand
side of (51) and it reads(

Hn
i ρ0St

Δt
+ β +

(
4η1(ρ0)
Re

+ r

)
Hn

i+1/2 +H
n
i−1/2

Δx2

)
V k+1

i

−
(
4η1(ρ0)
Re

+ r

)
Hn

i+1/2

Δx2
V k+1

i+1 −
(
4η1(ρ0)
Re

+ r

)
Hn

i−1/2
Δx2

V k+1
i−1

where Hn
i+1/2 = (Hn

i +Hn
i+1)/2.
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5.4.1. Definition of b. The definition of the right-hand side in the linear system is
fundamental in the design of the numerical scheme. For example, in relation with
the stationary solutions of the system with velocity zero, b must be zero for all
components.

We use a finite volume method to define b. In (52) we distinguish a component
that is constant for the iterative algorithm in k:

−Hn

[
∂x

(
ρ0(V n

0 )
2

2
+
ε

Fr2
Hnρ0 cos θ

)
− ρ0St

V n
0

Δt
− 1
Fr2
ρ0 sin θ

]
. (53)

And the first equation of (50) also contains the terms evaluated in t = tn:

−StH
n

Δt
+
∂(HnV n

0 )
∂x

. (54)

In the following we denote by F (Hn,V n) the flux function contained in equations
(53)-(54):

F (W ) =
(

HV

ρV 2/2 + εHρ0 cos θ/Fr2

)
, with W =

(
H
V

)
,

and by φ a numerical flux function that approximates F . We begin by considering
a family of numerical flux functions defined by (see [13]):

φi+1/2 = φ(Wi,Wi+1) =
F (Wi) + F (Wi+1)

2
− 1
2
Di+1/2(Wi+1 −Wi), (55)

where Di+1/2 is a defined or semi-defined positive matrix. For example, the Lax-
Friedrichs scheme corresponds to the definition Di+1/2 := Δx

Δt I, where I is the
identity matrix. If we denote the Roe matrix by Ji+1/2, then Roe method is
obtained for Di+1/2 = |Ji+1/2|, the absolute value of the Roe matrix associated to
F . For the numerical results that we present in Section 6 we consider this scheme.

In the sequel, we denote by φH the first component of the numerical flux
function and by φV the second one. The numerical flux function that we use is
introduced in the following subsection and is defined in equation (59).

By using the notation introduced previously we propose the following ap-
proximation of (52) to define bi:

bi = −Hn
i

[
φV n

i+1/2 − φV n

i−1/2
Δx

− 1
Fr2
ρ0 sin θ − St

ρ0V
n
0

Δt

]
+
GV

i−1/2 +G
V
i+1/2

2

with

GV
i+1/2 = H

n
i+1/2

μk
i+1 − rqk+1i+1 − (μk

i − rqk+1i )
Δx

. (56)

5.4.2. Approximation of Hn+1. The first possible choice to define an approxima-
tion of Hn+1 is to use directly the first component of the flux function defined by
(55), In this case we obtain

StHn+1
i = StHn

i +
Δt
Δx

(φH
i+1/2 − φH

i−1/2). (57)
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In the following, we denote the numerical schemes obtained in this case by (Non-
WB 1), i.e., the first non well-balanced scheme. Since, actually, this scheme does
not preserve the two types of stationary solutions. Namely, it is easy to prove
that the scheme preserves the stationary solutions with constant height over an
inclined plane. But, it does not preserve the stationary solutions with horizontal
free surface.

Following [13] we can conclude that the source term which introduces the
topography must be taken into account in the definition of φH . If we write

Gtopo =
(

0
− 1
Fr2
ρ0 sin θ

)
,

then φH is defined as the first component of

φtopo,i+1/2 =
F (Wi) + F (Wi+1)

2
− 1
2
Di+1/2(Wi+1 −Wi − J −1i+1/2Gtopo). (58)

There are several techniques which are applied in the case where Ji+1/2 is not
invertible. For instance, one can define the eigenvalues of the generalized inverse
matrix by zero if the corresponding eigenvalue to be inverted is null or smaller
than a certain value of tolerance.

We can now introduce a second choice by defining φH as the first component
of (58). This leads to another numerical scheme, which is denoted as (Non-WB
2), since it is not a well-balanced scheme. As a matter of fact, by introducing
the technique proposed in [13] for SWE, we obtain that the scheme preserves the
stationary solutions with horizontal free surface. But a constant height over an
inclined plane is not a stationary solution of SWE, and we can prove that the
obtained numerical scheme is not able to preserve these solutions.

Finally, we propose another discretization to define φH which leads to a
scheme denoted as (WB-B). As we mentioned at the beginning of this section, the
main difference between the scheme that we propose and previous ones is to treat
Lagrangian variables μ and q in the same manner as in the well-balanced schemes
for SWE. Consequently, we propose to define φH by taking into account the term
defined in a function of μ+ r q as a source term. Namely, if the iterative algorithm
ends for index ke, we approximate previous terms by μke+1+r qke+1. And we thus
define φH as the first component of

φμ,q,i+1/2 =
F (Wi) + F (Wi+1)

2
−

1
2
Di+1/2(Wi+1 −Wi − J −1i+1/2(Gtopo,i+1/2 +Gμ,q,i+1/2)) (59)

where

Gμ,q,i+1/2 =
(

0
Hn

i+1/2(μ
ke+1
i+1 − rqke+1

i+1 )−Hn
i−1/2(μ

ke+1
i − rqke+1

i )

)
.
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5.4.3. Well-balanced properties of the proposed scheme. If we consider a domain
of length L, we obtain the following result:

Theorem 5.1. If we consider the following initialization for μ and q:

μ(x) =
−1
Fr2
ρ0 sin θ (x− L/2)−

ε

Fr2
ρ0 cos θ(H(x)−H(L/2)), q(x) = 0 x ∈ [0, L],

then, the numerical scheme (WB-B) exactly preserves the stationary solution of
material at rest, and also exactly preserves the stationary solution of constant
height over an inclined plane verifying (35).

Proof. To prove this result, it is enough to prove the following two items:

i) b = 0. In this case the solution of the linear system is V k+1 = 0 ∀k. So, if
V n = 0 we obtain that V n+1 = 0.

ii) Hn
i+1 − Hn

i − [J−1i+1/2(Gtopo,i+1/2 + Gμ,q,i+1/2)]1 = 0 ∀i. In this case, since
V n+1 = 0, we obtain that φH

i+1/2 defined by (59) is zero for all i, then by
(57) we have that Hn+1 = Hn.

Consequently, if i) and ii) are verified, the given stationary solution is exactly
preserved. The verification of i) and ii) is an easy computation, so that, for sake
of brevity, we omit it. �

Although we refer to two types of stationary solutions, in Section 6 we observe
that the proposed scheme preserves other types of stationary solutions, even when
there is a bump in the free surface and the Bingham number is relatively huge. In
the Test 1 presented in Section 6, we compare the results obtained with (WB-B)
and the non-well-balanced schemes (Non-WB 1) and (Non-WB 2).

6. Numerical tests

In this section we present three numerical tests. In the first one we study the
convergence of a rectangular pulse towards the stationary solution, and the de-
pendence of the stationary state on various Bingham numbers is explored. In the
second numerical test we present the transition between two stationary solutions
when the rigid properties of the material change. In the third test we present the
case of an avalanche over the considered domain.

For the tests we set the parameters St = 1, B = 1, ε = 1, η1 = 1 and Fr =
0.3193. Moreover, CFL condition is equal to 0.8, r = Δx η2/η1 and Δx = 0.01. We
consider different values of η2 in the following numerical tests. For the boundary
conditions we impose the velocity to be zero.

6.1. Test 1: convergence to a stationary solution

In this subsection we present a test where the free surface of the initial condition
is a rectangular pulse and the initial velocity is equal to zero in the entire domain.
Furthermore, the bottom is supposed to be an inclined plane with an angle of 5
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Figure 3. Test 1: Initial condition

degrees (cf. Figure 3). We study the final stationary profile of the material surface
and the dependence of the shape with respect to different Bingham numbers.

The domain considered is [0, 1] and Δx = 0.01. And the height of the material
is defined by:

H(x, 0) =
{

0.2 if x ∈ [0.5, 0.6],
0.1 otherwise.

We study the evolution towards a stationary solution for different values of the
Bingham number. Namely, we consider η2 = 10, 2, 0.1 and 0.01. The goal is to
study the rigid properties of the material with respect to the Bingham number.
When the Bingham number is nearly zero, the material is more similar to a fluid
like the water. In fact, it can be remembered that when η2 = 0 the proposed model
reduces to Shallow Water equations with viscosity terms.

First, in Figure 4, we present the evolution at four different times of the
material surface for η2 = 10. Figure 4(d) corresponds to t = 5 s., where the
solution is stationary. We observe that the stationary solution presents a bump,
i.e. the material is sufficiently rigid to support the gradient of pressure produced
by the gradient of the surface.

In Figure 5 we compare the numerical result obtained for η2 = 10 with the
proposed well-balanced scheme (continuous black line) and the results obtained
without a well-balanced treatment for the discretization ofH . Namely, we compare
with the schemes (Non-WB 1) (red doted lines of Figure 5) and (Non-WB 2) (blue
dashed lines of Figure 5) presented in Section 5. Any of both schemes are not able
to preserve the stationary solution with a bump in the free surface.

In Figure 6 we present the evolution of the surface for the four different values
of η2 (η2 = 10, 1, 0.1 and 0.01). In Figure 7 we present the stationary surfaces
obtained with these values of η2.
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If we compare Figures 7(a) with 7(b), corresponding to η2 = 10 and η2 = 2,
respectively, we observe that in both cases the stationary solution presents a bump
in the surface. Nevertheless the bump is smaller when η2 decreases.

Figures 7(c) and 7(d) correspond to η2 = 0.1 and η2 = 0.01, respectively.
We observe that when η2 converges to zero, the stationary solution converges
to the stationary solution of water at rest over an inclined plane. Namely, they
converges to the stationary solution that we obtain for this test with ShallowWater
equations, i.e., the model obtained for η2 = 0.

In Figure 8 we present the velocity at different times obtained with the four
different values of η2. We observe that the smaller values of velocities are obtained
when the Bingham number is greater. Namely, for t = 0.5 s. (Figure 8(a)) we
observe that the velocity is nearly zero for η2 = 10. And for t = 1 s. (Figure 8(a))
the solution corresponding to η2 = 10 is vanishing, while for the other values of η2
the velocity is, by comparison, far from zero. For t = 5 s. (Figure 8(c)) the solution
for η2 = 2 exhibits a vanishing motion. We observe that for t = 20 s. (Figure 8(d))
the velocities corresponding to η2 = 0.1 and η2 = 0.01 tend much more slowly to
zero than the ones for η2 = 2 and η2 = 10.

Finally, in Figure 9 we present two comparisons. In Figure 9(a), we compare
the four stationary solutions corresponding to the fours considered values of η2 .
And, in Figure 9(b), we present the values of μ obtained at the final time, when the
solution is stationary, for these values of η2. We can easily identify that μ follows
the same type of profile as the surface. Actually, as we mentioned previously, μ is
a term whose role is to introduce an equilibrium in the pressure. If we observe for
instance the case η2 = 10, the material surface exhibits a gradient, which in the
model of Shallow Water corresponds to a pressure gradient. This pressure gradient
for stationary solutions is compensated, in the proposed model, by μ. That is why,
in the case of a stationary solution, the profile of the surface is of the same type as
the one of μ. Equivalently we observe that for η2 = 0.01 where the material surface
is nearly flat, the gradient of pressure is nearly zero, then the pressure gradient
which has to be compensated is small, hence the profile of μ is close to zero.

6.2. Test 2: Transition between two stationary solutions

The objective of this test is to observe the behaviour of the material when its rigid
properties change. For instance, if we think about the snow, many phenomena can
modify this material and introduce this type of change in its properties.

We consider a domain of 2 meters over an inclined slope of 20 degrees. First
we compute numerically the stationary solution for η2 = 10 when the initial con-
dition is

H(x, 0) =
{

2.1 if x ∈ [1.5, 1.6],
0.1 otherwise.

Then, we consider this stationary solution as initial condition for the same problem,
except we change the value of η2. Namely, we consider η2 = 5 and η2 = 2. In Figure
10, we see the transitions between the stationary solution (continuous black line,
labeled “initial condition”) when we change the rigid properties of the material.
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Figure 4. Test 1: Evolution of the material surface η2 = 10

For η2 = 2 (Figure 10(a)) we observe that the transition is from a bump to a
stationary solution defined by two areas of horizontal free surface and an inclined
surface connecting these areas. For η2 = 5 (Figure 10(b)) the transition leads to a
similar bump shape with only a change of the height and the width of the bump.

6.3. Test 3: avalanche

In this test we consider a domain of 10 meters. The final time is T = 2 s. The
angle of the inclined plane that defines the bottom is 30 degrees, and η2 = 10. As
initial conditions we consider a velocity which is equal to zero in all the domain
and H defined by

H(x, 0) =
{

10.1 if x ≥ 9.5,
0.1 otherwise.
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Figure 5. Test 1: Evolution of the material surface η2 = 10. Com-
parison between the numerical result of the well-balanced scheme (con-
tinuous black line) and the non well-balanced schemes (Non-WB 1)
(discontinuous red line) and (Non-WB 2) (dashed blue line)

In Figure 11 we present the evolution of the free surface for t = 0.3, 0.5, 1, 1.5
and 2 s. We observe that contrary to the two previous tests for the same value of
η2, in this case we do not obtain a stationary solution with a bump shape. There
are several factors that induce the avalanche of the material in this test. First, the
angle that defines the bottom is bigger in this case. Second, the height of the jump
in H at the initial condition. And finally, by condition (35) we observe that the
length of the domain is also important. Even in the zone where the height of the
material is constant, in x ∈ [0, 9.5), the solution is not stationary.

In Figure 12 we compare the surface at t = 1 s. and t = 2 s. with the value of
the Lagrange multiplier μ. To picture both quantities in the same range we have



82 D. Bresch, E.D. Fernández-Nieto, I.R. Ionescu and P. Vigneaux

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25
Surface at t=0, 0.01, 0.05, 0.1, 0.5, 1 and 5 s.
t=20 s.
bottom

(a) η2 = 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

Surface at t=0, 0.01, 0.05, 0.1, 0.5, 1 and 5 s.
t=20 s.
bottom

(b) η2 = 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

Surface at t=0, 0.01, 0.05, 0.1, 0.5, 1 and 5 s.
t=20 s.
bottom

(c) η2 = 0.1.
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Figure 6. Test 1: Evolution of the free surface for η2 = 10, 2, 0.1 and 0.01

multiplied μ by 0.3. We observe that the value of μ tends to follow the profile of
the surface, in order to compensate the gradient of pressure. Nevertheless in this
case, contrary to the Test 1, it is not sufficient to block the flow and an avalanche
of the material occurs all over the domain.
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Alpes (France). The last author would like to thank the CNRS for the post-doctoral
position he held during the academic year 2007/2008 when this study was initiated.

References

[1] C. Ancey. Plasticity and geophysical flows: A review. Journal of Non-Newtonian
Fluid Mechanics, 142:4–35, 2007.

[2] C. Ancey et al. Dynamique des avalanches. Presses Polytechniques et Universitaires
Romandes – CEMAGREF, 2006.

[3] N. Balmforth, R. Craster, and R. Sassi. Shallow viscoplastic flow on an inclined
plane. J. Fluid Mech., 470:1–29, 2002.



84 D. Bresch, E.D. Fernández-Nieto, I.R. Ionescu and P. Vigneaux

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

η
2
=0.01

η
2
=0.1

η
2
=2

η
2
=10

(a) t = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

η
2
=0.01

η
2
=0.1

η
2
=2

η
2
=10

(b) t = 1 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

η
2
=0.01

η
2
=0.1

η
2
=2

η
2
=10

(c) t = 5 s.
(Range of the y-axe multiplied by 10−3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−5

η
2
=0.01

η
2
=0.1

η
2
=2

η
2
=10

(d) t = 20 s.
(Range of the y-axe multiplied by 10−5)

Figure 8. Test 1: Velocities obtained for η2 = 10, 2, 0.1 and 0.01

[4] N. Balmforth, R. Craster, and R. Sassi. Dynamics of cooling viscoplastic domes. J.
Fluid Mech., 499:149–182, 2004.

[5] I. Basov and V. Shelukhin. Generalized solutions to the equations of compressible
Bingham flows. Z. Angew. Math. Mech., 79(3):185–192, 1999.

[6] I.V. Basov. Existence of a rigid core in the flow of a compressible Bingham fluid
under the action of a homogeneous force. J. Math. Fluid Mech., 7(4):515–528, 2005.

[7] I.V. Basov. Long-time behavior of one-dimensional compressible Bingham flows. Z.
Angew. Math. Phys., 57(1):59–75, 2006.
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1. Introduction

The aim of this paper is to study formally the limit ε → 0 of dynamical systems
of the form

∂tu
ε =

1
ε
A(Sε)uε +Q(Sε, uε), (1)

∂tS
ε = F (Sε, uε), (2)

with initial data
uε(t = 0) = uε

0, Sε(t = 0) = Sε
0 , (3)

whereA(S) is a linear skew-symmetric operator, andQ(S, u), F (S, u) are quadratic
in S and u.

The main novelty in our study is that we assume that uε(t) takes its values
in some Hilbert space H1 and that Sε(t) takes its values in some Hilbert space
H2. Note that the asymptotic limit ε → 0 of such a dynamical system has been
justified (see [16]) in the finite-dimensional case, namely assuming that S �→ A(S)
is C∞ from O ⊂ Rn to the set of N ×N real matrices, F being an n×N matrix,
which is C∞ in S ∈ O.
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Note that because of the 1/ε factor in (1), it is in general difficult to prove
existence of solutions (uε, Sε) on a time interval [0, T ] with T independent of ε, and
even more difficult to get uniform bounds. For instance for non-isentropic com-
pressible Euler equations, this work has been done by G. Métivier and S. Scho-

chet in [16]–[17] in the whole spaceRn, in the periodic case Tn. These results have
been extended to exterior domains in [2]. Such existence issues are not addressed
in this paper and we will assume the following:

First assumption: There exist Hilbert spaces H ′1 and H ′2 compactly imbedded in
H1 and H2 respectively, and solutions (uε, Sε) which are uniformly bounded in
L∞(0, T ;H ′1)× L∞(0, T ;H ′2) for some T > 0 and for 0 < ε ≤ 1.

The main problem is now to pass to the limit in ε, using compactness argu-
ments. Part of compactness is ensured by compact embedding of H ′1 in H1 and of
H ′2 in H2, however time compactness is lacking since, a priori, ∂tu

ε is not bounded.
In fact, ∂tu

ε may be of order 1/ε, which reveals a small time scale, of order O(ε).
The solution uε may undergo very large variations on small times of order O(ε). At
these scales the dynamics is given by interaction between the time derivative and
the skew-symmetric operator (the only two terms of order O(1/ε) will be justified
later).

The aim of this paper is to clarify the limit equation, to underline the various
problems and to analyze them formally. No rigorous results are derived here, only
a general framework of analysis, which remains to be justified, indicating how to
generalize finite-dimensional results to our Hilbert setting. Throughout the paper,
we present some related mathematical results obtained recently by the authors
that could be helpful in justifying the various steps that will be presented in a
forthcoming paper.

Motivation. This study is motivated by the low Mach number limit for non-
isentropic flows

∂tρ+ u · ∇ρ+ ρ divu = 0, (4)

ρ(∂tu+ u · ∇u) +∇p = 0, (5)

∂tS + u · ∇S = 0, (6)

where ρ is the density of the fluid, u its velocity and S its entropy. The pressure
p is implicitly given by the equation of state

ρ = R(p, S). (7)

For instance, for an ideal gas,

ρ = p1/γe−S/γ.

For many flows, the Mach number, ratio of the typical speed of the flow, divided by
the speed of sound, is very small, and it is usual to consider it as a small parameter
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and to let it go to 0. After transformation of the equations into non-dimensional
form and turning to (p, u, S) as unknowns, this gives

A∂tp+ u · ∇p+ divu = 0, (8)

ρ(∂tu+ u · ∇u) +
1
ε2
∇p = 0, (9)

∂tS + u · ∇S = 0, (10)

where ε is the Mach number and

A =
1
R

∂R

∂p
.

Two problems arise: first, to prove existence of solutions to (8, 9, 10) uniformly
bounded in ε, second, to study the limit of these solutions.

The first point has been solved by G. Métivier and S. Schochet, see [16],
who, using refined energy estimates, proved existence of solutions uε which remain
bounded in L∞(0, T ;Hs(Ω)) for some T > 0, uniformly in ε.

The present work addresses the second point. Let us recall the classical formal
analysis. The first step is to write that, as ε goes to 0, ∇p must go to 0, hence p
goes to some constant p̄. Following [17], we introduce q defined by p = p̄eεq which
gives

a(∂tq + u · ∇q) +
1
ε
divu = 0, (11)

r(∂tu+ u · ∇u) +
1
ε
∇p = 0, (12)

∂tS + u · ∇S = 0, (13)

where a and r are two smooth functions of S and εq. As ε goes to 0, Equation (8)
degenerates into

divu = 0, (14)

and Equation (9) only gives that ρ(∂tu+ u · ∇u) is a gradient
ρ(∂tu+ u · ∇u) +∇π = 0, (15)

and (10) is unchanged
∂tS + u · ∇S = 0. (16)

Thus we expect solutions of (8, 9, 10) to converge to solutions of (14, 15, 16).
However such a claim can not be true in a strong sense, since the initial data of
(8, 9, 10) have no reasons to satisfy div u = 0 or ∇p = 0.

Initial data u0, p0, S0 will be called “well-prepared” if

div u0 = 0, ∇p0 = 0. (17)

For well-prepared initial data, strong convergence is expected (and may be proved
directly). For ill-prepared data however, no strong convergence can take place.
Physically this is linked to the generation of strong sound waves, which propagate
in the fluid with high speed (1/ε by definition of the Mach number). These waves
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are described by the leading terms of (11, 12, 13), which lead to introduction of
the operator

A =
( 0 a−1∇·
r−1∇ 0

)
. (18)

Oscillatory limits with constant coefficients. The study of singular limits involv-
ing large time oscillations, in the periodic space framework, was pioneered by S.

Schochet in [19] for the low Mach number of isentropic Euler equations. It was
then used by B. Babin, A. Mahalov and B. Nikolaenko and E. Grenier for
high rotation limit of incompressible Navier–Stokes equations, see [5], [14]. Read-
ers interested in mathematical results around rotating fluids are referred to the
book [12]. We also mention [13] for the asymptotics of the solutions of hyperbolic
equations with a skew-symmetric perturbation.

For all these singular limits however, the underlying wave equation has con-
stant coefficients, and therefore a constant spectrum. It has therefore global solu-
tions, which are obtained by merely taking the Fourier transform of the equation,
and the solutions are in particular bounded in Sobolev spaces, uniformly in time.
To pass to the limit, the general method consists in conjugating the non-linear
solutions by the wave equation. This gives the time compactness which was lack-
ing and then enables us to pass to the limit in strong senses on the conjugated
solutions.

Oscillatory limits with non-constant coefficients. In our present case, the eigen-
values and the spectrum of A will depend on the solution itself. This is the case
through r and a in the low Mach number limit for the non-isentropic flows case
(note however that time derivatives of r and a are bounded uniformly in ε) which
depend on the entropy S. This leads to a highly complex problem, since eigen-
values may cross. This is the main difficulty since when two eigenvalues cross at
time t0, the limit of quadratic terms may depend not only on the limit but also on
the full sequence (even on subsequences). Some examples with such behaviors are
described in [16] pages 136–140. These examples indicate that if the spectrum of
the wave operator does not have constant multiplicity, the limit is likely not only
determined by the limit implying that there is no closed system of equations for
the limit. The wave equation, in the low Mach number limit example, may also be
written in this case

ε∂ttψ − div (S−1∇ψ) = 0. (19)
It is thus important to prove, after defining appropriate infinite-dimensional mea-
sures, that for almost all initial data, the limit flow does not meet double eigenval-
ues and crosses the resonance set transversally. Concerning the low Mach number
limit problem, in the very special case of only one spatial dimension, the limit can
be calculated both completely and justified, see [16]. In the multi-dimensional case,
the formal calculation of the extra term in the limit, which once again involves
the spectral decomposition of the fast operator, assumes that the spectrum of that
fast operator is simple and non-resonant, see [9] for the viscous case and [16] for
the inviscid one. For certain finite-dimensional truncations of the equations, those
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assumptions can be shown to be generic and to ensure convergence to the limit
equations. This has been done in the nice paper [16]. Our result extends this paper
to the real PDEs system proving, after defining appropriate infinite-dimensional
measures, that for almost all initial data, the limit flow does not meet double
eigenvalues and crosses the resonance set transversally. Difficulties occur since the
flow is singular across the double eigenvalues set (in some sense not uniquely de-
termined on it). Readers interested in an introduction to transversal mappings and
flows are referred to the nice book [1].

Note that in all Rd, if the initial data decay sufficiently rapidly at infinity,
then the fast waves still decay quickly, so that the limit satisfies the stratified
incompressible Euler equations in which the entropy, and hence also the density,
remain non-constant, see [17]. An extension of this result to exterior domains has
recently been obtained in [3]. The reader interested in a review around a low Mach
number limit are referred to [18] and [4].

2. Wave equation

Our asymptotic study is related to the so-called wave equation

∂tv(t) = ε−1A(S(t))v(t) (20)

and more precisely is related to the eigenvalues and eigenfunctions behavior related
to the associated wave operator.

2.1. A simple case: The matrix A independent of S(t)
The equation is simply

∂tv(t) =
1
ε
Av(t), (21)

where A is a skew-symmetric operator. In order to solve (21), we introduce the
eigenvalues iλk and eigenvectors ψk of A and decompose the initial data uε

0 onto
the Hilbert basis

uε
0 =

∑
k

αkψk. (22)

The solution is then
uε(t) =

∑
k

αk exp
( iλkt

ε

)
ψk. (23)

Let Lε(t)uε
0 denote this solution. We then introduce

vε(t) = Lε(−t)uε (24)

which satisfies
∂tv

ε = Lε(−t)Q(Sε)
(
Lε(t)uε,Lε(t)uε

)
. (25)

If Lε(t) is uniformly bounded from H ′1 to H ′1, then vε, lie uε, is bounded uniformly
in L∞(0, T,H ′1). Using (25) we may get bounds on ∂tv

ε, uniform in ε. Classical
compactness arguments then allow us to pass to the limit in vε and also in (24).
This approach has been pioneered by S. Schochet for isentropic compressible
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Euler equations. However this approach fails in the case of non-isentropic fluids,
since the operator A depends on the solution Sε(t) itself.

2.2. General case

In this case, eigenvalues and eigenvectors depend on S and therefore on time. We
may always introduce Lε(t0, t)v0, a solution of (20) which equals v0 at time t0,
however the explicit expression (23) is no longer valid.

Let S1 ∈ H ′2. Let iλk(S1) be the eigenvalues of A(S1), counted with multi-
plicity. If the eigenvalue λk(S1) is simple, then we may define locally a smooth
unit eigenvector ψk(S1). If two eigenvalues λj and λk collide at S1, locally the
corresponding eigenvectors ψj and ψk are singular at S1, and only Span(ψj , ψk) is
smooth. Let now S(t) ∈ L∞(0, T,H ′2) be given.
Simple eigenvalues. If all the eigenvalues of A(S(t)) are simple, we introduce the
corresponding eigenvectors ψk(S(t)) and the decomposition of v0 on the (orthonor-
mal) basis

v0 =
∑

k

αε
k(t0)ψk(S(t0)).

Let us look for solutions of (20) formed by eigenvectors ψk(S(t)) and the decom-
position of v on the (orthonormal) basis

vε(t) =
∑

k

αε
k(t)ψk(S(t)).

Equation (20) then gives∑
k

∂tα
ε
k(t)ψk(S(t)) +

∑
k

αε
k(t)∇ψk(S(t)).S′(t) =

∑
k

iλk(S(t))αε
k(t)ψk(S(t)).

Let us then introduce βε
k(t) defined by

βε
k = exp

(
−i

∫ t

t0

λk(S(τ))dτ
)
αε

k.

Then
∂tβ

ε
k = −

(∑
k

αε
k(t)∇ψk(S(t)).S′(t) | ψk

)
.

By stationary phase arguments, ∂tβ
ε
k goes to 0 as ε goes to 0, a well-known fact

(adiabatic limit).
Let

Λε
k(t) =

∫ t

t0

λk(S(τ))dτ.

All these computations fail if some eigenvalue of A(S(t)) is double or multiple.

Crossing eigenvalues. When eigenvalues cross, energy may be exchanged between
the corresponding modes and no closed equation can be given on the limit. For
the current analysis it is therefore crucial to avoid multiple eigenvalues. Let

Σj,k = {S | λj(S) = λk(S)}.
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2.3. Approximate resolvent

We now define an approximate resolvent Lε
app(t1, t2) of the wave equation by, if

v1 =
∑

k

αkψk(S(t1)).

Then

Lε
app(t1, t2)v1 =

∑
k

αk exp
(
−i

∫ t2

t1

λk(S(τ))dτ
)
ψk(t2). (26)

Let
Lε
app(t) = L(0, t).

Note that wε(t) = Lε
app(t)v0 is not a solution of the wave equation, but of

∂tw
ε(t) = ε−1A(S(t))wε(t) + Eε(t)wε(t) (27)

where the error term Eε(t) is a linear operator, defined by

Eε(t)ψk(t) = ∇ψk(S(t)).S′(t). (28)

Note that Eε depends on S(t), on S′(t) and is well defined away from the sets Σj,k.

3. Limit equation

3.1. Derivation of the limit equation

If Sε(t) does not cross any of the Σj,k, then we introduce

vε(t) = Lε
app(t, 0)u

ε(t). (29)

Then vε also satisfies

Lε
app(t)∂tv

ε = Q(Sε)
(
Lε
app(t)v

ε,Lε
app(t)v

ε
)
+ Eε(t)Lε

app(t)v
ε(t). (30)

We will assume

Second assumption: Q is continuous from H ′1 × H ′1 to some negative Sobolev
space H−s0 .

Note that this second assumption is very weak and generally very easy to
check. The main problem now is that Lε depends on the solution. If Sε remains
away from the various Σj,k, then we expect Lε to be bounded from L∞(0, T,H ′1)
into itself, uniformly in ε. This claim will be explained in detail below.

With this claim, ∂tv
ε is bounded and therefore, up to the extraction of a

subsequence, vε converges to some function v ∈ L∞(0, T,H1). It remains to pass
the limit in the right-hand side of (30).

For this we decompose vε(t),

vε(t) =
∑

j

βε
j (t)ψ

ε
j (t),
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and use bilinearity of Q to get

Lε
app(t)∂tv

ε =
∑
j,k

βε
j (t)β

ε
k(t)e

−iΛε
j (t)−iΛε

k(t)Q(Sε)
(
ψε

j (t), ψ
ε
k(t)

)
(31)

+
∑

j

βε
j (t)e

−iΛj(t)Eε(t)ψε
j (t).

This leads to

∂tv
ε =

∑
j,k,l

βε
j (t)β

ε
k(t)e

iΛε
l (t)−iΛε

j (t)−iΛε
k(t)

(
Q(Sε)

(
ψε

j (t), ψ
ε
k(t)

)
|ψl(t)

)
ψl(t) (32)

+
∑
j,l

βε
j (t)e

iΛε
l (t)−iΛε

j (t)
(
Eε(t)ψε

j (t)|ψε
l (t)

)
ψε

l (t).

Note that if we choose ψj to be orthonormal in L2, the last sum reduces to j �= k.
Next let us define the resonant set, namely the set

Σj,k,l = {S | λj(S) + λk(S) = λl(S)}.
We have now to pass to the limit in (32). If we remain away from Σj,l (see Section
6 and 7 for indications) the last term vanishes by a stationary phase argument.
If we show that Σj,k,l is a smooth manifold of codimension 1 and that for almost
any initial data, the limit flow crosses it transversally (see Section 6), multiplying
by ψk(t) and using the orthonormality, we get

∂tβl =
∑

j,k,l ; λj(S)+λk(S)=λk(S)

βj(t)βk(t)
(
Q(S))

(
ψj(t), ψk(t)

)
|ψl(t)

)
. (33)

3.2. Structure of the limit equation

It is important to note that (33) is smooth outside the Σj,k where it is singular,
since ψj and ψk are singular. As in the finite-dimensional case, see [16]–[15], we do
not expect to have results valid for any initial data, since in this case the initial
data, or the limit, may cross some Σj,k. In this case energy exchange may take place
between the various eigenvectors, or the initial data or the limit may cross Σj,k,l

in a tangential way, leading to a non-expected contribution to the limit behavior
which depends on the way one passes to the limit. Thus, we have to prove that for
almost any initial data, the limit flow avoids Σj,k.

4. Almost everywhere results

Since we search for “almost everywhere” results, this implies putting a measure on
the functional spaces. Note however that this measure need neither to be invari-
ant under the limit flow, as in recent works around supercritical wave equations
(see [10]–[11]), nor to have a particular link to the limit equation or even to the
underlying functional space.
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To handle measures is just a way to study a group of solutions instead of
a single solution. A single solution may have an exceptional behavior whereas a
large number of solutions will follow the average behavior for almost all of them.

A first way to introduce measures is to choose some N ≥ 1, to define an
application Φ from the unit ball B1 of RN to Hs or any functional space we
want and to choose a measure μ on B1. We may then consider the set of initial
conditions Φ(B1) which is naturally parameterized by (B1, μ). We then have to
study the position of Φ(B1) and its image by the limit flow with respect to the
resonant sets and to Σj,k. These latest sets being of codimension 1 or 2, they can
contain Φ(B1). Hence it is better to embed infinite-dimensional measures in our
functional space.

This can be done in an easy way as described below, by introducing Besov
spaces. Namely, let

Bs = B2,∞s .

There are many different ways to define measures on Bs(Ω). If Ω = Td for in-
stance, we introduce (ψk)k∈N, an orthonormal basis of eigenvectors of the Laplace
operator. Any u ∈ Bs may be decomposed,

u =
∑

k

αkψk,

and the Bs norm is equivalent to supk |k|s|αk|. We will define the projector PN by

PNu =
∑
k≤N

αkψk.

Let μ be the Lebesgue measure on R. We define

μs,R = ⊗k

( |k|sμ
2R

)
.

Let Bs(R) be the ball of center 0 and radius R. Then

μs,R(Bs(R)) = 1.

We also define

μs,R,N = ⊗0≤k≤N

( |k|sμ
2R

)
which is a measure on RN . Note that such kind of measures have been recently
used in [6], [7] to get measure type estimates related to a crossing or resonant
eigenvalues set.

5. Study of Σj,k

The aim of this section is to show formally that, under some general assumptions,
Σj,k is of codimension 2. This result will be important in the sequel to prove that
for almost any initial data, the limit flow avoids this codimension 2 set.
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Let L(x) denote a linear operator and (λj(x))j≥0 its spectrum. To prove that
Σ is of codimension 2 we introduce

φj,k(x) = λj(x) − λk(x).

First we have to check that λj and λk are Lipschitz continuous on Bs and Bσ.
Next we expand φj,k. For this let us consider a small perturbation εx̃ to x and let
ψ̃ and λ̃ be an eigenvector and an eigenvalue of L(x + εx̃). Let λ1 and λ2 be two
eigenvalues and ψ1, ψ2 be a corresponding orthonormal basis of eigenvectors. We
look for ψ̃ under the form

ψ̃ = ψ̂ + εφ̂

where ψ̂ ∈ Span(ψ1, ψ2) and φ is orthogonal to this vector space. Let Π be the
projection on Span(ψ1, ψ2). We have

L(x+ εx̃)(ψ̂ + εφ̂) = λ̃(ψ̂ + εφ̂).

Thus applying Π,

ΠL(x)ψ̂ − λ̃ψ̂ + εΠL(x̃)ψ̂ = O(ε2).

Hence λ̃ is an eigenvalue of the two-by-two array

ΠL(x) + εΠL(x̃) =
(
λ1 +

∫
ψ̄1L(x̃)ψ1

∫
ψ̄2L(x̃)ψ1∫

ψ̄1L(x̃)ψ2 λ2 +
∫
ψ̄2L(x̃)ψ2

)
.

Hence up to O(ε2) terms, λ̃ equals

λ1 + λ2 + L1(x̃)±
√
L2(x̃)2 + 4|L3(x̃)|2

2

where

L1(x) =
∫
ψ̄1L(x̃)ψ1 +

∫
ψ̄2L(x̃)ψ2,

L2(x) =
∫
ψ̄1L(x̃)ψ1 −

∫
ψ̄2L(x̃)ψ2

and

L3(x) =
∫
ψ̄1L(x̃)ψ2,

expressions which are linear in x̃.
In particular,

φj,k(x) =
√
L2(x̃)2 + 4|L3(x̃)|2 +O(ε2).

Now if L2 and L3 are not colinear, then locally φj,k = 0 is of codimension 2.
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6. Structure of a resonant set

Let
φj,k,l(x) = λj(x) + λk(x)− λl(x),

which defines
Σj,k,l =

{
x | φj,k,l(x) = 0

}
.

The normal to Σj,k,l is

L4(x) = ∇xλj +∇xλk −∇xλl

provided L4(x) �= 0. Hence provided L4(x) �= 0, Σj,k,l is locally a manifold of
codimension 1.

Resonances do not interfere in the limit equation provided they are transverse,
namely provided

∇φj,k,l(Θ(t, x)).∂tΘ(t, x) �= 0
for any x with Θ(t, x) ∈ Σj,k,l. We introduce the distance φ(x) to the dangerous
set

φ(x) =

√
φ2j,k,l(x) +

(
∇φj,k,l(x).∂tΘ(0, x)

)2
.

Here we assume that the limit equation is autonomous. Note that

φj,k,l(x+ εx̃) = φj,k,l(x) + εL4(x)x̃ +O(ε2)

where
L4(x) = ∇φj,k,l(x) = ∇xλj(x) +∇xλk(x) −∇xλl(x).

Next the differential of ∇φj,k,l(x).∂tΘ(0, x) is

L5(x).x̃ = ∇2φj,k,l(x).x̃.∂tΘ(0, x) +∇φj,k,l(x).∂t∇xΘ(0, x).x̃.

The first term takes into account the curvature of Σj,k,l and the second one the
spatial dependence of the flow Θ.

If L4 and L5 are not colinear then locally φ = 0 is of codimension 2. Hence
for almost any initial data the limit flow does not meet double eigenvalues and
crosses the resonant set transversally.

7. Formal justification of the limiting process

When the solution crosses

Σj,k = {u | λj(u) = λk(u)},
then the modes j and k may exchange energy, and this exchange may be arbitrary,
and as a matter of fact the limit equation appears to be singular at Σj,k. This means
that the limit of the quadratic term in Equation (33), namely

lim
ε�0

∑
j,l

βε
j e

i(Λε
l (t)−Λε

j(t))
(
Eε(t)ψε

j (t)|ψε
l (t)

)
ψε

l (t),
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is not likely determined by the limit (v, S), implying that there is no closed system
of equations for (v, S,Φ).

The limit solution must therefore avoid the double set Σj,k. As described in
Section 5, the set Σj,k is of codimension 2 in the u space. Thus we have to prove
that, for almost any initial data, the flow of the limit equation avoids Σj,k. The
main difficulty of the proof lies in the fact that the limit flow is not Lipschitz, hence
classical existence theorems do not apply. Indeed the limit flow is precisely singular
on the resonant sets Σj,k. We also have to define what we mean by “for almost
every initial data”, a notion not so obvious since we are in infinite dimension.
This study will be linked to the recent paper [8], written by the authors, where
a singular ordinary differential equation, in the Hilbert setting, homogeneous of
degree 0 near a codimension 2 set, is studied. More precisely, defining H to be a
Hilbert space, the authors study the dynamical system

φ̇ = φ
(
x,
xh

|xh|

)
where φ is a smooth function defined on H × S1 (S1 being the unit circle). The
Hilbert space H is divided into two parts: a given plane P identifying it to C and
its orthogonal P⊥ which plays the role of the codimension 2 singular set. We note
xh = Πx and xv = x − Πx. Under some structural assumptions on the smooth
function, we prove that for almost all data there exists a unique global solution of
this singular ODE. The main idea is to find sufficient properties to ensure global
existence for almost all initial data that could be satisfied by the limit flow in the
low Mach number limit procedure. Next let

Σj,k,l = {u | λj(u) + λk(u) = λl(u)}.
If Aj(u) is quadratic, then passing to the limit in these terms involves resonances,
namely Σj,k,l. In the constant coefficient case, Σj,k,l is either void or the whole
space. But here, Σj,k,l is a smooth manifold of codimension 1. Generically, the limit
flow crosses it, but for almost any initial data, the limit flow crosses it transversally.
Of course this must be proved.

Combining the two previous arguments we will get that for almost any initial
data the limit flow avoids double eigenvalues and crosses resonances in a transverse
way. With such properties we can pass to the limit ε → 0 in Equation (33) and
justify the formal analysis as done in Section 3.
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Finite-dimensional Control
for the Navier–Stokes Equations

Alexander Yu. Chebotarev

Abstract. The problem of partial controllability for the Navier–Stokes equa-
tions of viscous incompressible fluid is considered. The problem is to create in
a given moment of time a velocity field with the null projection on the finite-
dimensional subspace spanned by eigenfunctions of the Stokes operator. The
control is selected from this subspace too. On the basis of estimates of the
solution for the subdifferential Cauchy problem for a Navier–Stokes system,
controllability of the flow is proven on the condition that the norm of the
control is minimal.

Mathematics Subject Classification (2000). 35Q30, 49J20.

Keywords. Navier-Stokes equations, finite-dimensional control, subdifferential
inclusion, feedback control

1. Introduction

The motion of a homogeneous viscous incompressible fluid in the bounded domain
Ω ⊂ R3 with smooth boundary Γ is described by the evolution Navier–Stokes
equations (NSE),

y′ − νΔy + (y · ∇)y +∇p = f, div y = 0. (1)

Here y = {yi}31 is the velocity field, p is the pressure, f is the external force density,
ν = const > 0 is the coefficient of kinematic viscosity. Add to the equations (1)
initial conditions

y|t=0 = y0(x), (2)

and conditions on the boundary Γ of the flow region

y = 0. (3)

This work was supported by the Russian Foundation for Basic Research, grant No. 06-01-96003.
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The initial-boundary problem (1)–(3) may be rewritten in an ordinary way as the
Cauchy problem for an equation with operator coefficients [1]. We write

H = {v ∈ L2(Ω), div v = 0, v · n|Γ = 0}, V = {v ∈W 1
2 (Ω), div v = 0, v|Γ = 0}.

Here and later we denote Sobolev spaces by W l
p(Ω) and a unit vector of outer

normal for the boundary Γ by n.
Note that V ⊂ H = H ′ ⊂ V ′ and these embeddings are dense and compact.

We denote norms in spaces V and H correspondingly by ‖ · ‖, | · |; the duality
between V ′ and V (or scalar product in H) by (·, ·). Thus we write

(u, v) =
∫
Ω

(u · v)dx, ((u, v)) = (∇ui,∇vi), ‖u‖2 = ((u, u)).

If X is a Banach space, we will denote the space of Lp functions defined on (0, T )
with values in X by Lp(0, T ;X).

We define mappings A : V → V ′, B : V × V → V ′ using equalities

(Ay, z) = ν((y, z)), (B(y1, y2), z) = ((y1 · ∇)y2, z)
that hold for all y, y1, y2, z in space V , B[y] = B(y, y). Operators A and B satisfy
conditions

(Ay, y) = ν‖y‖2, (Ay, z) = (Az, y), (B(y, z), z) = 0 ∀y, z ∈ V. (4)

Let D(A) = {y ∈ V : Ay ∈ H}. For the operator B(y, z) the following estimates
hold [1]:

((B(y1, y2), y3) ≤ C|y1|1/4 · ‖y1‖3/4 · ‖y2‖ · |y3|1/4 · ‖y3‖3/4, y1, y2, y3 ∈ V, (5)

(B(y1, y2), y3) ≤ C‖y1‖ · ‖y2‖1/2 · |Ay2|1/2 · |y3|, y1 ∈ V, y2 ∈ D(A), y3 ∈ H. (6)
Here constant C > 0 depends only on Ω, ν.

The eigenfunctions of A,

Awj = λjwj , j = 1, 2, . . . (wi, wj) = δij ,

form the basis of the spaces H and V , λj ∼ Cj2/3 as j →∞.
The problem (1)–(3) is reduced to the following Cauchy problem for an equa-

tion with operator coefficients:

y′ +Ay +B[y] = f(t), t ∈ (0, T ), y(0) = y0. (7)

Here y ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), y′ ∈ L1(0, T ;V ′), y0 ∈ H .
The statement of the control problem that will be considered below is con-

cerned with the following interesting property of the solution to the problem (7).
It is well known [2] that if initial velocity field y0 is ‘fast oscillating’ (that is
y0 =

∑∞
j=m+1 y0jwj , where m is sufficiently large) then on an arbitrary time in-

terval, a unique smooth solution of the three-dimensional problem (1)–(3) exists.
Then the question arises: is it possible to build in any time interval a velocity field
of given structure by selecting control f(t) from a finite-dimensional subspace?

Denote the subspace spanned by the first m eigenfunctions of A by Hm =
span {w1, . . . , wm}. Let P = Pm : H �→ Hm be the projection operator on Hm.
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Problem 1. Given y0 ∈ H find f ∈ U = L2(0, T ;Hm) and corresponding solution
y to the problem (7) that satisfies condition Py|t=T = 0.

The solution {f, y} of Problem 1 will be called an admissible pair.

Problem 2. Find an admissible pair {f, y} such that

‖f‖2U =
∫ T

0

|f(t)|2dt→ inf .

The last problem is to finding a normal solution to Problem 1.

The main difficulty in investigation of these problems is proof of existence
of a solution to Problem 1 that is founded on consideration of the feedback con-
trol [3], [4].

2. Cauchy problem for the subdifferential inclusion

Let Φ(y) = ρ|Py|, y ∈ V, ρ > 0. Functional Φ is convex and lower semicontinu-
ous; its subdifferential is

∂Φ(y) = ρP signPy.
Here

signw =
{
w/|w|, if w �= 0,
ξ, |ξ| ≤ 1 if w = 0.

Note that if ∂Φ(y) is the subdifferential of Φ, then for all χ ∈ ∂Φ(y) it holds that
|χ| ≤ ρ.

Consider the evolutional variational inequality of Navier–Stokes type

(y′ +Ay +B[y], z − y) + Φ(z)− Φ(y) ≥ 0 ∀ z ∈ V, y(0) = y0. (8)

In [5], [6] existence of a weak solution of (8) is proven. This solution, subject to
the structure of the functional Φ, has properties

y ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), y′ ∈ L1(0, T ;V ′), y(0) = y0.
And for any z ∈ V it holds that

(y′ +Ay +B[y] + χ, z) = 0,

in the sense of distributions on (0, T ).
Let us assume z = 0 in (8), integrate over time and get an energy inequality,

from which nonlocal estimates follow.

|y(t)| ≤ C,
∫ T

0

‖y(τ)‖2dτ ≤ C, ρ
∫ T

0

|Py(τ)|dτ ≤ C. (9)

Here and later we denote by C constants depending only on basic data, in partic-
ular on |y0|, ν, Ω.

Let us derive a priori estimates of the solution of inequality (8) that will
guarantee existence and uniqueness of the strong solution on some interval (0, T∗),
where T∗ does not depend on the parameter ρ.



108 A.Yu. Chebotarev

The strong solution of (8) on interval (0, T ) is the function y ∈ L∞(0, T ;V ),
y′ ∈ L2(0, T ;V ) such that

−(y′ +Ay +B[y]) ∈ ∂Φ(y) a.e. on (0, T ). (10)

In [5], [6] existence of the strong solution is proven by deriving a priori esti-
mates for Galerkin approximations yk that are defined from system

(y′k +Ayk +B[yk] +∇Φε(yk), wj) = 0, j = 1, . . . , k; yk(0) = Pky0. (11)

Here {wj} is the orthonormal in H basis of V , consisting of eigenfunctions of
operator A. By Φε we denote regularization of the functional Φ [9],

Φε(y) = inf{‖y − z‖
2

2ε
+Φ(z); z ∈ V }, y ∈ V, ε > 0.

For this functional Φ we obtain

Φε(y) = ρ
{

1
2ε |Py|2, if |Py| ≤ ε,
|Py| − ε

2 , else.

Correspondingly,

∇Φε(y) = ρ
{ 1

εPy, if |Py| ≤ ε,
1
|Py|Py, else. (12)

Note that
(∇Φε(yk), Ayk) ≥ 0,

as (Pyk, Ayk) = ν‖ym‖2, k > m. Using the structure of the gradient (12) we
obtain from (11) inequality

(y′k +Ayk +B[yk], Ayk) ≤ 0. (13)

Using inequality (6) and Young inequality we estimate in (13) a term with the
quadratic operator B[yk].

−(B[yk], Ayk) ≤ C‖yk‖3/2|Ayk|3/2 ≤ C
(
3α4/3

4
|Ayk|2 +

1
α4
‖yk‖6

)
.

Selecting sufficiently small α > 0 get from (13) inequality

d

dt
‖yk‖2 + |Ayk|2 ≤ C1‖yk‖6, (14)

where constant C1 depends only on Ω and ν. It follows from differential inequal-
ity (14) that sequence {yk} is bounded in L∞(0, T∗;V ) and Ayk is bounded in
L2(0, T∗;H) under condition

T∗ <
1

2C1‖y0‖2
. (15)

We emphasize that T∗ does not depend on parameter ρ. Having these estimates
we can pass to the limit in system (11) as k → ∞ and ε→ 0. In the limit we get
existence on a sufficiently small time interval, not depending on ρ, of the strong
solution of (8). Uniqueness may be proved by standard means.
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Theorem 1. Suppose y0 ∈ V . There exist T∗ > 0, not depending on ρ, such that
on (0, T∗) there exists a unique strong solution y of variational inequality (8), at
which estimates (9) and inequality

‖y(t)‖ ≤ K
holds where K does not depend on ρ.

3. Solvability of the control problem

The proof of solvability of Problem 1 is founded on the following result.

Theorem 2. Suppose y0 ∈ H. There exist such ρ > 0 depending on Ω, ν, |y0|, such
that the weak solution of (8) satisfying Py|t=T = 0 exists.

Proof. Let y be the weak solution of (8) satisfying estimates (9). Write ψ = Py
and show that ψ ∈ L∞(0, T ;V ), Aψ ∈ L2(0, T ;H), ψ′ ∈ L1(0, T ;H) and

ψ′ +Aψ + PB[y] = −ρP signψ a.e. on (0, T ). (16)

From estimates (9) holding on any interval (0, T ) it follows that

‖ψ‖2 ≤ λm

ν
|ψ|2 ≤ λm

ν
|y|2 ≤ Cm.

Here and a later constant Cm depends only on Ω, ν,m. Similarly, |Aψ|2 ≤ Cm and
|ρP signψ| ≤ ρ. From (9) and inequality

(PB[y], z) = (B[y], P z) ≤ C‖y‖2
√
λm

ν
|z| (17)

it follows that PB[y] ∈ L1(0, T ;H). Therefore ψ′ ∈ L1(0, T ;H) and equation (16)
holds.

Multiplying (16) by ψ and taking into consideration estimate (17), we get

1
2
d|ψ|2
dt

+ ν‖ψ‖2 + ρ|ψ| ≤ Cm‖y‖2|ψ|. (18)

Integrating differential inequality (18) gives the estimate

|ψ(t)| ≤ |ψ(0)|+ Cm

∫ T

0

‖y(τ)‖2dτ − ρt,

from which follows that ψ(T ) = 0 if ρ > (|y0|+ Cm|y0|2/2ν)/T . �

Theorem 3. Suppose y0 ∈ H. Then Problem 1 has at least one solution.

The proof of Theorem 3 follows from Theorem 2 when we select for f a
control with feedback

f = −ρP signPy,
where y is the solution of variational inequality (8). Note also that |f(t)| ≤ ρ.
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The question about solvability of Problem 2 is concerned with the weak
closure of the set of admissible pairs that is the set of solutions of Problem 1.
From (7) the energy inequality follows [1]:

1
2
|y(t)|2 + ν

t∫
0

‖y(τ)‖2dτ ≤ 1
2
|y0|2 +

t∫
0

|f(τ)| · |y(τ)|dτ. (19)

It is easy to check that the set of admissible pairs is weakly closed in the space
U×L2(0, T ;V ). On account of weak lower semicontinuity of norm ‖·‖U solvability,
of Problem 2 follows from nonemptiness of the set of solutions of Problem 1.

Theorem 4. Let y0 ∈ H. Then there exists a solution of Problem 2.

4. About existence of the strong solution of NSE for all time

Consider again variational inequality (8). As was proven in Theorem 1, on a suf-
ficiently small time interval (0, T∗) there exists a unique strong solution, and T∗
does not depend on ρ. On the other hand, as follows from estimate (18) if ρ is
sufficiently large, then Py(T∗) = 0 holds. Reasoning by analogy with [2] (taking
into account that (Ay, P signPy) ≥ 0) we get inequality

1
2
d

dt
‖y‖2 + |Ay|2 ≤ C|A1/4y||Ay|2, (20)

where constant C depends only on Ω and ν. Then, if y(T∗) is concentrated on
high frequencies (that is Pmy(T∗) = 0), we obtain ‖y(T∗)‖ ≥ λ

1/4
m |A1/4y(T∗)|.

Therefore, as m are large, from (20) follows the estimate ‖y(t)‖ that guarantees
existence and smoothness of the global solution on an arbitrary interval (0, T ).
The analogous statement holds if f(t) = 0 as t > T∗.

Theorem 5. Suppose y0 ∈ V . Then for arbitrarily small T∗ > 0 there exist ρ > 0
and m depending on Ω, ν, ‖y0‖, that a unique strong solution of problem (7) with

f(t) =
{
−ρPmsignPmy, if t ∈ (0, T∗),
0, if t ∈ (T∗, T ).

exists on (0, T ). Problem (7) is the three-dimensional Navier–Stokes system with
no-slip boundary conditions.
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On the Sharp Vanishing Viscosity Limit
of Viscous Incompressible Fluid Flows

H. Beirão da Veiga

Abstract. We consider the classical problem of the convergence of local-in-
time regular solutions of the Navier-Stokes equations to a solution of the
Euler equations, as the viscosity ν goes to zero. Initial data are given in an
Hk(Ω) space, where k > 1+ n

2
. Solutions are continuous in time, with values

in the initial-data’s space. We look for convergence of the solutions v of the
Navier-Stokes equations to the solution w of the Euler equations in the space
C([0, T ]; Hk). This convergence result, in the strong topology, is due to T.
Kato, see [8]. We show here a very elementary proof. We assume, together
with the convergence of ν to zero, the convergence of the initial data in the
Hk norm.

Mathematics Subject Classification (2000). 35Q30,76D05, 76D09, 76D99.

Keywords. Navier-Stokes equations; slip boundary conditions; inviscid limit;
Euler equations.

1. Introduction

Our main concern is showing that (1.4) holds, where vν and w are the solutions
to the systems (1.1) and (1.2) respectively. See Theorem 1.2 and Corollary 1.2
below. This result was essentially proved, many years ago, by Kato, see [8], by
appealing to a completely different method, based on rather general theorems on
abstract equations. A nice proof was given recently by Masmoudi, see [12]. The
proof followed here is borrowed from reference [3], where a substantially more
difficult problem is considered (we take this occasion to quote our recent review
[4], where an introduction to our methods to prove sharp singular limit results is
given). We also refer to Ebin and Marsden, cf. [6], where the limit of zero viscosity
is considered in Hs, for s > 5 + n

2 . See [6], Section 15.4, p. 152.
In considering problems like vanishing viscosity limits, incompressible limits,

dependence on initial data, etc., the results are called here sharp if convergence
is shown in C([0, T ]; X), where X is the initial data’s space. As remarked by
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T. Kato in reference [9] this is the more difficult part in a theory dealing with
nonlinear equations of evolution. Note that sufficiently strong a priori estimates,
independent of ν, for the solutions to the Navier-Stokes equations immediately lead
to non-sharp convergence results, by appealing to suitable compactness theorems
and to the uniqueness of the strong solution to the Euler equations. For instance,
by assuming that the initial data aν are bounded in Hs , for some s > k, (1.4)
follows easily. Many non-sharp vanishing viscosity limit results are known in the
literature. Classical, specific references, are [7] and [13]. A simpler approach is
given in [5].

In the sequel k0 denotes the smallest integer such that k0 ≥ n/2 and k is
a fixed integer satisfying k ≥ k0 + 1. The canonical norm in Hk is denoted by
‖ · ‖k. The norm in L2 is simply denoted by ‖ · ‖.

We set
Hk

σ(Ω) =:
{
u ∈ Hk(Ω) : ∇ · u = 0

}
.

We denote by ‖ · ‖l, T the standard norm in C([0, T ]; H l) and by [ · ]l, T that in
L2(0, T ;H l) .

In the sequel Ω = [0, 1]n is the n-dimensional torus, n ≥ 2. Obvious modi-
fications in the proofs allow one to assume that Ω = �

n. The motion of a viscous,
incompressible, fluid is described by the system⎧⎪⎪⎨⎪⎪⎩

∂t vν + (vν · ∇) vν + ∇ pν = νΔ vν in QT ,

∇ · vν = 0 in QT ,

vν(0) = aν(x) ,

(1.1)

where ∇· aν = 0 in Ω , and ν ∈ �+
0 , the set of nonnegative reals. We also consider

the “limit problem”⎧⎪⎪⎨⎪⎪⎩
∂t w + (w · ∇)w + ∇π = νΔw in QT ,

∇ · w = 0 in QT ,

w(0) = b ,

(1.2)

where ∇ · b = 0. Note that in the more interesting case, namely ν = 0 , we are
dealing with the Euler equation for non-viscous fluids⎧⎪⎪⎨⎪⎪⎩

∂t w + (w · ∇)w + ∇π = 0 in QT ,

∇ · w = 0 in QT ,

w(0) = b(x) .

(1.3)

We are interested in showing that

lim ‖vν − w ‖C([0, T ];Hk) = 0 , (1.4)

as (aν , ν)→ (b, ν) in Hk × �+
0 .
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We recall the following well-known existence and regularity theorem for local-
in-time smooth solutions of (1.1). For the reader’s convenience, in the next section
we give a sketch of the proof.

Theorem 1.1. Assume that
‖aν‖k0+1 ≤ c1 (1.5)

and
‖aν‖k ≤ c2 . (1.6)

Then there is a positive constant T depending only on c1 such that the problem
(1.1) has a unique solution in [0, T ] . Moreover,

‖vν‖2k, T + ν [∇ vν ]2k, T ≤ C , (1.7)

and
‖∂t vν‖2k− 2, T + ν [∇ ∂t vν ]2k− 2, T ≤ C . (1.8)

Constants C may depend on k and n, on an arbitrarily fixed upper bound
for the values ν, and on c1 and c2. For convenience we do not show the explicit
dependence of the various constants C on c1 and c2.

Due to (1.11) below, the reader may assume that the initial data aν satisfy
the constraint ‖aν‖k ≤ ‖b‖k + 1, so that T and the constants C that appear in
equations (1.7) and (1.8) are fixed once and for all.

Corollary 1.1. Under the assumption (1.11) one has

vν ⇀ w in L∞(0, T ; Hk)-weak∗ and in C(0, T ;Hk− ε) , (1.9)

for ε > 0 small enough. Moreover,

∂t vν ⇀ ∂t w in L∞(0, T ; Hk− 2)-weak∗ and in C(0, T ;Hk− 2− ε) . (1.10)

Corollary 1.1 follows immediately from the uniform estimates (1.7), (1.8), by
appealing to well-known compact embedding theorems. These theorems guarantee
that we may pass to the limit in equation (1.1), as ν → 0. The uniqueness of the
strong solution w of equation (1.2) is used in order to show that all the sequences
vν converge to the same limit w.

The following is the main result here, especially when ν = 0.

Theorem 1.2. Let ν ≥ 0 and aν , b ∈ Hk
σ(Ω). Assume that

lim
ν→ ν

‖aν − b‖k = 0 . (1.11)

Then
lim
ν→ ν

(
‖vν − w‖2k, T + ν [vν − w]2k+ 1, T

)
= 0 . (1.12)

In particular, (1.4) holds.

Corollary 1.2. Under the assumptions of the above theorem one has

lim
ν→ ν

(
‖∂t vν − ∂t w‖2k− 2, T + ‖∇ pν − ∇π‖2k− 1, T + ν [∂t vν − ∂t w]2k− 1, T

)
= 0 .

(1.13)
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Remark 1.1. Under the sole assumptions of Theorem 1.2 the equation

lim
ν→ ν

(
‖∂t vν − ∂t w‖2k− 1, T + ν [∂t vν − ∂t w]2k, T

)
= 0 (1.14)

is false in general. Obviously it holds under stronger regularity assumptions on the
initial data, and for t > 0.

2. Preliminaries

For the reader’s convenience, we give in this section a sketch of the proof of equa-
tions (1.7) and (1.8). Here the parameter ν is fixed. Hence we denote vν simply
by v and ∂t vν by vt.

We start by some useful results.
For convenience, we denote integrals

∫
Ω
f(x) dx simply by

∫
f(x), or even

by
∫
f . If Dα denotes partial differentiation, α = (α1, . . . , αn) , we set

D̃α{f g} = Dα (f g)− f Dα g

and |Dm f |2 =
∑
|α|=m |Dα f |2. In the sequel we appeal to the following three

results.

Lemma 2.1. Let |α| ≤ l. Then

‖D̃α{f g}‖ ≤ c
(
|Df |∞ ‖g‖l− 1 + |g|∞ ‖Df‖l− 1

)
. (2.1)

For a proof see [10], Lemma A.1.

Lemma 2.2. For 0 ≤ |α| ≤ m ≤ k,

‖Dα (f g)‖ ≤ c ‖f‖m ‖g‖k− 1 + c δmk |f |∞ ‖g‖k . (2.2)

See [3], equation (3.4).

Lemma 2.3. Let k > 1 + n/2 and 1 ≤ l ≤ k. If |α| ≤ l then

‖D̃α{f g}‖ ≤ c ‖Df‖k− 1 ‖g‖l− 1 . (2.3)

For a proof see [1] Appendix A, Corollary A.4.
By applying the operator Dα to both sides of (1.1), by multiplying by Dα v,

and by integrating in Ω, we show that
1
2
d

dt
‖Dα v‖2 +

∫
D̃α{(v · ∇) v} · Dα v + ν ‖∇Dα v ‖2 = 0 . (2.4)

Then we add the above equations, side by side, for 0 ≤ |α| ≤ m. By taking into
account (2.1), and also | · |∞ ≤ c ‖ · ‖k0 , it readily follows that

1
2
d

dt
‖v‖2m + ν ‖∇ v‖2m ≤ c ‖v‖k0+1 ‖v‖2m . (2.5)

By setting m = k0 + 1, well-known methods lead to (1.7) for k = k0 , (with
dependence of T only on c1). The estimate (1.7) for k = k0, together with (2.5)
written for m = k, shows (1.7) for k.
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Lemma 2.4. Assume that (1.5) and (1.6) hold. Let l be an integer satisfying 0 ≤
l ≤ k − 2. Then there is a constant C such that

‖vt‖2l, T + ν [∇ vt]2l, T ≤ C . (2.6)

In particular (1.8) holds.

Proof. From (1.1) it follows that

∂tt v + (v · ∇) vt + (vt · ∇) v + ∇ pt = νΔ vt . (2.7)

Next apply Dα , |α | ≤ l , to both sides of the above equation, multiply by Dα vt
and integrate over Ω. This gives
1
2
d

dt
‖Dαvt‖2+

∫
D̃α{(v ·∇)vt}·Dαvt+

∫
Dα[(vt ·∇)v ] ·Dαvt+ ν‖∇Dαvt‖2=0.

(2.8)
By using (2.3) and (2.2) we show that

1
2
d

dt
‖Dα vt‖2 + ν ‖∇Dα vt ‖2 ≤ c ‖Dv‖k− 1 ‖ vt‖l ‖Dα vt‖ .

Hence, for |α | ≤ l ,
1
2
d

dt
‖Dα vt‖2 + ν ‖∇Dα vt ‖2 ≤ C ‖vt‖2l , (2.9)

and a well-known argument leads to (2.6). Note that, by applying the divergence
operator to both sides of the first equation (1.1), we show that ‖∇ p ‖k− 2, T ≤ C .
In particular, it readily follows that ‖ vt(0)‖k− 2 ≤ C . �

3. Proof of Theorem 1.2

In the sequel we appeal to Fourier series

φ(x) =
∑

ξ

φ̂(ξ) e 2 π i ξ·x ,

φ̂(ξ) =
∫
Ω

e− 2 π i ξ·x φ(x) dx .

The ξi’s are nonnegative integers, and ξ = (ξ1, . . . , ξn). The Euclidian norm of ξ
is denoted by |ξ|. For each nonnegative real s one has

‖φ‖2s =
∑

ξ

(1 + |ξ|2)s |φ̂(ξ)|2 .

Given δ ∈ ]0, 1], we define linear operators
T δ φ =

∑
|ξ|≤ 1/δ

φ̂(ξ) e2 π i ξ·x , (3.1)

where φ is a scalar or a vector field, and set

aδ
ν = T δ aν , bδ = T δ b . (3.2)
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Since T δ commutes with the divergence operator, aδ
ν and bδ are divergence free.

Clearly, for each nonnegative real s, T δ is a bounded linear operator. In particular,
|‖T δ |‖s, s ≤ 1 where, in general, we denote by |‖ · |‖s, r the canonical norm in the
space of bounded linear operators from Hs to Hr. So, aδ

ν satisfies the assumptions
(1.5), (1.6) with the same constants c1 and c2.

Also note that

|‖T δ |‖s, m ≤ (2/ δ)m− s , |‖T δ − I |‖m, s ≤ δm− s , (3.3)

if 0 ≤ s ≤ m, where s and m are nonnegative integers. In particular

‖aδ
ν ‖k0+1 ≤ c1 , ‖aδ

ν‖k+1 ≤
2 c2
δ
. (3.4)

and
‖aδ

ν − bδ‖k+1 ≤
2
δ
‖aν − b‖k . (3.5)

Note that
aδ

ν → bδ inHk+1 if aν → b inHk .

The following system plays here a very central role:⎧⎪⎪⎨⎪⎪⎩
∂t v

δ
ν + (vδ

ν · ∇) vδ
ν + ∇ pδ

ν = νΔ vδ
ν in QT ,

∇ · vδ
ν = 0 in QT ,

vδ
ν(0) = aδ

ν .

(3.6)

We also consider the (inviscid, if ν = 0) counterpart of the system (3.6), namely⎧⎪⎪⎨⎪⎪⎩
∂t w

δ + (wδ · ∇)wδ + ∇πδ = νΔwδ in QT ,

∇ · wδ = 0 in QT ,

wδ(0) = bδ .

(3.7)

From Corollary 1.1, with k replaced by k+ 1, applied to the solutions vδ and wδ

of the above problems, and also by taking into account (3.4) and (3.5), one shows
the following result.

Proposition 3.1. Under the assumptions of Theorem 1.2 one has

lim
ν→ ν

(
‖vδ

ν − wδ‖2k, T + ν [vδ
ν − wδ]2k+1, T

)
= 0 , (3.8)

for each fixed δ > 0.

The following estimate will be useful in the sequel:

‖aδ
ν − aν‖2k ≤ 2 ‖b− aν‖2k + 2

∑
|ξ|> 1/ δ

(1 + |ξ|2)k |̂b(ξ)|2 . (3.9)

The proof is left to the reader.
In the sequel we denote by δmk the Kronecker symbol and set

v = vδ
ν − vν , p = pδ

ν − pν .

Clearly, v and p depend on δ and ν.
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Our next step is to prove the following result.

Theorem 3.1. Let 0 ≤ m ≤ k. Then, for each δ > 0,
1
2
d

d t
‖v‖2m + ν ‖∇ v‖2m ≤ C ‖v‖2m + c δmk ‖vδ

ν‖k+1 |v|∞ ‖v‖m . (3.10)

Proof. In the calculations that follow the reader should take into account that the
quantities ‖vν‖k, T , ‖vδ

ν‖k, T , ν [ vν ]k+1, T and ν [ vδ
ν ]k+1, T are uniformly bounded

by constants C.
By taking the termwise difference between the equations (3.6) and (1.1) we

find that
vt + (vν · ∇) v + ∇ p = −(v · ∇) vδ

ν + νΔ v . (3.11)
Apply Dα to (3.11), multiply by Dα v and integrate on Ω. Using previous esti-
mates and formulae (in particular (2.3) and (2.2)), straightforward manipulations
show that

1
2

d
dt ‖Dα v‖2 + ν ‖∇Dα v ‖2

≤ C ‖v‖2m + c δmk ‖vδ
ν‖k+1 |v|∞ ‖v‖m .

(3.12)

Equation (3.10) follows. �

Next, fix a real β0 such that 0 < β0 < k0 − (n/2). Clearly, 0 < β0 < 1.
Since k0− β0 > n/2, one has | · |∞ ≤ c ‖·‖k0−β0 . Well-known interpolation results
for L2-Sobolev spaces show that

| · |∞ ≤ c ‖ · ‖β0
k0− 1 ‖ · ‖

1−β0
k0

. (3.13)

Theorem 3.2. For each δ > 0,

|v|∞, T ≤ C δ2 (k− k0+β0) . (3.14)

Proof. Let 0 ≤ m ≤ k − 1. From (1.7) one has ν [∇ vδ
ν ]2k, T ≤ C. Hence, by

appealing to (3.10), it follows that

‖v(t)‖2m ≤ C ‖v(0)‖2m , ∀ t ∈ [0, T ] .

So,
‖v‖2m, T ≤ C ‖aδ

ν − aν‖2m .
By appealing to this inequality for m = k0 and m = k0 − 1, and by taking into
account (3.13), we show that

|v|2∞, T ≤ C ‖aδ
ν − aν‖2β0

k0− 1 ‖a
δ
ν − aν‖2 (1−β0)

k0
. (3.15)

By using (3.3)2 for m = k and m = k0 − 1, we obtain

‖aδ
ν − aν‖2k0− 1 ≤ δ2 (k− k0+1) ‖aν‖2k . (3.16)

Again by (3.3)2, one has

‖aδ
ν − aν‖2k0

≤ δ2 (k− k0) ‖aν‖2k . (3.17)

The estimates (3.15), (3.16) and (3.17) lead to (3.14). �
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Corollary 3.1. One has, for each δ ∈] 0, 1 ],
|v|∞, T ‖ vδ

ν‖k+1, T ≤ C δk− k0− 1+β0 . (3.18)

Proof. By applying the estimate (1.7) to the solution vδ
ν , with k replaced by k+ 1,

and by appealing to (3.3)1 for m = k + 1 and s = k, it follows that

‖ vδ
ν‖2k+1, T ≤ C/ δ2 . (3.19)

This estimate together with (3.14) shows (3.18). �

Theorem 3.3. For each δ ∈] 0, 1 ],

‖v‖2k, T + ν
∫ T

0

‖∇ v(t)‖2kdt ≤ C ( ‖aδ
ν − aν‖2k + δ2 β0) . (3.20)

Proof. From equation (3.10) for m = k, together with (3.18), we get
1
2
d

d t
‖v(t)‖2k + ν ‖∇ v‖2k ≤ C ‖v‖2k + C ‖v‖k δ

β0 . (3.21)

Standard techniques yield

‖v‖k, T ≤ eC T (‖v(0)‖k + δβ0 ) . (3.22)

Equation (3.20) follows easily. Note that eC T is a constant of type C. �

Proof of Theorem 1.2
Define

|‖ u‖|2 =: ‖u‖2k, T + ν [∇u ]2k, T .

Let ε > 0 be fixed. From (3.20) and (3.9) it follows that

|‖v|‖2k, T ≤ C
(
‖b− aν‖2k +

∑
|ξ|> 1/δ

( 1 + |ξ|2 )k |̂b(ξ)|2 + δ2β0 + |ν − ν|
)
.

In particular,
‖v‖2k, T ≤ C

(
‖b− aν‖2k + ĥ(δ) + |ν − ν|

)
, (3.23)

where ĥ(δ) depends only on δ (b and k are fixed), and satisfies

lim
δ→ 0

ĥ(δ) = 0 .

We fix (once and for all) δ = δ(ε) such that C ĥ(δ) ≤ ε/ 3 . It follows that

|‖vδ
ν − vν |‖2k, T <

ε

3
+ C

(
‖b− aν‖2k + |ν − ν|

)
. (3.24)

The same argument applied to the particular case in which (aν , ν) = (b, ν) shows
that

|‖wδ − w |‖2k, T ≤
ε

3
. (3.25)

On the other hand, Proposition 3.1 shows that there is λ = λ( δ(ε), ε ) for which

|‖vδ
ν − wδ|‖2k, T ≤ ε , (3.26)

if |ν − ν| < λ .
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In short, from (3.24), (3.25) and (3.26) it follows that given ε > 0 there is a
λ = λ(ε) such that

|‖vν − w|‖2k, T ≤ ε , (3.27)
if |ν − ν| < λ . This proves (1.12).

Proof of Corollary 1.2
Proof. One has

∂t (vν − w) + (vν · ∇) (vν − w) +
(
(vν − w) · ∇

)
w + ∇ (pν − π)

= νΔ(vν − w) , in QT . (3.28)

In particular, by applying the divergence operator to both sides of (3.28), one gets

−Δ(pν − π) = ∇ ·
{
(vν · ∇) (vν − w) +

(
(vν − w) · ∇

)
w

}
.

It readily follows, by appealing to previous estimates, that

‖ (vν · ∇) (vν − w) +
(
(vν − w) · ∇

)
w ‖k−1, T ≤ C ‖vν − w‖k, T .

The pressure-estimate in equation (1.13) follows from classical regularity results
for solutions to elliptic equations −Δu = f , together with (1.12).

Now, the time-derivative estimates in equation (1.13) follow from (3.28). Note
that more elaborate manipulations lead to better results concerning the conver-
gence of ∂t vν to ∂t w, but not to (1.14). �
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as a Singular Limit of the Full
Navier-Stokes-Fourier System with Radiation
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Dedicated to the memory of Alexander Kazhikov

Abstract. We study a singular limit for the scaled Navier-Stokes-Fourier sys-
tem, where the Mach, Froude, and Péclet numbers tend to zero. As a limit
problem, we recover a model proposed by Chandrasekhar as a simple alterna-
tive to the Oberbeck-Boussinesq system applicable in stellar radiative zones.
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1. Introduction

Investigations in astrophysical fluid dynamics are hampered by both theoretical
and observational problems. The vast range of different scales extending in the
case of stars from the stellar radius to 102 m or even less entirely prevents a com-
plex numerical solution. Progress in this field therefore calls for a combination of
physical intuition with rigorous analysis of highly simplified mathematical models.

Understanding the flow dynamics in stellar radiative zones represents a major
challenge of the current theory of stellar evolution. Under these circumstances, the
fluid is a plasma characterized by the following specific features (see Lignières [20]):
• A strong radiative transport predominates the molecular one. This is due to
the extremely hot and energetic radiation fields pervading the plasma. The
Prandtl and Péclet numbers are therefore expected to be vanishingly small.

The work of E.F. was supported by Grant 201/05/0164 of GA CR in the general framework of
research programmes supported by the Academy of Sciences of the Czech Republic, Institutional
Research Plan AV0Z10190503 and partially by the Université du Sud Toulon-Var
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• Strong stratification effects because of the enormous gravitational potential
of gaseous celestial bodies determine many of the properties of the fluid in
the large.

• The convective motions are much slower than the speed of sound yielding
a small the Mach number. The fluid is therefore almost incompressible, for
which the density variations can be simulated via the anelastic approximation
(see also Gough [16], Gilman and Glatzmaier [15]).

1.1. Primitive equations

A suitable but still highly simplified mathematical model of astrophysical fluids
is represented by the Navier-Stokes-Fourier system (see Battaner [3]). Adopting
the Cartesian coordinates x = (x1, x2, x3), where (x1, x2) denotes the horizontal
direction and x3 is the depth variable pointing downward parallel to the gravity
gj, j = (0, 0, 1), we assume that the time evolution of the fluid density � = �(t, x),
the absolute temperature ϑ = ϑ(t, x), and the velocity field u = u(t, x) is governed
by the following system of equations (balance of mass, momentum, and entropy):

∂t�+ divx(�u) = 0, (1.1)

∂t(�u) + divx(�u⊗ u) +∇xp = divxS− �gj, (1.2)

∂t(�s) + divx(�s) + divx

(q
ϑ

)
= σ, (1.3)

where the pressure p = p(�, ϑ) and the specific entropy s = s(�, ϑ) are given
numerical functions of the state variables �, ϑ satisfying Gibbs’ equation

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
(1
�

)
, (1.4)

with e = e(�, ϑ) denoting the specific internal energy. The symbol S denotes the
viscous stress tensor, q is the heat flux, g is the gravitational constant, while σ is
the entropy production rate to be specified below.

For the sake of simplicity, periodic boundary conditions are imposed on the
horizontal variables (x1, x2) meaning the underlying spatial domain Ω is given
through

Ω = T 2 × (0, 1), with T 2 = ([0, 1]|{0,1})2 being a two-dimensional torus. (1.5)

Note this is still a physically relevant approximation, with the x3−direction parallel
to the gravitational force.

In addition, the complete slip boundary conditions

u · n|∂Ω = 0, [Sn]× n|∂Ω = 0 (1.6)

are adopted for the velocity field, while the heat flux satisfies

q · n|{x3=0} = 0, (1.7)

together with the “radiative” boundary condition on the upper part of the bound-
ary

q · n = η(ϑ− ϑ)|{x3=1}, (1.8)
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where ϑ > 0 is a given reference temperature. Note that (1.8) has a significant
stabilizing effect driving the system to the state of reference temperature ϑ for
large time.

Accordingly, the total energy balance takes the form
d
dt

∫
Ω

[1
2
�|u|2 + �e+ �gx3

]
dx =

∫
{x3=1}

η(ϑ− ϑ) dSx. (1.9)

1.2. Constitutive relations

The constitutive relations considered in the present paper are motivated by the
characteristic properties of the astrophysical fluids mentioned above. In particular,
the pressure as well as the heat transport are substantially enhanced by the effect
of thermal radiation.

Accordingly, we shall assume that the pressure p is related to �, ϑ through a
general state equation of the form

p(�, ϑ) = pA(�, ϑ)︸ ︷︷ ︸
atomic pressure

+ pR(�, ϑ)︸ ︷︷ ︸
radiation pressure

, pA = ϑ
5
2P

( �
ϑ

3
2

)
, pR =

a

3
ϑ4, a > 0.

(1.10)
Similarly, in agreement with (1.4),

e(�, ϑ) = eA(�, ϑ) + eR(�, ϑ), eA =
3
2
ϑ

5
2

�
P
( �
ϑ

3
2

)
, eR = a

ϑ4

�
, (1.11)

and

s(�, ϑ) = sA(�, ϑ) + sR(�, ϑ), sA = S
( �
ϑ

3
2

)
, sR

4
3
a
ϑ3

�
, (1.12)

where

S′(Y ) = −3
2

5
3P (Y )− P ′(Y )Y

Y 2
for any Y > 0. (1.13)

Note that the atomic pressure and associated specific internal energy are interre-
lated through

pA =
2
3
�eA, (1.14)

which is a universal relation to be satisfied by any monoatomic gas (see Eliezer et
al. [10]). As a matter of fact, it is a routine matter that (1.14) is compatible with
Gibbs’ relation (1.4) if and only if pA takes the specific form introduced in (1.10).
The reader interested in more information on the physical background of (1.10–
1.13) may consult the monographs by Müller and Ruggeri [24] or Oxenius [25].

The viscous stress tensor S will satisfy Newton’s rheological law

S = μ(ϑ)
(
∇xu+∇⊥x u− 2

3
divxuI

)
, (1.15)

where we have deliberately omitted the bulk viscosity component, assumed zero
for plasmas.

The heat flux q is given through Fourier’s law

q = −κ(ϑ)∇xϑ, (1.16)



126 E. Feireisl and A. Novotný

where, in accordance with the basic idea pursued here, the heat conductivity is
substantially enhanced by radiation, specifically,

κ(ϑ) = κ0(ϑ) + dϑ3, d > 0 (1.17)

(see [25]).
In the context of variational solutions considered in this paper, the entropy

production rate σ is understood as a non-negative quantity (a measure) satisfying

σ ≥ 1
ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
=
μ(ϑ)
2ϑ

∣∣∣∇xu+∇⊥x u− 2
3
divxuI

∣∣∣2+κ(ϑ)
ϑ2

|∇xϑ|2. (1.18)

It is easy to check that (1.18) reduces to equality as soon as all quantities solving
(1.1–1.7) are smooth (see [13]).

1.3. Scaling

The main goal of the present paper is to introduce a small parameter ε > 0 in order
to rescale system (1.1–1.9) in accordance with the characteristic properties of the
astrophysical plasma discussed above, and to identify the limit problem when ε
tends to zero.

As a matter of fact, there are different possibilities of scaling giving rise
to the same underlying system of dimensionless equations. Keeping in mind the
characteristic features of the physical system, we suppose:

• the characteristic temperature is proportional to ε−
2
3 ;

• the characteristic time is large of order ε−
2
3 ;

• the characteristic velocity is low of order ε
2
3 so that the characteristic length

is of order 1;
• the characteristic values of the viscosity coefficient μ as well as of the heat
conductivity κ0 are small of order ε

2
3 , meaning that ε−

2
3μ(ε−

2
3 ϑ) ≈ μ(ϑ) and

ε−
2
3κ0(ε−

2
3ϑ) ≈ κ(ϑ);

• the characteristic value of η entering into the boundary condition for the heat
flux is ε−

1
3 , meaning that ε

1
3 η(ε−

2
3ϑ) ≈ η(ϑ);

• the gravitational constant g is of order ε−
2
3 ;

• a ≈ ε3, d ≈ ε 2
3 .

Thus system (1.1–1.9), rewritten in terms of the above characteristic values
of the physical quantities, reads as follows:

∂t�+ divx(�u) = 0, (1.19)

∂t(�u) + divx(�u⊗ u) +
1
ε2
∇xpε(�, ϑ) = divxS− 1

ε2
�j, (1.20)

∂t(�sε(�, ϑ)) + divx(�sε(�, ϑ)u) + divx

(qε

ϑ

)
= σε, (1.21)

d
dt

∫
Ω

[ε2
2
�|u|2 + �eε(�, ϑ) + �x3

]
dx =

∫
{x3=1}

η
ϑ− ϑ
ε

dSx, (1.22)
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with the thermodynamic functions

pε(�, ϑ) =
ϑ

5
2

ε
P
(
ε
�

ϑ
3
2

)
+
ε

3
ϑ4, (1.23)

eε(�, ϑ) =
3
2
ϑ

5
2

ε�
P
(
ε
�

ϑ
3
2

)
+ εϑ4, (1.24)

sε(�, ϑ) = S
(
ε
�

ϑ
3
2

)
− S(ε) + ε4

3
ϑ3

�
, (1.25)

and the heat flux

qε = −
(
κ0(ϑ) +

1
ε2
ϑ3

)
∇xϑ. (1.26)

Accordingly, the entropy production rate takes the form

σε ≥
1
ϑ

(
ε2S : ∇xu−

qε · ∇xϑ

ϑ

)
(1.27)

= ε2
μ(ϑ)
2ϑ

∣∣∣∇xu+∇⊥x u− 2
3
divxuI

∣∣∣2 + κ0(ϑ)
ϑ2

|∇xϑ|2 +
1
ε2
ϑ|∇xϑ|2.

System (1.19–1.27) is supplemented with the boundary conditions (1.6–1.7),
condition (1.8) being replaced by

qε · n = η(ϑ)
ϑ− ϑ
ε

∣∣∣
{x3=1}

. (1.28)

1.4. Singular limit

The scaling in (1.20), (1.26) corresponds to the situation when the Mach, Froude,
and Péclet numbers are simultaneously proportional to a small parameter ε (cf.
the survey paper by Klein et al. [19]). Our main aim is to perform the asymptotic
limit in (1.19–1.28) for ε → 0 and to identify the limit (target) problem. More
specifically, we show (see Theorem 3.1 below) that for a family {�ε,uε, ϑε}ε>0 of
solutions to the complete Navier-Stokes-Fourier system (1.19–1.28)

uε → U, �ε → �̃, ϑε → ϑ, and
ϑε − ϑ
ε2

→ Θ as ε→ 0,

where U, �̃, ϑ, Θ solve the problem:

∂t(�̃U) + divx(�̃U×U) + �̃∇xΠ = μ(ϑ)(ΔU +
1
3
∇xdivxU)− �̃

ϑ
Θj, (1.29)

β�̃U3 + ϑ
3
ΔΘ = 0, (1.30)

divx(�̃U) = 0. (1.31)

System (1.29–1.31) was introduced by Chandrasekhar [6] as a simple alter-
native to the Oberbeck-Boussinesq system in the case when both the Froude and
Prandtl numbers approach zero. More recently, Ligniéres [20] used the same idea
in order to describe the flow dynamics in stellar radiative zones. Here U denotes
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the fluid velocity, Θ is the temperature, and β is a positive constant. The density
�̃ = �̃(x3) obeys the hydrostatic balance equation

∇xp(�̃, ϑ) = −�̃j, (1.32)

where ϑ > 0 plays the role of a reference temperature. Equation (1.31) represents
the so-called anelastic constraint replacing the more common incompressibility
condition divxU = 0.

Similarly to (1.6), the velocity field U obeys the complete slip boundary
conditions

U · n|∂Ω = 0, [Tn]× n|∂Ω = 0, (1.33)
with the viscous stress tensor

T = μ(ϑ)
(
∇xU+∇xU⊥ − 2

3
divxU

)
,

while the temperature Θ satisfies the homogeneous Neumann boundary conditions

∇xΘ · n|∂Ω = 0, (1.34)

Our approach leans on the concept of weak solutions to the complete Navier-
Stokes-Fourier system introduced in [11] and further developed in [13]. Similarly to
the results by Bresch et al. [5], Desjardins et al. [9], Lions and Masmoudi [21] (for
more references see the survey paper by Masmoudi [22]) devoted to the barotropic
Navier-Stokes system, our theory is based on the uniform bounds available in the
framework of weak solutions defined on an arbitrarily large time interval (0, T ).
Note that there is an alternative approach proposed in the pioneering paper by
Klainerman and Majda [18] followed by Danchin [7], [8], Hoff [17], Schochet [27],
[26], among others, which is based on uniform estimates in Sobolev spaces of higher
order imposing severe restrictions on the length of the associated existence time
interval (0, T ). The most relevant results for the complete Navier-Stokes-Fourier
system in this direction were obtained quite recently by Alazard [1], [2].

The paper is organized as follows. To begin with, we review the standard ma-
terial concerning the proper definition, existence, and basic properties of the weak
solutions to the full Navier-Stokes-Fourier system (see Section 2). Main results
are formulated in Section 3. In Section 4, we establish the so-called dissipation
inequality and deduce uniform estimates for the family of solutions {�ε,uε, ϑε}ε>0

independent of ε→ 0. To this end, we introduce a modified Helmholtz free energy
functional in the form

Hϑ(�, ϑ) = �e(�, ϑ)− ϑ�s(�, ϑ). (1.35)

Preliminary results on convergence towards the target system are established in
Section 5. The bulk of the paper consists in analysis of the acoustic equation
governing the time evolution of the gradient component of the velocity field (see
Section 6). Although the underlying ideas are reasonably intuitive, the analysis
becomes rather technical. This is mainly because the wave speed varies with the
vertical coordinate as a consequence of the strong stratification in the fluid. Note
that the relevant mathematical theory was developed by Wilcox [28] and sub-
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sequently used in [12] in order to study the low Mach-Froude number limit for
isentropic fluids. Similar results were obtained independently by Masmoudi [23].
In this context, condition (1.31) is called an anelastic constraint, appearing in most
of the simplified models of strongly stratified fluids. The proof of the main result is
completed in Section 7, where we establish convergence of the temperature. Since
the Péclet number is of the same order as the Mach number, the limit tempera-
ture Θ is recovered, being proportional to the ε2−term in the (formal) asymptotic
expansion of ϑ with respect to ε.

2. Preliminaries

We shall say that a trio {�,u, ϑ} is a weak solution of problem (1.1–1.9) on a time
interval (0, T ) satisfying the initial conditions

�(0, ·) = �0, u(0, ·) = u0, ϑ(0, ·) = ϑ0 (2.1)

if ⎧⎪⎪⎨⎪⎪⎩
� ≥ 0, � ∈ L∞(0, T ;L 5

3 (Ω)),

u ∈ L2(0, T ;W 1,2(Ω;R3)), u · n|∂Ω = 0,

ϑ > 0 a.a. in (0, T )× Ω, ϑ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

⎫⎪⎪⎬⎪⎪⎭ (2.2)

and the following integral identities are satisfied:∫ T

0

∫
Ω

[
�B(�)∂tϕ+ �B(�)u · ∇xϕ− b(�)divxuϕ

]
dx dt = −

∫
Ω

�0B(�0)ϕ(0, ·) dx
(2.3)

for any test function ϕ ∈ D([0, T )× Ω), and any b,

b ∈ L∞ ∩ C[0,∞), B(�) = B(1) +
∫ �

1

b(z)
z

dz; (2.4)∫ T

0

∫
Ω

[
�u · ∂tϕ+ �u⊗ u : ∇xϕ+ p(�, ϑ)divxϕ

]
dx dt (2.5)

=
∫ T

0

∫
Ω

[
S : ∇xϕ+ �gϕ3

]
dx dt−

∫
Ω

�0u0ϕ(0, ·) dx,

for any test function ϕ ∈ D([0, T );D(Ω;R3)), ϕ · n|∂Ω = 0, where

S = μ
(
∇xu+∇⊥x u− 2

3
divxuI

)
; (2.6)∫ T

0

∫
Ω

[
�s(�, ϑ)∂tϕ+ �s(�, ϑ)u · ∇xϕ+

q
ϑ
· ∇xϕ

]
dx dt (2.7)

+
∫ T

0

∫
Ω

1
ϑ

[
S : ∇xu−

q · ∇xϑ

ϑ

]
ϕdx dt−

∫ T

0

∫
{x3=1}

η

ϑ
(ϑ− ϑ) dSx dt

≤ −
∫
Ω

�0s(�0, ϑ0)ϕ(0, ·) dx
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for any ϕ ∈ D([0, T );D(Ω)), ϕ ≥ 0, where

q = −κ(ϑ)∇xϑ; (2.8)

∫
Ω

[1
2
�|u|2 + �e(�, ϑ) + �gx3

]
(τ) dx (2.9)

=
∫
Ω

[1
2
�0|u0|2 + �0e(�0, ϑ0) + �0xg3

]
dx+

∫ τ

0

∫
{x3=1}

η(ϑ− ϑ) dSx dt

for a.a. τ ∈ (0, T ).
The existence of the weak solutions in the sense of the above definition for any

finite energy initial data {�0,u0, ϑ0} can be established similarly to [13] provided
the constitutive equations are similar to those introduced in Section 1.3.

3. Main results

Having introduced the necessary preliminary material we are in a position to state
our main result.

Theorem 3.1. Let {�ε,uε, ϑε}ε>0 be a family of weak solutions to the rescaled
system (1.19–1.22), supplemented with the boundary conditions (1.6), (1.7), (1.28),
in the sense specified in Section 2, where

• the quantities pε, eε, sε are given through (1.23–1.25), and, in addition,

P (Y ) = βY, β > 0 for all 0 ≤ Y ≤ Y , (3.1)

lim
Y→∞

P (Y )
Y

5
3

= P∞ > 0, (3.2)

and the thermodynamics stability hypothesis

P ′(Y ) > 0, −∞ < inf
y>0
yS′(y) ≤ Y S′(Y ) < 0 (3.3)

holds for all Y > 0;
• the viscous stress tensor S is given by (1.15), the heat flux qε satisfies (1.26),

with

0 < μ(1 + ϑ) ≤ μ(ϑ) ≤ μ(1 + ϑ), (3.4)

0 < κ ≤ κ0(ϑ) ≤ κ(1 + ϑ) (3.5)

and the coefficient η in equation (1.28) verifies

0 < ηϑ ≤ η(ϑ) ≤ ηϑ (3.6)

for all ϑ > 0, where μ, μ, κ, κ, η, η are positive constants;
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• the initial data satisfy

�0 = �0,ε = �̃+ ε�
(1)
0,ε, u0 = u0,ε, ϑ0 = ϑ0,ε = ϑ+ εϑ

(1)
0,ε, (3.7)

with
{�(1)ε,0}ε>0, {|uε,0|}ε>0, {ϑ(1)ε,0}ε>0 bounded in L∞(Ω), (3.8)∫

Ω

�
(1)
ε,0 dx = 0 for all ε→ 0, (3.9)

where ϑ is a positive constant and �̃, ϑ solve the hydrostatic balance equation

∇xpε(�̃, ϑ) = −�̃j in Ω. (3.10)

Then, at least for a suitable subsequence,

�ε → �̃ in L∞(0, T ;L
5
3 (Ω)) ∩ C([0, T ];Lq(Ω)) for all 1 ≤ q < 5

3
,

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),
ϑε → ϑ in L2(0, T ;W 1,2(Ω)),

and

∇x

(ϑε − ϑ
ε2

)
→ ∇xΘ weakly in L1((0, T )× Ω;R3),

where �̃, U, ϑ, Θ represent a weak solution to problem (1.29–1.34), supplemented
with the initial condition

U(0, ·) = weak limε→0H�̃[�̃u0,ε], (3.11)

where the symbol H�̃ denotes a “weighted” Helmholtz projection introduced in
(6.12), (6.13).

Hypothesis (3.1) asserts that the fluid behaves like a perfect gas governed
by the state equation p = β�ϑ provided the argument �/ϑ3/2 is bounded by Y ,
while relation (3.2) characterizes a mixture of monoatomic gases, where at least
one constituent is a Fermi gas, in the degenerate area of large densities and/or
low temperature (see Müller and Ruggeri [24] for more details on the physical
background).

The thermodynamics stability hypothesis (3.4) states that both compress-
ibility ∂�p, and the specific heat at constant volume ∂ϑe, are strictly positive. In
particular, it follows that problem (1.19–1.22) admits a unique static solution �̃,

∇xpε(�̃, ϑ) = −�̃j in Ω,
∫
Ω

�̃ dx =M, �̃ ≥ 0, (3.12)

for any given ϑ > 0, M ≥ 0. Note that, in accordance with hypothesis (3.1),

�̃ = c(ϑ,M) exp
(
− x3
βϑ

)
as soon as ε > 0 is small enough. Thus, without loss of generality, we shall assume
β = 1, ϑ = 1, and M > 0 have been chosen in such a way that

�̃ = exp(−x3). (3.13)
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It is worth noting that the thermodynamics stability hypothesis (3.3) implies linear
stability of the static solution �̃, ϑ of system (1.19–1.22) (see Bechtel et al. [4]).

The rest of the paper is devoted to the proof of Theorem 3.1. As already
pointed out, there are two fundamental issues to be addressed: (i) stability, or
uniform estimates, of the family {�ε,uε, ϑε}ε>0, (ii) possible time oscillations of
the acoustic waves, meaning the gradient part in the Helmholtz decomposition of
the velocity fields {uε}ε>0. As we will see in the next section, the thermodynamics
stability hypothesis (3.3), together with Gibbs’ relation (1.4), are sufficient for
the family {�ε,uε, ϑε}ε>0 to be bounded in the function spaces that are basically
determined by a priori estimates in the framework of finite-energy weak solutions.

To simplify notation, it seems convenient to decompose each quantity hε =
hε(t, x) as

h = [h]ess + [h]res,
with the “essential” part [h]ess given as

[h]ess = h char{(t, x) | � < �ε(t, x) < �, ϑ/2 < ϑε(t, x) < 2ϑ}, (3.14)

where
0 < 2� ≤ inf

x
�̃(x) ≤ sup

x
�̃(x) ≤ �/2. (3.15)

Accordingly, the “residual” part is determined as

[h]res = h− [h]ess. (3.16)

Clearly, both the residual and essential parts depend on ε.

4. Uniform estimates

4.1. Total mass conservation

As the densities �ε satisfy (2.3), we have �ε ∈ Cweak([0, T ];L
5
3 (Ω)), and, taking

b ≡ 0 we get, in accordance with hypotheses (3.8), (3.9),

M0 =
∫
Ω

�̃ dx =
∫
Ω

�ε(t, ·) dx for all t ∈ [0, T ]. (4.1)

In other words, the total mass M0 of the fluid is a constant of motion.

4.2. Total dissipation balance

The entropy balance formulated through (1.22) holds in the weak sense specified
in (2.7). In particular, in view of the standard Riesz representation theorem, the
entropy production rate σε can be interpreted as a non-negative measure σε ∈
M+([0, T ]× Ω) satisfying∫

Ω

�εsε(�ε, ϑε)(τ, ·) dx− σε[[0, τ ]× Ω] +
∫ τ

0

∫
{x3=1}

η(ϑε)
ϑε

ϑε − ϑ
ε

dSx dt

=
∫
Ω

�0,εsε(�0,ε, ϑ0,ε) dx for a.a. τ ∈ (0, T ), (4.2)
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where, in accordance with (1.27),

σε ≥ ε2
μ(ϑε)
2ϑε

∣∣∣∇xuε+∇⊥x uε−
2
3
divxuεI

∣∣∣2+ κ0(ϑε)
ϑ2ε

|∇xϑε|2+
1
ε2
ϑε|∇xϑε|2. (4.3)

Combining (4.2) with the total energy equality (1.22) we arrive at the total
dissipation balance in the form∫

Ω

[1
2
�ε|uε|2 +

1
ε2
Hε

ϑ
(�ε, ϑε) +

1
ε2
�εx3

]
(τ, ·) dx (4.4)

+
ϑ

ε2
σε[[0, τ ]× Ω] +

∫ τ

0

∫
{x3=1}

η(ϑε)
ϑε

(ϑε − ϑ)2
ε3

dSx dt

=
∫
Ω

[1
2
�0,ε|u0,ε|2 +

1
ε2
Hε

ϑ
(�ε,0, ϑε,0) +

1
ε2
�0,εx3

]
dx for a.a. τ ∈ (0, T ),

where we have set
Hε

ϑ
(�, ϑ) = �eε(�, ϑ)− ϑ�sε(�, ϑ), (4.5)

with eε, sε being introduced in (1.24), (1.25).
Our next goal is to establish certain coercivity properties of the mapping

[�, ϑ] �→ Hε
ϑ
(�, ϑ) = �eε(�, ϑ)− ϑ�sε(�, ϑ).

To this end, write

Hε
ϑ
(�, ϑ) = Hε

ϑ
(�, ϑ) +Hε

ϑ
(�, ϑ)−Hε

ϑ
(�, ϑ), (4.6)

where, by virtue of Gibbs’ relation (1.4),

∂2Hε
ϑ
(�, ϑ)

∂�2
=
1
�

∂pε(�, ϑ)
∂�

, (4.7)

in other words,
∂Hε

ϑ
(�, ϑ)

∂�
=

∫ �

1

1
z

∂pε(z, ϑ)
∂�

dz + c(ϑ).

Consequently, seeing that �̃ solves the static problem (3.12) we get

∂Hε
ϑ
(�̃, ϑ)
∂�

= −x3 + c(�̃, ϑ);

whence

Hε
ϑ
(�ε, ϑε) + �εx3 = Hε

ϑ
(�ε, ϑε)−Hε

ϑ
(�ε, ϑ) +Hε

ϑ
(�ε, ϑ)

− (�ε − �̃)
∂Hε

ϑ
(�̃, ϑ)

∂�
+ c(�̃, ϑ)�ε − �̃

∂Hε
ϑ
(�̃, ϑ)

∂�
,

while

Hε
ϑ
(�ε,0, ϑε,0) + �ε,0x3 = Hε

ϑ
(�0,ε, ϑ0,ε)−Hε

ϑ
(�0,ε, ϑ) +Hε

ϑ
(�0,ε, ϑ)

− (�0,ε − �̃)
∂Hε

ϑ
(�̃, ϑ)

∂�
+ c(�̃, ϑ)�0,ε − �̃

∂Hε
ϑ
(�̃, ϑ)

∂�
.
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Thus the dissipation balance (4.4) can be rewritten in the form

1
2

∫
Ω

1
2
�ε|uε|2(τ, ·) dx+

∫
Ω

[Hε
ϑ
(�ε, ϑε)−Hε

ϑ
(�ε, ϑ)

ε2

]
(τ, ·) dx (4.8)

+
1
ε2

∫
Ω

[
Hε

ϑ
(�ε, ϑ)− (�ε − �̃)

∂Hε
ϑ
(�̃, ϑ)

∂�
−Hε

ϑ
(�̃, ϑ)

]
(τ, ·) dx

+
ϑ

ε2
σε[[0, τ ]× Ω] +

∫ τ

0

∫
{x3=1}

1
ϑε

(ϑε − ϑ)2
ε3

dSx dt

=
∫
Ω

1
2
�0,ε|u0,ε|2 dx+

∫
Ω

[Hε
ϑ
(�0,ε, ϑ0,ε)−Hε

ϑ
(�0,ε, ϑ)

ε2

]
dx

+
1
ε2

∫
Ω

[
Hε

ϑ
(�0,ε, ϑ)− (�0,ε − �̃)

∂Hε
ϑ
(�̃, ϑ)

∂�
−Hε

ϑ
(�̃, ϑ)

]
dx

for a.a. τ ∈ (0, T ).

Now, as a direct consequence of (1.4), we have

∂Hε
ϑ
(�, ϑ)

∂ϑ
= �(ϑ− ϑ)∂sε(�, ϑ)

∂ϑ
, (4.9)

which, together with (4.7) and the thermodynamics stability hypothesis (3.3),
yields ⎧⎪⎪⎨⎪⎪⎩

Λ(ϑ− ϑ)2 ≤
[

Hε
ϑ
(�,ϑ)−Hε

ϑ
(�,ϑ)

ε2

]
≤ Λ(ϑ− ϑ)2

provided

0 < � ≤ � ≤ �, ϑ/2 ≤ ϑ ≤ 2ϑ,

⎫⎪⎪⎬⎪⎪⎭ (4.10)

and⎧⎪⎪⎨⎪⎪⎩
Λ(�− �̃)2 ≤

[
Hε

ϑ
(�, ϑ)− (�− �̃)∂Hε

ϑ
(�̃,ϑ)

∂� −Hε
ϑ
(�̃, ϑ)

]
≤ Λ(�− �̃)2

as soon as

0 < � ≤ � ≤ �

⎫⎪⎪⎬⎪⎪⎭ (4.11)

for positive constants Λ, Λ, with �, � introduced in (3.15). It follows from (1.23–
1.25), and, notably (3.1), that the quantity Hε

ϑ
is in fact independent of ε provided

�, ϑ satisfy (4.11) and ε > 0 is small enough. In particular, in agreement with
hypotheses (3.8), (3.9), we deduce that the expression on the right-hand side of
(4.8) is bounded uniformly for ε→ 0.

Now relations (1.23), (4.7) give rise to

∂2Hε
ϑ
(�, ϑ)

∂�2
=
ϑ

�
P ′

(
ε
�

ϑ
3
2

)
≥ c(ϑ)

�
, (4.12)
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where we have used hypotheses (3.1), (3.2). Thus the dissipation inequality (4.8)
yields

ess sup
t∈(0,T )

∥∥∥[�ε − �
ε

]
ess

∥∥∥
L2(Ω)

≤ c (4.13)

and

ess sup
t∈(0,T )

∫
Ω

|[�ε log(�ε)]res| dx ≤ ε2c, (4.14)

where the “essential” and “residual” components have been introduced in (3.14),
(3.16).

Similarly,

ess sup
t∈(0,T )

∥∥∥[ϑε − ϑ
ε

]
ess

∥∥∥
L2(Ω)

≤ c, (4.15)

ess sup
t∈(0,T )

∫
Ω

�ε|uε|2 dx ≤ c, (4.16)

and, as a consequence of the presence of “radiation” terms in (1.23–1.25),

ess sup
t∈(0,T )

∫
Ω

|[ϑε]4res| dx ≤ εc. (4.17)

In addition, using the coercivity properties ofHε
ϑ
stated in (4.7), (4.9–4.11) we

deduce that the measure of the “residual” set is small of order ε2, more specifically,

ess sup
t∈(0,T )

∫
Ω

[1]res dx ≤ cε2. (4.18)

Furthermore, we have∫ T

0

∫
{x3=1}

∣∣∣ϑε − ϑ
ε

∣∣∣2 dSx dt ≤ cε, (4.19)

and
σε[[0, T ]× Ω] ≤ cε2, (4.20)

where, in view of (4.3) and hypotheses (3.4), (3.5), the latter bound gives rise to∫ T

0

∫
Ω

|∇xuε +∇⊥x uε −
2
3
divxuεI|2 dx dt ≤ c, (4.21)∫ T

0

∫
Ω

ϑε

∣∣∣∇x

(ϑε − ϑ
ε2

)∣∣∣2 dx dt ≤ c, (4.22)

and ∫ T

0

∫
Ω

∣∣∣∇x

( log(ϑε)− log(ϑ)
ε

)∣∣∣2 dx dt ≤ c. (4.23)

Estimate (4.21), combined with (4.13), (4.15), and Korn’s and Poincaré’s
inequalities, yields

{uε}ε>0 bounded in L2(0, T ;W 1,2(Ω;R3)). (4.24)
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By the same token, estimates (4.15), (4.18), (4.22), (4.23) give rise to{ϑε − ϑ
ε

}
ε>0

bounded in L2(0, T ;W 1,2(Ω)), (4.25){ log(ϑε)− log(ϑ)
ε

}
ε>0

bounded in L2(0, T ;W 1,2(Ω)). (4.26)

In order to derive uniform estimates on the residual components, we need the
following assertion.

Lemma 4.1. Let
Hϑ(�, ϑ) = �e(�, ϑ)− ϑ�s(�, ϑ), ϑ > 0,

where the functions e, s obey Gibb’s equation (1.4), together with the thermody-
namics stability hypotheses

∂p(�, ϑ)
∂�

> 0,
∂e(�, ϑ)
∂ϑ

> 0.

Then

Hϑ(�, ϑ) ≥
1
4

(
�e(�, ϑ) + ϑ�|s(�, ϑ)|

)
−

∣∣∣(�− �̃)∂H2ϑ

∂�
(�̃, 2ϑ) +H2ϑ(�̃, 2ϑ)

∣∣∣
for all positive �, ϑ and any �̃ > 0.

Proof. As the result obviously holds for s(�, ϑ) ≤ 0, we focus on the case s(�, ϑ) >
0. By virtue of (4.7), (4.9), we get

H2ϑ(�, ϑ) ≥ (�− �̃)∂H2ϑ

∂�
(�̃, 2ϑ) +H2ϑ(�̃, 2ϑ);

whence

Hϑ(�, ϑ) =
1
2
�e(�, ϑ) +

1
2
H2ϑ(�, ϑ)

≥ 1
2
�e(�, ϑ) +

1
2

(
(�− �̃)∂H2ϑ

∂�
(�̃, 2ϑ) +H2ϑ(�̃, 2ϑ)

)
,

and, similarly,

Hϑ(�, ϑ) = ϑ�s(�, ϑ) +H2ϑ(�, ϑ)

≥ ϑ�s(�, ϑ) + (�− �̃)∂H2ϑ

∂�
(�̃, 2ϑ) +H2ϑ(�̃, 2ϑ).

Summing up the last two inequalities we obtain the desired conclusion. �
At this stage, estimates (4.8), (4.14) can be combined with the conclusion of

Lemma 4.1 in order to deduce that

ess sup
t∈(0,T )

∫
Ω

[�εeε(�ε, ϑε) + �ε|sε(�ε, ϑε)|]res dx dt ≤ cε2. (4.27)

Thus, finally, hypotheses (3.1), (3.2), with (1.24), imply

ess sup
t∈(0,T )

∫
Ω

[�ε]
5
3
res dx ≤ cε

4
3 , (4.28)
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and

ess sup
t∈(0,T )

∫
Ω

[�εϑε]res dx ≤ cε2. (4.29)

4.3. Pressure estimates

In order to control the quantity pε − �εϑε in the limit for ε → 0, we evoke the
technique developed in [14] in order to obtain an additional piece of information
concerning integrability of the pressure.

The principal idea is to consider the test functions

�ϕ(t, x) = ψ(t)∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
, ψ ∈ D(0, T ),

in the variational formulation of the momentum equation (2.5). Here the symbol
Δ−1n stands for the inverse of the Laplace operator on the domain Ω supplemented
with the homogeneous Neumann boundary conditions on ∂Ω.

After a bit tedious but straightforward manipulation, we obtain

1
ε2

∫ T

0

ψ

∫
Ω

pε(�ε, ϑε)b(�ε) dx dt

=
1

ε2|Ω|

∫ T

0

ψ

∫
Ω

pε(�ε, ϑε) dx
∫
Ω

b(�ε) dx dt

+
1
ε2

∫ T

0

ψ

∫
Ω

�εj · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx dt+ Iε, (4.30)

where

Iε =
∫ T

0

∫
Ω

(
Sε : ∇x�ϕ− �εuε ⊗ uε : ∇x�ϕ dx

)
dt

−
∫ T

0

∂tψ

∫
Ω

�εuε · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx dt

+
∫ T

0

ψ

∫
Ω

�εuε · ∇xΔ−1n divx(b(�ε)uε) dx dt

+
∫ T

0

ψ

∫
Ω

�εuε · ∇xΔ−1n

[
(�εb

′(�ε)− b(�ε))divxuε

− 1
|Ω|

∫
Ω

(b(�ε)− b′(�ε)�ε)divxuε dx
]
dx dt.

Here we have used the renormalized continuity equation (2.3) in order to compute

∂tb(�ε) = −div(b(�ε)uε)− (�εb
′(�ε)− b(�ε))divxuε in D′((0, T )× Ω). (4.31)

Taking the uniform estimates established in the preceding section into ac-
count we can show, exactly as in [14], that all integrals contained in Iε are bounded
uniformly for ε→ 0 as soon as

|b(�)|+ |�b′(�)| ≤ c�γ for γ > 0 small enough. (4.32)
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In order to comply with (4.32), let us take b ∈ C∞[0,∞) such that

b(�) =

⎧⎪⎪⎨⎪⎪⎩
0 for 0 ≤ � ≤ 2�,

∈ [0, �γ ] for 2� < � ≤ 3�,

�γ if � > 3�,

(4.33)

with γ > 0 sufficiently small to be specified below. In particular, is easy to check
that

b(�ε) = b([�ε]res);
whence, in accordance with (4.14),

ess sup
t∈(0,T )

∫
Ω

b(�ε) dx ≤ cε2 (4.34)

as soon as 0 < γ < 1.
Furthermore, since �̃, ϑ are interrelated through (3.10), we have

1
ε2

∫
Ω

�εj · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx (4.35)

=
1
ε

∫
Ω

[�ε − �̃
ε

]
ess

j · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx

+
∫
Ω

[�ε − �̃
ε2

]
res

j · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx

− 1
ε2

∫
Ω

�̃ ϑ
(
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
)
dx.

Using the standard Lp-elliptic estimates for Δn we deduce
1
ε

∣∣∣ ∫
Ω

[�ε − �̃
ε

]
ess

j · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx

∣∣∣ (4.36)

≤ c
ε
ess sup

t∈(0,T )

∥∥∥[�ε − �̃
ε

]
ess

∥∥∥
L2(Ω)

ess sup
t∈(0,T )

∥∥∥b(�ε)−
1
|Ω|

∫
Ω

b(�ε) dx
∥∥∥

L
6
5 (Ω)

,∣∣∣ ∫
Ω

[�ε − �̃
ε2

]
res

j · ∇xΔ−1n

[
b(�ε)−

1
|Ω|

∫
Ω

b(�ε) dx
]
dx

∣∣∣ (4.37)

≤ ess sup
t∈(0,T )

∥∥∥[�ε − �̃
ε2

]
res

∥∥∥
L1(Ω)

ess sup
t∈(0,T )

∥∥∥b(�ε)−
1
|Ω|

∫
Ω

b(�ε) dx
∥∥∥

L4(Ω)
,

while the last integral on the right-hand side of (4.35) is bounded because of (4.34).
In order to conclude, we observe that estimate (4.14) yields∫

Ω

|b(�ε)|
6
5 dx ≤

∫
Ω

[�ε]
6β
5
res dx ≤

∫
Ω

[�ε log(�ε)]res dx ≤ cε2

as soon as β ≤ 5/6. Thus we obtain, combining estimates (4.30–4.37), that∫ T

0

∫
Ω

pε(�ε, ϑε)b(�ε) dx dt ≤ ε2c, (4.38)

with b given by (4.33) provided γ ∈ (0, 56 ).
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5. Convergence

It follows from estimates (4.13), (4.16), (4.24), and (4.27) that⎧⎪⎪⎨⎪⎪⎩
�ε → �̃ in L∞(0, T ;L

5
3 (Ω)),

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),

�εuε → �̃U weakly-∗ in L∞(0, T ;L 5
4 (Ω;R3)),

⎫⎪⎪⎬⎪⎪⎭ (5.1)

passing to suitable subsequences as the case may be. Clearly, we recover the bound-
ary conditions

U · n|∂Ω = 0,
and, taking b = 0 and letting ε → 0 in the renormalized equation of continuity
(2.3), we infer

divx(�̃U) = 0.

5.1. Pressure

Let us examine the pressure term pε that can be written as

pε(�ε, ϑε) = β�εϑε +
[ϑ 5

2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

]
+
ε

3
(ϑ4ε − ϑ

4
).

Our aim is to show that pε ≈ β�εϑε in the asymptotic limit ε→ 0.
To begin with, the radiative component can be decomposed as

ϑ4ε − ϑ
4
= [ϑ4ε − ϑ

4
]res + [ϑ4ε − ϑ

4
]ess,

where, by virtue of the uniform estimates (4.17), (4.25),∫ T

0

∫
Ω

|[ϑ4ε − ϑ
4
]res| dx dt ≤ c

∫ T

0

∫
Ω

|ϑε − ϑ|([ϑε]3res + [ϑ]3res)| dx dt

≤ ‖ϑε − ϑ‖L2(0,T ;L4(Ω))ess sup
t∈(0,T )

(
‖[ϑε]3res‖L

4
3 (Ω)

+ ‖[ϑ]3res‖L
4
3 (Ω)

)
≤ cε 7

4 .

In order to control the essential component of the radiation pressure, we first
recall Poincaré’s inequality

‖ϑ
3
2
ε −ϑ

3
2 ‖2L2((0,T )×Ω) ≤ c

[ ∫ T

0

∫
Ω

ϑε|∇xϑε|2 dx+
( ∫ T

0

∫
{x3=1}

|ϑ
3
2
ε −ϑ

3
2 | dx dt

)2]
,

(5.2)
where ( ∫ T

0

∫
{x3=1}

|ϑ
3
2
ε − ϑ

3
2 | dx dt

)2
≤

∫ T

0

∫
{x3=1}

|ϑε − ϑ|2 dx dt
∫ T

0

∫
{x3=1}

(ϑε + ϑ)dx dt.

Thus we can use the uniform estimates (4.19), (4.22) in order to conclude that

‖[ϑ4ε − ϑ
4
]ess‖L2((0,T )×Ω) ≤ c‖[ϑ

3
2
ε − ϑ

3
2 ]ess‖L2((0,T )×Ω) ≤ cε

3
2 . (5.3)
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Accordingly, the radiation component of the pressure appearing in the rescaled
momentum equation (1.20) tends to zero for ε→ 0, specifically,∥∥∥ϑ4ε − ϑ4

ε

∥∥∥
L1((0,T )×Ω)

≤ cε 1
2 . (5.4)

The next goal is to show that

1
ε2

[ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

]
→ 0 in L1((0, T )× Ω) for ε→ 0. (5.5)

In order to see that, we first evoke hypothesis (3.1) obtaining∫ T

0

∫
Ω

∣∣∣ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

∣∣∣ dx dt (5.6)

=
∫
{Y 2

3 ϑε≤ε
2
3 �

2
3
ε }

∣∣∣[ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

]
res

∣∣∣ dx dt
=

∫
{Y 2

3 ϑε≤ε
2
3 �

2
3
ε , �ε≤K}

∣∣∣[ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

]
res

∣∣∣ dx dt
+

∫
{Y 2

3 ϑε≤ε
2
3 �

2
3
ε , �ε>K}

∣∣∣[ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

]
res

∣∣∣ dx dt
for any K > 0 provided ε > 0 is small enough.

It follows from hypotheses (3.1), (3.2), combined with estimate (4.18), that∫
{Y 2

3 ϑε≤ε
2
3 �

2
3
ε , �ε≤K}

∣∣∣[ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− �εϑε

]
res

∣∣∣ dx dt ≤ c1(K)ε
2
3

∫ T

0

∫
Ω

1res dx

≤ c2(K)ε
8
3 . (5.7)

On the other hand, by virtue of (4.38) and hypotheses (3.1), (3.2) , we have∫
{�ε>K}

ε
2
3 �

5
3+γ
ε dx dt ≤

∫
{�ε>K}

ϑ
5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
�γ

ε dx dt ≤ cε2,

and, consequently,∫
{Y 2

3 ϑε≤ε
2
3 �

2
3
ε , �ε>K}

∣∣∣[ϑ 5
2
ε

ε
P
(
ε
�ε

ϑ
3
2
ε

)
− β�εϑε

]
res

∣∣∣ dx dt ≤ c1 ∫
{�ε>K}

ε
2
3 �

5
3
ε dx dt

≤ c2ε
2

Kγ
. (5.8)

Combining (5.6), together with (5.7), (5.8), we get (5.5). In view of (5.4),
(5.5), we conclude that

1
ε2
pε(�ε, ϑε) =

β

ε2
�εϑε + χε, where χε → 0 in L1((0, T )× Ω). (5.9)
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5.2. Driving term

Our next goal is to identify the driving force in (1.29). To this end, we rewrite the
corresponding term in (1.20) as follows:

1
ε2

∫ T

0

∫
Ω

[
β�εϑεdivxϕ− �εϕ3

]
dx dt (5.10)

=
β

ε2

∫ T

0

∫
Ω

ϑ
�ε

�̃
divx(�̃ϕ)dx dt+

β

ε2

∫ T

0

∫
Ω

�ε(ϑε − ϑ)divxϕdx dt,

where

β

ε2

∫ T

0

∫
Ω

�ε(ϑε − ϑ)divxϕdx dt

=
β

ε2

∫ T

0

∫
Ω

(�ε − �̃)(ϑε − ϑ)divxϕdx dt+
β

ε2

∫ T

0

∫
Ω

�̃(ϑε − ϑ)divxϕdx dt,

and, furthermore,

1
ε2
(�ε − �̃)(ϑε − ϑ) =

[�ε − �̃
ε

]
ess

[ϑε − ϑ
ε

]
ess

+
[�ε − �̃

ε

]
res

(ϑε − ϑ
ε

)
.

By virtue of (4.13), (5.3), we obtain∥∥∥[�ε − �̃
ε

]
ess

[ϑε − ϑ
ε

]
ess

∥∥∥
L1((0,T )×Ω)

≤ c
√
ε→ 0, (5.11)

while, in agreement with (4.25) and the standard imbedding W 1,2 ↪→ L6,∥∥∥[�ε − �̃
ε

]
res

(ϑε − ϑ
ε

)∥∥∥
L1((0,T )×Ω)

≤ c
∥∥∥[�ε − �̃

ε

]
res

∥∥∥
L2(0,T ;L

6
5 (Ω))

. (5.12)

On the other hand, by interpolation,

‖r‖
L

6
5 (Ω)

≤ ‖r‖
7
12
L1(Ω)‖r‖

5
12 (Ω)

L
5
3

;

whence, by virtue of the uniform estimates (4.14), (4.28),∥∥∥[�ε − �̃
ε

]
res

∥∥∥
Linfty(0,T ;L

6
5 (Ω))

≤ c
√
ε,

which, combined with (5.11), (5.12), yields

1
ε2
(�ε − �̃)(ϑε − ϑ)→ 0 in L1((0, T )× Ω). (5.13)

Finally,

β

ε2

∫ T

0

∫
Ω

�̃(ϑε − ϑ)divxϕdx dt

=
β

ε2

∫ T

0

∫
Ω

(ϑε − ϑ)divx(�̃ϕ)dx dt−
β

ε2

∫ T

0

∫
Ω

(ϑε − ϑ)∇x�̃ · ϕdx dt,
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where, furthermore,

β

ε2

∫ T

0

∫
Ω

(ϑε − ϑ)∇x�̃ · ϕdx dt (5.14)

=
β

ε2
1
Ω

∫ T

0

(∫
Ω

ϑε − ϑ dz
)∫

Ω

∇x�̃ · ϕ dx dt

+
β

ε2

∫ T

0

∫
Ω

(
ϑε −

1
|Ω|

∫
Ω

ϑε dz
)
∇x�̃ · ϕdx dt

= − β
ε2

1
Ω

∫ T

0

( ∫
Ω

ϑε − ϑ dz
)∫

Ω

log(�̃)divx(�̃ϕ) dx dt

+
β

ε2

∫ T

0

∫
Ω

(
ϑε −

1
|Ω|

∫
Ω

ϑε dz
)
∇x�̃ · ϕdx dt.

At this stage, our ultimate goal is to deduce uniform estimates on the quantity
1
ε2

(
ϑε −

1
|Ω|

∫
Ω

ϑε dz
)

appearing in the last integral in (5.14). To this end, we write√
ϑ
∇x(ϑε − ϑ)

ε2
=

√
ϑ−

√
ϑε

ε
∇x

(ϑε − ϑ)
ε

+
√
ϑε∇x

ϑε − ϑ
ε2

,

where, by virtue of (4.17), (4.25),{√ϑε −
√
ϑ

ε

}
ε>0

is bounded in L∞(0, T ;L1(Ω)) ∩ L2(0, T ;L6(Ω)).

Consequently, in accordance with (4.22), (4.25),{∇x(ϑε − ϑ)
ε2

}ε>0 is bounded in Lq((0, T )× Ω;R3) for a certain q > 1,

therefore, by virtue of Poincaré’s inequality,∥∥∥ϑε −
1
|Ω|

∫
Ω

ϑε dx
∥∥∥

Lq(0,T ;Lq(Ω))
≤ cε2 for a certain q > 1. (5.15)

5.3. Asymptotic limit in the equation of momentum

Summing up the results established in Sections 5.1, 5.2 we are allowed to let ε→ 0
in the rescaled momentum equation (1.20) in order to obtain an integral identity∫ T

0

∫
Ω

[
�̃U · ∂tϕ+ �̃ u⊗ u : ∇xϕ

]
dx dt (5.16)

=
∫ T

0

∫
Ω

[
S : ∇xϕ+

�̃

ϑ
Θϕ3

]
dx dt−

∫
Ω

�̃u0ϕ(0, ·) dx,

for any test function ϕ ∈ D([0, T );D(Ω;R3)), ϕ · n|∂Ω = 0, satisfying, in addition,

divx(�̃ϕ) = 0.
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Here, we have denoted

S = μ(ϑ)
(
∇xU+∇⊥x U− 2

3
divxUI

)
,

u× u = (weak− Lq) lim
ε→0

uε ⊗ uε, (5.17)

and, in accordance with (5.15),

Θ = (weak− Lq) lim
ε→0

ϑε − 1
|Ω|

∫
Ω ϑε dx

ε2
(5.18)

for a certain q > 1.
Note that the integral identity (5.16) represents a weak formulation of the

momentum equation (1.29) in the target system as soon as we can show that the
weak limit u⊗ u can be replaced by U⊗U. This step will be fully justified in the
following section.

6. Analysis of the acoustic waves

6.1. Acoustic equation

System (2.3), (2.5) can be written in the form∫ T

0

∫
Ω

[
ε
�ε − �̃
ε�̃

∂tϕ+ �̃
˜�εuε

�̃
∇x
ϕ

�̃

]
dx dt = −

∫
Ω

ε
�0,ε − �̃
ε�̃

ϕ(0, ·) dx (6.1)

for any ϕ ∈ D([0, T )× Ω),∫ T

0

∫
Ω

[
ε
�εuε

�̃
· ∂tϕ+ βϑ

�ε − �̃
ε�̃

divxϕ
]
dx dt (6.2)

=
∫
Ω

[
εhεdivx

ϕ

�̃
+ εGε : ∇x

ϕ

�̃
+ β�̃

ϑ− ϑε

ε
divx

ϕ

�̃

]
dx −

∫
Ω

ε
�0,εu0,ε
�̃

· ϕ(0, ·) dx

for any ϕ ∈ D([0, T )× Ω;R3), ϕ · n|∂Ω = 0, where we have written

hε =
1
ε2

(
β�εϑε − pε(�ε, ϑε)

)
+ β

�̃− �ε

ε

ϑε − ϑ
ε

,

Gε = Sε − �εuε ⊗ uε.

By virtue of (5.9), (5.13),

hε → 0 in L1((0, T )× Ω),

while

{Gε}ε>0 is bounded in Lq(0, T ;Lq(Ω;R3×3)) for a certain q > 1.

In addition, estimate (5.3) gives rise to∥∥∥[ϑε − ϑ
ε

]
ess

∥∥∥
L2((0,T )×Ω)

≤ c
√
ε,
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while (4.18), (4.25) yield ∥∥∥[ϑε − ϑ
ε

]
res

∥∥∥
L1((0,T )×Ω)

≤ cε.

Consequently, for the new variables

rε =
�ε − �̃
ε�̃

, Qε =
�εuε

�̃
, (6.3)

system (6.1), (6.2) can be rewritten in a concise form:∫ T

0

∫
Ω

[
εrε∂tϕ+ �̃Qε∇x

ϕ

�̃

]
dx dt = −

∫
Ω

εrε(0, ·)ϕ(0, ·) dx (6.4)

for any ϕ ∈ D([0, T )× Ω),∫ T

0

∫
Ω

[
εQε·∂tϕ+βϑrεdivxϕ

]
dx dt =

∫
Ω

[√
εHεdivx

ϕ

�̃

]
dx−

∫
Ω

εQε(0, ·)·ϕ(0, ·) dx
(6.5)

for any ϕ ∈ D([0, T )× Ω;R3), ϕ · n|∂Ω = 0, where

{Hε}ε>0 is bounded in L1((0, T )× Ω). (6.6)

Obviously, the integral identities (6.4), (6.5) represent a weak formulation
of a wave equation governing the time evolution of the acoustic waves studied
in the seminal paper by Schochet [26]. However, there are two fundamental new
ingredients in the analysis of system (6.4), (6.5):
• the wave speed of the acoustic waves depends effectively on the vertical co-
ordinate x3,

• the perturbation represented through term Hε is “large” of order
√
ε in com-

parison with the frequency of the acoustic waves, which is of order ε−1.

6.2. Spectral analysis

Following Wilcox [28] we consider an eigenvalue problem associated to (6.4), (6.5):

�̃∇x

(ω
�̃

)
= λV, βϑdivxV = λω in Ω, V · n|∂Ω = 0, (6.7)

or, equivalently,
−divx

[
�̃∇x

(ω
�̃

)]
= Λ�̃

(ω
�̃

)
in Ω, (6.8)

supplemented with the Neumann boundary condition

∇x

(ω
�̃

)
· n|∂Ω = 0, with λ2 = −Λβϑ. (6.9)

Similarly to Chapter 3 in [28], it is a routine matter to check that prob-
lem (6.8), (6.9) admits a complete system of real eigenfunctions {ωj,m}∞,mj

j=0,m=1,
together with the associated real eigenvalues Λj,m such that

m0 = 1, Λ0,1 = 0, ω0,1 = �̃,

0 < Λ1,1 = · · · = Λ1,m1(= Λ1) < Λ2,1 = · · · = Λ2,m2(= Λ2) < · · · ,
(6.10)
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where mj stands for the multiplicity of the eigenvalue Λj. The system of functions
{ωj,m}∞,mj

j=0,m=1 forms an orthonormal basis of the Hilbert space L
2
1/�̃(Ω) endowed

with the scalar product

〈v, w〉L2
1/�̃

(Ω) =
∫
Ω

vw
dx
�̃
.

Consequently, all solutions of (6.7) can be written as

λj = i
√
βϑΛj,

Vj,m = i
(√
βϑΛj

)−1
�̃∇x

(ωj,m

�̃

)
,

(6.11)

for j = 1, . . . ,m, and m = 1, . . . ,mj .

In addition, the eigenspace associated to the eigenvalue Λ0,1 = 0 coincides
with the space of solenoidal (divergenceless) functions.

At this stage, we introduce a “weighted” Helmholtz projection

H�̃[v] = v − �̃∇xΨ, H⊥
�̃ [v] = �̃∇xΨ, (6.12)

where Ψ is the unique solution of the Neumann problem

divx(�̃∇xΨ) = divxv in Ω, �̃∇xΨ · n = v · n|∂Ω,
∫
Ω

Ψ dx = 0. (6.13)

As �̃ is smooth and bounded below away from zero on Ω, we can use the standard
elliptic theory in order to show that H�̃ is a bounded linear operator on the
Sobolev space W 1,q

n (Ω;R3), and on Lq(Ω;R3), 1 < q < ∞ provided, in the latter
case, divxv is identified with a linear form on W 1,q

n (Ω;R3). Here the subscript n
denotes the subspace of vector functions whose normal component vanishes on ∂Ω.

Thus the weighted space L21/�̃(Ω;R
3) admits an orthogonal decomposition

L21/�̃(Ω;R
3) = L2div,1/�̃(Ω;R

3)⊕ span{iVj,m}∞,mj

j=1,m=1, (6.14)

where
L2div,1/�̃(Ω;R

3) = {v ∈ L21/�̃(Ω;R
3) | divxv = 0}. (6.15)

Moreover, it is easy to check that the corresponding projectors in the decomposi-
tion (6.14) are represented by H�̃, H⊥

�̃ .
Finally, we take ϕ = ψ(t)ωj,m in (6.4), and ϕ = ψ(t)Vj,m in (6.5) in order to

obtain a system of equations:

ε∂t[rε]j,m + i
√
Λj [Qε]j,m = 0, (6.16)

ε∂t[Qε]j,m + i
√
Λj [rε] =

√
εHj,m

ε , (6.17)
j = 1, 2, . . . , m = 1, . . . ,mj, where we have set

[rε]j,m =
∫
Ω

rεωj,m dx, [Qε]j,m =
∫
Ω

Qε ·Vj,m dx. (6.18)

Here, in accordance with (6.6),

{Hj,m
ε }∞j=1 is bounded in L1(0, T ). (6.19)
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6.3. Analysis of the convective term

Having established all the necessary preliminary material, we are ready to show
that the term u× u can be replaced by U×U in (5.16). In other words, we have
to show that∫ T

0

∫
Ω

�ε[uε ⊗ uε] : ∇x

(ϕ
�̃

)
dx dt→

∫ T

0

∫
Ω

�̃U⊗U : ∇x

(ϕ
�̃

)
dx dt (6.20)

for any test function ϕ such that

ϕ ∈ D([0, T )× Ω;R3), ϕ · n|∂Ω = 0, divxϕ = 0 in Ω. (6.21)

To begin with, observe that

H�̃[�εuε]→ H�̃[�̃U] = �̃U in L1(0, T ;L1(Ω;R3)). (6.22)

Indeed the uniform estimates on the pressure as well as the driving term in the
rescaled momentum equation (1.20) obtained in Sections 5.1, 5.2 imply that the
mappings

t ∈ [0, T ] �→
∫
Ω

H�̃[�εuε(t)] · φ dx =
∫
Ω

�εuε(t) ·H�̃[�̃φ]
dx
�̃

are precompact in C[0, T ] as soon as φ ∈ C∞(Ω;R3), φ · n|∂Ω = 0. Thus

H�̃[�εuε]→ H�̃[�̃U] = �̃U in Cweak([0, T ];L
5
4 (Ω;R3)) (6.23)

in agreement with (5.1).
Consequently, asH�̃ andH⊥

�̃ are orthogonal projections in the weighted space
L21/�̃, we get∫ T

0

(∫
Ω

H�̃[�εuε] ·H�̃[�̃uε]
dx
�̃

)
dt =

∫ T

0

∫
Ω

H�̃[�εuε] · uε dx dt (6.24)

→
∫ T

0

∫
Ω

H�̃[�̃U] ·U dx dt =
∫ T

0

(∫
Ω

�̃2|u|2 dx
�̃

)
dt.

On the other hand, in accordance with (5.1),

�ε → �̃ in L∞(0, T ;L
5
3 (Ω)),

and we deduce from (6.24) that

H�̃[�̃uε]→ �̃U in L2(0, T ;L2(Ω;R3)),

which, by the same token, gives rise to (6.22).
Seeing that

H⊥
�̃ [�εuε]→ 0 weakly-(*) in L∞(0, T ;L

5
4 (Ω;R3)), (6.25)

and keeping (6.22) in mind, we easily check that (6.20) reduces to showing∫ T

0

∫
Ω

H⊥
�̃ [�̃Qε]⊗H⊥

�̃ [�̃uε] : ∇x

(ϕ
�̃

)dx
�̃

dt→ 0 as ε→ 0 (6.26)
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for any test function ϕ satisfying (6.21), where Qε is the quantity introduced
in (6.3).

Now we set {
H⊥

�̃ [�̃Z]
}

M
=

∑
{j;0<Λj≤M}

mj∑
m=1

[Z]j,mVj,m,

where, similarly to (6.18),

[Z]j,m =
∫
Ω

Z ·Vj,mdx

for any Z ∈ L1(Ω;R3).
A straightforward computation yields[

H⊥
�̃ [�̃Qε]⊗H⊥

�̃ [�̃uε]
]
=

[{
H⊥

�̃ [�̃Qε]
}

M
+

[
H⊥

�̃ [�̃Qε]−
{
H⊥

�̃ [�̃Qε]
}

M

]]
(6.27)

⊗
[{

H⊥
�̃ [�̃uε]

}
M
+

[
H⊥

�̃ [�̃uε]−
{
H⊥

�̃ [�̃uε]
}

M

]]
,

where

H⊥
�̃ [�̃Qε]−

{
H⊥

�̃ [�̃Qε]
}

M

= H⊥
�̃ [(�ε − �̃)uε]−

{
H⊥

�̃ [(�ε − �̃)uε]
}

M
+H⊥

�̃ [�̃uε]−
{
H⊥

�̃ [�̃uε]
}

M
.

Here, by virtue of the uniform estimates obtained in Section 5,

H⊥
�̃ [(�ε − �̃)uε]−

{
H⊥

�̃ [(�ε − �̃)uε]
}

M
→ 0 in L1(0, T ;L1(Ω;R3)).

On the other hand, using orthogonality of functions ωj,m, together with Par-
seval’s identity with respect to the scalar product of L21/�̃(Ω), we get

‖divx(�̃uε)‖2L2
1/�̃

(Ω)
=

∑∞
j=1

∑mj

m=1 Λj[uε]2j,m ;

whence

‖H⊥
�̃ [�̃uε]−

{
H⊥

�̃ [�̃uε]
}

M
‖2L2

1/�̃
(Ω) =

∑
{j;Λj>M}

mj∑
m=1

[uε]2j,m ≤ 1
M
‖divx(�̃uε)‖2L2

1/�̃
(Ω)

and we are allowed to conclude that

H⊥
�̃ [�̃uε]−

{
H⊥

�̃ [�̃uε]
}

M
→ 0 in L2(0, T ;L21

�̃
(Ω;R3)) as M →∞ uniformly in ε.

In the light of the previous arguments, the proof of (6.26) reduces to showing
that ∫ T

0

∫
Ω

{
H⊥

�̃ [�̃Qε]
}

M
⊗

{
H⊥

�̃ [�̃uε]
}

M
: ∇x

(ϕ
�̃

)dx
�̃

dt→ 0

or, equivalently,∫ T

0

∫
Ω

{
H⊥

�̃ [�̃Qε]
}

M
⊗

{
H⊥

�̃ [�̃Qε]
}

M
: ∇x

( �ϕ
�̃

)dx
�̃

dt→ 0 (6.28)

for all ϕ satisfying (6.21) and for any fixed M .
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In order to show (6.28), we first observe that, by means of (6.11),∫ T

0

∫
Ω

{
H⊥

�̃ [�̃Qε]
}

M
⊗

{
H⊥

�̃ [�̃Qε]
}

M
: ∇x

(ϕ
�̃

)dx
�̃

dt

=
∫ T

0

∫
Ω

(�̃∇xΨε ⊗∇xΨε) : ∇x

( �ϕ
�̃

)
dx dt,

where Ψε =
∑

j≤M

∑jm

m=1
[Qε]j,m√

Λj

(
ωj,m

�̃

)
.

Integrating by parts and using the fact that �ϕ is a solenoidal function, we get∫ T

0

∫
Ω

(�̃∇xΨε⊗∇xΨε) : ∇x

( �ϕ
�̃

)
dx dt = −

∫ T

0

∫
Ω

divx

(
�̃∇xΨε

)
∇xΨε·

( �ϕ
�̃

)
dx dt,

where, in accordance with (6.8), −divx(�̃∇xΨε) =
∑

j≤M

∑jm

m=1

√
Λj [Qε]j,mωj,m.

It is only now when we use the fact that the quantities [Qε]j,m satisfy the
acoustic equation (6.4), (6.5) yielding

−
∫ T

0

∫
Ω

divx

(
�̃∇xΨε

)
∇xΨε ·

( �ϕ
�̃

)
dx dt

= iε
∫ T

0

∫
Ω

∑
j≤M

jm∑
m=1

∂t[rε]j,m
ωj,m

�̃
∇xΨε · �ϕ dx dt

= iε
∫ T

0

∫
Ω

∑
j≤M

jm∑
m=1

ωj,m

�̃

(
[rε]j,m∇xΨε

)
· ∂t�ϕ dx dt

− iε
∫ T

0

∫
Ω

∑
j≤M

jm∑
m=1

ωj,m

�̃
[rε]j,m∂t∇xΨε · �ϕ dx dt.

Thus in order to complete the proof of (6.20), it is enough to show that∣∣∣ ∫ T

0

∫
Ω

∑
j≤M

jm∑
m=1

ωj,m

�̃
[rε]j,m∂t∇xΨε · �ϕ dx dt

∣∣∣ ≤ c√
ε
. (6.29)

To this end, we make use of equation (6.5) to obtain

∂t∇xΨε =
−i
ε

∑
j≤M

jm∑
m=1

[rε]j,m∇x

(ωj,m

�̃

)
+

1√
ε

∑
j≤M

jm∑
m=1

Hε
j,m∇x

(ωj,m

�̃

)
,

where Hε
j,m satisfy (6.19).

Finally, as ϕ is solenoidal, meaning divxϕ = 0,∫ T

0

∫
Ω

[ ∑
j≤M

jm∑
m=1

[rε]j,m
(ωj,m

�̃

)][ ∑
j≤M

jm∑
m=1

[rε]j,m∇x

(ωj,m

�̃

)]
· �ϕ dx dt = 0;

whence (6.29), and, consequently (6.20), follow.
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Thus we have proved that the limit quantities �̃, ϑ, U, and Θ satisfy the
target system (1.29), (1.31), and (1.32) in the sense of distributions. Accordingly,
in order to complete the proof of Theorem 3.1, we have to show (1.30). This will
be done in the last section.

7. Asymptotic limit of the temperature

Similarly to (4.2), the rescaled entropy balance equation (1.21) can be written in
the form∫ T

0

∫
Ω

[
�εs(�ε, ϑε)∂tϕ+ �εs(�ε, ϑε)uε · ∇xϕ+

qε

ϑε
· ∇xϕ

]
dx dt (7.1)

+ 〈σε, ϕ〉 −
∫ T

0

∫
{x3=1}

η(ϑε)
ϑε

ϑε − ϑ
ε

dSx dt = 0

for any ϕ ∈ D((0, T )× Ω), where

qε = −
(
κ0(ϑε) +

1
ε2
ϑ3ε

)
∇xϑε. (7.2)

To begin with, in accordance with hypothesis (3.6) and the uniform estimates
(4.19), (4.20),

〈σε, ϕ〉 −
∫ T

0

∫
{x3=1}

η(ϑε)
ϑε

ϑε − ϑ
ε

dSx dt→ 0 as ε→ 0 (7.3)

for any fixed ϕ as in (7.1).
Similarly, by virtue of (4.25), (4.26),∫ T

0

∫
Ω

κ0(ϑε)
ϑε

∇xϑε · ∇xϕ dx→ 0; (7.4)

whence we have shown

lim
ε→0

∫ T

0

∫
Ω

[
�εsε(�ε, ϑε)∂tϕ+ �εsε(�ε, ϑε)uε · ∇xϕ+ ϑ2ε∇x

(ϑε

ε2

)
· ∇xϕ

]
dx dt = 0

(7.5)
for any fixed ϕ as in (7.1).

Now writing

�εsε(�ε, ϑε) = [�εsε(�ε, ϑε)]ess + [�εsε(�ε, ϑε)]res

we check, by means of (4.27), that

[�εsε(�ε, ϑε)]res → 0 in L1((0, T )× Ω), (7.6)

while, by virtue of hypothesis (3.1),

[�εsε(�ε, ϑε)]ess → β�̃
(3
2
log(ϑ)− log(�̃)

)
in Lq((0, T )× Ω) for any q ≥ 1. (7.7)
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In particular, we get

lim
ε→0

∫ T

0

∫
Ω

�εsε(�ε, ϑε)∂tϕdx dt→ 0 (7.8)

as soon as ϕ is compactly supported in (0, T ), and, in accordance with (1.31),∫ T

0

∫
Ω

[�εsε(�ε, ϑε)]essuε · ∇xϕdx dt→ −β
∫ T

0

∫
Ω

�̃ log(�̃)U · ∇xϕdx dt (7.9)

for any fixed ϕ as in (7.1).
On the other hand, we claim that∫ T

0

∫
Ω

[�εsε(�ε, ϑε)]resuε · ∇xϕdx dt→ 0. (7.10)

In order to see this, it is enough to show, in view of (4.18), that

{[�εsε(�ε, ϑε)]resuε}ε>0 is bounded in Lq(0, T ;Lq(Ω;R3)) for a certain q > 1.
(7.11)

Writing

sε(�, ϑ) = sAε (�, ϑ)︸ ︷︷ ︸
atomic entropy

+ sRε (�, ϑ)︸ ︷︷ ︸
radiation entropy

,

sAε (�, ϑ) = S
(
ε
�

ϑ
3
2

)
− S(ε), sRε (�, ϑ) = ε

4
3
ϑ3

�
,

we obtain, by virtue of (4.17), (4.24),

{�εs
R
ε (�ε, ϑε)uε}ε>0 bounded in L2(0, T ;L

12
11 (Ω;R3)). (7.12)

On the other hand, in accordance with hypothesis (3.3),

|S(εY )− S(ε)| ≤ c| log(Y )| for all Y > 0;

whence, as a consequence of (1.25),

|�εs
A
ε (�ε, ϑε)| ≤ c�ε(| log(�ε)|+ | log(ϑε)|). (7.13)

Now it follows from (4.13), (4.28) that

ess sup
t∈(0,T )

‖�ε log(�ε)‖Lq(Ω) ≤ c for any 1 ≤ q <
5
3
. (7.14)

Furthermore, one can deduce from (4.26), (5.1) that

{�ε log(ϑε)uε}ε>0 is bounded in L2(0, T ;L
30
29 (Ω;R3)). (7.15)

Combining (7.12–7.15) we get (7.11), and, consequently (7.10).
Thus relation (7.5) reduces to

− lim
ε→0

∫ T

0

∫
Ω

ϑ2ε∇x

(ϑε

ε2

)
· ∇xϕdx dt = β

∫ T

0

∫
Ω

�̃ log(�̃)U · ∇xϕdx dt (7.16)

for any ϕ ∈ D((0, T )× Ω).
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In order to identify the limit on the left-hand side of (7.16), we write∫ T

0

∫
Ω

ϑ2ε∇x

(ϑε

ε2

)
· ∇xϕdx dt

=
∫ T

0

∫
Ω

[ϑε]2ess∇x

(ϑε

ε2

)
· ∇xϕdx dt+

∫ T

0

∫
Ω

[ϑε]3/2res

√
ϑε∇x

(ϑε

ε2

)
· ∇xϕdx dt.

Thus we can use (4.17), (4.22) in order to conclude that

lim
ε→0

∫ T

0

∫
Ω

ϑ2ε∇x

(ϑε

ε2

)
· ∇xϕdx dt = ϑ

2
∫ T

0

∫
Ω

∇xΘ · ∇xϕdx dt, (7.17)

where Θ is the quantity introduced in (5.18).
Relations (7.16), (7.17) give rise to (1.30). Theorem 3.1 has been proved.
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New Perspectives in Fluid Dynamics:
Mathematical Analysis of a Model
Proposed by Howard Brenner

Eduard Feireisl and Alexis Vasseur

Abstract. We study a model of a compressible, viscous and heat conducting
fluid proposed in a series of papers by Howard Brenner. We show that the
corresponding system of partial differential equations possesses global-in-time
weak solutions for any finite energy initial data. In addition, the density of the
fluid remains positive a.a. in the physical domain on any finite time interval.
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1. Introduction

1.1. Field equations

In a series of papers [3], [4], [5], Howard Brenner proposed a daring new approach
to continuum fluid mechanics based on the concept of two different velocities: the
mass-based (Eulerian) mass velocity vm derived from the classical notion of mass
transport, and the fluid-based (Lagrangian) volume velocity v associated to the
motion of individual particles (molecules). According to the overwhelming major-
ity of standard works and research studies on continuum fluid mechanics, these two
velocities are implicitly assumed to be one and the same entity (see [3]). This point
of view, remaining unchallenged from the time of Euler, led to the nowadays clas-
sical mathematical theory of fluid mechanics based on the Navier-Stokes-Fourier
system of partial differential equations. Brenner argues that, in general, v �= vm,
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this inequality being significant for compressible fluids with high density gradients.
He provides a number of purely theoretical as well as experimental arguments in
support of his theory involving: (i) Öttinger’s generic theory [20] of non-equilibrium
irreversible processes; (ii) Klimontovich’s molecularly based theory [15] of rarefied
gases; (iii) existing thermophoretic and diffusiophoretic experimental data (see [3]).

At the level of mathematical modeling, Brenner’s modification of the standard
Navier-Stokes-Fourier system is significantly simpler than the alternatives provided
by the theories of extended thermodynamics. In the absence of external body forces
and heat sources, a mathematical description of a single-component fluid is based
on the following trio of balance laws:

Brenner-Navier-Stokes-Fourier (BNSF) System:

Mass Conservation (continuity equation):

∂t�+ divx(�vm) = 0; (1.1)

Balance of Linear Momentum:

∂t(�v) + divx(�v ⊗ vm) +∇xp = divxS; (1.2)

Total Energy Conservation:

∂t

(
�(
1
2
|v|2 + e)

)
+ divx

(
�(
1
2
|v|2 + e)vm

)
(1.3)

+divx(pv) + divxq = divx(Sv),

where � is the mass density, p is the pressure, e the specific internal energy, S the
viscous stress tensor, and q stands for the internal energy flux. In addition, we
assume that the fluid occupies a bounded (regular) domain Ω ⊂ R3 so that all
quantities depend on the time t ∈ [0, T ], and the spatial position x ∈ Ω.

1.2. Constitutive relations

A constitutive equation relating vm to v is a cornerstone of Brenner’s approach.
After a thorough discussion (see [3]–[5]), Brenner proposes a universal constitutive
equation in the form:

(v − vm) – Constitutive Relation:

v − vm = K∇x log(�), (1.4)

where K ≥ 0 is a purely phenomenological coefficient. A specific relation of K to
other thermodynamic quantities is open to discussion. Note that Brenner’s original
hypothesis K = κ

cp� , with κ the heat conductivity coefficient and cp the specific
heat at constant volume, has been tested and subsequently modified by several
authors (see Greenshields and Reese [12]). In the incompressible regime, namely
when � = const, the two velocities coincide converting (1.1–1.3) to the conventional
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Navier-Stokes-Fourier system describing the motion of an “incompressible” fluid.
It is interesting to note that a similar problem for the incompressible fluid with
mass diffusion was studied by Kazhikhov and Smagulov [14].

The specific form of the remaining constitutive relations is determined, to
a certain extent, by the Second Law of Thermodynamics. In accordance with
the fundamental principles of statistical physics (see Gallavotti [11]), the pressure
p = p(�, ϑ) as well as the internal energy e = e(�, ϑ) are numerical functions of
the density � and the absolute temperature ϑ interrelated through

Gibbs’ Equation:

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
(
1
�

)
, (1.5)

where the symbol s = s(�, ϑ) denotes the specific entropy.
Equation (1.2) multiplied on v provides, with the help of (1.1), the balance

of kinetic energy

∂t

(
1
2
�|v|2

)
+divx

(
1
2
�|v|2vm

)
+divx(pv) = divx(Sv)+pdivxv−S : ∇xv, (1.6)

which can be subtracted from (1.3) in order to obtain the balance of internal
energy in the form

∂t(�e) + divx(�evm) +∇xq = S : ∇xv − pdivxv. (1.7)

For the sake of simplicity, we shall assume that

p(�, ϑ) = pe(�)︸ ︷︷ ︸
elastic pressure

+ ϑpt(�)︸ ︷︷ ︸
thermal pressure

. (1.8)

Albeit rather restrictive, formula (1.8) still includes the physically relevant case
of a perfect gas, where pe = 0, pt = R�. The reader may consult the book by
Bridgeman [8] concerning general state equations in the form (1.8).

In accordance with Gibbs’ equation (1.5), the internal energy splits into two
parts:

e(�, ϑ) = ee(�)︸ ︷︷ ︸
elastic energy

+ et(ϑ)︸ ︷︷ ︸
thermal energy

, where ee(�) =
∫ �

1

pe(z)
z2

dz. (1.9)

Simplifying again we take
et(ϑ) = cvϑ, (1.10)

where cv > 0 is the specific heat at constant volume. Accordingly, we have

s(�, ϑ) = cv log(ϑ) −
∫ �

1

pt(z)
z2

dz. (1.11)
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Thus, after a simple manipulation, we deduce from (1.7) the thermal energy
balance

cv (∂t(�ϑ) + divx(�ϑvm)) + divx (q+Kpe(�)∇x log(�)) (1.12)

= S : ∇xv +K
p′e(�)
�

|∇x�|2 − ϑpt(�)divxv.

Moreover, we suppose the heat flux obeys Fourier’s law, specifically,

Fourier’s Law:

q+Kpe(�)∇x log(�) = −κ∇xϑ, (1.13)

where κ is the heat conductivity coefficient.
Finally, dividing (1.12) by ϑ yields the entropy balance

∂t (�s) + divx (�svm)− divx

(κ
ϑ
∇xϑ−Kpt(�)∇x log(�)

)
(1.14)

=
1
ϑ

(
S : ∇xv +K

p′e(�)
�

|∇x�|2 +
κ

ϑ
|∇xϑ|2 +K

p′t(�)ϑ
�

|∇x�|2
)
.

By virtue of the Second Law of Thermodynamics, the quantity on the right-
hand side of (1.14) representing the entropy production rate must be non-negative
for any admissible physical process. Accordingly, and in sharp contrast to the
standard theory, it is the velocity v rather than vm that must appear in the
rheological law for the viscous stress. For a linearly viscous (Newtonian) fluid such
a stipulation yields:

Newton’s Rheological Law:

S = μ
(
∇xv +∇T

x v − 2
3
divxvI

)
+ ηdivxv I, (1.15)

where μ ≥ 0 and η ≥ 0 stand for the shear and bulk viscosity coefficients, respec-
tively. By the same token, the quantities K, κ, p′e, p

′
t must be non-negative.

1.3. Boundary conditions

Another innovative aspect of Brenner’s theory is the claim that it is the volume
velocity v rather than vm that should be considered in the otherwise well-accepted
no-slip boundary condition for viscous fluids

v|∂Ω = 0 (1.16)

(cf. Brenner [5]). On the other hand, the standard impermeability condition hy-
pothesis keeps its usual mass-based form

vm · n|∂Ω = 0, (1.17)
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where n stands for the outer normal vector, or, equivalently,

∇x� · n|∂Ω = 0. (1.18)

As we will see below, such a stipulation is in perfect agreement with the variational
formulation of the problem in the spirit of the modern theory of partial differential
equations.

Finally, we focus in this study on energetically closed systems, in particular,

q · n|∂Ω = 0 (1.19)

yielding, in view of (1.13), (1.18),

∇xϑ · n|∂Ω = 0. (1.20)

1.4. Mathematics of Brenner’s model

Besides the necessity of experimental evidence, an ultimate criterion of validity of
any mathematical model is its solvability in the framework of physically relevant
data. The main goal of the present study is to show that Brenner’s model provides
a very attractive alternative to both the classical Navier-Stokes-Fourier system
and the mathematically almost untractable problems provided by extended ther-
modynamics. In particular, we establish a priori estimates for solutions of BNSF
systems strong enough to ensure the property of weak sequential stability. That
means any sequence of solutions bounded by a priori estimates possesses a sub-
sequence converging weakly to a (weak) solution of the same problem. This is a
remarkable property that allows us to develop a rigorous existence theory for the
evolutionary problem (1.1–1.4), without any restriction imposed on the size of the
data and the length of the time interval. Such a theory can be viewed as a coun-
terpart of the seminal work of Leray [17] devoted to the classical incompressible
Navier-Stokes system.

It is worth noting here that, despite the concerted effort of generations of
mathematicians, the weak solutions identified by Leray [17], Hopf [13], and La-
dyzhenskaya [16] provide the only available framework, where global-in-time ex-
istence for the (standard) incompressible Navier-Stokes model can be rigorously
verified for any choice of (large) data. A comparable theory for the compressible
isentropic fluids was developed by P.-L.Lions [18] and later extended to a specific
class of solutions for the full Navier-Stokes-Fourier system (see [9], [10]), where
the energy equation (1.3) is replaced by an entropy or thermal energy inequality
supplemented with an integrated total energy balance.

Rigorous (large data) existence results for the classical Navier-Stokes-Fourier
system, meaning system (1.1–1.3) with v = vm are in short supply. Quite recently,
Bresch and Desjardins [6], [7] discovered an interesting integral identity yielding a
priori bounds on the density gradient and the property of weak sequential stability
for system (1.1–1.3) provided the viscosity coefficients μ and η depend on the den-
sity � in a specific way and the pressure p is given through formula (1.8), where the
elastic component pe is assumed to be singular for the density � approaching zero.
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The idea that a density dependent bulk viscosity coefficient η may actually
provide better a priori estimates goes back to the remarkable study by Vaigant
and Kazhikhov [21]. To the best of our knowledge, this is the only result where
the authors establish global existence of smooth solutions although conditioned by
the 2-D periodic geometry of the physical space and rather unrealistic hypotheses
concerning the viscosity coefficients. A suitable functional relation satisfied by the
viscosity coefficients μ = μ(�), η = η(�) was also used in [19] to prove global
existence for the isentropic Navier-Stokes system with a general pressure law.

The main stumbling blocks encountered in the mathematical theory of com-
pressible fluids based on the classical Navier-Stokes-Fourier system that have been
identified in the previously cited studies can be summarized as follows:
• absence of uniform bounds on the density �, in particular, the hypothetical
possibility of concentration phenomena in the pressure term;

• a possibility of appearance of vacuum regions, meaning sets of positive mea-
sure on which � = 0, even in the situation when strict positivity is imposed
on the initial density distribution;

• low regularity of the velocity field allowing for development of uncontrollable
oscillations experienced by the transported quantities, in particular, the den-
sity.
Quite remarkably, Brenner’s modifications of the Navier-Stokes-Fourier sys-

tem offer a new insight and at least a partial remedy to each of the issues listed
above. The principal features of this new approach based on the (BNSF) system
read as follows:
• The new model provides a relatively simple and rather transparent modifi-
cation of the classical system replacing the Eulerian mass velocity vm by its
volume counterpart v in the viscous stress tensor and the specific momentum,
where vm and v are interrelated through formula (1.4). The two velocities
coincide in the “incompressible” regime when � = const.

• The model conveniently unifies the principles of statistical mechanics with
thermodynamics of continuum models of large multiparticle systems, in par-
ticular, it is consistent with the First and Second Laws of Thermodynamics.

• The associated mathematical theory developed below allows for a rather gen-
eral class of state equations, in particular and unlike all comparable results
for the classical Navier-Stokes-Fourier system, the perfect gas state equation
expressed through Boyle-Marriot’s law can be handled.

• Weak solutions of the (BNSF) system do not contain vacuum zones for pos-
itive times; the time-space Lebesgue measure of the set where � vanishes is
zero.

• Possible oscillations of the density as well as other fields are effectively
damped by diffusion; the weak stability property is preserved even under
non-isotropic perturbations of the transport terms.
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Outline of the paper

The mathematical theory of the (BNSF) system developed in this study is based
on the standard framework of Sobolev spaces. Similarly to any non-linear prob-
lem, the class of function spaces is determined by means of the available a priori
estimates established in Section 2. A remarkable new feature of the present set-
ting is that the continuity equation (1.1) can be rewritten in terms of the volume
velocity as

∂t�+ divx(�v) = divx(K∇x�). (1.21)
Equation (1.21) is parabolic yielding strong a priori estimates on � provided v
enjoys certain smoothness. On the other hand, the standard energy and gradient
estimates for the velocity v and the temperature ϑ are obtained on the basis of
entropy equation (1.14).

Section 3 develops refined estimates on v and ϑ necessary in order to establish
equi-integrability of the fluxes appearing in the total energy balance (1.3). We point
out that the bounds obtained for the volume velocity v are actually better than
those for the velocity field considered in the standard incompressible Navier-Stokes
system because we control the pressure in a rather strong L2−norm.

Section 4 discusses the issue of weak sequential stability. It is shown that
any sequence of (regular) solutions bounded by a priori bounds established in
the previous part converges weakly to a distributional solution of the same prob-
lem. The most delicate task here is to control possible concentrations rather than
oscillations of the weakly converging fields.

Finally, Section 5 proposes an approximation scheme analogous to that de-
veloped in [9] in order to establish a rigorous existence result for the corresponding
initial-boundary value problem without any essential restrictions imposed on the
size of the initial data and the length of the time interval.

2. A priori estimates

A priori estimates are natural bounds imposed on a family of solutions to a sys-
tem of partial differential equations by the data, boundary conditions, and other
parameters as the case may be. When deriving a priori estimates it is customary
to assume that all quantities appearing in the equations are as smooth as neces-
sary unless such a stipulation violated some obvious physical principles. In order
to fix ideas, and in addition to the hypotheses discussed in Section 1, we suppose
throughout the whole text the technical assumptions shown on top of the next
page.

While hypotheses (A2.2–A2.4) have obvious physical interpretations, hy-
potheses (A2.1), (A2.5) are of a technical nature facilitating analysis of the prob-
lem, in particular at the level of a priori estimates. Note however that an active
discussion is going on concerning the appropriate value of the phenomenological
coefficient K (see [12]), while (A 2.5) is physically relevant as radiation heat con-
ductivity at least for large values of ϑ (see [22]).
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Hypotheses:

(A 2.1) The phenomenological coefficient K introduced in (1.4) is a positive
constant, say, K ≡ 1.

(A 2.2) The pressure p obeys the classical Boyle-Marriot law:
p(�, ϑ) = R�ϑ,

with a positive constant R.
(A 2.3) The specific internal energy e satisfies

e = cvϑ,
with a positive constant cv.

(A 2.4) The viscosity coefficients are constant satisfying
μ > 0, η = 0.

(A 2.5) The heat conductivity coefficient κ depends on the temperature,
specifically,

κ(ϑ) = κ0(1 + ϑ3),
with a positive constant κ0.

2.1. A priori estimates based on mass and energy conservation

Equation (1.1), or, equivalently, (1.21), expresses the physical principle of mass
conservation. To begin, the standard maximum principle applies to the parabolic
equation (1.21) yielding

�(t, x) ≥ 0 for all t ∈ (0, T ), x ∈ Ω (2.1)

provided
�(0, ·) ≡ �0 ≥ 0 in Ω. (2.2)

Moreover, integrating (1.21) over Ω gives rise to∫
Ω

�(t, ·) dx =
∫
Ω

�0 dx for all t ∈ [0, T ]

provided �, v satisfy the boundary conditions (1.16), (1.18). As both �0 and � are
non-negative, we conclude that

sup
t∈(0,T )

‖�(t, ·)‖L1(Ω) =
∫
Ω

�0 dx ≡M0. (2.3)

Similarly, the total energy balance equation (1.3) integrated over Ω yields∫
Ω

�

(
1
2
|v|2 + cvϑ

)
(t, ·) dx =

∫
Ω

�0

(
1
2
|v0|2 + cvϑ0

)
dx ≡ E0, (2.4)

where v0 and ϑ0 denote the initial distribution of the volume velocity and the
temperature, respectively. Thus

sup
t∈(0,T )

‖√�v‖L2(Ω;R3) + sup
t∈(0,T )

‖�ϑ‖L1(Ω) ≤ c(E0). (2.5)
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Note that we have tacitly anticipated that the absolute temperature ϑ is a non-
negative quantity. This stipulation is justified in the next section.

2.2. A priori estimates stemming from the Second Law of Thermodynamics

The Second Law of Thermodynamics is expressed through the entropy balance
(1.14). In accordance with the boundary conditions (1.17), (1.18), the normal
component of the entropy flux vanishes on the boundary; whence∫

Ω

�s(τ, ·) dx−
∫
Ω

�0s(�0, ϑ0) dx (2.6)

=
∫ T

0

∫
Ω

1
ϑ

(
S : ∇xv + κ0

1 + ϑ3

ϑ
|∇xϑ|2 +K

ϑ

�
|∇x�|2

)
dx dt.

Gibbs’ equation (1.5) combined with hypotheses (A 2.2), (A 2.3) yields

s(�, ϑ) = cv log(ϑ)− R log(�),

in particular, since Ω is assumed to be bounded, the uniform bounds already
established in (2.3), (2.5) imply that∫

Ω

�[log(ϑ)]+ dx−
∫
Ω

�[log(�)]− dx ≤ c(M0, E0) uniformly in (0, T ),

where we have written [z]+ = max{z, 0}, [z]− = min{z, 0}.
Consequently, we easily deduce from (2.6) that

sup
t∈(0,T )

‖� log(�)‖L1(Ω) + sup
t∈(0,T )

‖� log(ϑ)‖L1(Ω) ≤ c(M0, E0, S0), (2.7)

and ∫ T

0

∫
Ω

1
ϑ

S : ∇xv dx dt ≤ c(M0, E0, S0), (2.8)

‖∇x log(ϑ)‖L2(0,T ;L2(Ω;R3) + ‖∇xϑ
3/2‖L2(0,T ;L2(Ω;R3)) ≤ c(M0, E0, S0), (2.9)

‖∇x
√
�‖L2(0,T ;L2(Ω;R3)) ≤ c(M0, E0, S0), (2.10)

where we have written

S0 =
∫
Ω

�0s(�0, ϑ0) dx.

At this stage we need the following version of Poincaré’s inequality:

Lemma 2.1. Let Ω ⊂ RN be a bounded Lipschitz domain. Let B ⊂ Ω be a measur-
able set such that |B| ≥ m > 0.

Then we have

‖v‖W 1,2(Ω;RN ) ≤ c(m,β)
(
‖∇xv‖L2(Ω;RN ) +

(∫
B

|v|β dx
)1/β

)
for any v ∈W 1,2(Ω), where the constant c = c(m,β) depends solely on m and the
parameter β > 0.
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Our goal is to apply Lemma 2.1 first to v = ϑ3/2 and then v = log(ϑ). To
this end, we first show that there exist δ > 0, m > 0 independent of t ∈ (0, T )
such that

|{x ∈ Ω | �(t, x) > δ}| > m. (2.11)

In order to see this, use (2.7) to deduce that there exists α > 0 such that∫
{�(t,·)≥α}

�(t, ·) dx ≤ M0

3

for any t ∈ (0, T ), where M0 is the total mass of the fluid defined in (2.3). We fix
δ =M0/(3|Ω|).

On the other hand, in accordance with (2.3),

M0 =
∫
Ω

�(t, ·) dx =
∫
{�(t,·)≤δ}

�(t, ·) dx+
∫
{δ<�(t,·)<α}

�(t, ·) dx +
∫
{�(t,·)≥α}

�(t, ·) dx

≤ δ|Ω|+ α|{x ∈ Ω | �(t, x) > δ}|+ M0

3
;

whence we can take m =M0/3α. Note that the value of m, δ, derived on the basis
of (2.3), (2.7), depend only on M0, E0, S0.

Consequently, combining the uniform bounds established in (2.5), (2.9) with
the conclusion of Lemma 2.1 we obtain

‖ϑ3/2‖L2(0,T ;W 1,2(Ω;R3)) ≤ c(M0, E0, S0). (2.12)

Similarly, estimates (2.7), (2.9) yield

‖ log(ϑ)‖L2(0,T ;W 1,2(Ω;R3)) ≤ c(M0, E0, S0), (2.13)

and, finally, (2.3), (2.10) give rise to

‖√�‖L2(0,T ;W 1,2(Ω;R3)) ≤ c(M0, E0, S0). (2.14)

2.3. A priori bounds based on maximal regularity

A priori bounds established so far depend solely on the integral meansM0, E0, S0
representing the total amount of mass, energy, and entropy at the initial instant
t = 0. In order to get more information, better summability of the initial data is
necessary.

Equation (1.21) can be written in the form

∂t�−Δ� = −divx(�v), ∇x� · n|∂Ω = 0, �(0, ·) = �0 (2.15)

that can be viewed as a non-homogeneous linear parabolic equation, where, by
virtue of (2.5), (2.14) combined with the standard imbedding W 1,2(Ω) ↪→ L6(Ω),

‖�v‖L2(0,T ;L3/2(Ω;R3)) ≤ c(M0, E0, S0).

Now, we evoke the maximal regularity estimates applicable to the parabolic
problem (2.15) (see Amann [1], [2]):
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Maximal Regularity Estimates:

Proposition 2.1. Let Ω ⊂ R3 be a regular bounded domain. Assume that

f ∈ Lp(0, T ; [W 1,q′
(Ω)]∗), 1 < p, q <∞

is a given function.
Then problem

∂tr −Δr = f, ∇xr · n|∂Ω = 0, r(0, ·) = 0
admits a unique weak solution r in the class

r ∈ Lp(0, T ;W 1,q(Ω)), ∂tr ∈ Lp(0, T ; [W 1,q′
(Ω)]∗),

r ∈ C
(
[0, T ]; {[W 1,q′

(Ω)]∗;W 1,q(Ω)}1/p′,p

)
,

where the symbol {; }1/p′,p stands for the real interpolation space. Moreover,

supt∈[0,T ] ‖r(t, ·)‖{[W 1,q′ (Ω)]∗;W 1,q(Ω)}1/p′,p

+ ‖∂tr‖Lp(0,T ;[W 1,q′ (Ω)]∗) + ‖r‖Lp(0,T ;W 1,q(Ω))

≤ ‖f‖Lp(0,T ;[W 1,q′ (Ω)]∗).

Thus, writing � = �1 + �2, where �1 solves the homogeneous problem

∂t�1 −Δ�1 = 0, ∇x�1 · n|∂Ω = 0, �1(0, ·) = �0,
while

∂t�2 −Δ�2 = −divx(�u), ∇x�2 · n|∂Ω = 0, �2(0, ·) = 0,

we obtain

‖�2‖L2(0,T ;W 1,3/2(Ω)) ≤ c‖�v‖L2(0,T ;L3/2(Ω)) ≤ c(M0, E0, S0), (2.16)

and
sup

t∈(0,T )
‖�1(t, ·)‖L3(Ω) ≤ c‖�0‖L3(Ω).

On the other hand, as W 1,3/2(Ω) ↪→ L3(Ω), we deduce, exactly as above,

‖�v‖L4(0,T ;L3/2(Ω;R3)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω)).

Consequently, a simple iteration of the previous argument (bootstrap) yields, fi-
nally,

‖�‖Lp(0,T ;L3(Ω)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω)) for any 1 ≤ p <∞. (2.17)

At this stage, we are ready to exploit the thermal energy balance (1.12) in
order to obtain uniform bounds on the volume velocity gradient. Indeed integrating
(1.12) over Ω we easily deduce a uniform bound∫ T

0

∫
Ω

S : ∇xv dx dt ≤ c
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provided we are able to control the term∫ T

0

∫
Ω

�ϑdivxv dx dt.

To this end, we evoke (2.12), (2.17), which, together with the imbedding
W 1,2(Ω) ↪→ L6(Ω), yield

‖�ϑ‖Lq(0,T ;L9/4(Ω)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), q) for any 1 ≤ q < 3. (2.18)

On the other hand, the linear form associated to the viscous stress S satisfies
a variant of Korn’s inequality∫

Ω

S : ∇xv dx ≥ c‖∇xv‖2L2(Ω;R3×3) (2.19)

that can be easily verified by means of by parts integration since the volume
velocity v vanishes on ∂Ω.

Consequently, using (2.18), (2.19), and the standard Poincaré inequality, we
infer that

‖v‖L2(0,T ;W 1,2(Ω;R3)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω)). (2.20)

2.4. Positivity of the density

A remarkable feature of Brenner’s model is the possibility to eliminate the regions
with vanishing density. To this end, we multiply equation (2.15) on 1/� to obtain

∂t log(�)−Δlog(�) = |∇x log(�)|2 − divxv − v · ∇x log(�). (2.21)

It follows from (2.3) that

sup
t∈(0,T )

‖[log(�)(t, ·)]+‖Lp(Ω) ≤ c(M0) for all 1 ≤ p <∞; (2.22)

whence integrating (2.21) over Ω yields

sup
t∈(0,T )

‖ log(�)(t, ·)‖L1(Ω) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L1(Ω)), (2.23)

‖ log(�)‖L2(0,T ;W 1,2(Ω)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L1(Ω)), (2.24)

where we have used the uniform bound on the velocity field established in (2.20).
In particular, we have

|{x ∈ Ω | �(t, x) = 0}| = 0 for any t ∈ (0, T ), (2.25)

meaning, the vacuum zones, if any, have zero Lebesgue measure.
The lower bound on log(�) can be improved by means of the classical com-

parison argument. Specifically, we deduce from (2.21) that

log(�) ≥ V,
where V is a solution to the problem

∂tV −ΔV = −divxv −
1
2
|v|2, ∇xV · n|∂Ω = 0, V (0, ·) = log(�0), (2.26)
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with v fixed. Seeing that, by virtue of (2.20), the right-hand side−divxv−(1/2)|v|2
is bounded in the space

L2((0, T )× Ω)⊕ L1(0, T ;L3(Ω)),

we conclude, using the standard parabolic theory, that

sup
t∈(0,T )

‖V (t, ·)‖L3(Ω) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L3(Ω)),

which, together with (2.22), yields

sup
t∈(0,T )

‖ log(�)(t, ·)‖L3(Ω) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L3(Ω)). (2.27)

3. Refined velocity and temperature estimates

The a priori bounds derived in this section are quite non-standard and to a certain
extent even better than those that can be obtained for the weak solutions of the
classical incompressible Navier-Stokes system. This is due to the fact that we are
able to control the pressure by means of estimate (2.18).

3.1. Refined estimates of the volume velocity

We start rewriting the momentum equation (1.2) in the form

� (∂tv + vm · ∇xv) + R∇x(�ϑ) = μΔv +
1
3
μ∇xdivxv. (3.1)

Following [19], the main idea is to multiply (3.1) on |v|2αv, where α > 0 is
a positive parameter to be fixed below. Integrating the resulting expression, we
obtain

d
dt

1
2(α+ 1)

∫
Ω

�|v|2(α+1) dx+ μ
∫
Ω

(
|v|2α|∇xv|2 +

1
3
|v|2α|divxv|2

)
dx

= R
∫
Ω

(
|v|2α�ϑdivxv + �ϑ∇x|v|2α · v

)
dx (3.2)

− μ
∫
Ω

(
[(∇xv)v] · ∇x|v|2α +

1
3
divxv∇x|v|2α · v

)
dx.

It is easy to check that the second integral on the right-hand side of (3.2)
is controlled by its counterpart on the left-hand side as soon as α > 0 is small
enough. By the same token, using estimates (2.18), (2.20) we get∣∣∣∣∣

∫ T

0

∫
Ω

|v|2α�ϑdivxv dx dt

∣∣∣∣∣ ≤ c(M0, E0, S0, ‖�0‖L3(Ω))

provided α > 0 is sufficiently small.
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Finally,∣∣∣∣∫ τ

0

∫
Ω

�ϑ∇x|v|2α · v dx dt
∣∣∣∣

≤ α
∫ τ

0

∫
Ω

�2ϑ2|v|2α dx dt+ α
∫ T

0

∫
Ω

|v|2α|∇xv|2 dx dt for any τ ∈ (0, T ).

Consequently, relation (3.2) gives rise to the following bounds:

sup
t∈(0,T )

∫
Ω

�|v|2(1+α)(t, ·) dx ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)), (3.3)

and

‖|v|αv‖L2(0,T ;W 1,2(Ω;R3)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)) (3.4)

for a certain α > 0.
Since W 1,2(Ω) ↪→ L6(Ω) and W 1,3/2(Ω) ↪→ L3(Ω), estimate (3.4) combined

with (2.17) imply

‖�v‖L2(0,T ;L2(Ω;R3)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)), (3.5)

which can be used in (2.15) in order to obtain

sup
t∈(0,T )

‖�(t, ·)‖L2(Ω) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)), (3.6)

together with

‖�‖L2(0,T ;W 1,2(Ω)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)). (3.7)

As a matter of fact, a slightly better estimate may be obtained, namely

‖�‖L(2+α)(0,T ;W 1,(2+α)(Ω)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)) (3.8)

for a certain α > 0. Here, similarly to (3.4), the symbol α > 0 denotes a generic
positive parameter that may be different in different formulas.

Combining the previous estimates, in particular (3.4), (3.6), (3.7), we observe
that

divx(�v) belongs to the space L(1+α)((0, T )× Ω;R3) for a certain α > 0;

whence equation (2.15), together with the standard Lp−theory for linear parabolic
problems, yield

‖∂t�‖L(1+α)((0,T )×Ω) + ‖�‖L(1+α)(0,T ;W 2,(1+α)(Ω)) (3.9)

≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω))

for a certain α > 0.
On the point of conclusion, we note that the a priori bounds established in

this section, notably (3.4), imply equi-integrability of the “viscous flux” of the
total energy that is necessary in order to handle (1.3).
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3.2. Temperature estimates

A short inspection of the total energy balance (1.3) reveals immediately one of
the main technical problems involved in Brenner’s model, namely a possibility of
concentrations in the heat flux

q = −κ0(1 + ϑ3)∇xϑ.

Note that, for the time being, we have shown only (2.12), which is clearly insuffi-
cient not even to control the L1−norm of q.

To begin, we exploit again the thermal energy balance. Multiplying (1.12) on
H ′(ϑ), where H is a suitable function specified below, we get

d
dt

∫
Ω

�H(ϑ) dx+ κ0
∫
Ω

H ′′(ϑ)(1 + ϑ3)|∇xϑ|2 dx

=
∫
Ω

H ′(ϑ)S : ∇xv dx− R
∫
Ω

H ′(ϑ)�ϑdivxv dx.

By virtue of estimates (2.18), (2.20), the right-hand side is integrable in t as
soon as the derivative H ′ is bounded. Thus the choice H(ϑ) = (1 + ϑ)1−ω , with
ω > 0, leads to a uniform bound∫ T

0

∫
Ω

ϑ3

(1 + ϑ)1+ω
|∇xϑ|2 dx dt (3.10)

≤ c(ω,M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω))

for any ω > 0. Here, the best estimates would be obtained in the limit case ω → 0
unfortunately not attainable.

Writing ϑ3∇xϑ ≈ ∇xϑ
4 we need uniform bounds on ϑ4 that would be

“slightly better” than in L1, more precisely, we need equi-integrability of ϑ4 in the
Lebesgue space L1((0, T )×Ω). To this end, we claim first that such a bound follows
immediately from (2.5), (3.10) at least on the region where � is bounded below away
from zero. Indeed by virtue of the standard imbedding relation W 1,2(Ω) ↪→ L6(Ω)
estimate (3.10) yields

‖ϑ‖L(4−ω)(0,T ;L(12−ω)(Ω)) (3.11)

≤ c(ω,M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω))

for any ω > 0. Consequently, by means of (2.5) and a simple interpolation argu-
ment, we deduce that for any ε > 0 there exists α = α(ε) > 0 such that∫

{�>ε}
|ϑ|4+α dx dt ≤ c(ε,M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)). (3.12)

Boundedness of ϑ on the vacuum set, though the latter is of zero measure, is
a more delicate task. The first step is to obtain L4− integrability of ϑ on the whole
set (0, T )× Ω. To this end, we multiply the thermal energy equation (1.12) by

ϕ = Δ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]
,
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where ΔN stands for the Laplacian defined on the space of functions of zero mean
and supplemented with the homogeneous Neumann boundary conditions. Observe
that, by virtue of estimates (2.17), (3.6) combined with the standard elliptic reg-
ularity for ΔN , ∥∥∥∥Δ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]∥∥∥∥

L∞((0,T )×Ω)
(3.13)

≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)),
and ∥∥∥∥∇xΔ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]∥∥∥∥

Lp(0,T ;Lp(Ω))

(3.14)

≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω))

for any 1 < p <∞.
Thus multiplying the thermal energy equation on ϕ yields

−κ0
∫ T

0

∫
Ω

ϑ4
(
�− 1

|Ω|

∫
Ω

� dx
)
dx dt =

3∑
i=1

Ii, (3.15)

where we have set

I1 =
∫ T

0

∫
Ω

(S : ∇xv − R�ϑdivxv)Δ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]
dx dt,

I2 = cv
∫ T

0

∫
Ω

�ϑvm · ∇xΔ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]
dx dt,

and

I3 = −cv
∫ T

0

∫
Ω

∂t(�ϑ)Δ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]
dx dt.

In accordance with the uniform bounds (2.18), (2.20), and (3.13), the integral
I1 is bounded in terms of the norm of the initial data.

Similarly, writing
�ϑvm = �ϑv − ϑ∇x�,

we can use estimates (2.12), (2.20), (3.6), and (3.9) in order to conclude that

‖�ϑvm‖Lq(0,T ;Lq(Ω;R3)) (3.16)

≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)) for a certain q > 1.
Thus, in view of (3.14), the integral I2 is controlled by the data.

Next, we use equation (2.15) in order to write I3 in the form

I3 = cv

[∫
Ω

�ϑΔ−1N

[
�− 1

|Ω|

∫
Ω

� dx
]
dx

]t=T

t=0

+
∫ T

0

∫
Ω

�ϑΔ−1N [divx(�v) + Δ�] dx dt,
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where, by virtue of (2.5), (3.13), the first term on the right-hand side is bounded.
Moreover, by virtue of the standard elliptic regularity estimates combined with
(2.20), (3.6), we have

‖Δ−1N [divx(�v)]‖L2(0,T ;L3(Ω)) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω));

whence, evoking (2.18), we control∫ T

0

∫
Ω

�ϑΔ−1N [divx(�v)] dx dt.

Finally, seeing that

Δ−1N [Δ�] = �− 1
|Ω|

∫
Ω

� dx,

we can use (3.6) in order to conclude that I3 is bounded.
Now, returning to (3.15) we write

−
∫ T

0

∫
Ω

ϑ4
(
�− 1

|Ω|

∫
Ω

� dx
)
dx dt

≥ M0

2|Ω|

∫
{�<M0/(2|Ω|)}

ϑ4 dx dt−
∫
{�≥M0/(2|Ω|)}

ϑ4
(
�− 1

|Ω|

∫
Ω

� dx
)
dx dt,

where the last integral is bounded. Indeed interpolating (2.5), (3.11) on the set
{� ≥M0/(2|Ω|)} yields

‖1{�>M0/(2|Ω|)ϑ‖L(4+α)(0,T ;L(8+α)(Ω)) (3.17)

≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω))

for a certain α > 0, which, combined with (3.6) yields the desired conclusion.
Thus we infer from (3.15) that∫
{�<M0/(2|Ω|)}

ϑ4 dx dt ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)),

which yields, together with (3.12),

‖ϑ4‖L1((0,T )×Ω) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖�0|v0|2(1+α)‖L1(Ω)). (3.18)

Our ultimate goal is to improve the estimates on ϑ4 in the area where the
density � is small. To this end, we use “test” functions in the form

ϕ = χΔ−1[χ log(�)],

where χ ∈ C∞c (Ω), χ ≥ 0, and the symbol Δ denotes the standard Laplace operator
defined via its Fourier symbol −|ξ|2 on the whole space R3.

To begin, we claim that, on the basis of the refined velocity estimates obtained
in (3.4), we are allowed to use the comparison argument exactly as in Section 2.4,
in order to strengthen (2.27) to

sup
t∈(0,T )

‖ log(�)(t, ·)‖L(3+α)(Ω) ≤ c(M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L3(Ω)) (3.19)
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for a certain α > 0. In particular, by virtue of the standard elliptic theory,

‖Δ−1[χ log(�)]‖L∞((0,T )×Ω) + ‖∇xΔ−1[χ log(�)]‖L∞((0,T )×Ω;R3) (3.20)

≤ c(χ,M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L3(Ω)).

Similarly to the preceding step, we use ϕ as “test” functions in the thermal
energy equation (2.12). Using the same arguments as above combined with the
bounds established in (3.20), we deduce

κ0
4

∫ T

0

∫
Ω

Δϑ4χΔ−1[χ log(�)] dx dt = cv
∫ T

0

∫
Ω

∂t(�ϑ)χΔ−1[χ log(�)] dx dt,

(3.21)
where, furthermore,∫ T

0

∫
Ω

Δϑ4χΔ−1[χ log(�)] dx dt =
∫ T

0

∫
Ω

χ2ϑ4 log(�) dx dt (3.22)

+
∫ T

0

∫
Ω

(
2ϑ4∇xχ · ∇xΔ−1[χ log(�)] + ϑ4ΔχΔ−1[χ log(�)]

)
dx dt.

In order to handle the right-hand side of (3.21), we use equation (2.21) to
obtain∫ T

0

∫
Ω

∂t(�ϑ)χΔ−1[χ log(�)] dx dt =
[∫

Ω

�ϑχΔ−1[χ log(�)] dx
]t=T

t=0

(3.23)

−
∫ T

0

∫
Ω

�ϑχΔ−1
[
χΔlog(�) + χ|∇x log(�)|2 − χdivxv − χv · ∇x log(�)

]
dx dt

≥ −
∫ T

0

∫
Ω

�ϑχΔ−1
[
χΔlog(�)− χdivxv −

1
2
|v|2

]
dx dt,

where, similarly to Section 2.4, we have used positivity of the operator −Δ.
At this stage, we can use the uniform estimates (2.5), (2.18), (2.20) and

(3.13) in order to observe that the last integral on the right-hand side of (3.23) is
bounded. Consequently, relations (3.22), (3.23) allow us to conclude that∫ T

0

∫
K
ϑ4| log(�)|dx dt ≤ c(K,M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L3(Ω)) (3.24)

for any compact K ⊂ Ω (keep in mind that log(�) is negative on the “vacuum” set
where � approaches zero).

Estimate (3.24), together with (3.12), (3.18), imply equi-integrability of ϑ4

at least on any compact subset of Ω. In order to extend this property up to the
boundary, we simply use

ϕ = Δ−1N [ω]

as a “test” function in (1.12), where

ω = ω(x), ω(x) ≥ −ω for all x ∈ Ω, ω ∈ L4(Ω), lim
x→∂Ω

ω(x) =∞,
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and ∫
Ω

ω dx = 0.

Thus we have shown the following result:

Equi-integrability of the Temperature Flux:

For any ε > 0, there exists δ > 0,
δ = δ(ε,M0, E0, S0, ‖�0‖L3(Ω), ‖ log(�0)‖L3(Ω)),

such that ∫
B

ϑ4 dx dt < ε (3.25)

for any measurable set B ⊂ (0, T )× Ω such that |B| < δ.

4. Weak sequential stability

The problem of weak sequential stability can be formulated in the following way:
Assume that {�n,vn, ϑn}∞n=1 is a sequence of, say, regular solutions to prob-

lem (1.1–1.4), supplemented with the constitutive equations (1.13), (1.15), and the
boundary conditions (1.16), (1.20). In addition, suppose that

�n(0, ·) = �0,n, vn(0, ·) = v0,n, ϑn(0, ·) = ϑ0,n,
where the initial data �0,n, v0,n, ϑ0,n satisfy:

0 < � ≤ �0,n(x) ≤ � for all x ∈ Ω,
0 < ϑ ≤ ϑ0,n(x) ≤ ϑ for all x ∈ Ω,

‖v0,n‖L∞(Ω;R3) ≤ U0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.1)

uniformly for n = 1, 2, . . .
Thus, if hypotheses (A 2.1–A 2.5) are satisfied, the sequence {�n,vn, ϑn}∞n=1

admits the uniform bounds established in the preceding section. In particular,
passing to subsequences if necessary, we may assume that⎧⎪⎪⎨⎪⎪⎩

�n → � weakly in L1((0, T )× Ω),

vn → v weakly in L1((0, T )× Ω;R3),

ϑn → ϑ weakly in L1((0, T )× Ω).

⎫⎪⎪⎬⎪⎪⎭
The problem of weak sequential stability consists in showing that the limit quan-
tities �, v, and ϑ represent a weak solution to the same system. To this end, two
fundamental properties have to be verified: (i) pointwise a.a. convergence of all
field variables, (ii) equi-integrability of all fluxes and production terms in the field
equations (1.1–1.4).
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4.1. Pointwise convergence

With the relatively strong a priori estimates at hand, the pointwise a.a. conver-
gence of the field variables can be resolved easily. To begin, the uniform bound
established in (3.9) is sufficient to conclude that

�n → �,

∇x�n → ∇x�

}
a.a. in (0, T )× Ω. (4.2)

Next, using (2.5), (3.6), we deduce from the momentum equation (1.2) that

�nvn → �v in Cweak([0, T ];L4/3(Ω;R3)).

On the other hand, by virtue of (2.20),

vn → v weakly in L2(0, T ;W 1,2(Ω;R3));

whence ∫ T

0

∫
Ω

�n|vn|2 dx dt→
∫ T

0

∫
Ω

�|v|2 dx dt. (4.3)

Now it is easy to check that (4.3), together with the uniform bounds derived in the
previous section, imply pointwise (a.a.) convergence of vn on the set {x | �(x) > 0}.
But since the latter is of full measure, we conclude that

vn → v a.a. in (0, T )× Ω. (4.4)

Exactly the same argument can be used to show

ϑn → ϑ a.a. in (0, T )× Ω. (4.5)

To conclude, let us remark that, by virtue of (4.2), (4.4), and (2.24),

vmn → vm a.a. in (0, T )× Ω. (4.6)

4.2. Equi-integrability of the fluxes and production rates

We concentrate only on the most difficult terms appearing in (1.2), (1.3), namely,

{�nvn ⊗ vmn}∞n=1, {�n|vn|2vmn}∞n=1, {�nϑnvmn}∞n=1, {q}∞n=1, {Snvn}∞n=1.
We recall that the term �ϑvm has already been handled in (3.16), while equi-

integrability of {Snvn}∞n=1 follows directly from the refined velocity estimates (3.4).
Moreover, writing∫ T

0

∫
Ω

qn · ∇xϕ dx dt =
κ0
4

∫ T

0

∫
Ω

ϑ4nΔϕ dx dt

for any test function ϕ satisfying ∇xϕ · n|∂Ω = 0, we observe that convergence of
the integral on the left-hand side follows from (3.25).

Furthermore,

�nvn ⊗ vmn = �nvn ⊗ vn − vn ⊗∇x�n;

whence equi-integrability of the sequence {�nvn ⊗ vmn}∞n=1 follows directly from
(3.6), (3.7), and the refined velocity estimates (3.4).
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Finally,
�n|vn|2vmn = �n|vn|2vn − |vn|2∇x�n.

Seeing that
�n|vn|2vn =

√
�n
√
�nvn|vn|2,

we can deduce equi-integrability of this expression from (2.5), (2.17), and (3.4).
Furthermore,∫ T

0

∫
Ω

|vn|2∇x�n · ∇xϕ dx dt

= −
∫ T

0

∫
Ω

�n|vn|2Δϕ dx dt− 2
∫ T

0

∫
Ω

�n[∇xvnvn] · ∇xϕ dx dt

for any ϕ ∈ C∞c ((0, T )×Ω), where the last integral can be controlled by means of
(2.17) and the refined estimates on the volume velocity established in (3.4).

5. Global existence

The question of existence of solutions is an ultimate criterion of validity of any
mathematical model. Fortunately, Brenner’s model exhibits strong similarity to
the approximate system of equations introduced in [9] in order to show existence
of weak solutions to the standard Navier-Stokes-Fourier system. Taking advantage
of this remarkable coincidence, we propose the following family of approximate
problems:

Approximate System:

∂t�−Δ� = −divx(�v), (5.1)

∇x� · n|∂Ω = 0, (5.2)

�(0, ·) = �0; (5.3)

∂t(�v) + divx(�v ⊗ v) + R∇x(�ϑ)

−divx(v ⊗∇x�) = divxS− ε|v|Γ−2v, (5.4)

v|∂Ω = 0, (5.5)

(�v)(0, ·) = �0v0; (5.6)

cv (∂t(�ϑ) + divx(�ϑv)) − κ0divx

(
(1 + ϑ3)∇xϑ

)
−cvdivx(ϑ∇x�) = S : ∇xv − R�ϑdivxv + ε|v|Γ, (5.7)

∇xϑ · n|∂Ω = 0, (5.8)

(�ϑ)(0, ·) = �0ϑ0. (5.9)

Here ε > 0 is a small parameter and Γ > 0 a fixed (large) number, the value
of which is to be chosen below. A general strategy developed in [9, Chapter 7]
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applies almost literally to the above system. Specifically, the approximate momen-
tum equation (5.4) can be solved via the Faedo-Galerkin approximation scheme
while equations (5.1), (5.7) are solved directly by means of the standard theory of
parabolic problems. Even more specifically, replacing (5.4) by a system of ordinary
differential equations resulting from the Galerkin projections on a finite number
of modes, we fix v satisfying the initial condition (5.6), solve (5.1–5.3) with this
v obtaining �, then solve (5.7–5.9) with given �, ϑ, and go back to solve (5.4–5.6)
closing the circle via the Schauder fixed point argument.

This procedure, carried out and discussed in detail in [9, Chapter 7], yields
the existence of solutions to the approximate system (5.1–5.9) provided we are
able to show that our scheme is compatible with the a priori estimates obtained
in Section 2. In order to see this, we note first that the total energy balance

∂t

(
�

(
1
2
|v|2 + cvϑ

))
+ divx

(
�

(
1
2
|v|2 + cvϑ

)
v
)

− divx

((
1
2
|v|2 + cvϑ

)
∇x�

)
− κ0divx

(
(1 + ϑ3)∇xϑ

)
+ divx(pv) = divx(Sv)

deduced on the basis of (5.4), (5.7) does not contain any ε-dependent terms.

5.1. Regularity of the approximate velocities

Unfortunately, the refined velocity estimates obtained in Section 3.1 are not com-
patible with the Faedo-Galerkin approximations as they are based on multiplying
the momentum equation on a nonlinear function of v. In order to substitute for
these estimates at the first level of the approximation procedure, the ε-dependent
quantities have been added in (5.4), (5.7). In particular, integrating the thermal
energy balance equation (5.7), we deduce that the approximate volume velocities
are bounded in the Lebesgue space LΓ((0, T )× Ω;R3). As � solves the parabolic
equation (5.1), better summability of v gives rise to higher regularity of �. Specif-
ically, we have the result shown on top of the next page.

Proof. (i) Assume first that �(0, ·) = 0. Following the line of arguments used in
Section 2.3, specifically the maximal regularity estimates established in Proposition
2.1, we deduce from (5.11), (5.12) that

ess sup
t∈(0,T )

‖�‖Lp(Ω) + ‖�‖Lq(0,T ;L3(Ω)) ≤ c(p, q, r,m) for any 1 ≤ p < 3, q <∞.

(5.14)

(ii) Estimate (5.14) combined with hypothesis (5.10) can be used iteratively
to improve integrability of �. To begin, employing again Proposition 2.1 we get

� ∈ Lp(Γ)(0, T ;W 1,q(Γ)(Ω)),

where p(Γ) ↗ ∞, q(Γ) ↗ 3 provided Γ → ∞. Since W 1,3(Ω) ↪→ Lq(Ω) for any
finite q, we infer that

� ∈ Lp(Γ)((0, T )× Ω), with p(Γ)↗∞ for Γ→∞.
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Lemma 5.1. Let Ω ⊂ R3 be a bounded regular domain. Let v be a given velocity
field satisfying

‖v‖LΓ((0,T )×Ω;R3) + ‖v‖L2(0,T ;W 1.2(Ω;R3)) ≤ v. (5.10)

Assume that � ≥ 0 is a weak solution of problem (5.1–5.3) belonging to the
class L1(0, T ;L3(Ω)), and such that �0 ∈ C(Ω),

1
r
≤ inf

x∈Ω
�0(x) ≤ sup

x∈Ω
�0(x) + ‖�‖L1(0,T ;L3(Ω)) ≤ r. (5.11)

Finally, suppose that

ess sup
t∈(0,T )

‖(√�v)(t, ·)‖L2(Ω;R3) ≤ m. (5.12)

Then, for any Γ > 0 large enough, the density � belongs to the spaces C([0, T ]×
Ω) and is strictly positive in [0, T ]× Ω. In addition,

∂t�, Δ� ∈ L2((0, T )× Ω) (5.13)

provided �0 ∈ W 1,2(Ω). The norm of � in the aforementioned spaces depends
only on v, r, and m.

Thus, another application of Proposition 2.1 yields the desired conclusion

� ∈ C([0, T ]× Ω).

The same can be shown, of course, in the case �0 �= 0 ∈ C(Ω).
(iii) Strict positivity of � can be shown via a comparison argument exactly

as in Section 2.4. Specifically, we have

log(�) ≥ V,
where V solves problem (2.26). Accordingly, for Γ > 0 large enough, V is bounded
from below as required.

(iv) It remains to show that � belongs to the “optimal” regularity class (5.13).
Here again, it is enough to handle the case �0 = 0. Since we already know that �
is bounded, we deduce from Proposition 2.1 that

� ∈ Lp(Γ)(0, T ;W 1,p(Γ)(Ω)), p(Γ)↗∞ as Γ→∞.
Thus the desired conclusion follows from the standard parabolic case as

∂t�−Δ� = −∇x� · v − �divxv ∈ L2((0, T )× Ω). �

5.2. Refined velocity estimates revisited

As already pointed out, the refined velocity estimates based on non-linear multi-
pliers |v|2αv are not compatible with the Faedo-Galerkin approximations applied
to problem (5.4–5.6). Fortunately, as we have observed in Lemma 5.1, even better
regularity of � is obtained as a consequence of the presence of the extra ε-terms in



176 E. Feireisl and A. Vasseur

(5.4), (5.7). In view of the general arguments discussed in Sections 2, 4, we may
therefore expect the approximate system (5.1–5.9) to be solvable in the regularity
class induced by the a priori estimates obtained in Section 2, where, in addition, �
enjoys the same regularity as in the conclusion of Lemma 5.1. Thus, our ultimate
goal is to carry out the limit ε→ 0.

At this stage, the ε-dependent bounds on the volume velocity field v have
to be replaced by those obtained in Section 3.1. In other words, we have to show
that the quantities |v|2αv can be used as test functions in the weak formulation
of (5.4) which reads∣∣∣∣∫

Ω

�v ·ϕ dx
∣∣∣∣t=τ

t=0

−
∫ τ

0

∫
Ω

�v ·∂tϕ dx dt−
∫ τ

0

∫
Ω

�v⊗(v−∇x�) :∇xϕ dx dt

(5.15)

−R
∫ τ

0

∫
Ω

�ϑdivxϕ dx dt=−
∫ τ

0

∫
Ω

S :∇xϕ dx dt−ε
∫ τ

0

∫
Ω

|v|Γ−2v ·ϕ dx dt

for any τ ∈ [0, T ] and any test function ϕ ∈ C∞c (R × Ω;R3). Obviously, the
principal difficulty stems from the lack of information on the time derivative of
ϕ ≈ |v|αv.

Extending �, v to be �0, v0 for t < 0 and �(τ, ·), v(τ, ·) for τ ∈ [T,∞) we
can use the quantities

ϕ(t, x) = ηδ(τ − t)φ(x)
as test functions in (5.15), where {η}δ is a suitable family of regularizing kernels
with respect to the time variable. Writing [v]δ = ηδ ∗ v we deduce

∂t[�v]δ = [divxS]δ − [divx(�v ⊗ vm)]δ − R[∇x(�ϑ)]δ − ε[|v|Γ−2v]δ (5.16)

for t ∈ R provided all quantities in the brackets on the right-hand side have been
extended to be zero outside the interval [0, T ]. Since v and � belong to the regular-
ity class specified in Lemma 5.1, we can identify the mapping t �→ [divxS]δ with a
smooth function of time ranging in the dual W−1,2(Ω), while the remaining terms
on the right-hand side of (5.16) belong to C∞(R;Lq(Ω;R3)) for a certain q > 1.

Now, consider the commutator

ωδ = ∂t[�v]δ − ∂t(�[v]δ) on the time interval [0, T ].

Since ∂t� belongs to the Lebesgue space L2((0, T )×Ω) and v ∈ LΓ((0, T )×Ω;R3),
the classical regularity estimates of Friedrichs (see [9, Lemma 4.3]) yield

ωδ → 0 as δ → 0 in Lp((0, T )× Ω), where
1
p
=
1
2
+
1
Γ
.

Thus we are allowed to replace ∂t[�v]δ by ∂t(�[v]δ) in (5.16) and multiply
the resulting expression by Tk(|[v]δ|2α)[v]δ, where Tk are the cut-off functions

Tk(z) = min{k, z},
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to obtain
d
dt

∫
Ω

�Hk(|[v]δ |) dx+
∫
Ω

Tk(|[v]δ |2α)divx[(�vm ⊗ v)]δ · [v]δ dx (5.17)

− R
∫
Ω

[�ϑ]δTk(|[v]δ|2α)divx([v]δ) dx− R
∫
Ω

[�ϑ]δ∇xTk(|[v]δ |2α) · [v]δ dx

+ μ
∫
Ω

Tk(|[v]δ |2α)|∇x[v]δ |2 dx+
μ

3

∫
Ω

Tk(|[v]δ |2α)|divx[v]δ|2 dx

+ ε
∫
Ω

Tk(|[v]δ|2α)[|v|Γ−2v]δ · [v]δ dx

=
∫
Ω

Tk(|[v]δ |2α)ωδ · [v]δ dx

− μ
∫
Ω

(
[(∇x[v]δ)[v]δ ] · ∇xTk(|[v]δ |2α) +

1
3
divx[v]δ∇xTk(|[v]δ |2α) · [v]δ

)
dx,

where

H ′k(z) =

{
z2α+1 for 0 ≤ z ≤ k1/2α,
kz if z ≥ k1/2α.

Thus letting first δ → 0 and then k → ∞ we deduce the same estimates as
in Section 3.1 that are independent of ε.

5.3. Global existence – conclusion

In accordance with the previous discussion, the existence of global-in-time solu-
tions for the initial-boundary value problem associated to system (1.1–1.4) can be
established in two steps:

• Solutions of the approximate system (5.1–5.9) are obtained by the method
described in detail in [9].

• The approximate solutions enjoy the regularity properties established in
Lemma 5.1. In particular, the approximate velocity field v belongs to the
regularity class identified in Section 5.2, where the bounds are independent
of ε.

• We let ε → 0 to recover a weak solution of the original system. The limit is
carried over by the same arguments as in Section 4.

On the point of conclusion, let us state our main existence result (top of the
next page).

Remark: In accordance with our considerations in Section 4, we write

q = −κ0∇xϑ−
κ0
4
∇xϑ

4,

and similarly.

�|v|2vm = �|v|2v − divx(�|v|2) + 2�(∇xv v)

in the weak formulation of the total energy balance (1.3).
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Global-in-Time Existence for Large Data:

Theorem 5.1. Let Ω ⊂ R3 be a bounded domain of class C2+ν , ν > 0. Assume
that the thermodynamic functions satisfy hypotheses (A 2.1–A 2.5). Finally, let
the initial data be chosen so that

�0, ϑ0 ∈ L∞(Ω), v0 ∈ L∞(Ω;R3),
ess inf

Ω
�0 > 0, ess inf

Ω
ϑ0 > 0.

Then the initial-boundary value problem associated to (1.1–1.5), (1.13), (1.15–
1.20) possesses at least one weak solution �, v, ϑ on (0, T )× Ω. Moreover,

�(t, x) > 0, ϑ(t, x) > 0 for a.a. (t, x) ∈ (0, T )× Ω.

Under the hypotheses (A 2.1–A 2.5), Brenner’s model or (BNSF) system
represents an interesting alternative to the classical approach. The velocity field v
enjoys more regularity than the weak solutions to the incompressible Navier-Stokes
system constructed by Leray. In addition, both � and ϑ are positive although with a
possible exception of a set of zero Lebesgue measure. To the best of our knowledge,
such a result for the standard Navier-Stokes-Fourier system lies beyond the scope of
the available existence theory. Of course, the model is open to discussion regarding,
in particular, the relevant value of the phenomenological coefficient K set constant
in the present study.
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Existence of a Regular Periodic Solution to
the Rothe Approximation of the Navier–Stokes
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Abstract. In this paper we show the existence of regular solutions of the Rothe
approximation of the unsteady Navier–Stokes equations with periodic bound-
ary condition in arbitrary dimension. The result relies on techniques developed
by the authors in the study of the higher-dimensional steady Navier–Stokes
equations.
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1. Introduction

In previous papers [FR94a], [FR95a], [FR95b] (cf. [Str95], [BF02]) we proved the
existence of regular solutions to the steady Navier–Stokes equations

−μΔu+ u · ∇u+∇p = f in Ω,
div u = 0 in Ω,

(1)

with periodic boundary conditions, where Ω = (0, L)N , 0 < L, 5 ≤ N < 15.
The function f ∈ L∞ and the constant viscosity μ > 0 are given. In the case of
Dirichlet boundary conditions (steady problem) the authors succeeded to prove the
existence of locally regular solutions up to dimension 6, cf. [FR96a]. The motivation
to consider higher-dimensional steady problems (n ≥ 5) comes from the similarity
in the regularity theory and in the scaling behaviour of solutions to the steady n-
dimensional and the unsteady (n− 2)-dimensional problem. This similarity allows
us to develop new analytical techniques in the steady context, which might be also
useful in the unsteady case. (cf. [NRŠ96], [Tsa98]).
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In the periodic case it is likely that restriction to the dimension N ≤ 15 is
not needed. From this background it is interesting that there is no dimensional
restriction concerning the existence of a regular solution if one considers the Rothe
approximation of the unsteady Navier–Stokes equations with periodic boundary
condition. It reads

(
u(t) = u(t, .), u : [0, T ]× Ω→ RN

)
h−1

(
u(t)− u(t− h)

)
− μΔu(t) + u(t) · ∇u(t) +∇p(t) = f ,

div u = 0 ,
(2)

where u(0) = u0 is given.
Obviously (2) is solved successively for t = kh, k = 1, 2, . . . , N , hN = T .

Given u(t− h) being smooth one has to prove the existence of a periodic regular
solution, say u(t) ∈ W 2,q of (2) for all q < ∞, if the data are smooth enough.
Proving this theorem is the purpose of the present paper.

By a scaling argument in the time and space variables, the unknown functions
and a redefinition of h, we may assume without loss of generality that μ = 1.

2. Notation and formulation of the theorem

Let us first introduce some notation. By
(
Lq(Ω), ‖ · ‖q

)
,
(
W k,q(Ω), ‖ · ‖k,p

)
we

denote the usual Lebesgue, resp. Sobolev, spaces of periodic functions. We denote
the mean value of any function g by ḡ. By K we denote a generic positive constant.
Here we consider the periodic case. Let Ω = (0, L)N be a cube of length L > 0 and
let us write Γj = ∂Ω∩{xj = 0} ,Γj+N = ∂Ω∩{xj = L}. We consider the problem
(2) with μ = 1 and periodic boundary conditions

u|Γj = u|Γj+N , p|Γj = p|Γj+N ∀j = 1, . . . , N
∂u

∂xk
|Γj =

∂u

∂xk
|Γj+N ∀j, k = 1, . . . , N .

We shall prove the following theorem:

Theorem 2.1. Let Ω = (0, L)N , N ≥ 2, be a periodicity cube in RN and for t = kh,
k ∈ N let

f(t) ∈ L∞(Ω) , (3)

div f(t) ∈ L∞(Ω) . (4)

Furthermore, let

u0 ∈ W 2,q(Ω) for all q ∈ [1,∞) , div u0 = 0 . (5)

Then there exists a solution

u(t) ∈ W 2,q(Ω) , t = kh , k ∈ N ,

to the Rothe approximation (2).
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For the proof of this theorem regularity is successively established for u(kh),
k ∈ N. The proof of this relies on our result from [FR94b] which states that if the
quantity (called head pressure)

w = p(t) +
1
2
|u(t)|2 ,

is bounded from above, then a solution of (2) with this property is regular. To
achieve this criterium, we use a Moser type technique to derive the desired L∞-
bound. The head pressure also played a crucial role in the resolution of a long-
lasting problem concerning the existence of self-similar solutions of the unsteady
Navier–Stokes equations (cf. [NRŠ96], [Tsa98], [Tsa99]).

3. Regularized Rothe approximation

We assume that for t = h, 2h, . . . , (k − 1) regular solutions u(t), p(t) have been
constructed and we have to construct a regular pair u(t), p(t), t = kh. For this we
consider – as in the first paper [FR94a] in this subject – the approximation

h−1u(t)−Δu(t) + u(t) · ∇u(t) + δ0|u(t)|2 u(t) +∇p(t)
= f + h−1u(t− h),

div u(t) = 0

(6)

in the weak sense, for δ0 > 0, δ0 → 0.
By routine methods (say, the usual Ritz–Galerkin method) we obtain a weak

solution v = u(t) with div v = 0 such that

‖∇v‖22 +
1
2
h−1‖v‖22 + δ0‖v‖44 ≤

1
2
h−1‖v(t− h)‖22 + ‖f‖2‖v‖2 . (7)

The norms are taken over Ω. Then, obviously, the right-hand side of (7) remains
bounded as δ0 → 0. With the usual procedure from the theory of Navier–Stokes
equations we obtain a pressure p with mean value p̄ = 0 satisfying the equation

Δp = −
N∑

i,k=1

Di(vkDkvi) + div f − δ0 div(|v|2v) (8)

in the weak sense. Since ‖∇v‖ and δ0‖v‖44 are bounded uniformly and div f ∈ L∞
we obtain via linear elliptic regularity theory that

‖p‖N/(N−2) ≤ K , ‖∇p‖N/(N−1) ≤ K (9)

uniformly as δ0 → 0. In fact, due to Sobolev embedding, v ∈ W 1,2 and Hölder’s
inequality we have v · ∇v ∈ LN/(N−1) and due to the uniform bound for δ0‖v‖44
we further have

‖δ0|v|2v‖4/3 → 0 as δ0 → 0 (10)

and
‖δ0|v|2v‖N/(N−1) ≤ K .
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Thus the right-hand side of (8) is the divergence of a LN/(N−1)-function and (9)
follows via W 1,N/(N−1)-duality.

We confine ourselves to the case N ≥ 4 since N = 2, 3 correspond to the
classical steady Navier–Stokes equation (up to the term h−1u which does not
change the situation).

Due to the estimates (7) and (9) the following lemma is clear.

Lemma 3.1. The solutions v = vδ0 of (6) converge weakly, for a subsequence, to
a weak solution of (2) as δ0 → 0, and are uniformly bounded in W 1,2. Moreover,
there hold the inclusions

|v||∇v| ∈ L4/3 , ∇2v ∈ L4/3 , ∇p ∈ L4/3 (11)

for fixed δ0 > 0.

Proof. The first statement is routine analysis. Inequality (11) follows via duality in
W 1,q using v · ∇v ∈ L4/3 since v ∈ L4; and |v|2v ∈ L4/3. So we derive ∇p ∈ L4/3
from the pressure equation and finally Δv and ∇2v ∈ L4/3 due to elliptic W 2,p-
theory. �

4. The head pressure equation

Let v = u(t) and p(t) be the solutions of (2) constructed in the previous section.
It is easy to see that the function

w =
|v|2
2

+ p(t) ,

called the “head pressure” is a weak solution of the equation

h−1|v|2 −Δw + |∇v|2 +
N∑

k,j=1

DkvjDjvk + v · ∇w + δ0|v|4

= − div f + f · v + h−1v · u(t− h) + div(δ0v|v|2) ,
(12)

where we used
n∑

i,k=1

DivkDkvi =
n∑

i,k=1

Dk(vkDkvi). Clearly w depends on δ0.

Equation (12) holds strongly in L1 and in the weak sense for test functions
ϕ ∈ L∞ ∩ W 1,2. This is due to the fact that ∇v ∈ L2, v · ∇w ∈ L1 for all δ0
and div(δ0v|v2|), δ0v4 ∈ L1 for fixed δ0, cf. (11) and (7).

Proposition 4.1. For every r > 2, the head pressure w satisfies the inequality1∫
|∇w|2wr−2

+ dx ≤ Kh

∫
wr−1
+ dx

uniformly as δ0 → 0 and uniformly in r →∞.

1We use the convention that the integral is taken over Ω = (0, L)N if not otherwise stated.
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Proof. Let M, r ≥ 2 be real numbers (which shall tend to ∞ later) and let ω∗
be the usual mollification operation converging to the Dirac functional. We test
equation (12) with the test function

ω ∗ [ω ∗ w+]r−1M

where w+ = max{0, w}, [ξ]M = min(ξ,M) and obtain an equation

T1 + T2 = T3 , (13)

where T1, T2, T3 are defined below. We analyze the summands arising as ω∗ con-
verges to the Dirac functional. We have

T1 :=
∫ {

h−1|v|2 + |∇v|2 +
N∑

k,j=1

DkvjDjvk + u · ∇w + δ0|v|4
}

× ω ∗
[
(ω ∗ w)+

]r−1
M
dx

→
∫ {

h−1|v|2 + |∇v|2 +
N∑

k,j=1

DkvjDjvk + v · ∇w + δ0|v|4
}
[w+]r−1M dx

since the terms in {. . .} are in L1 for fixed δ0. Approximating w with periodic
C∞-functions wm with wm → w in W 1,4/3 we see that

T14 :=
∫
v · ∇w[w+]r−1M dx = o(1) +

∫
v · ∇(wm)

[
(wm)+

]r−1
M
dx = o(1)

hence T14 = 0. We have used the usual Navier–Stokes Identity∫
v · ∇ϕ b(ϕ) dx = 0 .

So, we proved

T1 →
∫
{h−1|v|2 + |∇v|2 +

N∑
j,k=1

DjvkDkvj + δ0|v|4}[w+]r−1M dx =: T10 (14)

as ω∗ converges to the Dirac functional. The term

T2 := −
∫
Δwω ∗

[
(ω ∗ w)+

]r−1
M
dx

is re-written via partial integration as

T2 =
∫
∇(ω ∗ w)∇[(ω ∗ w)+]r−1M dx

= (r − 1)
∫
M

|∇(ω ∗ w)|2[(ω ∗ w)+]r−2M dx ,

where the symbol M under the integral sign indicate, that the integration runs
over the set {ω ∗ w ≤ M} resp. over {w ≤ M} thereafter. By Fatou’s lemma we
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obtain for ω∗ converging to the Dirac functional

lim inf T2 ≥ (r − 1)
∫
M

|∇w|2[w+]r−2M dx . (15)

The terms arising due to the right-hand side of (12) do not give trouble since
v ∈ L4, div f , f , u(t− h) ∈ L∞, |∇v||v|2 ∈ L1. Thus we obtain that

T3 :=
∫ {

− div f + f · v + h−1v · u(t− h) + div(δ0v|v|2)
}

× ω ∗ [(ω ∗ w)+]r−1M dx

converges to

T30 :=
∫ {

− div f + f · v + h−1v · u(t− h) + div(δ0v|v|2)
}
[w+]r−1M dx .

All together we proved that

T10 + (r − 1)
∫
M

|∇w|2[w+]r−2M dx ≤ T30 . (16)

We estimate the term∫ {
f · v + h−1v · u(t− h)

}
[w+]r−1M dx

≤ 1
2
h−1

∫
|v|2[w+]r−1M dx +Kh

∫
[w+]r−1M dx

(17)

where we used div f, f ∈ L∞, u(t−h) ∈ L∞. The term − div f in T30 is estimated
by a constant and the term |∇v|2+

N∑
j,k=1

DjvkDkvj in T10 is estimated from below

by zero. Now, the term h−1
∫
|v|2[w+]r−1M dx in T10 dominates the corresponding

term in (17) which is the main difference in the treatment of the Rothe approx-
imation compared to the steady Navier–Stokes equations. The term δ0 div(v|v|2)
is estimated by

1
2
δ0|v|4 + c(N)δ0|∇v|2 ,

where the first one is absorbed on the left-hand side. Using all this we conclude
from (14), (16)

(r − 1)
∫
M

|∇w|2[w+]r−2M dx

≤ Kh

∫
[w+]r−1M dx+ c(N) δ0

∫
|∇v|2[w+]r−1M dx .

The constant Kh does not depend on r,M , δ0, δ0 ≤ δ′0. Using Fatou’s lemma we
pass to the limit δ0 → 0 and we see that

[w+]
r/2
M ∈W 1,2
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and

(r − 1)
∫
M

|∇w|2[w+]r−2M dx ≤ Kh

∫
[w+]r−1M dx , (18)

since the term with integrand |∇v|2[w+]r−1M does not make trouble for fixed M ,
because of the L2-bound for ∇v and the truncation [w+]r−1M .

It is well known from the theory of non-linear elliptic equations, [LU68],
[GT01], that (18) implies

w+ ∈ L∞ .
Let us remind the reader: Start an iteration procedure in (18) with r0 = 2. Thus
[w+]r0−1 ∈ L1 (at least) and we may pass to the limit M →∞. This implies

c
(∫

w
2N

N−2
+ dx

)N−2
N ≤

∫
|∇w+|2 dx ≤ Kh

∫
w+ dx

and we have the improved inclusion

w+ ∈ L
2N

N−2 .

We choose successively rj = N
N−2rj−1 and obtain from (18)

w+ ∈ Lq with q =
(

N

N − 2

)s

r0 , s→∞

and we conclude with (18)

(r − 1)
∫
|∇w|2|w+|r−2 dx ≤ Kh

∫
|w+|r−1 dx .

This is the basic inequality for Moser’s iteration method, which yields:

Lemma 4.1. w+ ∈ L∞.

5. Proof of the main theorem

In [FR94b] we showed that solutions to the steady Navier–Stokes equation are
regular, provided that the head pressure is bounded from above. This worked in
arbitrary dimensions. In principle, we want to apply this theorem in our situation,
however our equation has the additional term h−1v coming from the Rothe ap-
proximation. Recall that v = u(t) is the solution of (2). So we have to go through
the old proofs and explain that this additional term does not give problems.

First step (cf. [FR94a, Theorem 2.1], [FR96b]): One uses in the pressure equation
(8) the test function (|x−x0|2+h2)−(N−2)/2τ2 and (|x−x0|2+h2)−q+2τ2, q < N−2,
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where τ is a localization function and passes to the limit h → 0. Then using the
boundedness of the positive part of the head pressure, one obtains the inequalities∫ ∣∣∣ |v|2

2
+ p

∣∣∣ τ2

|x− x0|N−2
dx ≤ c, (19)∫

(v · (x− x0))2
|x− x0|N

τ2 dx ≤ c, (20)∫ ( |v|2
2

+ |p|
) τ2

|x− x0|q
dx ≤ cq , q < N − 2 , (21)

q < N−2. This procedure is the same in the case considered here since the pressure
equations do not differ, due to the fact that div v = div u(t− h) = 0.

Second step: Let 1 ≤ r < 2. We use the function

ϕ0(x0) =
∫
|p|r−1 sign p|x− x0|2−Nτ2 dx

as a test function in the pressure equation. Due to (21) one obtains that ϕ0 ∈ L∞,
so the arising term of the right-hand side in the pressure equation is bounded, and
the integral ∫

∇p · ∇ϕ0 dx

will lead to ∫
|p|r τ2 dx ≤ cr . (22)

From Lemma 4.1 thus also follows∫
|v|2r τ2 dx ≤ cr . (23)

Indeed we have used Lemma 4.1 and (22):∫
|v|2r τ2 dx ≤ c

∫
(
|v|2
2

+ p− p)r τ2 dx

≤ c
∫ (( |v|2

2
+ p

)
+
+ |p|

)r

τ2 dx

≤ c .

Note, that ϕ0 ∈ W 1,2 since Δϕ0 ∈ L1 and ϕ0 ∈ L∞. These arguments are
worked out for N = 5 in [FR94a, Theorem 2.11] and work completely analogously
for arbitrary dimension N . Since the pressure equations in the present and in the
cited paper are the same we have (22) and (23).
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With similar arguments, only using the pressure equation and the fact that( |v|2
2 + p

)
+
≤ c, we obtain (cf. [FR94a, Corollary 2.15])∫

|p|
∣∣∣v2
2
+ p

∣∣∣ τ2 dx ≤ c , (24)∫ ∣∣∣ |v|2
2

+ p
∣∣∣2τ2 dx ≤ c . (25)

Third step: We have to establish the Navier–Stokes inequality:

h−1
∫
|v|2ϕdx +

∫
∇v · ∇(vϕ) dx (26)

≤
∫ ( |v|2

2
+ p

)
v · ∇ϕdx+

∫ (
f · v − div f + h−1u(t− h) · v

)
ϕdx

for smooth non-negative test function ϕ. The corresponding inequality without the
terms coming from the Rothe approximation has been proved in [FR94b]. Formally,
it follows from the Navier–Stokes equation or the Rothe approximation using the
function vϕ as a test function. However, this cannot be done directly since we do
not know in the present state of the proof that v · ∇( |v|

2

2 + p) is integrable. We
can justify (26) using that v is the limit of the approximate Rothe problem (6).
Indeed, using in the weak formulation of (6) vϕ as a test function we obtain

h−1
∫
|v|2ϕdx+

∫
∇v · ∇(vϕ) dx + δ0

∫
|v|4ϕdx

=
∫ ( |v|2

2
+ p

)
v · ∇ϕdx +

∫ (
f · v − div f + h−1u(t− h) · v

)
ϕdx ,

where we used
∫
(v ·∇v+∇p)vϕ dx = −

∫ ( |v|2
2 +p

)
v ·∇ϕdx. Note that all integrals

are defined since v ∈ W 1,2 ∩ L4. Thus the limit δ0 → 0 yields (26).
Step four: We introduce the function g defined by

Δg =
( |v|2
2

+ p
)

in BR,

g = 0 on ∂BR .
(27)

We may assume [−L,L]N ⊂⊂ BR. In [FR94b, Lemma 2.4] it was shown that

g ∈W 2, N
N−2 ∩W 1, N

N−3
0 satisfies the inequalities

‖∇2g‖2,loc ≤ c, (28)

‖g‖∞,loc ≤ c, (29)∫
Br

|∇g|2|x− x0|2−N dx ≤ c , Br ⊂⊂ BR . (30)

In fact, we work with τ2|x−x0|2−N and g|x−x0|2−Nτ2 as test functions, combined
with some mollification argument to justify the integrations.
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For the proof, only (25) and (19) are used. So we have these inequalities also
in our setting. The introduction of this function g is an important trick to deal
with the term ( |v|

2

2 + p)v · ∇ϕ, for special ϕ, in the next steps.
Step five: In the Navier–Stokes inequality (26) we choose

ϕ = (|x − x0|2 + h2)(N−4)/2τ2 ,
where τ is a localization function. We replace the term |v|2

2 + p by Δg, where g is
defined in (27). Using similar calculations as in [FR94b, Proposition 2.8], we arrive
at the estimate∫

|∇v|2(|x− x0|2 + h2)−(N−4)/2τ2 dx +
∫
|v|2(|x− x0|2 + h2)−(N−2)/2τ2 dx

≤
N∑

i=1

∫
∇g∇

(
viDi(|x− x0|2 + h2

)−(N−4)/2
τ2

)
dx +K , (31)

where several absorbing steps have been applied. The estimates for g are such that
the convective term at the right-hand side of (31) can be estimated such that the
terms with factor v and ∇v in the integrand can be absorbed by the left-hand side
of (31). Thereafter, we pass to the limit h→ 0 and end up with∫

|∇v|2|x− x0|−N+4τ2 dx+
∫
|v|2|x− x0|−N+2 dx ≤ K . (32)

This is a Morrey condition for ∇v. From (32) we obtain via a refinement of em-
bedding theorem due to Chiarenza, Frasca [CF87] that∫

|v|4|x− x0|−N+4 dx ≤ K .

Step six – the hole-filling step: The Navier–Stokes inequality is used once more
with

ϕ = |x− x0|−N+4τ2R ,

where τR is a Lipschitz continuous localization function with τR = 1 on BR(x0),
support τR = B2R(x0), |∇τR| ≤ R−1. Repeating the arguments of the 5th step,
with a more precise analysis of the R dependence of the constants, and using also
the equation for g and p we obtain similarly as in ([FR94b, Proof of Theorem 1.5]
the hole-filling condition for the quantity

φ = |∇v|2|x− x0|4−N + |v|2|x− x0|2−N + (v · (x − x0))2|x− x0|−N

+
∣∣∣ |v|2
2

+ p
∣∣∣ |x− x0|2−N + |∇g|2|x− x0|2−N ,

namely ∫
BR

φdx ≤ K
∫

TR

φdx+KRα , TR = B2R \BR . (33)

Note that the term h−1v coming from the Rothe method does not disturb the
Navier–Stokes inequality; it has the correct sign and could be dropped or used



Rothe Approximation of the Navier–Stokes Equations 191

to dominate terms to have better constants. From (33) one concludes a Morrey
condition (cf. [BF02, Section 1.2.3], [FR94b])∫

BR

φdx ≤ KRγ ,

which gives an improved Morrey condition compared to (32):∫
BR

|∇v|2 dx ≤ KRN−4+γ ,

∫
BR

|∇v|2 dx ≤ KRN−2+γ . (34)

Seventh step: Already in the first paper [FR94a, Theorem 3.28] the authors showed
via a bootstrap argument, using weighted W 2,p-estimates for the Laplacian, that
(34) and w+ ∈ L∞ imply full regularity (say W 2,q for all q <∞) for the solution
u of the Navier–Stokes equation. For the Rothe approximation, this is just the
same argument since h−1v is only a lower order term not disturbing the bootstrap
procedure. (Anyhow, it is likely that the operator h−1u−Δu is stable with respect
to Morrey norms.) This proves our theorem. �
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c© 2009 Birkhäuser Verlag Basel/Switzerland

Optimal Neumann Control for
the Two-dimensional Steady-state
Navier-Stokes equations

A.V. Fursikov and R. Rannacher

To the memory of Alexander Vasil’evich Kazhikhov

Abstract. An optimal control problem, the minimization of drag, is considered
for the 2D stationary Navier-Stokes equations. The control is of Neumann kind
and acts at a part of the boundary which is contiguous to the rigid boundary
where the no-slip condition holds. Further, certain constraints are imposed on
the control and the phase variable. We derive an existence theorem as well as
the corresponding optimality system

Mathematics Subject Classification (2000). 76D05, 49J20, 49K20, 35J55.

Keywords. Navier-Stokes equations, phase variable restrictions, optimal Neu-
mann boundary control.

1. Introduction

This paper is devoted to the study of an optimal control problem for the Navier-
Stokes equations defined in a bounded domain Ω. We are interested in the ex-
istence of optimal solutions as well as in the derivation of the corresponding
“optimality system”, i.e., the first-order optimality conditions. These problems
have been studied already for the stationary Navier-Stokes equations (see [GHS1],
[GHS2], [CH], [A], [ALT]) and the nonstationary Navier-Stokes equations (see [F1],
[F2], [AT], [S] [F], [FGH]) for small as well as large Reynolds numbers. However, not
all aspects of these optimization problems have been completely investigated, yet.

In this paper, we concentrate on the following questions arisen in optimal
control problems. First of all the extremal problem we study contains restrictions
not only on the control but on the phase variable as well. The restriction is imposed

The first author thanks the Alexander von Humboldt Foundation for its support during his stays
at the University of Heidelberg in 2006 and 2007.
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that the component v1(x) of the fluid velocity should be nonnegative on a certain
subdomain ω of Ω.

The derivation of the optimality system in such a situation needs a specific
Lagrange principle. A general Lagrange principle of such kind was worked out by
I.V. Girsanov [G] and A.A. Milutin, A.V. Dmitruk, N.P. Osmolovskiy [MDO]. In
this paper, we have to adapt the approach from [G], [MDO] to the optimal control
problem for the Navier-Stokes equations.

Usually in applications the boundary control is acting not on the whole
boundary ∂Ω but only on a certain part Γ . Besides, often it is more reason-
able to use Neumann control on Γ instead of Dirichlet control. Moreover Γ is
contiguous with the part of the boundary where the adhesion condition is posed.
In such a situation Neumann control causes a local singularity of the state at
∂Γ . This effect was studied in many papers beginning with V.A. Kondrat’ev’s
work [Kon1]. This effect is not essential in the proof of the existence theorem for
the optimal control problem, but it becomes important in the derivation of the
optimality system.

In this paper, we derive the optimality system for an optimal control problem
in which all the aforementioned complications take place. In order to focus on the
essential aspects, we minimize all other possible difficulties by only considering an
optimal control problem for the 2D steady-state Navier-Stokes equations. However
we are sure that the results of this paper can be extended to the 3D case as well
as to the nonstationary Navier-Stokes equations.

The investigation of the problem considered in this paper was begun during
a visit of the first author at the University of Heidelberg with the support of a
Humboldt Research Award. The first author expresses his deep gratitude to the
Alexander von Humbolt Foundation for this award and to Rolf Rannacher and his
group for their hospitality and the very good working conditions.

The authors thank Dominik Meidner for providing the numerical results (see
Section 8) by the software package GASCOIGNE [GA].

2. Setting of the optimal control problem

Let Ω be the two-dimensional domain shown in Figure 1, i.e., a rectangle without
the set bounded by the curve S. We introduce the following notation for parts of
the boundary ∂Ω: AH = Γin, DE = Γout, AB∪CD∪FE∪HG = S′, BC = Γ1,
GF = Γ2, Γ1 ∪ Γ2 = Γ and ∂Ω = Γin ∪ Γout ∪ Γ ∪ S ∪ S′. We shall use the
abbreviated notation (·, ·) = (·, ·)L2(Ω) for the L2 scalar product over Ω and
‖ · ‖ = ‖ · ‖L2(Ω) for the associated norm. For subdomains D ⊂ Ω and Γ ⊂ ∂Ω ,
we write ‖ · ‖D = ‖ · ‖L2(D) and ‖ · ‖Γ = ‖ · ‖L2(Γ ) , respectively, and similarly for
the corresponding scalar products. We will not distinguish notations of norms and
scalar products for scalar functions and corresponding vector fields: this should
not lead to misunderstandings.
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Figure 1. Domain

On Ω, we consider the Navier-Stokes equations

−Δv + v · ∇v +∇p = 0 in Ω, (2.1)

∇ · v = 0 in Ω, (2.2)

where v = (v1, v2) is the velocity vector field, ∇p = (∂1p, ∂2p) the pressure
gradient, v · ∇v = ∑2

j=1 vj∂jv, and ∇ · v =
∑2

j=1 ∂jvj . The system (2.1), (2.2) is
supplemented by the boundary conditions

v|Γin = v
in, (∂nv − pn)|Γout = 0, v|S∪S′ = 0, (2.3)

where vin is a given inflow vector field, and n = n(x), x ∈ ∂Ω, is the outside
normal unit vector field to ∂Ω. The goal is to minimize the drag functional of S,

J =
∫

S

n · σ · e1 dx → inf, (2.4)

under the action of a control u(x1) = (u1(x1), u2(x1)) at the horizontal boundary
component Γ = Γ1 ∪ Γ2,

(∂nv − pn)|Γ1 = u
1, (∂nv − pn)|Γ2 = u

2. (2.5)

Here e1 is the unit vector in the x1 direction, and

n · σ = −pn+ 2D(v)n, 2D(v) = (∂jvi + ∂ivj)i,j=1,2 . (2.6)

This control problem is supplemented by the following additional constraint on
the phase variable v1(x):

v1(x) ≥ 0, x ∈ ω, (2.7)

where ω ⊂ Ω is a prescribed closed subset. Further, we impose the following
restriction on the controls u = (u1, u2):

‖u1‖2Γ1
+ ‖u2‖2Γ2

≤ γ2, (2.8)

where γ > 0 is a given constant.
Our goal is to prove an existence theorem for the optimal control problem

(2.1)–(2.8) and to derive the corresponding optimality system.
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3. Boundary value problems

In this section, we prove an existence theorem for several boundary value problems
that will be used to prove the existence theorem for the optimal control problem
(2.1)–(2.8).

3.1. The Stokes boundary value problem

On the domain Ω, we consider the Stokes system

−Δv +∇p = f, ∇ · v = 0, in Ω, (3.1)

supplemented by the boundary condition (2.3), (2.5). For simplicity let the coor-
dinates of the points A, B, . . . , H in Figure 1 be as follows:

A = (0, π), B = (b, π), C = (c, π), D = (d, π),

H = (0, 0), G = (b, 0), F = (c, 0), E = (d, 0).
(3.2)

We suppose that

u1(x1) ∈ L2(Γ1)2, u2(x1) ∈ L2(Γ2)2, vin ∈ H1
0 (Γin)

2 (3.3)

where
H1
0 (Γin) =

{
w ∈ L2(Γin)

∣∣ ‖∂2w‖Γin <∞, w(0) = w(π) = 0
}
. (3.4)

It is convenient for us to suppose that in (3.1)

f(x) ∈ L3/2(Ω)2. (3.5)

In this subsection, we prove an existence and uniqueness theorem for the general-
ized solution of the boundary value problem (3.1), (2.3), (2.5). To define the notion
of “generalized solution”, we introduce the space

Φ =
{
v ∈ H1(Ω)2

∣∣∇ · v = 0, v|S∪S′ = 0
}
, (3.6)

where as above H1(Ω)2 = H1(Ω) × H1(Ω) and H1(Ω) is the usual Sobolev
space over Ω. We recall that for natural k the Sobolev space Hk(Ω) is defined
as follows: Hk(Ω) =W k

2 (Ω), and for each integer k ≥ 1 and 1 ≤ p <∞:

W k
p (Ω) =

{
ϕ ∈ Lp(Ω)

∣∣ ‖ϕ‖p
W k

p (Ω)
=

∑
|α|≤k

‖Dαϕ‖p
Lp(Ω) <∞

}
,

with α = (α1, α2), |α| = α1 + α2, αi nonnegative integers. For arbitrary s > 0
the Sobolev space Hs(Ω) can be defined by interpolation (see [LM]). Further, we
introduce the space

Φ0 :=
{
v ∈ H1(Ω)2 | ∇ · v = 0, v|Γin = 0, v|S∪S′ = 0

}
, (3.7)

and supply the spaces Φ and Φ0 with the norms

‖ϕ‖Φ := ‖ϕ‖H1(Ω), ‖ϕ‖Φ0 := ‖ϕ‖H1(Ω).
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Definition 3.1. Let u1 ∈ L2(Γ1)2, u2 ∈ L2(Γ2)2, f ∈ L3/2(Ω)2, and vin ∈ H1
0 (Γin)

2.
The vector function v ∈ Φ satisfying v|Γin = vin and

(∇v,∇ϕ) − (u2, ϕ)Γ2 − (u1, ϕ)Γ1 = (f, ϕ) ∀ϕ ∈ Φ0, (3.8)

is called a “generalized solution” of problem (3.1), (2.3), (2.5).1

The following result clarifies the connection between the generalized solution
satisfying (3.8) and the solution of problem (3.1), (2.3), (2.5).

Proposition 3.1. Let v ∈ Φ be the generalized solution of problem (3.1), (2.3),
(2.5). Then, there exists a p ∈ L3/2(Ω) such that the pair (v, p) satisfies (3.1).
Moreover, if (v, p) ∈W 2

3/2(Ω)
2×W 1

3/2(Ω), then p is unique, and this pair satisfies
(2.3), (2.5)2.

Proof. Integration by parts in (3.8) with ϕ ∈ Φ0 ∩ C∞0 (Ω)2 implies

(Δv + f, ϕ) = 0 ∀ϕ ∈ Φ0 ∩ C∞0 (Ω)2. (3.9)

Then, by the De Rham theorem (see [T]) there exists p ∈ L3/2(Ω) such that
(v, p) satisfies (3.1) in the distributional sense. Notice that though ∇p is defined
uniquely in (3.1), p is determined only up to a constant. To define it uniquely, we
substitute f = −Δv +∇p in the right-hand side of (3.8) and integrate by parts
in this term. As a result, we get

2∑
i=1

(∂nv − pn− ui, ϕ)Γi + (∂nv − pn, ϕ)Γout = 0 ∀ϕ ∈ Φ0. (3.10)

Equality (3.10) implies that

(∂nv − pn− ui + cn)|Γi
= 0, i = 1, 2, (∂nv − pn+ cn)|Γout = 0, (3.11)

where the constant c in all the equalities is the same. We choose the constant
component of the pressure p such that c in equations (3.11) becomes zero.3 �
Theorem 3.2. Let ui ∈ L2(Γi)2, i = 1, 2, f ∈ L3/2(Ω)2. Then, there exists a
unique generalized solution of problem (3.1), (2.3), (2.5).

Proof. Let us consider the extremal problem

J0(v) :=
1
2
‖∇v‖2 − (f, v)−

2∑
j=1

(uj , v)Γj → inf, (3.12)

v ∈ Φ, v|Γin = v
in, (3.13)

for v ∈ Φ with v|Γin = vin, where Φ is defined in (3.6). The functional J0(v)
is convex and continuous on H1(Ω)2. Therefore it is semi-continuous on H1(Ω)2

1As we will show, a generalized solution exists even under weaker assumptions on u1, u2, vin.
2Notice that by virtue of the ellipticity of the system (3.1) in the Douglas-Nirenberg sense the
inclusion (v, p) ∈ W 2

3/2
(Ω′)2 × W 1

3/2
(Ω′) holds for an arbitrary subdomain Ω′ � Ω.

3The uniqueness of p without the additional assumption (v, p) ∈ W 2
3/2

(Ω)2 × W 1
3/2

(Ω) will be

proved below in Theorem 4.1.
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with respect to the weak convergence in H1(Ω)2. Besides, being a closed convex
subset of H1(Ω)2, the set of restrictions (3.13) is sequentially weakly closed in
H1(Ω)2. At last, J0(vk) → ∞ , as vk ∈ Φ, ‖vk‖H1(Ω) → ∞. Therefore (see [F])
there exists a unique solution v̂ ∈ Φ of problem (3.12), (3.13). The conditions
v̂ ∈ Φ, v̂+ϕ ∈ Φ , and v̂|Γin = (v̂+ϕ)|Γin = vin imply the inclusion ϕ ∈ Φ0. Since
v̂ is a solution of (3.12), (3.13),

0 = lim
λ→0

J0(v̂ + λϕ)− J0(v̂)
λ

= (∇v̂,∇ϕ)− (f, ϕ)−
2∑

j=1

(uj , ϕ)Γj ,

for all ϕ ∈ Φ0. �

3.2. An extension result

We recall a well-known extension result using the notation

V 1(Ω) =
{
v ∈ H1(Ω)2 | ∇ · v = 0

}
, V 10 (Ω) =

{
v ∈ V 1(Ω) | v|∂Ω = 0

}
.

Lemma 3.3. For each function g ∈ H1/2(∂Ω)2 satisfying

(g, n)S = 0 and (g, n)∂Ω\S = 0,

where n is the outer normal to ∂Ω, there exists u ∈ V 1(Ω) such that u|∂Ω = g.
Moreover

inf
v∈V 1

0

‖u+ v‖H1(Ω) ≤ c‖g‖H1/2(∂Ω), (3.14)

where the constant c does not depend on g.

Proof. For the proof of this lemma we refer to [GR], [ALT]. �

We introduce the space

Ψ1 :=
{
v ∈ H1(G)2

∣∣∇ · v = 0, v|S∪S′∪Γ1∪Γ2 = 0
}
, (3.15)

For each v ∈ Ψ1 only the components v|Γin = vin and v|Γout = vout of the
restriction v|∂Ω can differ from zero and

(vin, n)Γin + (vout, n)Γout = 0. (3.16)

We set

Ĥ1/2(Γin ∪ Γout) =
{
vin ∈ H1/2

00 (Γin)2, vout ∈ H1/2
00 (Γout)2

∣∣ (3.16) holds},
where H1/2

00 is the space defined in [LM], Chapter 1, Theorem 11.7 4

Lemma 3.4. There exists a bounded extension operator

E : Ĥ1/2(Γin ∪ Γout)→ Ψ1,

i.e., the operator satisfying E(vin, vout)|Γin = v
in, E(vin, vout)|Γout = v

out.

Proof. This lemma follows directly from Lemma 3.3. �

4Actually, H
1/2
00 (a, b) consists of restrictions on [a, b] of functions from the space {f ∈ H1/2(R) :

supp f ⊆ [a, b]}
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Corollary 3.5. There exists a bounded extension operator

E : H1
0 (Γin)→ Ψ1.

Proof. Since the embedding H1
0 (Γin) ⊂ H

1/2
00 (Γin) is continuous, for each vin ∈

H1
0 (Γin), we have to choose v

out ∈ H1
0 (Γout) satisfying (3.16) and to apply Lemma

3.4. �
3.3. Estimates for the solution of the Stokes problem

We introduce the solution operator

R : L3/2(Ω)2 ×H1/2
00 (Γin)2 ×H−1/200 (Γ1)2 ×H−1/200 (Γ2)2 → Φ ⊂ H1(Ω)2

where H−1/200 = (H1/2
00 )′, that maps the data (f, vin, u1, u2) to the generalized

solution v̂ of problem (3.1), (2.3), (2.5), i.e., R
(
f, vin, u1, u2

)
(x) = v̂ (x). (Proof

of Theorem 3.2 does not change if data belong to aforementioned spaces.)

Lemma 3.6. The solution operator R is bounded,

‖R(f, vin, u1, u2)‖2H1(Ω)2 ≤ c
(
‖f‖2L3/2(Ω)2 + ‖vin‖2H1/2

00 (Γin)2
+

2∑
i=1

‖ui‖2
H

−1/2
00 (Γi)2

)
,

(3.17)

where c > 0 is independent of the data (f, vin, u1, u2).

Proof. By virtue of Lemma 3.4, the following decomposition is true for the solution
v̂(x) = R(f, vin, u1, u2)(x) :

v̂ = Evin + ϕ̂, ϕ̂ = v̂ − Evin ∈ Φ0. (3.18)

The equalities (3.18) and (3.8) imply

‖∇v̂‖2 = (∇v̂,∇Evin) + (∇v̂,∇ϕ̂)

= (∇v̂,∇Evin) +
2∑

i=1

(ui, ϕ̂)Γi + (f, ϕ̂).
(3.19)

By virtue of Lemma 3.4, we get

|(∇v̂,∇Evin)| ≤ c‖∇v̂‖‖vin‖
H

1/2
00 (Γin)

≤ ε‖∇v̂‖2 + c
ε
‖vin‖2

H
1/2
00 (Γin)

. (3.20)

By means of the trace theorem and the Poincaré inequality,∣∣∣ 2∑
i=1

(ui, ϕ̂)Γi

∣∣∣ ≤ c( 2∑
i=1

‖ui‖
H

−1/2
00 (Γi)

)
‖∇ϕ̂‖

≤ c
ε

( 2∑
i=1

‖ui‖2
H

−1/2
00 (Γi)

)
+ ε‖∇ϕ̂‖2.

(3.21)

Using the Sobolev embedding theorem H1(Ω) ⊂ L3(Ω) and the Poincaré inequal-
ity, we get

|(f, ϕ̂)| ≤ c‖f‖L3/2(Ω)‖∇ϕ̂‖ ≤
c

ε
‖f‖2L3/2(Ω) + ε‖∇ϕ̂‖2. (3.22)
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At last, (3.18) and Lemma 3.4 imply

‖∇ϕ̂‖2 ≤ c
(
‖∇v̂‖2 + ‖vin‖2

H
1/2
00 (Γin)

)
. (3.23)

After substituting inequalities (3.20)–(3.23) into (3.19), we obtain that

‖∇v̂‖2 ≤ c
(
‖f‖2L3/2(Ω) + ‖vin‖2H1/2

00 (Γin)
+

2∑
i=1

‖ui‖2
H

−1/2
00 (Γi)

)
.

This bound and again the Poincaré inequality imply the asserted estimate (3.17).
�

3.4. The Navier-Stokes boundary value problem

Now, we consider the Navier-Stokes equations

−Δv + v · ∇v +∇p = 0, ∇ · v = 0, in Ω, (3.24)

with boundary conditions (2.3), (2.5).

Definition 3.2. Let ui ∈ L2(Γi)2, i = 1, 2, and vin ∈ H1
0 (Γin)

2. The vector field
v ∈ Φ is called a “generalized solution” of problem (3.24), (2.3), (2.5) if v|Γin = vin

and the following equality holds:

(∇v,∇ϕ) + (v · ∇v, ϕ)−
2∑

i=1

(ui, ϕ)Γi = 0 ∀ϕ ∈ Φ0, (3.25)

where Φ and Φ0 are defined in (3.6), (3.7).

Our goal is now to prove the following theorem.

Theorem 3.7. Suppose that

‖vin‖2H1
0 (Γin)

+
2∑

i=1

‖ui‖2L2(Γi)
≤ ε, (3.26)

where ε > 0 is sufficiently small. Then, there exists a unique generalized solution
v ∈ Φ of problem (3.24), (2.3), (2.5). This solution satisfies the inequality

‖v‖2H1(Ω) ≤ α
(
‖vin‖2H1

0 (Γin)
+

2∑
i=1

‖ui‖2L2(Γi)

)
, (3.27)

with function α (λ) = c
(
λ2 + λ

)
.

Proof. We look for a generalized solution v of (3.24), (2.3), (2.5) in the form
v = R (f, vin, u1, u2) where R is the solution operator of the Stokes boundary
value problem, and f ∈ L3/2(Ω)2 is an unknown vector field. We substitute
v = R(f, vin, u1, u2) into (3.25) and take into account that v = R(·) satisfies
(3.8). As a result we get the equation

(ϕ, f +R · ∇R) = 0 ∀ϕ ∈ Φ0. (3.28)
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Since H1(Ω) ⊂ L6(Ω), we get using the Lipschitz inequality:∫
Ω

| (R,∇)R|3/2 dx ≤ ‖R ‖3/2L6 ‖∇R ‖3/2L2 ,≤ c‖∇R ‖3L2 (3.29)

and therefore R · ∇R ∈ L3/2(Ω)2. We set, for p > 1,

L̂p (Ω) = {ϕ ∈ Lp (Ω)2 | divϕ = 0, ϕ · n
∣∣
Γin∪S∪S′ = 0 } (3.30)

and define the projection operator P : L3/2 (Ω)2 → L̂3/2 (Ω) as follows: for each
f ∈ L3/2 (Ω)2 the function Pf ∈ L̂3/2(Ω) is defined as the unique solution of the
equation

(ϕ, Pf) = (ϕ, f) ∀ϕ ∈ L̂3(Ω). (3.31)
Since the space Φ0 defined in (3.7) is dense in L̂3(Ω), for each f ∈ L̂3/2(Ω)
equation (3.28) is equivalent to the equality

f + P
(
R(f) · ∇R(f)

)
= 0. (3.32)

We use the notation R(f) = R(f, vin, u1, u2) since vin, u1, u2 are given and fixed.
To prove the theorem, we have to check that the operator

S(f) = −P
(
R(f) · ∇R(f)

)
: L̂3/2(Ω)→ L̂3/2(Ω) (3.33)

is a contraction operator. Using (3.29) and (3.17), we have
‖S(f1)− S(f2)‖L3/2 ≤ ‖(R(f1 − f2, 0, 0, 0),∇)R(f1)‖L3/2

+ ‖(R(f2),∇)R(f1 − f2, 0, 0, 0)‖L3/2

≤ c‖∇R(f1 − f2, 0, 0, 0)‖L2

(
‖∇R(f1)‖L2

+ ‖∇R(f2)‖L2

)
≤ ĉ‖f1 − f2‖L3/2,

(3.34)

where, by virtue of (3.17),

ĉ = c
(
‖∇R(f1)‖L2 + ‖∇R(f2)‖L2

)
≤ 2c

(
1
2

(
‖f1‖L3/2 + ‖f2‖L3/2

)
+

2∑
i=1

‖ui‖L2(Γi) + ‖vin‖H1
0 (Γin)

)
.

(3.35)

By the assumption of the theorem the right-hand side of (3.35) is small enough if
‖fj‖L3/2 , j = 1, 2 are sufficiently small. Therefore ĉ < 1 and the operator in(3.33)
is a contraction. Hence equation (3.32) has a unique solution f ∈ L̂3/2(Ω).

As is well known, the solution of (3.32), i.e. of the equation f = S(f),
has the form f = limk→∞ fk where f1 = S(0), . . . , fk = S(fk−1). Since fk =∑k

j=1(fj − fj−1),

‖f‖L3/2 ≤ lim
k→∞

k∑
j=1

‖fj − fj−1‖L3/2 ≤
∞∑

j=1

ĉj‖S (0) ‖L3/2

≤ ĉ

1− ĉ‖R(0, v
in, u1, u2)‖2H1 .

(3.36)

This completes the proof. �
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4. Existence theorem for the optimal control problem

In this section, we prove the existence of the solution for the extremal problem
(2.1)–(2.4), (2.7), (2.8). For this, we need a smoothness result for the solution of
the Navier-Stokes equations, which we recall in Subsection 4.1.

4.1. The smoothness theorem

For small enough δ > 0 denote by ∂Ωδ the curve belonging to Ω which is
the rectangle with sides parallel to the sides AD, EH , HA of ∂Ω placed with
distance δ from them and extending up to the side DE. Denote by Ωδ the open
subset of Ω with boundary ∂Ωδ ∪ S. Let χ(x) ∈ C∞(Ω) be a corresponding
cut-off function satisfying

χ(x) =

{
1, x ∈ Ωδ,

0, x ∈ Ω \Ωδ/2.
(4.1)

and near DE χ(x1, x2) ≡ χ(x2). The following theorem holds.

Theorem 4.1. Let v be the generalized solution constructed in Theorem 3.7. Then,
v ∈ W 2

3/2(Ωδ)2 and there exists unique p ∈ L2(Ω) satisfying (3.24) and p ∈
W 1
3/2(Ωδ). Moreover

‖v‖W 2
3/2(Ωδ) + ‖p‖W 1

3/2(Ωδ) ≤ ρ
(
‖vin‖H1

0 (Γin) +
2∑

j=1

‖uj‖L2(Γj)

)
, (4.2)

where ρ(λ) is a continuous function for λ > 0 and ρ(0) = 0.

Proof. Since v is a generalized solution of the Navier-Stokes equations, (3.25)
implies

(−Δv + v · ∇v, ϕ) = 0 ∀ϕ ∈ Φ0 ∩ C∞0 (Ω)2.

This equality, identity v · ∇v =
∑2

j=1 ∂j(vjv), inclusions vjv ∈ L2(Ω), j = 1, 2 ,
and the De Rham theorem (see [T]) yield that there exists p ∈ L2(Ω) such that

−Δv +∇p = −v · ∇v, ∇ · v = 0 in Ω. (4.3)

Since v · ∇v ∈ L3/2(Ω), and the Stokes system with right-hand side −v · ∇v and
boundary condition ∂nv − np = 0 on Γout ∩ Ωδ/4 is a Douglas-Nirenberg elliptic
system, we get from (4.3) that v ∈ W 2

3/2(Ωδ/4) and p ∈ W 1
3/2(Ωδ/4). To prove

(4.2), we note that equations (4.3) imply

−Δ(χv) +∇(χp) = g, ∇ · (χv) = g1, (4.4)

where
g = −χv · ∇v − 2(∇χ · ∇)v − vΔχ+ p∇χ, g1 = ∇χ · v. (4.5)

Using (3.27), we obtain that

‖g1‖H1(Ω) ≤ c‖v‖H1(Ω) ≤ cα1/2
{
‖vin‖2H1

0 (Γin)
+

2∑
j=1

‖ui‖2L2(Γi)

}
, (4.6)
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and

‖g‖L3/2(Ω) ≤ c1α
{
‖vin‖2H1

0 (Γin)
+

2∑
j=1

‖ui‖2L2(Γi)

}
+ c‖p∇χ‖L2(Ω). (4.7)

Below, we will prove that

‖p∇χ‖L2(Ω) ≤ c2β
{
‖vin‖2H1

0 (Γin)
+

2∑
j=1

‖ui‖2L2(Γi)

}
, (4.8)

where the function β(λ) > 0 is continuous, and β(0) = 0. Let us identify the sides
AD and HE of the rectangle ADEH (see Figure 1). Then this rectangle turns
into a lateral area LC of a cylinder with boundary ∂LC = Γ̂in ∪ Γ̂out ∪ S where
Γ̂in = Γin with points A and H being identified, and Γ̂out = Γout with points D
and E being identified. By virtue of the properties of the cut-off function in (4.1),
we can consider (4.4) as a system defined on LC . Evidently, the pair (χv, χp)
from (4.4) satisfies the following boundary conditions:

χv|Γ̂in
= 0, χv|S = 0, (∂1v(x1, x2)− p(x1, x2)n)χ(x2)|Γ̂out

= 0. (4.9)

Since this boundary value problem is elliptic in the Douglas-Nirenberg sense, in-
equalities (4.6), (4.7), (4.8), and the evident bound

‖v‖W 2
3/2(Ωδ) + ‖p‖W 1

3/2(Ωδ) ≤ ‖χv‖W 2
3/2(LC) + ‖χp‖W 1

3/2(LC)

imply the asserted estimate (4.2).
Let us prove estimate (4.8). The following bound holds (see inequality (6.12)

of Chapter 1 in [T]):

‖p∂jχ‖L2(Ω) ≤ c
{∣∣∣ ∫

Ω

p∂jχdx
∣∣∣+ ‖∇(p∂jχ)‖H−1(Ω)

}
, j = 1, 2. (4.10)

We estimate the first term in the right side of (4.10). Let ψ ∈ C∞(Ω) be a
function satisfying ψ(x)∂2χ = ∂2χ , and ψ(x) ≡ 0 outside a small neighborhood
of supp(∂2χ) . Then integrating by parts and using (4.3), we get∫

Ω

p∂2χdx = −
∫

Ω

∂2pχψ dx =
∫

Ω

(Δv2 − v · ∇v2)χψ dx

=
∫

Γout

∂1v2χψ dx−
∫

Ω

∇v2 · ∇(χψ) dx−
∫

Ω

(v · ∇v2)χψ dx.
(4.11)

The boundary condition (∂nv − pn)|Γout = 0 implies ∂1v2|Γout = 0 . Therefore
estimation of other terms in the right side of (4.11) yields∣∣∣ ∫

Ω

p∂2χdx
∣∣∣ ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)

)
. (4.12)

Since supp(∂1χ) � Ω, we can choose ψ ∈ C∞0 (Ω) such that ψ∂1χ ≡ ∂1χ . There-
fore the inequality ∣∣∣ ∫

Ω

p∂1χdx
∣∣∣ ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)

)
(4.13)



204 A.V. Fursikov and R. Rannacher

can be obtained similarly to (4.11), (4.12), but now without any boundary term.
By virtue of (4.3) there holds

‖∇(p∂jχ)‖H−1(Ω) ≤ ‖Δv∂jχ‖H−1(Ω) + ‖v · ∇v∂jχ‖H−1(Ω)

+ ‖p∇∂jχ‖H−1(Ω)

≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)) + ‖p∇∂jχ‖H−1(Ω).

(4.14)

Now we estimate the last term on the right side of (4.14). We choose a function ψ ∈
C∞(Ω) satisfying ψ(x)∂i∂jχ ≡ ∂i∂jχ , ψ(x) ≡ 0 outside a small neighborhood
of supp(∂i∂jχ) . Besides, we take an arbitrary function ϕ ∈ W 1

3 (Ω) satisfying
ϕ|∂Ω = 0 , and set w := ϕψ∂i∂jχ . Then, for any fixed point x0 = (x01, x

0
2) ∈

Ω \ supp(ψ) , there holds∫
Ω

p∂i∂jχϕdx =
∫

Ω

∫ x1

x0
1

∂yp(y, x2) dyw(x) dx

=
∫

Ω

∫ x1

x0
1

Δv1 dyw dx−
∫

Ω

∫ x1

x0
1

v · ∇v1 dy w dx

=
∫

Ω

(
∂1v1 −

∫ x1

x0
1

v · ∇v1 dy
)
w dx−

∫
Ω

(∫ x1

x0
1

∂2v1 dy
)
∂2w dx.

Estimating the right side of this equality, we get∣∣∣ ∫
Ω

p∂i∂jχϕdx
∣∣∣ ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)

)
‖ϕ‖H1(Ω). (4.15)

Estimates (4.10), (4.12)–(4.15) imply

‖p∇χ‖L2(Ω) ≤ c(‖v‖H1(Ω) + ‖v‖2H1(Ω)). (4.16)

Finally, the bound (4.8) follows from (4.16) and (3.27). �

Remark 4.1. The generalized solution v ∈ H1(Ω) of problem (3.24), (2.3), (2.5)
constructed in Theorem 3.7 together with the function p ∈ L2(Ω) constructed in
Theorem 4.1 possess enough smoothness in order to define traces (∂nv − pn)|Γ1

and (∂nv−pn)|Γ2 . Moreover, the relations (2.5) hold. To prove this assertion, one
has to use methods of [LM], [F] Chapter 2.5, and of Theorem 4.1 proved above.

4.2. Existence theorem for the extremal problem

In order to prove the existence theorem for problem (2.1)–(2.5), (2.7), (2.8), we
have to describe the set of admissible elements for this problem. First of all, for
given boundary condition vin ∈ H1

0 (Γin) and controls ui ∈ L2(Γi), i = 1, 2,
satisfying

2∑
i=1

‖ui‖2L2(Γi)
≤ γ2; γ2 + ‖vin‖2H1

0 (Γin)
≤ ε, (4.17)

where ε is small enough, we have to define uniquely the pair (v, p) that is the
solution of the boundary value problem (2.1)–(2.3), (2.5). By virtue of the second
condition in (4.17), by Theorem 3.7 there exists a unique generalized solution
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v ∈ Φ of the Navier-Stokes equation. By virtue of the De Rham Theorem and
the argument in the proof of Theorem 4.1 there exists a unique p ∈ L2(Ω) that
together with v satisfies equation (4.3). Assuming that vin ∈ H1

0 (Γin) is fixed and
small enough, we define the map NRδ(u1, u2) that maps the pair (u1, u2) to the
corresponding generalized solution (v, p) of problem (2.1)–(2.5),

NRδ(u1, u2) = (v(u1, u2), p(u1, u2)) ∈ Φ× L2(Ω). (4.18)

We introduce the following notation:

B :=
{
(u1, u2)

∣∣ ‖u1‖2L2(Γ1)
+ ‖u2||2L2(Γ2)

≤ γ2
}
, (4.19)

V P (Ω) :=
{
(v, p) ∈ Φ× L2(Ω) : (v, p)|Ωδ

∈W 2
3/2(Ωδ)2 ×W 1

3/2(Ωδ)
}
, (4.20)

‖(v, p)‖V P (Ω) := ‖v‖H1(Ω) + ‖∇p‖H−1(Ω) + ‖v‖W 2
3/2(Ωδ) + ‖p‖W 1

3/2(Ωδ). (4.21)

Lemma 4.2. Let ‖vin‖H1
0 (Γin) + γ be small enough. Then, the mapping

NRδ : B → V P (Ω) (4.22)

is continuous and its range NRδ (B) is a bounded and closed set.

Proof. Using the estimate (3.27) and expressing ∇p by (3.24) with the following
application of (3.27), (3.29), we get the inequality

‖v‖H1(Ω) + ‖∇p‖H−1(Ω) ≤ c
(
‖vin‖H1

0 (Γin) +
2∑

j=1

‖uj‖L2(Γj)

)
, (4.23)

where c(λ) = c1(λ + λ2). The bounds (4.23), (4.2) imply the boundedness of the
operator NRδ(B) in (4.22). Let us prove the closedness of NRδ(B). We only prove
the closedness of NRδ(B)|Ωδ

in W 2
3/2(Ωδ)2×W 1

3/2(Ωδ) because the closedness of
NRδ(B) in Φ×L2(Ω) can be established in the same way. Let (vk, pk) ∈ NRδ(B)
with

(vk, pk)|Ωδ
→ (v̂, p̂)|Ωδ

in W 2
3/2(Ωδ)2 ×W 1

3/2(Ωδ) (k →∞). (4.24)

Inclusion (vk, pk) ∈ NRδ(B) implies relation (vk, pk) = NRδ(u1k, u
2
k) for some

(u1k, u
2
k) ∈ B . Since B is a bounded set, passing if necessary to a subsequence,

we can assume that (u1k, u
2
k) ⇀ (û1, û2) weakly in L2(Γ1) × L2(Γ2). Hence,

(û1, û2) ∈ B because the set B is convex. Now, we substitute (vk, u1k, u
2
k) into

(3.25). Evidently one can pass to the limit in (3.25). Since ∇pk = Δvk − vk · ∇vk,
then, ∇pk → ∇p̂ weakly in the space ∇W 1

3/2(Ωδ) = {∇p | p ∈ W 1
3/2(Ωδ)}. By

virtue of (4.2) the functions pk are bounded with respect to k. That is why, pass-
ing if necessary to a subsequence, we get that pk → p̂ in W 1

3/2(Ωδ) weakly. So
(v̂, p̂) = NRδ(û1, û2) and the set NRδ(B) is closed in W 2

3/2(Ωδ)×W 1
3/2(Ωδ). �

Since ω ⊂ Ω in (2.7) is a given closed subset of domain Ω, there exists
δ > 0 so small that

ω ⊂ Ωδ ⊂ Ω. (4.25)
We choose δ > 0 such that (4.25) holds and from now on assume it as fixed.
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Definition 4.1. Let vin ∈ H1
0 (Γin) be fixed. The collection (v, p, u1, u2) ∈ V P (Ω)×

B is called “admissible” for problem (2.1)–(2.5), (2.7), (2.8) if (v, p) = NRδ(u1, u2)
and inequality (2.7) is fulfilled.

Notice that the equality (v, p) = NRδ(u1, u2) means that (v, p) is a general-
ized solution of the boundary value problem (2.1)–(2.3), (2.5). Besides, the integral
in (2.4) is well defined because by virtue of the inclusion (v, p) ∈ W 2

3/2(Ωδ)2 ×
W 1
3/2(Ωδ) all traces used in (2.4) are well defined. An inequality for each x ∈ ω , as

in (2.7), is well defined for (v, p) = NRδ(u1, u2) because such v = (v1, v2) belong
to W 2

3/2(Ωδ) that is embedded into C(Ωδ) by the Sobolev embedding theorem.
The set of all admissible collections, i.e., the admissible set for the extremal prob-
lem (2.1)–(2.5), (2.7), (2.8), is denoted by A. We impose the following important
condition.

Condition 1. The admissible set of the extremal problem (2.1)–(2.5), (2.7), (2.8)
is not empty,

A �= ∅. (4.26)

Remark 4.2. The situation with Condition 1 is not trivial at all. Calculations show
that this condition is fulfilled rather often. Indeed, if ‖vin‖Ĥ1

0
and γ2 in (2.8) are

sufficiently small, and the part S of the boundary is convex, then, as numerical
calculations show (see Section 8), v1 ≥ 0 on certain subdomains ω ⊂ Ω (see also
[VD]). Moreover, the calculated steady flow is stable and therefore this is the case
of small Reynolds number which we consider in this paper.

Recall that by definition the collection (v̂, p̂, û1, û2) is the solution of problem
(2.1)–(2.5), (2.7), (2.8) if (v̂, p̂, û1, û2) ∈ A and

J(v̂, p̂, û1, û2) = inf
(v,p,u1,u2)∈A

J(v, p, u1, u2), (4.27)

where J(v, p, u1, u2) is the functional in (2.4), (2.6). Notice that the dependence of
J on (u1, u2) is implicit and connected with the domain A for the functional J .

Theorem 4.3. If ‖vin‖H1
0(Γin) and γ2 in (2.8) are small enough, then there exists

a solution (v̂, p̂, û1, û2) of problem (2.1)–(2.8).

Proof. i) First, we prove that the projection ΠA of the admissible set A ⊂
PV1(Ω)×B into W 2

3/2(Ωδ
2)×W 1

3/2(Ωδ) is closed in this space. Since

A =
{
(v, p, u1, u2)

∣∣ (v, p) = NRδ(u1, u2), v1(x) ≥ 0, x ∈ ω
}
,

by virtue of Lemma 4.2, it is enough to prove that if (vk, pk)→ (v̂, p̂) as k →∞
in W 2

3/2(Ωδ)2 ×W 1
3/2(Ωδ) and vk

1 ≥ 0 on ω for each k , then v̂1 ≥ 0 on ω. But
this assertion immediately follows from the embedding W 2

3/2(Ωδ) ⊂ C(Ωδ) and
the inclusion ω ⊂ Ωδ.
ii) Next, we consider the direct product of the Besov spaces

W
11/6
3/2 (Ωδ)2 ×W 5/6

3/2 (Ωδ) 5
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and introduce the trace operator γ̂S(v, p) = n ·σ|S := (−np+2D(v)n)|S (see (2.4),
(2.6)). Then, the well-known Besov theorem ([BIN]) implies that the operator

γ̂S : W 11/6
3/2 (Ωδ)2 ×W 5/6

3/2 (Ωδ)→W
1/6
3/2 (S)

2 (4.28)

is continuous. Since the embedding W 1/6
3/2 (S) ⊂ L1(S) is continuous, the functional

in (2.4),

J(v, p) =
∫

S

n · σ · e1 ds =
∫

S

γ̂S(v, p) · e1 ds, (4.29)

is continuous on the space W 11/6
3/2 (Ωδ)2×W 5/6

3/2 (Ωδ). As is well known, the embed-

ding W 2
3/2(Ωδ)2 ×W 1

3/2(Ωδ) ⊂ W 11/6
3/2 (Ωδ)2 ×W 5/6

3/2 (Ωδ) is compact. Therefore,
by virtue of part i) of this proof, the set ΠA is a compact subset of the space
W

11/6
3/2 (Ωδ)2×W 5/6

3/2 (Ωδ). Evidently the extremal problem (2.1)–(2.8) is equivalent
to the problem

J =
∫

S

γ̂S(v, p) · e1 ds→ inf, (v, p) ∈ ΠA. (4.30)

Problem (4.30) is a minimization problem for a continuous function on a compact
set. Therefore it possesses a solution, which completes the proof. �

5. Abstract Lagrange principle

To derive the optimality system for problem (2.1)–(2.8), we use the abstract La-
grange principle. For problems without phase constraints one can recall the La-
grange principle from [ATF, F]. The essential peculiarity of the extremal problem
studied here is just the phase constraint (2.7). For such extremal problems the
Lagrange principle has been established as well [DM, G, MDO]. We recall some
abstract notion (for details we refer to [MDO]).

5.1. Sub-linear functionals

Let Y be a Banach space. A functional ϕ : Y → R is called “sub-linear” if it
satisfies

a) ϕ(λy) = λϕ(y), ∀y ∈ Y , λ > 0 (positive homogeneity),
b) ϕ(x+ y) ≤ ϕ(x) + ϕ(y) (subadditivity).

Notice that for a functional satisfying a) condition b) is equivalent to a convex-
ity condition. The sub-linear functional ϕ is called “bounded” if there exists a
constant c > 0 such that

c) |ϕ(y)| ≤ c‖y‖ ∀y ∈ Y .

5When the upper index is not integer, the Besov space coincides with the corresponding Sobolev

space. Therefore, we use the notation of Sobolev spaces. We use the Besov spaces because the
trace theorem is not always true for Sobolev spaces.
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Lemma 5.1. If the sub-linear functional ϕ satisfies ϕ(y) ≤ c‖y‖ ∀y ∈ Y with a
certain c > 0, then |ϕ(y)| ≤ c‖y‖ and |ϕ(y1) − ϕ(y2)| ≤ c‖y1 − y2‖, i.e., ϕ is a
Lipschitz functional with the same constant c.

Proof. The proof can be found in [MDO], p. 75. �

A linear functional l ∈ Y ∗ is called “supported by a sub-linear functional
ϕ(y) ” if l(y) ≤ ϕ(y) ∀y ∈ Y . The set of all functionals supported by ϕ is called
a “subdifferential of ϕ ” (at zero) and is denoted by ∂ϕ (at zero). If ϕ is a
bounded sub-linear functional, then ∂ϕ is a non-empty convex closed set and
∀l ∈ ∂ϕ : ‖l‖ ≤ c. Let f : Y → R be a functional. If for y0, y1 ∈ Y there exists
the limit

f ′(y0, y1) := lim
λ→0

f(y0 + λy1)− f(y0)
λ

,

then f ′(y0, y1) is called the “derivative” of f at the point y0 in the direction y1.

5.2. Formulation of the Lagrange principle

Consider an abstract extremal problem of the form of problem (2.1)–(2.8),

f0(y)→ inf, F (y) = 0, f1(y) ≤ 0, G(y) ≤ 0, (5.1)

where fi : Y → R, i = 0, 1, G : Y → R are functionals defined on a Banach space
Y , and F : Y → Z is a map to another Banach space Z. Suppose that there
exists a solution ŷ ∈ Y of problem (5.1) and the mappings fi : Y → R, i = 0, 1,
and F : Y → Z are continuously differentiable in a neighborhood of ŷ. Assume
also that:

a) The image F ′(ŷ)Y of Y is closed in Z.

b) G(y) possesses a derivative G′(ŷ, y1) at ŷ in each direction y1 ∈ Y , and
the map Y � y → G′(ŷ, y) is a bounded sub-linear functional on Y .

The Lagrange function for problem (5.1) has the form

L(ŷ, λ0, λ1, z∗, α) =
1∑

j=0

λjfj(ŷ) + 〈F (ŷ), z∗〉+ αG(ŷ). (5.2)

The following theorem holds (see [DM, G, MDO]).

Theorem 5.2. Let the conditions formulated above be fulfilled. Then, there exist
Lagrange multipliers (λ0, λ1, z∗, α) ∈ R2 × Z∗ ×R satisfying the following condi-
tions.

i) Non-triviality condition:

|λ0|+ |λ1|+ ‖z∗‖+ |α| > 0. (5.3)

ii) Condition of sign concordance:

λ0 ≥ 0, λ1 ≥ 0, α ≥ 0. (5.4)
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iii) Condition of complementary slackness:

λifi(ŷ) = 0, i = 0, 1; αG(ŷ) = 0. (5.5)

iv) Euler-Lagrange equation: there exists μ∗ ∈ ∂G′(ŷ, ·) such that

〈
L′y(ŷ, λ0, λ1, z∗, α, μ∗), h

〉
=

1∑
j=0

λj

〈
f ′j(ŷ), h

〉
+

〈
F ′(ŷ), h

〉
+ α

〈
μ∗, h

〉
= 0, (5.6)

for all h ∈ Y .

In the remainder of this section, we briefly recall some properties of concrete
functionals used for defining the phase constraints. Details can be found in [MDO].
These properties will be used in the derivation of the optimality system for the
extremal problem (2.1)–(2.8).

5.3. The functional maxx∈M y(x) and its support functionals

LetM⊂Ω be an arbitrary closed subset. We consider the functional Θ :C (Ω)→R:

Θ(y) = max
x∈M

y(x), y ∈ C(Ω), (5.7)

where C(Ω) is the space of continuous functions defined on Ω. This is a Lipschitz
functional with constant 1 because

|Θ(y1)−Θ(y2)| ≤ max
x∈M

|y1(x) − y2(x)| ≤ ‖y1 − y2‖C(Ω).

By the Riesz Theorem C(Ω)∗ consists of functionals of the form

λ(y) =
∫

Ω

y(x)μ(dx), (5.8)

where μ(dx) is a measure that can have positive as well as negative values. Evi-
dently the functional in (5.7) is sub-linear (see subsection 5.1).

Lemma 5.3. The functional λ(y) =
∫

Ω y(x)μ(dx) from C(Ω)∗ is supported by
the functional Θ(y) from (5.7) if and only if μ(dx) satisfies:

1) μ(dx) is supported on M , i.e., ∀ y ∈ C(Ω) : y(x) = 0, for x ∈M , we have
λ(y) =

∫
Ω y(x)μ(dx) = 0.

2) μ(dx) ≥ 0.
3)

∫
Ω
μ(dx) = 1.

Proof. For the proof see [MDO], p. 95. �
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5.4. Directional derivatives of max y(x)

Let y0 ∈ C(Ω), y1 ∈ C(Ω) and Θ(y) be the functional in (5.7). We calculate the
derivative Θ′(y0, y1) in the direction y1. Without loss of generality, we suppose
that Θ(y0) = 0. Then, the closed set

M0 = { x ∈M | y0(x) = 0 }
is not empty.

Lemma 5.4. For all y1 ∈ C(Ω) the functional in (5.7) possesses a derivative in
the direction y1 at y0(x) ∈ C(Ω) , which is defined by the equality

Θ′(y0, y1) = max
x∈M0

y1(x). (5.9)

Evidently (5.9) defines a sub-linear functional. By Lemma 5.3 the set
∂Θ′(y0, y1) of linear functionals supported by Θ′(y0, y1) consists of all probability
measures μ(dx) concentrated (supported) on the set M0.

5.5. Directional derivative of the functional maxΦ(x, y)

Let Φ(x, y) : Ω ×R→ R be a continuously differentiable function. On C(Ω) , we
consider the functional

G(y) = max
x∈M

Φ(x, y(x)), (5.10)

where M is a closed subset of Ω. Let y0 ∈ C(Ω) be such that G(y0) = 0 and

M0 :=
{
x ∈ Ω

∣∣Φ(x, y0(x))} = 0. (5.11)

Evidently G(y) = Θ(N(y)) where Θ is the functional in (5.7) and

N : C(Ω)→ C(Ω) y → Φ(x, y(x))

is a Nemytskiy operator. Since N is differentiable in the Fréchet sense and
N ′(y)h = Φ′y(x, y(x))h(x) (see [ATF]), and Θ possesses a derivative at N(y0)
in an arbitrary direction y1 ∈ C(Ω), then, by the theorem on the derivative of the
superposition of functions the functional G(y) = Θ(N(y)) at y0 also possesses a
derivative in an arbitrary direction y1 that is defined by the equality

G′(y0, y1) = max
x∈M0

(
Φ′y(x, y0(x))y1(x)

)
. (5.12)

Evidently, the functional in (5.12) is sub-linear in y1.

Lemma 5.5. The set of linear functionals supported by a sub-linear functional y1 →
G′(y0, y1) consists of the functionals l ∈ C(Ω)∗, which have the representation

l(y1) =
∫

Ω

Φ′y
(
x, y0(x)

)
y1(x)μ(dx), (5.13)

where μ(dx) is a probability measure concentrated on the set M0 (see (5.11)).
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6. Application of the abstract Lagrange principle

After some preliminaries related to checking the condition a) in Subsection 5.2,
we check that all conditions of the Lagrange principle are satisfied for problem
(2.1)–(2.8) and apply the Lagrange principle to this situation.

6.1. On the smoothness of solutions for the Oseen problem

Let (v̂, p̂) ∈ Φ × L2(Ω) be the solution of the extremal problem (2.1)–(2.8) con-
structed in Section 4. We consider the Oseen problem, i.e., the linearization of the
Navier-Stokes problem at (v̂, p̂):

−Δv + v̂ · ∇v + v · ∇v̂ +∇p = f, ∇ · v = 0 inΩ, (6.1)

v|Γ0 = 0, (∂nv − pn)|Γ = g, (6.2)
where Ω is the domain introduced in Section 2. We have

Γ0 = Γin ∪ S′ ∪ S ∪A ∪H, Γ = Γ1 ∪ Γ2 ∪ Γout, (6.3)

and therefore g consists of three components gi on Γi, i = 1, 2, and gout on
Γout. We suppose that gout ≡ 0. Since ‖v̂‖H1 is small enough one can prove,
as in Section 3, that for each f ∈ L2(Ω), g ∈ H1/2(Γ ) there exists a unique
generalized solution v ∈ Φ0 of problem (6.1), (6.2) where Φ0 is the space in (3.7).
Since problem (6.1), (6.2) is elliptic in the Agmon-Douglas sense, the solution
possesses additional smoothness: in each subdomain Ω0 of Ω, such that Ω0 ⊂ Ω,
v ∈ H2(Ω0) and the pressure p exists and belongs to H1(Ω0). Moreover (v, p)
are smooth up to ∂Ω except at the corner points A, D, E, H and the points
B, C, F, G: if B(ε) is the union of the circles with radius ε centered at the
indicated points, then v ∈ H2(Ω \ B(ε)), p ∈ H1(Ω \ B(ε)) for each ε > 0.
Actually, the solution (v, p) is smooth in a neighborhood of the corner points
A, D, E, H, as well.

Lemma 6.1. Let B1(ε) be the union of the circles with radius ε and centers at
A,D,E,H. Then, (v, p) ∈ H2(Ω ∩B1(ε))×H1(Ω ∩B1(ε)).
Proof. Recall that the point H is the origin, the interval (A,H) belongs to the
axis x2 with x2(A) > 0, and the interval (EH) belongs to the axis x1 with
x1(H) > 0. Consider a neighborhood of the point H and extend the solution
(v, p) on the domain {x1 < 0, x2 > 0} in the odd sense:

forx1 < 0, x2 > 0 : v(x1, x2) = −v(−x1, x2), p(x1, x2) = −p(−x1, x2),
v̂(x1, x2) = −v̂(−x1, x2), f(x1, x2) = −f(−x1, x2).

It is easy to check that this extension satisfies (6.1) not only for the set {x1 <
0, x2 > 0} but for {|x1| < ε, x2 > 0}, as well. Since the boundary of the extended
domain is smooth in a neighborhood of H , the extended pair (v, p) belongs to
H2×H1 in a neighborhood of H . Near the point E , we use the same arguments
but apply the extension on the domain {x2 < 0}. Our arguments near the points
A, D are analogous: additionally we need only to do appropriate changing of the
variables (x1, x2). �
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The situation of the smoothness of the solution (v, p) in a neighborhood of
the points B, C, F, G where the type of boundary condition changes is different.
At these points the solution (v, p) can possess a singularity. Therefore there is a
reason to study problem (6.1), (6.2) in function spaces with weights near these
points.

Let this weight be defined as a function ρ(x1, x2) ∈ C∞(Ω), ρ(x1, x2) >
0, ∀(x1, x2) ∈ Ω \ B2(ε) for a certain ε > 0, where B2(ε) is the union of the
circles with radius ε and centers at B, C, F, G, and in Ω ∩ B2(ε), the weight
ρ(x1, x2) is equal to the distance of the closest points among B, C, F, G.

We introduce the following Sobolev spaces with weights. Let k be a natural
number or zero and α ∈ R. Then,

Hk
α(Ω) :=

{
u(x), x ∈ Ω

∣∣∣ ‖u‖2Hk
α
=

k∑
j=0

∫
Ω

ρ2(α+j)(x)
∑
|β|=j

|Dβu(x)|2 dx <∞
}
,

where β = (β1, β2), βi ≥ 0, are integer, |β| := β1 + β2. For k ≥ 1 , let

Ψk
α(Ω) =

{
v ∈ Hk

α(Ω)
2 | ∇ · v = 0, v|Γ0 = 0

}
. (6.4)

We need also the spaces Hk
α(B,C), Hk

α(G,F ) of functions defined on intervals
(B,C) or (G,F ) with non-integer k. For this, we first define the space Hk

α(R+).
Using the sign ∼ for notation of norm equivalence, we get for integers k and
α ∈ R:

‖u‖2Hk
α(R+)

=
∫ ∞

0

k∑
j=0

x2(α+j)|∂j
xu (x) |2 dx

≈
∫ ∞

0

k∑
j=0

∣∣(x · ∂x)j(xαu(x))
∣∣2 dx

≈
∫ ∞

−∞

k∑
j=0

∣∣∂j
t (e

(α+1/2)t)u(et))
∣∣2 dt,

(6.5)

where in the last step, we made the change of variable x := et. Applying the
Mellin transform

û(ξ) =
∫ ∞

0

u(x)eiξ ln x dx

x
=

∫ ∞

−∞
u (et) eitξ dt,

(which in fact is the Fourier transform of u(et)), to the function xαu(x) and
taking into account the Plancherel theorem, we get∫ ∞

−∞

k∑
j=0

∣∣∂j
t (e

(α+1/2)tu(et))
∣∣2 dt

=
1
2π

∫ ∞

−∞

k∑
j=1

|ξ + i(α+ 1/2)|2j|û(ξ + i(α+ 1/2))|2 dξ.
(6.6)
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By virtue of (6.5), (6.6), we can introduce the following equivalent norm for
Hk

α(R+):

‖u‖2Hk
α(R+)

:=
∫ ∞

−∞
(1 + |ξ + i(α+ 1/2)|2)k|û(ξ + i(α+ 1/2))|2 dξ. (6.7)

But the norm in (6.7) is well defined for arbitrary k ∈ R. To define Hk
α (a, b) with

k ∈ R, α ∈ R, we define a decomposition of unity, i.e., ϕi(x) ∈ C∞(a, b), i = 1, 2,
ϕi(x) ≥ 0, ϕ1(x) + ϕ2(x) ≡ 1, ϕ1(x) = 1 for x close to a , and ϕ2(x) = 1 for x
close to b. Then, by definition,

‖u‖2Hk
α(a,b) = ‖ϕ̃1u‖2Hk

α(R+)
+ ‖ϕ̃2u‖2Hk

α(R+)
, (6.8)

where by definition ϕ̃1u(y) = (ϕ1u)(a + y), y ∈ R+, and ϕ̃2u(y) = (ϕ2u)(b − y),
y ∈ R+.

Now, we are in the position to formulate the main theorem of this subsection.

Theorem 6.2. Let ‖v̂‖Φ be small enough (i.e., there exists a unique generalized
solution of (6.1), (6.2)). Then, there exists a discrete set {αi} = a ⊂ R such
that for each α /∈ a and for every f ∈ H0

α(Ω)
2, g ∈ H1/2

α (Γ )2 (we suppose that
gout ≡ 0) there exists a unique solution (v, p) ∈ Ψ2α(Ω)×H1

α(Ω) of problem (6.1),
(6.2), and the following a priori estimates hold true:

‖v‖2Ψ2
α
+ ‖p‖2H1

α(Ω)
≤ c

(
‖f‖2H0

α(Ω)
2 + ‖g‖2

H
1/2
α (Γ )

)
. (6.9)

Proof. This theorem can be proved using the Mellin transform method of Kon-
drat’ev [Kon1, Kon2] (see also [BR]). �

Remark 6.1. The considerations of this subsection can be extended to the case
when the assumption that the solution (v̂, p̂) of the extremal problem (2.1)–(2.8)
has a sufficiently small norm is not fulfilled. In this case for α /∈ a one can prove an
analog of Theorem 6.2 in which the solvability of (6.1), (6.2) is true for (f, g) ∈ F
where F is a subspace of H0

α(Ω)
2×H1/2

α (Γ )2 of finite codimension. This assertion
is sufficient for the application of the Lagrange principle.

6.2. First reduction of the problem

First of all, in problem (2.1)–(2.8), we remove the unknown functions u1, u2 (con-
trols) together with relations (2.5) and change condition (2.8) to

2∑
i=1

‖∂nv − pn‖2Γi
≤ γ2. (6.10)

Evidently, the new problem is equivalent to the old one. In problem (2.1)–(2.3),
(2.4), (2.7), (6.10), we make the following change of the dependent variables:

v = w + v̂, p = t+ p̂, (6.11)
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where (v̂, p̂) is a solution of the original extremal problem (2.1)–(2.8). As a result,
we obtain the following extremal problem: Minimize the functional

J0(w, t) =
∫

S

(∂nw − tn) · e1 ds→ inf (6.12)

on the set of pairs (w, t) satisfying

−Δw + v̂ · ∇w + w · ∇v̂ + w · ∇w +∇t = 0, ∇ · w = 0 in Ω, (6.13)

w|Γ0 = 0, (∂nw − tn)|Γout = 0, (6.14)

J1(w, t) =
2∑

i=1

‖∂nv̂ − p̂n+ ∂nw − tn‖2Γi
≤ γ2, (6.15)

w1(x) + v̂(x) ≥ 0 x ∈ ω. (6.16)

Evidently, problems (6.12)–(6.16) and (2.1)–(2.8) are equivalent; moreover since
(v̂, p̂) is a solution of (2.1)–(2.8), then by (6.11) the solution (ŵ, t̂) of problem
(6.12)–(6.16) is as follows:

ŵ(x) ≡ 0, t̂(x) ≡ 0. (6.17)

6.3. Second reduction of the problem

We take

Y :=
{
y = (w, t) ∈ Ψ2α(Ω)×H1

α(Ω)
∣∣ (∂nw − tn)|Γout = 0

}
, (6.18)

Z = H0
α(Ω)

2, (6.19)

and define the map F (y) : Y → Z by the following formula:

F (y) = F (w, t) = −Δw + v̂ · ∇w + w · ∇v̂ + w · ∇w +∇t. (6.20)

The functionals f0, f1 and G in (5.1) are defined as follows:

f0(y) = J0(w, t), f1(y) = J1(w, t), G(y) = max
x∈ω

(
− v̂(x)− w(x)

)
, (6.21)

where J0, J1 are defined in (6.12), (6.15). With the help of (6.18)–(6.21), we
reduced problem (6.12)–(6.16) to the abstract problem (5.1). We check now that
all conditions of Theorem 5.2 are fulfilled. Let ΩS be a neighborhood of S. Then,
evidently Hk

α(ΩS ∩ Ω) = Hk(ΩS ∩ Ω) and therefore the trace operators γ1w =
∂nw|S , γ0p = p|S are well defined and continuous in the sense

γ1 : Ψ2α(Ω)→ H1/2(S)2, γ0 : H1
α(Ω)→ H1/2(S).

Hence, the functional in (6.12) is bounded on Ψ2α(Ω) ×H1(Ω), and being linear,
it is continuously differentiable on this space and therefore also on Y . It is well
known [Kon1] that the operators γ1w = ∂nw|Γ , γ0p = p|Γ are well defined and
continuous in the sense

γ1 : H2
α(Ω)→ H1/2

α (Γ )2, γ0 : H1
α(Ω)→ H1/2

α (Γ ). (6.22)
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Therefore, if α ≤ 0, then

2∑
i=1

‖∂nv̂ − p̂n+ ∂nw − tn‖2Γi
≤ c+ 2

2∑
i=1

‖∂nw + tn‖2Γi

≤ c+ 2 sup
x∈Γ

(ρ−2α)
2∑

i=1

‖ρα(∂nw + tn)‖2Γi

≤ c1
(
1 + ‖∂nw + tn‖2H1/2

α (Γ )

)
≤ c2

(
1 + ‖w‖2Ψ2

α(Ω)
+ ‖t‖2H1

α(Ω)

)
.

(6.23)

Relations (6.22), (6.23) imply the continuous differentiability of the functional in
(6.15) on the space Ψ2α(Ω)×H1

α(Ω), for α ≤ 0.
The operator in (6.20) is evidently continuous and continuously differentiable

in the spaces (6.18), (6.19), for each α ≤ 0. By virtue of (6.17) the derivative
F ′(ŵ, t̂) at the solution (ŵ, t̂) is defined by the left part of equation (6.1). To
check the property a) in subsection 5.2, we have to prove that the boundary value
problem (6.1), (6.2) with g ≡ 0 for each f ∈ H0

α(Ω)
2 possesses a solution (v, p) ∈

Y . For this, we use Theorem 6.2. We choose the parameter α in the spaces in
(6.18), (6.19) as follows: if 0 /∈ a , we take α = 0, if 0 ∈ a , we take α < 0
close enough to zero (there are no points from a in the semi-interval [α, 0)). By
Theorem 6.2 property a) in Subsection 5.2 is fulfilled.

By virtue of definition (6.21) of the functional G(y), property b) in Subsec-
tion 5.2 is true because of Lemmas 5.1, 5.3. Hence all conditions of Theorem 5.2
are fulfilled, and we can apply this theorem to problem (6.12)–(6.16).

6.4. Application of the Lagrange principle

The Lagrange function for the extremal problem (6.12)–(6.16) has the following
form:

L(w, t, λ0,λ1, α, z) = λ0
∫

S

(∂nw − tn)e1 ds

+
λ1
2

∫
Γ1∪Γ2

|∂n(v̂ + w)− (p̂+ t)n)|2 dx1

+ α sup
x∈ω

(−w1(x) − v̂1(x))

+
∫

Ω

(−Δw + v̂ · ∇w + w · ∇v̂ + w · ∇w +∇t)z dx,

(6.24)

where (λ0, λ1, α, z) ∈ R3 × H0
−α(Ω)

2 are Lagrange multipliers. By virtue of
Theorem 5.2 there exists Lagrange multipliers satisfying (5.3)–(5.5) (these con-
ditions will be discussed later). Condition (5.6) being applied to function (6.24) at
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(ŵ, t̂) = (0, 0) leads to the relation

λ0

∫
S

(∂nh− τn)e1 ds + λ1
∫

Γ1∪Γ2

(∂nv̂ − p̂n) · (∂nh− τn) dx1

−α
∫

ω

h1(x)μ(dx) +
∫

Ω

(−Δh+ v̂ · ∇h+ h · ∇v̂ +∇τ)z dx = 0,
(6.25)

which is true for every (h, τ) ∈ Y (see (6.18)). In (6.25) μ(dx) is a measure on
ω. In the case of problem (6.12)–(6.16),

G(w) = max
x∈ω

(−v̂1(x) − w1(x)), (6.26)

and we have to find the derivative of this functional at the point w = (w1, w2) =
(0, 0) in the direction h = (h1, h2). Recall that all functions in (6.26) and below
belong to Ψ2α(Ω) and by the Sobolev embedding theorem the restriction to ω of
all these functions belong to C(ω). By virtue of (5.10), (5.12), the derivative of
the functional (6.26) at zero in the direction h has the form

G′(0, h) = max
x∈M0

−h1(x), (6.27)

where M0 =
{
x ∈ ω| − v̂1(x) = 0

}
. By Lemma 5.4 the sub-differential ∂G′(0, ·)

consists of the functional

l(h) = −
∫

Ω

h1(x)μ(dx),

where μ(dx) is a probability measure supported on the set M0. Just this measure
is written in equation (6.25).

7. The optimality system

In this section, we obtain the main result of this paper, the optimality system for
problem (2.1)–(2.8).

7.1. Derivation of the optimality system

At first, we take h ∈ Ψ2α(Ω) ∩C∞0 (Ω)2, τ ∈ C∞0 (Ω) in (6.25). In this way, we get∫
Ω

(−Δh+ v̂ · ∇h+ h · ∇v̂ +∇τ) · z dx = α
∫

ω

h1(x)μ(dx). (7.1)

If we take h = 0 in (7.1), the resulting equality yields

∇ · z = 0 in Ω, (7.2)

which is to be understood in the distributional sense. Accordingly, taking τ ≡ 0
in (7.1), we get ∫

Ω

(−Δz − v̂ · ∇z +∇v̂∗z) · h dx = α
∫

ω

h1 μ (dx) , (7.3)

for all h ∈ Ψ2α(Ω) ∩ C∞0 (Ω)2 , where (∇v̂)∗z = (∂1v̂ · z, ∂2v̂ · z).
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This equality and the De Rham Theorem (see [T]) imply that there exists a
distribution σ(x) such that

−Δz − v̂ · ∇z +∇v̂∗z −∇σ = αe1μ(dx) (7.4)

where e1 = (1, 0).
System (7.4), (7.2) is elliptic in the sense of Douglas-Nirenberg. Therefore for

each subdomain Ω1 of Ω compactly enclosed in Ω \ ω, i.e. Ω1 ⊂ Ω \ ω, we have
z ∈ H2(Ω1), ∇σ ∈ L2(Ω1).

Moreover (z,∇σ) possesses enough smoothness near ∂Ω in order to define
the traces of these functions on ∂Ω. To prove this one has to use methods of ([F]
Chapter 2.5, [LM]).

Now, we take an arbitrary (h, τ) ∈ Y in (6.25) and integrate by parts. Then,
taking into account (7.2), (7.4), we get for all (h, τ) ∈ Y :

λ0

∫
S

(−τn+ ∂nh) · e1 dx+ λ1
∫

Γ1∪Γ2

(∂nv̂ − p̂n)(∂nh− τn)dx1 (7.5)

+
∫

∂Ω

{
(−∂nh+ τn)z + ∂nz · h+ (v̂ · n)(h · z)

}
dx+

∫
Ω

∇σ · h dx = 0.

Suppose that (h, τ) ∈ Y and (h, τ) equals zero in a neighborhood of (∂Ω \ S).
Then, recalling that h|S = 0, we obtain from (7.5) that∫

S

(−τn+ ∂nh)(λ0e1 − z) dx = 0. (7.6)

Since ∇ · h = 0 and h|S = 0 , then (−τn + ∂nh)|S = (−τn + ∂nhT )|S where
hT is the component of vector field h that is tangent to S. Evidently the set of
(−τn+ ∂nhT )|S is dense in L2(S)2. Therefore (7.6) implies

z|S = λ0e1. (7.7)

Analogously, if we take (h, τ) ∈ Y that equals zero in a neighborhood of ∂Ω \
{Γin ∪ S′}) , we obtain from (7.5)∫

Γin∪S′
(τn− ∂nh)z dx = 0.

This implies the equality
z|Γin∪S′ = 0. (7.8)

Taking (h, τ) ∈ Y , (h, τ) = 0 in a neighborhood of ∂Ω \ Γout and using that
(−∂nh+ τn)|Γout = 0, we get from (7.5) that∫

Γout

(
∂nz + nσ + (v̂ · n)z

)
h dx2 = 0,

and therefore, since
∫

Γout
n · h dx2 = 0, we get(
∂nz + nσ + (v̂ · n)z

)
|Γout

= nc, (7.9)

where c is a constant.
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At last, for (h, τ) ∈ Y , (h, τ) = 0 in a neighborhood of ∂Ω \ (Γ1 ∪ Γ2), we
obtain from (7.5)∫

Γ1∪Γ2

(
− ∂nh+ τn)z + (∂nz + nσ + (v̂ · n)z

)
· h

+ λ1(∂nv̂ − p̂n)(∂nh− τn) dx1 = 0.
(7.10)

Taking in (7.10) h = 0 and −∂nh + τn running through the dense set in(
L2 (Γ1 ∪ Γ2)

)2, we get
z|Γ1∪Γ2 = λ1 (∂nv̂ − p̂n)

∣∣
Γ1∪Γ2

. (7.11)

If we take −∂nh+ τn = 0 and h is arbitrary, then we obtain(
∂nz + nσ + (v̂ · n)z

)∣∣
Γ1∪Γ2

= nc, (7.12)

where c is a constant. Notice that the constant c in (7.9) and the constant c
in (7.12) corresponding to Γ1 and Γ2 are equal. Indeed, for determining (7.9),
(7.12), we can take h = 0 on ∂Ω \(Γout)∪Γ1∪Γ2 and h arbitrary on Γout∪Γ1∪Γ2
(Compare with (3.11)). Adding this c to σ we can take c = 0.

7.2. The final form of the optimality system

Let (v̂, p̂, û1, û2) be the solution of problem (2.1)–(2.8). Then, the optimality sys-
tem for this problem consists of equations (2.1), (2.2), (7.4), (7.2) and the bound-
ary conditions (2.3), (7.7)–(7.9), (7.11), (7.12). We rewrite these equations in the
following form:

−Δv̂ + v̂ · ∇v̂ +∇p̂ = 0, ∇ · v̂ = 0, x ∈ Ω, (7.13)

−Δz − v̂ · ∇z +∇v̂∗z −∇σ = e1αμ(dx), ∇ · z = 0, x ∈ Ω, (7.14)

v̂|Γin = v
in, (∂nv̂ − p̂n)|Γout = 0, v|S∪S′ = 0, (7.15)

z|S = λ0e1, z|Γin∪S′ = 0, z|Γ1∪Γ2 = λ1 (∂nv̂ − p̂n)|Γ1∪Γ2
, (7.16)(

∂nz + nσ + (v̂ · n)z
)
|Γout = 0,

(
∂nz + nσ + (v̂ · n)z

)
|Γ1∪Γ2

= 0. (7.17)

By virtue of (5.3), (5.5) the optimality system should be supplemented by the
following condition:

1) Conditions of signs concordance:

λ0 ≥ 0, λ1 ≥ 0, α ≥ 0. (7.18)

2) Conditions of complementary slackness

λ1(J1 − γ2) = 0, αmin
x∈ω

v̂(x) = 0, (7.19)

where J1 = J1(0, 0) and J1(w, t) is defined in (6.15).
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8. Numerical calculations

The validity of the crucial Condition 1 for a given subset ω ⊂ Ω (see (4.26))
can hardly be shown analytically but rather requires computational confirmation.
Figure 2 shows a series of plots of the velocity component v1 for increasing strength
of the control (positive pressure drop). Figure 3 shows corresponding plots for
symmetric and asymmetric action of the control. The latter results demonstrate
that for a large class of sub-domains ω ⊂ Ω the property v1|ω ≥ 0 can be achieved
by applying appropriate controls.

Figure 2. Velocity component v1 for increasing strength of control
pressure; area of v1 < 0 dark grey
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Figure 3. Velocity component v1 for symmetric (left) and asymmetric
(right) control pressure drop; area of v1 < 0 dark grey
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Abstract. As a model problem of the nonstationary free boundary problem
for the Navier-Stokes equations in a vessel whose wall has a contact with a
free surface, we are concerned in this paper with the boundary value problem
for the stationary Stokes equations with a parameter in an infinite sector with
the slip and the stress boundary conditions. Existence of the unique solution
is proved in weighted Sobolev spaces.
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1. Introduction

The present paper is considered as a continuation of our article [4]. Let dθ be a
plane angle of opening θ in the polar coordinates (r, ϕ),

dθ =
{
x = (r cosϕ, r sinϕ) ∈ R

2
∣∣ r > 0, 0 < ϕ < θ

}
;

let γ0 = {ϕ = 0, r > 0}, γθ = {ϕ = θ, r > 0} be the sides of the angle.
In this paper we consider the problem of determining the velocity vector field

u = u(x, s) = (u1(x, s), u2(x, s)) and the pressure q = q(x, s) satisfying in dθ the
Stokes equations with a parameter s ∈ C{

su− νΔu+∇q = f , ∇ · u = ρ in dθ,

u2|γ0 = 0, 2νD12(u)
∣∣
γ0
= b0, P(u, q)nθ|γθ

= bθ.
(1.1)
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Here, ∇ = ( ∂
∂x1
, ∂

∂x2
), P(u, q) = −qI + 2νD(u) is the stress tensor, D(u) is the

velocity deformation tensor with elements Dij(u) = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(i, j = 1, 2),

I is the unit tensor of degree 2, nθ is the unit vector of the outward normal to
γθ, (f , ρ), b0 and bθ are given functions on dθ, γ0 and γθ, respectively, and ν is a
coefficient of viscosity, assumed to be a positive constant.

The problem (1.1) is related to the time-dependent problem with free bound-
ary (see [4]).

We consider (1.1) in weighted Sobolev spaces ([6], [3]). Let k ∈ {0} ∪ N

and μ ∈ R. We define a space Hk
μ(dθ) as a completion of the set of infinitely

differentiable functions with compact support vanishing near the vertex of the
angle equipped with the norm

‖u‖2Hk
μ(dθ)

=
∑
|α|≤k

∫
dθ

r2(μ−k+|α|)|Dα
xu(x)|2 dx

≡
∑
|α|≤k

‖Dα
xu‖2L2,μ−k+|α|(dθ)

,

where r = |x| =
√
x21 + x22, α = (α1, α2) is a multi-index, |α| = α1 + α2,

Dα
xu =

(
∂

∂x1

)α1 (
∂

∂x2

)α2

u.

The space of traces of functions in Hk+1
μ (dθ) on the side γ0 or γθ is the space

Hk+1/2
μ (γ) (γ = γ0 or γθ) with the norm

‖b‖2
H

k+1/2
μ (γ)

=
k∑

j=0

∫ ∞

0

r2(μ−k−1/2+j) |Dj
rb(r)|2 dr

+
∫ ∞

0

r2μ dr
∫ r

0

|Dk
r b(r + ρ)−Dk

r b(r)|2
ρ2

dρ

≡
k∑

j=0

‖Dj
rb‖2L2,μ−k−1/2+j(γ)

+ ‖b‖2
L

k+1/2
μ (γ)

,

where Dr = d/dr. We also use the notation ‖b‖2Ll
μ(γ)

=
∑
|α|=l ‖Dα

xb‖2L2,μ(γ)
.

Two-dimensional vector-valued functions are denoted by bold-faced letters
such as u = (u1, u2). Similarly, we use bold-faced letters to denote the function
spaces of two-dimensional vector-valued functions.

Our main theorem is as follows.

Theorem 1.1. Let �s = h ≥ ν and k ∈ {0} ∪ N, θ ∈ (0, π/2), μ ∈ (0, 1/2) be
numbers satisfying (2.3), (2.4) below. Suppose that ρ = ∇ · g with g = (g1, g2),
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g2|γ0 = 0, and f , ρ, g, b0, and bθ satisfy

Fk ≡
k∑

l=0

|s|k−l‖f(·, s)‖2Hl
μ(dθ)

+
k∑

l=0

(
|s|k−l‖b0(·, s)‖2Hl+1/2

μ (γ0)
+ |s|k+1/2−l‖b0(·, s)‖2Ll

μ(γ0)

)
+

k∑
l=0

(
|s|k−l‖bθ(·, s)‖2Hl+1/2

μ (γθ)
+ |s|k+1/2−l‖bθ(·, s)‖2Ll

μ(γθ)

)
<∞,

Gk ≡
k+1∑
l=0

|s|k+1−l‖ρ(·, s)‖2Hl
μ(dθ)

+
k∑

l=0

|s|2+l‖g(·, s)‖2L2,μ(dθ)
<∞.

Then there exists a unique solution

u(·, s) ∈ Hk+2
μ (dθ), ∇q(·, s) ∈ Hk

μ(dθ), q(·, s)|γθ
∈ Hk+3/2

μ (γθ)

to problem (1.1) satisfying the inequality

k+2∑
l=0

|s|2+k−l‖u(·, s)‖2Hl
μ(dθ)

+
k∑

l=0

|s|k−l‖∇q(·, s)‖2Hl
μ(dθ)

+
k∑

l=0

(
|s|k−l‖q(·, s)‖2

H
l+1/2
μ (γθ)

+ |s|k+1/2−l‖q(·, s)‖2Ll
μ(γθ)

)
≤ c(Fk +Gk), (1.2)

where c is a constant independent of |s|.

2. Auxiliary propositions

In this section we describe the necessary results for the later discussions.

2.1. Stationary problem

In this subsection we are concerned mainly with the problem{
−νΔv +∇p = f , ∇ · v = ρ in dθ,

v2|γ0 = b1, 2νD12(v)
∣∣
γ0
= b2, P(v, p)nθ |γθ

= b3.
(2.1)

It was shown in [4] that, after transforming the problem (2.1) by the polar
coordinates (r, φ) and making use of the Mellin transform with respect to r, the
system of ordinary differential equations thus obtained concerning φ ∈ (0, θ) has a
solution for arbitrary (f , ρ, b1, b2,b3) provided that λ is not equal to the non-zero
solution of the equation

P(λ) ≡ sin(2λθ) + λ sin(2θ) = 0, λ ∈ C\{0} (2.2)
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on the complex plane C. (It was also shown in [4] that λ = 0 is an eigenvalue of
the problem.)

Let us confirm that for arbitrary fixed θ ∈ (0, π/2) and k ∈ {0} ∪ N, we can
find a number μ ∈ (0, 1/2) satisfying

l + 1− μ �=
(
m+

1
2

)
π

θ
(l = 0, 1, . . . , k; m ∈ Z), (2.3)

P(l + 1− μ+ iβ) �= 0 (l = 0, 1, . . . , k; β ∈ R) (2.4)

simultaneously. Indeed, it is easy to see that (2.4) is equivalent to{
sin ((l + 1− μ)2θ) cosh(2θβ) + (l + 1− μ) sin(2θ) �= 0,
cos ((l + 1− μ)2θ) sinh(2θβ) + β sin(2θ) �= 0.

(2.5)

Therefore, if β = 0, then we have

sin
(
(l + 1− μ)2θ

)
(l + 1− μ)2θ �= − sin(2θ)

2θ
.

On the other hand, if β �= 0, then we have
tan ((l + 1− μ)2θ)
(l + 1− μ)2θ �= tanh(2θβ)

2θβ
(l = 0, 1, . . . , k; β ∈ R\{0}),

since cos ((l + 1− μ)2θ) �= 0 by (2.3).
For the solvability of problem (2.1) we have already established the following

theorem:

Theorem 2.1 ([4]). Suppose that k ∈ {0}∪N, θ ∈ (0, 2π] and the line �λ = k+1−μ
is free from the solution of the equation (2.2). Then for any f = (f1, f2) ∈ Hk

μ(dθ),

ρ ∈ H1+k
μ (dθ), b1 ∈ Hk+3/2

μ (γ0), b2 ∈ Hk+1/2
μ (γ0), b3 = (b31, b32) ∈ Hk+1/2

μ (γθ)
satisfying the relation∫

dθ

(
f1 − ν

∂ρ

∂x1

)
dx =

∫
γ0

b2 dr +
∫

γθ

b31 dr,

problem (2.1) has a unique solution v ∈ Hk+2
μ (dθ), p ∈ Hk+1

μ (dθ). Moreover this
solution satisfies the inequality

‖v‖Hk+2
μ (dθ)

+ ‖p‖Hk+1
μ (dθ)

≤ c1,k
(
‖f‖Hk

μ(dθ) + ‖ρ‖Hk+1
μ (dθ)

+ ‖b1‖Hk+3/2
μ (γ0)

+‖b2‖Hk+1/2
μ (γ0)

+ ‖b3‖Hk+1/2
μ (γθ)

)
,

where c1,k is a positive constant independent of f , ρ, b1, b2 and b3.

We also use the following theorem due to Kondrat′ev.

Theorem 2.2 ([6]). Let k ∈ {0}∪N, μ ∈ R and θ ∈ (0, 2π] satisfy k+1−μ �= (m+
1/2)π/θ, m ∈ Z. For arbitrary g ∈ Hk

μ(dθ), a1 ∈ Hk+1/2
μ (γ0), a2 ∈ Hk+3/2

μ (γθ),
problem

Δφ = g in dθ,
∂φ

∂x2

∣∣∣∣
γ0

= a1, φ
∣∣
γθ
= a2
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has a unique solution φ ∈ Hk+2
μ (dθ) satisfying the inequality

‖φ‖Hk+2
μ (dθ)

≤ c

cos((k + 1− μ)θ)
(
‖g‖Hk

μ(dθ) + ‖a1‖Hk+1/2
μ (γ0)

+ ‖a2‖Hk+3/2
μ (γθ)

)
.

2.2. Some inequalities

Lemma 2.1. Let u be an infinitely differentiable function defined in dθ vanishing
near the origin and infinity. Then the following inequalities are true:

‖u‖L2,μ1(dθ) ≤
∣∣∣∣ 2
μ1 + μ+ 1

∣∣∣∣μ−μ1

‖∇u‖μ−μ1
L2,μ(dθ)

‖u‖1−(μ−μ1)
L2,μ(dθ)

≡ CI‖∇u‖μ−μ1
L2,μ(dθ)

‖u‖1−(μ−μ1)
L2,μ(dθ)

(2.6)

for μ1 ∈ [μ− 1, μ], μ1 + μ+ 1 �= 0,

‖u‖L2,μ1(γ)
≤

(∣∣∣∣ 2
(1 + 2μ1)θ

∣∣∣∣+ 2
)1/2 ∣∣∣∣ 2

1 + 2μ1

∣∣∣∣μ−μ1

‖∇u‖1/2+μ−μ1
L2,μ(dθ)

‖u‖1/2−(μ−μ1)
L2,μ(dθ)

≡ CII‖∇u‖1/2+μ−μ1
L2,μ(dθ)

‖u‖1/2−(μ−μ1)
L2,μ(dθ)

(2.7)

for μ1 ∈ [μ− 1/2, μ] , 1 + 2μ1 �= 0.

This result can be found in [2], [3]. In the Appendix we give a detailed proof
of it for the sake of reader’s convenience.

Lemma 2.2 ([8]). Let v ∈ W1
2(dθ) and its support be contained in a circle BR(0),

R > 0. Then Korn’s second inequality

‖∇v‖2L2(dθ)
≤ CK

(
‖D(v)‖2L2(dθ)

+ ‖v‖2L2(dθ)

)
(2.8)

holds true, where the constant CK is independent of R.

3. Proof of Theorem 1.1

The proof is divided into several steps.

Step 1. We assume ρ = 0 and decompose f ∈ L2,μ(dθ) into the form f = f∗+∇ψ,
where ψ is a solution of

Δψ = ∇ · f in dθ,
∂ψ

∂x2

∣∣∣∣
γ0

= f2|γ0 , ψ|γθ
= 0. (3.1)

Hence f∗ satisfies
∇ · f∗ = 0 in dθ, f∗2 |γ0 = 0.

It follows from the result in [5] that

‖∇ψ‖L2,μ(dθ) ≤ c‖f‖L2,μ(dθ).

Putting q∗ = q − ψ, we consider the problem{
su−∇ · P(u, q∗) = f∗, ∇ · u = 0 in dθ,

u2|γ0 = 0, 2νD12(u)|γ0 = b0, P(u, q∗)nθ|γθ
= bθ.

(3.2)
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Step 1-1. First of all we show the inequality

‖u‖2H2
μ(dθ)

+ |s|‖u‖2H1
μ(dθ)

+ |s|2‖u‖2L2,μ(dθ)
+ ‖∇q∗‖2L2,μ(dθ)

+ ‖q∗‖2
H

1/2
μ (γθ)

+ |s|1/2‖q∗‖2L2,μ(γθ)
≤ cF0. (3.3)

Inequality (3.3) is proved by similar calculations as Proposition 3.1 in [3]. Indeed,
we multiply equation (3.2) by (1− i sgn s)ū and integrate over dθ. After integra-
tion by parts, we obtain

(1− i sgn s)s
∫

dθ

|u|2 dx+ (1− i sgn s)2ν
∫

dθ

|D(u)|2 dx

= (1− i sgn s)
[∫

dθ

f∗ · ū dx−
∫

γ0

b0ū1 dr +
∫

γθ

bθ · ū dr
]

≡ (1− i sgn s) l(ū).

Taking the real part of this equation and multiplying it by |s|1−μ yields

|s|1−μ
(
(h+ | s|)‖u‖2L2(dθ)

+ 2ν‖D(u)‖2L2(dθ)

)
= |s|1−μ� ((1− i sgn s)l(ū)) , (3.4)

since (1 − i sgn s)s = s + | s| − h(sgn s)i. Let us estimate the right-hand side
of (3.4). The first term is estimated as follows.

|s|1−μ

∣∣∣∣∫
dθ

f∗ · ū dx
∣∣∣∣

≤ |s|1−μ‖f∗‖L2,μ(dθ)‖u‖L2,−μ(dθ)

≤ |s|1−μ‖f∗‖L2,μ(dθ)CI‖∇u‖μ
L2(dθ)

‖u‖1−μ
L2(dθ)

≤ ε
(
|s|1−μ‖∇u‖2L2(dθ)

)μ (
|s|2−μ‖u‖2L2(dθ)

)1−μ

+ Cε‖f∗‖2L2,μ(dθ)

≤ ε
(
|s|1−μ‖∇u‖2L2(dθ)

+ |s|2−μ‖u‖2L2(dθ)

)
+ Cε‖f∗‖2L2,μ(dθ)

. (3.5)

Here and in what follows, ε denotes an arbitrarily small positive number. For the
second term the inequality

|s|1−μ

∣∣∣∣∫
γ0

b0ū1dr
∣∣∣∣ ≤ |s|1−μ‖b0‖L2,μ1(γ0)‖u‖L2,−μ1(γ0)

holds for any μ1 ∈ (μ− 1/2, μ) ∩ [0, 1/2). Since

‖b0‖L2,μ1 (γ0) ≤ ‖b0‖α
L2,μ(γ0)

‖b0‖1−α
L2,μ−1/2(γ0)

for α = 2μ1 − 2μ+ 1 ∈ (0, 1),

‖u‖L2,−μ1(γ0) ≤ CII‖∇u‖1/2+μ1
L2(dθ)

‖u‖1/2−μ1
L2(dθ)

for μ1 ∈ [0, 1/2),
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one can find

|s|1−μ‖b0‖L2,μ1 (γ0)‖u‖L2,−μ1(γ0)

≤ CII

(
|s|1/4‖b0‖L2,μ(γ0)

)α

‖b0‖1−α
L2,μ−1/2(γ0)

×
(
|s|(1−μ)/2‖∇u‖L2(dθ)

)1/2+μ1
(
|s|(2−μ)/2‖u‖L2(dθ)

)1/2−μ1

≤ ε
(
|s|1−μ‖∇u‖2L2(dθ)

+ |s|2−μ‖u‖2L2(dθ)

)
+ Cε

(
|s|1/2‖b0‖2L2,μ(γ0)

+ ‖b0‖2L2,μ−1/2(γ0)

)
.

Hence,

|s|1−μ

(∣∣∣∣∫
γ0

b0ū1dr
∣∣∣∣+ ∣∣∣∣∫

γθ

bθ · ū dr
∣∣∣∣)

≤ ε
(
|s|1−μ‖∇u‖2L2(dθ)

+ |s|2−μ‖u‖2L2(dθ)

)
+ Cε

(
|s|1/2‖b0‖2L2,μ(γ0)

+ ‖b0‖2L2,μ−1/2(γ0)
+ |s|1/2‖bθ‖2L2,μ(γθ)

+ ‖bθ‖2L2,μ−1/2(γθ)

)
. (3.6)

Substituting (3.5)–(3.6) into (3.4), we obtain

|s|1−μ
(
(h+ | s|)‖u‖2L2(dθ)

+ 2ν‖D(u)‖2L2(dθ)

)
≤ ε

(
|s|1−μ‖∇u‖2L2(dθ)

+ |s|2−μ‖u‖2L2(dθ)

)
+ CεF0. (3.7)

By Korn’s second inequality (2.8) and the assumption �s = h ≥ ν we find
(h+ | s|)‖u‖2L2(dθ)

+ 2ν‖D(u)‖2L2(dθ)

≥ 1
2

(
|s|‖u‖2L2(dθ)

+ ν
(
‖u‖2L2(dθ)

+ ‖D(u)‖2L2(dθ)

))
≥ 1
2

(
|s|‖u‖2L2(dθ)

+
ν

CK
‖∇u‖2L2(dθ)

)
.

This together with (3.7) yields

|s|1−μ‖∇u‖2L2(dθ)
+ |s|2−μ‖u‖2L2(dθ)

≤ cF0. (3.8)

Next we multiply equation (3.2) by (1 − i sgn s)ū|x|2μ and integrate over
dθ. After integrating by parts, we take a real part of the resulting equation and
multiply it by |s|. Then, we find

|s|
(
(h+ | s|)‖u‖2L2,μ(dθ)

+ 2ν‖D(u)‖2L2,μ(dθ)

)
= |s|�

(
(1− i sgn s) l(ū|x|2μ)

)
− |s|�

(
(1− i sgn s)

∫
dθ

P(u, q∗)(∇|x|2μ) · ū dx
)
. (3.9)
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The first term of the right-hand side of (3.9) is estimated as follows:

|s|
∣∣∣∣∫

dθ

f∗ · ū|x|2μ dx
∣∣∣∣ ≤ ε|s|2‖u‖2L2,μ(dθ)

+ Cε‖f∗‖2L2,μ(dθ)
, (3.10)

|s|
(∣∣∣∣∫

γ0

b0ū1 r
2μ dr

∣∣∣∣+ ∣∣∣∣∫
γθ

bθ · ū r2μ dr
∣∣∣∣)

≤ |s|
(
‖b0‖L2,μ(γ0)‖u‖L2,μ(γ0) + ‖bθ‖L2,μ(γθ)‖u‖L2,μ(γθ)

)
≤ |s|

(
‖b0‖L2,μ(γ0) + ‖bθ‖L2,μ(γθ)

)
CII‖∇u‖1/2L2,μ(dθ)

‖u‖1/2L2,μ(dθ)

≤ ε
(
|s|‖∇u‖2L2,μ(dθ)

+ |s|2‖u‖2L2,μ(dθ)

)
+ Cε

(
|s|1/2‖b0‖2L2,μ(γ0)

+ |s|1/2‖bθ‖2L2,μ(γθ)

)
. (3.11)

For the second term of the right-hand side of (3.9) since

|s|
∣∣∣∣∫

dθ

P(u, q∗)
(
∇|x|2μ

)
· ū dx

∣∣∣∣ ≤ c(2μ)|s| ∫
dθ

(|q∗|+ |∇u|) |u||x|2μ−1 dx,

|s|
∫

dθ

|q∗| |u||x|2μ−1 dx ≤ |s|‖q∗‖L2,μ−1/2(dθ)‖u‖L2,μ−1/2(dθ)

≤ ε|s|1/2‖q∗‖2L2,μ−1/2(dθ)
+ Cε|s|3/2‖u‖2L2,μ−1/2(dθ)

,

|s|
∫

dθ

|∇u||u||x|2μ−1 dx ≤ |s|‖∇u‖L2,μ(dθ)‖u‖L2,μ−1(dθ)

≤ ε|s|‖∇u‖2L2,μ(dθ)
+ Cε|s|‖u‖2L2,μ−1(dθ)

,

we have by virtue of (2.6) and (3.8)

|s|3/2‖u‖2L2,μ−1/2(dθ)
≤ |s|3/2

(
CI‖∇u‖1/2−μ

L2(dθ)
‖u‖1/2+μ

L2(dθ)

)2
= C2I

(
|s|1−μ‖∇u‖2L2(dθ)

)1/2−μ (
|s|2−μ‖u‖2L2(dθ)

)1/2+μ

≤ C2I
(
|s|1−μ‖∇u‖2L2(dθ)

+ |s|2−μ‖u‖2L2(dθ)

)
≤ cF0, (3.12)

|s|‖u‖2L2,μ−1(dθ)
≤ |s|

(
CI‖∇u‖1−μ

L2(dθ)
‖u‖μ

L2(dθ)

)2
= C2I

(
|s|1−μ‖∇u‖2L2(dθ)

)1−μ (
|s|2−μ‖u‖2L2(dθ)

)μ

≤ C2I
(
|s|1−μ‖∇u‖2L2(dθ)

+ |s|2−μ‖u‖2L2(dθ)

)
≤ cF0. (3.13)
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Therefore, one can get

|s|
∣∣∣∣∫

dθ

P(u, q∗)
(
∇|x|2μ

)
· ū dx

∣∣∣∣
≤ ε

(
|s|1/2‖q∗‖2L2,μ−1/2(dθ)

+ |s|‖∇u‖2L2,μ(dθ)

)
+ CεF0. (3.14)

Substituting (3.10)–(3.14) into (3.9), we obtain

|s|
(
(h+ | s|)‖u‖2L2,μ(dθ)

+ 2ν‖D(u)‖2L2,μ(dθ)

)
≤ ε

(
|s|1/2‖q∗‖2L2,μ−1/2(dθ)

+ |s|‖∇u‖2L2,μ(dθ)

)
+ CεF0. (3.15)

On the other hand, applying Korn’s inequality (2.8) to the function u|x|μ, we find

‖∇u‖2L2,μ(dθ)
≤ C′K

(
‖D(u)‖2L2,μ(dθ)

+ ‖u‖2L2,μ(dθ)
+ ‖u‖2L2,μ−1(dθ)

)
.

Consequently, we get

(h+ | s|)‖u‖2L2,μ(dθ)
+ 2ν‖D(u)‖2L2,μ(dθ)

≥ 1
2

(
|s|‖u‖2L2,μ(dθ)

+ ν
(

1
C′K

‖∇u‖2L2,μ(dθ)
− ‖u‖2L2,μ−1(dθ)

))
. (3.16)

Now we choose ε > 0 so small that (3.12), (3.13) and (3.16) yield

|s|‖∇u‖2L2,μ(dθ)
+ |s|2‖u‖2L2,μ(dθ)

≤ cε|s|1/2‖q∗‖2L2,μ−1/2(dθ)
+ F0.

It is easily derived from (3.2) that⎧⎪⎨⎪⎩
Δq∗ = 0 in dθ,

∂q∗

∂x2

∣∣∣∣
γ0

= − ∂b0
∂x1

, q∗
∣∣
γθ
= 2νD(u)nθ · nθ

∣∣
γθ
− bθ · nθ.

(3.17)

According to the result in [5], we have

|s|1/2‖q∗‖2L2,μ−1/2(dθ)
≤ c

cos2
((
μ+ 1

2

)
θ
) (
|s|1/2‖b0‖2L2,μ(γ0)

+|s|1/2‖bθ‖2L2,μ(γθ)
+ ν|s|1/2‖∇u‖2L2,μ(γθ)

)
≤ c

cos2
((
μ+ 1

2

)
θ
) (
F0 + ν|s|1/2‖∇u‖2L2,μ(γθ)

)
.

Note that θ ∈ (0, π/2) and μ ∈ (0, 1/2) imply cos ((μ+ 1/2) θ) �= 0. Using the
inequality

|s|1/2‖∇u‖2L2,μ(γθ)
≤ C2II‖D2u‖L2,μ(dθ)|s|1/2‖∇u‖L2,μ(dθ)

≤ c
(
‖D2u‖2L2,μ(dθ)

+ |s|‖∇u‖2L2,μ(dθ)

)
, (3.18)

we arrive at the estimate

|s|‖∇u‖2L2,μ(dθ)
+ |s|2‖u‖2L2,μ(dθ)

≤ ε‖D2u‖2L2,μ(dθ)
+ cF0. (3.19)
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Since (u, q∗) can be considered as a solution of problem{
−νΔu+∇q∗ = f∗ − su, ∇ · u = 0 in dθ,

u2|γ0 = 0, 2νD12(u)|γ0 = b0, P(u, q∗)nθ|γθ
= bθ,

(3.20)

Theorem 2.1 for k = 0 is applicable to problem (3.20), so that if the line �λ = 1−μ
is free from the eigenvalues, then

‖u‖2H2
μ(dθ)

+ ‖∇q∗‖2L2,μ(dθ)
≤ c1,0

(
‖f∗ − su‖2L2,μ(dθ)

+ ‖b0‖2H1/2
μ (γ0)

+ ‖bθ‖2H1/2
μ (γθ)

)
≤ c1,0

(
|s|2‖u‖2L2,μ(dθ)

+ F0
)
. (3.21)

We conclude from (3.19) and (3.21) that

‖u‖2H2
μ(dθ)

+ |s|‖∇u‖2L2,μ(dθ)
+ |s|2‖u‖2L2,μ(dθ)

+ ‖∇q∗‖2L2,μ(dθ)
≤ cF0. (3.22)

Furthermore, (3.12) and (3.22) imply

|s|‖u‖2H1
μ(dθ)

= |s|
(
‖u‖2L2,μ−1(dθ)

+ ‖∇u‖2L2,μ(dθ)

)
≤ cF0,

and hence

‖u‖2H2
μ(dθ)

+ |s|‖u‖2H1
μ(dθ)

+ |s|2‖u‖2L2,μ(dθ)
+ ‖∇q∗‖2L2,μ(dθ)

≤ cF0. (3.23)

Finally let us proceed to estimate the pressure q∗ on γθ. The boundary con-
dition leads to

q∗
∣∣
γθ
= 2νD(u)nθ · nθ

∣∣
γθ
− bθ · nθ. (3.24)

From the trace theorem and (3.18) it follows that

‖D(u)nθ ·nθ‖2H1/2
μ (γθ)

+ |s|1/2‖D(u)nθ ·nθ‖2L2,μ(γθ)
≤ c

(
‖u‖2H2

μ(dθ)
+ |s|‖u‖2H1

μ(dθ)

)
.

Hence

‖q∗‖2
H

1/2
μ (γθ)

+ |s|1/2‖q∗‖2L2,μ(γθ)
≤ cF0. (3.25)

Consequently, (3.3) is proved thanks to the inequalities (3.23) and (3.25).

Step 1-2. Next we discuss the existence of a solution. First let us find a weak
solution of it (see [1], [9], [10]). By a weak solution we mean u ∈ J(dθ) ≡ {u ∈
W1

2(dθ)
∣∣ ∇·u = 0 in dθ, u2|γ0 = 0} satisfying the integral identity Q[u,ϕ] = l (ϕ)

for all ϕ ∈ J(dθ), where

Q[u,ϕ] = s
∫

dθ

u · ϕ̄ dx+ 2ν
∫

dθ

D(u) : D(ϕ̄) dx,

l (ϕ) =
∫

dθ

f∗ · ϕ̄ dx−
∫

γ0

b0ϕ̄1 dr +
∫

γθ

bθ · ϕ̄ dr.
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Lemma 3.1. Suppose that f∗, b0 and bθ satisfy

F ∗0 ≡ ‖f∗‖L2,μ(dθ) + ‖b0‖H1/2
μ (γ0)

+ ‖b0‖L2,μ(γ0) + ‖bθ‖H1/2
μ (γθ)

+ ‖bθ‖L2,μ(γθ) <∞.

Then for each s ∈ C, �s = h ≥ ν, there exists a unique weak solution u ∈ J(dθ)
such that

‖u‖W1
2(dθ) ≤ cF ∗0 .

Proof. Since

|Q[u,ϕ]| ≤ (|s|+ 2ν)‖u‖W1
2(dθ)‖ϕ‖W1

2(dθ),

|�Q[u,u]| ≥ ν
2
‖u‖2L2(dθ)

+
ν

2

(
‖u‖2L2(dθ)

+ ‖D(u)‖2L2(dθ)

)
≥ ν
2
min

{
1,

1
CK

}
‖u‖2W1

2(dθ)
,

the sesqui-linear form Q[·, ·] is bounded and coercive. While it is obvious from
(3.5) and (3.6) that l (ϕ) is a linear continuous functional on J(dθ). Thus the
Lax-Milgram Theorem ([7]) leads to the assertion of Lemma 3.1. �

Remark. From (2.6) with μ1 = 0 one can deduce

‖u‖W1
2(dθ) ≤ CI

(
‖∇u‖μ

L2,μ(dθ)
‖u‖1−μ

L2,μ(dθ)
+ ‖D2u‖μ

L2,μ(dθ)
‖∇u‖1−μ

L2,μ(dθ)

)
≤ c

(
‖u‖H2

μ(dθ) +
( |s|
ν

)1/2

‖u‖H1
μ(dθ) +

|s|
ν
‖u‖L2,μ(dθ)

)
.

Hence the weak solution obtained in Lemma 3.1 obeys the estimate (3.3).

Since the pressure q∗ satisfies (3.17), the existence and the estimate of ∇q∗ ∈
H1

μ(dθ) follow from Theorem 2.2 provided that 1− μ �= (m+ 1/2)π/θ, m ∈ Z.

Step 1-3. We derive the inequality (1.2) with ρ = 0. Firstly inequality (3.3)
multiplied by |s| yields

|s|‖u‖2H2
μ(dθ)

+ |s|2‖u‖2H1
μ(dθ)

+ |s|3‖u‖2L2,μ(dθ)
+ |s|‖∇q∗‖2L2,μ(dθ)

+ |s|‖q∗‖2
H

1/2
μ (γθ)

+ |s|3/2‖q∗‖2L2,μ(γθ)
≤ cF1. (3.26)

Secondly, applying Theorem 2.1 for k = 1 to problem (3.20), we have

‖u‖2H3
μ(dθ)

+ ‖∇q∗‖2H1
μ(dθ)

≤ c1,1
(
|s|2‖u‖2H1

μ(dθ)
+ F1

)
≤ cF1 (3.27)

under the condition that there are no eigenvalues on the line �λ = 2−μ. Estimating
‖q∗‖2

H
3/2
μ (γθ)

and |s|1/2‖q∗‖2L1
μ(γθ)

from (3.24) together with (3.26), (3.27) implies

(1.2) with k = 1 and ρ = 0. Repeating this procedure, we obtain the desired
inequality.
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Step 2. We discuss problem (1.1). Let us seek a solution of (1.1) in the form
(u, q) = (∇φ + u∗∗,−sφ+ q∗∗), where φ satisfies

Δφ = ρ in dθ,
∂φ

∂x2

∣∣∣∣
γ0

= 0, φ
∣∣
γθ
= 0, (3.28)

and (u∗∗, q∗∗) solves problem (3.2) with (f∗, b0,bθ) replaced by (f∗ + ν∇ρ, b0 −
2νD12(∇φ)|γ0 ,bθ − 2νD(∇φ)nθ|γθ

).
As for problem (3.28), we have the following result.

Lemma 3.2. Assume that k + 1 − μ �= (m + 1/2)π/θ (k = 0, 1; m ∈ Z) and
ρ = ∇ · g be as in Theorem 1.1 with G0 <∞. Then there exists a unique solution
∇φ(·, s) ∈ H2

μ(dθ) of (3.28) which obeys the estimate

‖∇φ(·, s)‖2H2
μ(dθ)

+ |s|‖∇φ(·, s)‖2H1
μ(dθ)

+ |s|2‖∇φ(·, s)‖2L2,μ(dθ)
≤ cG0, (3.29)

where c is a constant independent of |s|.
Proof. Theorem 2.2 for k = 0, 1 implies the existence of a solution and the esti-
mates of ‖∇φ‖2H2

μ(dθ)
and |s|‖∇φ‖2H1

μ(dθ)
. Moreover, it follows from the result in

[5] that
|s|2‖∇φ‖2L2,μ(dθ)

≤ c|s|2‖g‖2L2,μ(dθ)
,

which completes the proof of (3.29). �
The estimate of ∇φ for general k follows from the similar arguments as those

in Step 1.3 with the aid of Theorem 2.2. Therefore Theorem 1.1 is completely
proved.

We would like to thank Professor T. Iguchi for helpful discussions especially
on the proof of Lemma 2.1.

Appendix: Proof of Lemma 2.1.

Integrating by parts with respect to r, we have

‖u‖2L2,(μ1+μ−1)/2(dθ)
=

∫
dθ

|u|2 rμ1+μ−1 dx =
∫ θ

0

∫ ∞

0

|u|2 rμ1+μ dr dϕ

= − 1
μ1 + μ+ 1

∫ θ

0

∫ ∞

0

2uurr
μ1+μ+1 dr dϕ

≤
∣∣∣∣ 2
μ1 + μ+ 1

∣∣∣∣ ∫
dθ

|u||∇u| rμ1+μ dx

≤
∣∣∣∣ 2
μ1 + μ+ 1

∣∣∣∣ ‖u‖L2,μ1(dθ)‖∇u‖L2,μ(dθ) (A.1)

provided μ1 + μ + 1 �= 0. When μ − μ1 = 1, (A.1) means the desired inequality
(2.6) itself. The case μ − μ1 = 0 is obvious, so that it is sufficient to consider the
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case 0 < μ− μ1 < 1. By Hölder’s inequality we get

‖u‖2L2,μ1(dθ)
=

∫
dθ

|u|2α r2(μ1−μ)+2μα |u|2(1−α) r2μ(1−α) dx

≤
(∫

dθ

|u|2 r
2(μ1−μ)

α +2μ dx
)α (∫

dθ

|u|2 r2μ dx
)1−α

for α ∈ (0, 1). Now we choose α = 2(μ − μ1)/(μ− μ1 + 1). It is obvious that this
α really belongs to (0, 1) for 0 < μ− μ1 < 1. Then we have

‖u‖2L2,μ1(dθ)
≤ ‖u‖2αL2,(μ1+μ−1)/2(dθ)

‖u‖2(1−α)
L2,μ(dθ)

. (A.2)

Substituting (A.1) into (A.2), we get

‖u‖2L2,μ1(dθ)
≤

∣∣∣∣ 2
μ1 + μ+ 1

∣∣∣∣α ‖u‖α
L2,μ1(dθ)

‖∇u‖α
L2,μ(dθ)

‖u‖2(1−α)
L2,μ(dθ)

,

and hence

‖u‖L2,μ1(dθ) ≤
∣∣∣∣ 2
μ1 + μ+ 1

∣∣∣∣ α
2−α

‖∇u‖
α

2−α

L2,μ(dθ)
‖u‖

2(1−α)
2−α

L2,μ(dθ)
.

This inequality coincides with (2.6).
For (2.7) we start with the equality

u2(r, ϕ) = u2(r, 0) +
∫ ϕ

0

∂

∂ϕ′
u2(r, ϕ′) dϕ′, ϕ ∈ (0, θ).

This gives

u2(r, 0) ≤ u2(r, ϕ) + 2
∫ θ

0

|u||uϕ| dϕ.

Multiplying both sides by r2μ1 and integrating with respect to r ∈ (0,∞) and
ϕ ∈ (0, θ) yields

θ‖u‖2L2,μ1(γ)
≤

∫ θ

0

∫ ∞

0

|u|2 r2μ1 dr dϕ+ 2θ
∫ θ

0

∫ ∞

0

|u||uϕ| r2μ1 dr dϕ

≤
∫

dθ

|u|2 r2μ1−1 dx+ 2θ
∫

dθ

|u||∇u| r2μ1 dx.

For the first term in the right-most-hand side we integrate by parts with respect
to r as in the proof of (A.1), so that∫

dθ

|u|2 r2μ1−1 dx ≤
∣∣∣∣ 2
1 + 2μ1

∣∣∣∣ ∫
dθ

|u||∇u| r2μ1 dx.

Therefore, we have

‖u‖2L2,μ1(γ)
≤

(∣∣∣∣ 2
(1 + 2μ1)θ

∣∣∣∣+ 2
)∫

dθ

|u||∇u| r2μ1 dx

≤
(∣∣∣∣ 2
(1 + 2μ1)θ

∣∣∣∣+ 2
)
‖u‖L2,2μ1−μ(dθ)‖∇u‖L2,μ(dθ). (A.3)
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It remains only to make use of (2.6) with μ1 replaced by 2μ1−μ. Then we arrive at

‖u‖L2,2μ1−μ(dθ) ≤
∣∣∣∣ 2
2μ1 + 1

∣∣∣∣2(μ−μ1)

‖∇u‖2(μ−μ1)
L2,μ(dθ)

‖u‖1−2(μ−μ1)
L2,μ(dθ)

. (A.4)

Substituting (A.4) into (A.3) gives (2.7).
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Unilateral Contact Problems
Between an Elastic Plate and a Beam

Alexander Khludnev

Abstract. It is well known that crack problems are formulated in domains
with cuts. Since the beginning of 1990, the crack theory with inequality type
boundary conditions, imposed at the crack faces, has been under active study.
These boundary conditions describe a mutual non-penetration between crack
faces. The models obtained are non-linear. From a mechanical standpoint, the
non-linear models are more preferable as compared to linear ones. It turned
out that contact problems for bodies of different dimensions are also described
in non-smooth domains with inequality type boundary conditions imposed
on sets of small dimensions. In particular, to describe a unilateral contact
between elastic plates and beams we have to consider a cracked domain or a
domain with a removed point. In both cases the main difficulties are related to
non-smoothness of the domain. In the present paper we discuss two problems
describing a unilateral contact between an elastic plate and a beam.

Mathematics Subject Classification (2000). 49J10, 49J40, 74K20.

Keywords. Unilateral contact, non-smooth boundary, non-linear boundary
conditions, elastic plate, elastic beam.

1. Case of inclined beam

In this section we consider a contact problem between an elastic plate and an
inclined elastic beam. Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ.
We assume that Ω corresponds to the middle surface of the plate. A unit external
normal vector to Γ is denoted by q = (q1, q2). The beam is situated at angle
α ∈ (0, π

2 ] with respect to the plate. The plane x10x2 is orthogonal to the plane
y10y2. The beam has both vertical v and tangential u displacements along axes
x2, x1, respectively. The plate has only the vertical displacement w. Let (0, 0) ∈ Ω
be a point of possible contact between the plate and the beam. A middle line of
the beam is denoted by γ. We assume that γ is the interval (0, 1), and the point
x = 0 is a contact one for the beam. Here and in what follows x1 is denoted by x.
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The end point x = 1 of the beam is clamped. The boundary Γ of the plate is also
clamped.

We write

m(v) = v,ijqjqi, tq(v) = v,ijksksjqi + v,ijjqi, (s1, s2) = (−q2, q1),

v,i =
∂v

∂yi
, i = 1, 2, (y1, y2) ∈ Ω.

First of all we recall Green’s formula. To this end, introduce the space

V = {u ∈ H2(Ω) | Δ2u ∈ L2(Ω)}.

Then for u ∈ V we can define m(u) ∈ H−1/2(Γ), tq(u) ∈ H−3/2(Γ), and the
following formula holds ([5], [8])∫

Ω

ψΔ2u =
∫
Ω

ψ,iju,ij + 〈tq(u), ψ〉3/2,Γ − 〈m(u), ψq〉1/2,Γ, ∀ψ ∈ H2(Ω). (1)

Here 〈·, ·〉i/2,Γ means the duality pairing between the space H−i/2(Γ) and its dual
Hi/2(Γ), i = 1, 3.

We start with a variational formulation of the problem. Consider the Sobolev
spaces

H̃1(γ) = {u ∈ H1(γ) | u = 0 at x = 1},
H̃2(γ) = {v ∈ H2(γ) | v = vx = 0 at x = 1}

and introduce the energy functional on the space H = H̃1(γ)× H̃2(γ)×H2
0 (Ω),

Π(u, v, w) =
1
2

∫
γ

u2x −
∫
γ

hu+
1
2

∫
γ

v2xx −
∫
γ

gv +
∫
Ω

w,ijw,ij −
∫
Ω

fw,

where f ∈ L2(Ω), h, g ∈ L2(γ) are given functions. Consider the set of admissible
displacements

K = {(u, v, w) ∈ H | u(0) sinα+ v(0) cosα ≥ w(0)}.
We can find a unique solution of the minimization problem

inf
(u,v,w)∈K

Π(u, v, w). (2)

The solution of this problem satisfies the variational inequality

(u, v, w) ∈ K, (3)∫
γ

{ux(ūx − ux)− h(ū− u)}+
∫
γ

{vxx(v̄xx − vxx)− g(v̄ − v)} (4)

+
∫
Ω

w,ij(w̄,ij − w,ij)−
∫
Ω

f(w̄ − w) ≥ 0, ∀(ū, v̄, w̄) ∈ K.
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It is possible to give a differential formulation of the problem (3), (4). To this
end, choose a closed curve Σ of the class C1,1,Σ ⊂ Ω, such that 0 ∈ Σ. Denote
by ν = (ν1, ν2) a unit normal vector to the curve Σ. In this case the domain Ω is
divided into two subdomains Ω1 and Ω2 with boundaries Σ and Σ∪Γ, respectively.
Assume that ν is oriented towards Ω2. Denote Ω0 = Ω \ {0}. We have to find
functions u(x), v(x), w(y), x ∈ γ, y = (y1, y2) ∈ Ω0, such that

−uxx = h in γ, (5)

vxxxx = g in γ, (6)

Δ2w = f in Ω0, (7)

w = wq = 0 on Γ, (8)

u = v = vx = 0 at x = 1, vxx = 0 at x = 0, (9)

u(0) sinα+ v(0) cosα ≥ w(0), ux(0) cosα = −vxxx(0) sinα, (10)

ux(0)(w(0) − u(0) sinα− v(0) cosα) = 0, ux(0) ≤ 0, (11)

[m(w)] = 0, [tν(w)] =
1

sinα
ux(0)δΣ on Σ. (12)

Here δΣ is a distribution on Σ defined by the formula δΣ(ξ) = ξ(0). It is important
that Σ is an arbitrary curve with the above properties.

Now we derive relations (5)–(12) from the variational inequality (3), (4) and
demonstrate in what sense boundary conditions (12) are fulfilled. First note that
equilibrium equations (5)–(7) follow from (3), (4) in the distributional sense.

We can next take test functions (ū, v̄, w̄) = (u, v, w + ϕ) in (4), ϕ ∈ H2
0 (Ω),

ϕ(0) ≤ 0. This provides the inequality∫
Ω

w,ijϕ,ij −
∫
Ω

fϕ ≥ 0.

Applying the Green’s formula like (1) for the subdomains Ω1,Ω2, and taking into
account (5)–(8), we derive

−〈[m(w)], ϕν 〉1/2,Σ + 〈[tν(w)], ϕ〉3/2,Σ ≥ 0, ∀ϕ ∈ H2
0 (Ω), ϕ(0) ≤ 0

which gives

[m(w)] = 0 in the sense of H−1/2(Σ), (13)

〈[tν(w)], ϕ〉3/2,Σ ≥ 0, ∀ϕ ∈ H2
0 (Ω), ϕ(0) ≤ 0. (14)

From (14) it follows that 〈[tν(w)], ϕ〉3/2,Σ = 0 provided that ϕ(0) = 0. Hence the
value 〈[tν(w)], ϕ〉3/2,Σ depends only on ϕ(0), and consequently

〈[tν(w)], ϕ〉3/2,Σ = kϕ(0), k = const. (15)

The constant k will be found below.
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Substitute next in (4) test functions of the form (ū, v̄, w̄) = (u + ψ, v, w),
where ψ ∈ H̃1(γ), ψ(0) ≥ 0. We obtain∫

γ

uxψx −
∫
γ

hψ ≥ 0.

Whence, by (5), the inequality ux(0) ≤ 0 follows.
Now we substitute in (4) test functions of the form (ū, v̄, w̄) = (u, v + ξ, w),

ξ ∈ H̃2(γ), ξ(0) ≥ 0. It implies∫
γ

vxxξxx −
∫
γ

gξ ≥ 0,

hence, by (6), the inequality

vxxx(0)ξ(0)− vxx(0)ξx(0) ≥ 0

follows which, in its own turn, implies vxxx(0) ≥ 0, vxx(0) = 0.
The next step consists in substituting (ū, v̄, w̄) = (u, v, w) ± (ψ, ξ, ϕ) as test

functions in (4), where (ψ, ξ, ϕ) ∈ H, ψ(0) sinα + ξ(0) cosα = ϕ(0). This substi-
tution provides the identity∫

γ

uxψx −
∫
γ

hψ +
∫
γ

vxxξxx −
∫
γ

gξ +
∫
Ω

w,ijϕ,ij −
∫
Ω

fϕ = 0.

Integrating by parts here, in view of (1), (13), (5)–(8), we derive

〈[tν(w)], ϕ〉3/2,Σ + uxψ|10 − vxxxξ|10 = 0

or, by (15),

kϕ(0)− ux(0)ψ(0) + vxxx(0)ξ(0) = 0. (16)

This relation holds for all (ψ, ξ, ϕ) ∈ H,ψ(0) sinα+ξ(0) cosα = ϕ(0). Take ψ(0) =
0 in (16). In this case ξ(0) cosα = ϕ(0). It gives kϕ(0) + vxxx(0)ξ(0) = 0, hence

k cosα = −vxxx(0). (17)

If we take ξ(0) = 0, i.e., ψ(0) sinα = ϕ(0), the equality (16) implies

k =
1

sinα
ux(0). (18)

Relations (17), (18) prove the second equality (10). Moreover, by (15), we
have

[tν(w)] =
1

sinα
ux(0)δΣ.

Now substitute (ū, v̄, w̄) = (u, v, w)+(ψ, ξ, ϕ) as test functions in (4), (ψ, ξ, ϕ) ∈ K.
It implies the inequality∫

γ

uxψx −
∫
γ

hψ +
∫
γ

vxxξxx −
∫
γ

gξ +
∫
Ω

w,ijϕ,ij −
∫
Ω

fϕ ≥ 0 (19)
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which, by (1), (13), (5)–(8), can be rewritten as

〈[tν(w)], ϕ〉3/2,Σ − ux(0)ψ(0) + vxxx(0)ξ(0) ≥ 0, ∀(ψ, ξ, ϕ) ∈ K. (20)

Inequality (20) together with (13) and (22) below contains full information on
boundary conditions (9)–(12).

Substitutions of (ū, v̄, w̄) = (0, 0, 0), (ū, v̄, w̄) = 2(u, v, w) in (4) yield

kw(0)− ux(0)u(0) + vxxx(0)v(0) = 0. (21)

The constant k can be taken from (18) and substituted in (21). This gives

ux(0)w(0)− sinαux(0)u(0) + sinαvxxx(0)v(0) = 0.

Meanwhile, we have ux(0) cosα = −vxxx(0) sinα, whence,

ux(0)(w(0) − u(0) sinα− v(0) cosα) = 0 (22)

which coincides with the first relation of (11). To summarize, we see that all
relations (5)–(12) are derived from (3), (4).

In fact, we can give one more differential formulation of the problem (3), (4)
equivalent to (5)–(12). In this case instead of Ω0 the smooth domain Ω is used.
Namely, we have to find functions u(x), v(x), w(y), x ∈ γ, y = (y1, y2) ∈ Ω, such
that

−uxx = h in γ, (23)

vxxxx = g in γ, (24)

Δ2w = f +
1

sinα
ux(0)δ0 in Ω, (25)

w = wq = 0 on Γ, (26)

u = v = vx = 0 at x = 1, vxx = 0 at x = 0, (27)

u(0) sinα+ v(0) cosα ≥ w(0), ux(0) cosα = −vxxx(0) sinα, (28)

ux(0)(w(0)− u(0) sinα− v(0) cosα) = 0, ux(0) ≤ 0, (29)

where δ0 is the Dirac measure, ie., δ0(ξ) = ξ(0), ξ ∈ C∞0 (Ω).
To derive (25) we can take ψ(0) sinα+ξ(0) cosα = ϕ(0) in (19), (ψ, ξ, ϕ) ∈ H.

This implies∫
γ

uxψx −
∫
γ

hψ +
∫
γ

vxxξxx −
∫
γ

gξ +
∫
Ω

w,ijϕ,ij −
∫
Ω

fϕ = 0. (30)

Integrating by parts in (30) we obtain∫
Ω

w,ijϕ,ij −
∫
Ω

fϕ− ux(0)ψ(0) + vxxx(0)ξ(0) = 0. (31)

Since

ψ(0) =
ϕ(0)− ξ(0) cosα

sinα
, vxxx(0) = −

ux(0) cosα
sinα

,
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we arrive at the relation∫
Ω

w,ijϕ,ij −
∫
Ω

fϕ =
ux(0)ϕ(0)
sinα

, ∀ϕ ∈ C∞0 (Ω)

which means a fulfillment of (25).
On the other hand, variational inequality (3)–(4) can be derived from (23)–

(29) as well as from (5)–(12).
In fact, the model (5)–(12) should contain a number of parameters. In what

follows we consider a passage to the limit when a rigidity of a contacting body
goes to infinity. To specify a case, assume that a rigidity of the inclined beam is
increasing. In this case instead of (23), (24) the following equilibrium equations
are assumed to be fulfilled:

− 1
λ
uxx = h,

1
λ
vxxxx = g in γ

with a positive parameter λ.We are interesting in a passage to the limit as λ→ 0.
First, consider the variational formulation of this problem. We have to find

functions uλ, vλ, wλ such that

(uλ, vλ, wλ) ∈ K, (32)∫
γ

{ 1
λ
uλ

x(ūx − uλ
x)− h(ū− uλ)

}
+

∫
γ

{ 1
λ
vλ

xx(v̄xx − vλ
xx)− g(v̄ − vλ)

}
+

∫
Ω

wλ
,ij(w̄,ij − wλ

,ij)−
∫
Ω

f(w̄ − wλ) ≥ 0, ∀(ū, v̄, w̄) ∈ K. (33)

Taking in (33) test functions of the form ū,v̄,w̄)= (0,0,0),(ū,v̄,w̄)=2(uλ,vλ,wλ)
we derive

1
λ

∫
γ

(uλ
x)
2 −

∫
γ

huλ +
1
λ

∫
γ

(vλ
xx)

2 −
∫
γ

gvλ +
∫
Ω

wλ
,ijw

λ
,ij −

∫
Ω

fwλ = 0. (34)

Hence the following estimate holds:
1
λ
‖uλ‖2

H̃1(γ)
+
1
λ
‖vλ‖2

H̃2(γ)
+ ‖wλ‖2H2

0 (Ω)
≤ c

with a constant c independent of λ. We can assume that as λ → 0 the following
convergence takes place:

wλ → w0 weakly in H2
0 (Ω), (35)

vλ → 0 strongly in H̃2(γ), (36)

uλ → 0 strongly in H̃1(γ). (37)

Note that the limit function w0 satisfies the condition

w0(0) ≤ 0.
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Let us take test functions of the form (0, 0, w̄) in (33), w̄ ∈ H2
0 (Ω), w̄(0) ≤ 0. We

obtain ∫
Ω

wλ
,ij(w̄,ij − wλ

,ij)−
∫
Ω

f(w̄ − wλ)

≥ 1
λ

∫
γ

(uλ
x)
2 −

∫
γ

huλ +
1
λ

∫
γ

(vλ
xx)

2 −
∫
γ

gvλ.

Passing to the lower limit here we derive a variational inequality for finding the
function w0. Namely,

w0 ∈ H2
0 (Ω), w

0(0) ≤ 0, (38)∫
Ω

w0,ij(w̄,ij − w0,ij)−
∫
Ω

f(w̄ − w0) ≥ 0, ∀w̄ ∈ H2
0 (Ω), w̄(0) ≤ 0. (39)

The problem (38), (39) describes a contact of the plate with a rigid punch at the
point y = 0.

It is possible to improve (35)–(37). Namely, the following convergence takes
place

wλ → w0 strongly in H2
0 (Ω),

1√
λ
vλ → 0 strongly in H̃2(γ),

1√
λ
uλ → 0 strongly in H̃1(γ).

2. Case of horizontal beam

In this section we analyze the beam which is parallel with respect to the plate.
In this case the beam can be seen as an elastic thin obstacle for the plate. As
for obstacle problems for the biharmonic operator we refer the reader to [1], [2],
[3], [6]. Thin rigid obstacles for plates were analyzed in [7]. To avoid a mutual
penetration between the plate and the beam a restriction of the Signorini type is
imposed (see the Signorini problem in [4]).

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ such that σ =
(0, 1) × {0} ⊂ Ω. Consider the Sobolev spaces H2

0 (Ω), H
2
0 (σ) and the energy

functional on H2
0 (Ω)×H2

0 (σ),

Π(w, u) =
1
2

∫
Ω

w,ijw,ij −
∫
Ω

fw +
1
2

∫
σ

au2xx −
∫
σ

gu, (40)

where w,i = ∂w
∂xi
, i = 1, 2, (x1, x2) ∈ Ω;ux = du

dx , x = x1; f ∈ L2(Ω), g ∈ L2(σ);
and a ∈ L∞(σ) are given functions, and a ≥ c0 > 0, c0 = const. We identify the
functions given only on σ with functions of one variable x.
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Consider the set of admissible displacements

P = {(w, u) ∈ H2
0 (Ω)×H2

0 (σ) | w − u ≥ 0 on σ}
and the minimization problem

inf
(w,u)∈P

Π(w, u).

It is clear that this problem has a solution satisfying the variational inequality

(w, u) ∈ P, (41)∫
Ω

w,ij(w̄,ij − w,ij)−
∫
Ω

f(w̄ − w) (42)

+
∫
σ

auxx(ūxx − uxx)−
∫
σ

g(ū− u) ≥ 0, ∀(w̄, ū) ∈ P.

The functions w(x1, x2) and u(x) describe the vertical displacements of the
plate and the beam. The domain Ω corresponds to the middle surface of the plate
and σ corresponds to the beam.

Extend the curve σ up to a closed curve Σ of the class C1,1 such that Σ ⊂ Ω. In
this case the domain Ω is divided into two subdomains Ω1 and Ω2 with boundaries
Σ and Σ∪Γ, respectively. Denote by ν = (ν1, ν2) a unit normal vector to the curve
Σ directed to the domain Ω2.

We can give a differential formulation of the problem (41), (42). The normal
vector to Γ is denoted by n = (n1, n2). Write Ωσ = Ω \ σ̄. We have to find the
functions w, u, on Ωσ and σ such that

Δ2w = f in Ωσ, (43)

w = wn = 0 on Γ, (44)

w − u ≥ 0, [w] = [wν ] = 0, [m(w)] = 0 on σ, (45)

[tν(w)] ≥ 0, [tν(w)](w − u) = 0 on σ, (46)

[tν(w)] = −(auxx)xx + g on σ, (47)

u = ux = 0 on ∂σ. (48)

It is possible to describe in what sense boundary conditions (45)–(47) are fulfilled.
Problem formulations (43)–(48) and (41), (42) are equivalent.

Moreover, one more formulation of the problem (41), (42) (or the problem
(43)–(48)), the so-called mixed formulation, can be provided. Letm = {mij}, i, j =
1, 2. Write ∇∇m = mij,ij and define boundary operators on Σ,

mν = mijνjνi, T
ν(m) = mij,ksksjνi +mij,jνi.

If ϕ is a scalar function defined in Ωσ, we put

∇∇ϕ = {ϕ,ij}, i, j = 1, 2.
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Consider additional functions m = {mij}, mij = w,ij , i, j = 1, 2, M = auxx −G,
where G is the solution of the problem

Gxx = g on σ, G = 0 on ∂σ.

We can rewrite the problem (43)–(48) in the following equivalent form:

∇∇m = f in Ωσ, (49)

m = ∇∇w in Ωσ, (50)

w = wn = 0 on Γ, (51)

w − u ≥ 0, [w] = [wν ] = 0, [mν ] = 0 on σ, (52)

[T ν(m)] ≥ 0, [T ν(m)](w − u) = 0 on σ, (53)

[T ν(m)] = −Mxx on σ, (54)

(M +G)a−1 = uxx on σ, (55)

u = ux = 0 on ∂σ. (56)

Now we are able to give a mixed formulation of the problem. Introduce the
so-called set of admissible moments

L = {(m̄, M̄) | m̄ = {m̄ij}, i, j = 1, 2; m̄,∇∇m̄ ∈ L2(Ωσ), M̄ ∈ L2(σ);
[m̄ν ] = 0, [T ν(m̄)] ≥ 0, [T ν(m̄)] = −M̄xx on σ}.

Mixed formulation of the problem (41), (42) is as follows. Find functions
w,m = {mij}, i, j = 1, 2,M, such that

w ∈ L2(Ωσ), (m,M) ∈ L, (57)

∇∇m = f in Ωσ, (58)∫
Ωσ

m(m̄−m)−
∫
Ωσ

w(∇∇m̄−∇∇m) (59)

+
∫
σ

a−1(M +G)(M̄ −M) ≥ 0, ∀(m̄, M̄) ∈ L.

Problem formulations (43)–(48) and (57)–(59) are also equivalent. This means
that we can derive (57)–(59) from (43)–(48) and conversely, relations (43)–(48) fol-
low from (57)–(59). Comparing formulations (57)–(59) and (41)–(42) we see that
the set P contains a restriction on displacements u,w. All the other boundary
conditions (45)–(47) follow from (41)–(42). On the other hand, the problem for-
mulation (57)–(59) contains a restriction on the moments. Meanwhile, boundary
conditions (44)–(48) can be recovered from (57)–(59). The function u can be re-
covered from the problem

(M +G)xx = (auxx)xx on σ,
u = ux = 0 on ∂σ.
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On Lighthill’s Acoustic Analogy
for Low Mach Number Flows

William Layton and Antońın Novotný

Dedicated to A.V. Kazhikov

Abstract. Most predictions of the noise generated by a turbulent flow are
done using a model due to Lighthill from the 1950’s (the Lighthill analogy).
In a large region of a fluid at rest surrounding a small region containing a
small Mach number, high Reynolds number turbulent flow, this is

Step 1: Solve the incompressible Navier-Stokes equations with the constant
density �∞ for the velocity u.

Step 2: Compute div(div(ρ∞u ⊗ u)) and solve the inhomogeneous acoustic
equation in both regions for the acoustic density fluctuations R:

∂2
t R− ω�R = div(div(ρ∞u⊗ u)),

where
√

ω is the speed of sound.

Current understanding of the derivation of the Lighthill analogy seems to
be a variation on Lighthill’s original reasoning and has resisted elaboration
by the tools of both formal asymptotics and rigorous mathematics. In this
report we give a rigorous derivation of Lighthill’s acoustic analogy (including
the sound source div(div(ρ∞u⊗ u)) being derived from an incompressible
flow simulation. from the compressible Navier-Stokes and energy equation as
Ma → 0.
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1. Introduction

1.1. The Lighthill equation and Lighthill’s acoustic analogy

The mathematical simulation of aeroacoustic sound presents many technical prob-
lems related to modeling of its generation and propagation. Its importance for
diverse industrial applications is without any doubt in view of the demands of
user comfort and environmental regulations. A few examples where aeroacoustic
noise is a critical effect include the sounds produced by jet engines of an airliner,
the noise produced in high speed trains and cars, wind noise around buildings,
ventilator noise in various household appliances, . . ..

The departure point of most methods of acoustic simulations (at least those
called hybrid methods) is the Lighthill theory [36], [37]. The starting point in
the Lighthill approach in the simplest case is the system of Navier-Stokes-Poisson
equations describing motion of a viscous compressible gas in isentropic regime, for
unknown functions density � and velocity u. They read

∂t�+ div�u = 0,

∂t(�u) + div(�u⊗ u) +∇xp = �f + divS,
(1.1)

where p = p(�) is the pressure and S = S(∇(u)) is the viscous stress tensor; p and
S are given functions characterizing the gas and will be specified later. In this case
we can rewrite the system as

∂tR+ divQ = σ ≡ ∂tΣ,
∂tQ+ ω∇xR = F− divT

(1.2)

where we have denoted
Q = �u, R = �− �∞ (1.3)

as the momentum and the density fluctuations from the basic density distribution
�∞ of the background flow, and where we have set

Σ = −�∞, ω = p′(�∞) > 0, F = �f ,

T = �u⊗ u+
(
p− ω(�− �∞)

)
I− S.

(1.4)

Taking the time derivative of the first equation in (1.2) and the divergence
of the second one, we obtain

∂2tR − ωΔR = ∂tσ − divF+ div(div(T). (1.5)

Lighthill reasoned that, because of the large differences in energy, there is
very little feedback from acoustics to the flow. Thus, according to Lighthill’s in-
terpretation, equation (1.5) (or equivalently the system of equations (1.2)) is a
non-homogenous wave equation describing the acoustic waves (fluctuations of den-
sity), where the terms at the right-hand side correspond to the monopolar (∂tσ),
bipolar (−divF) and quadrupolar (div(div(T)) acoustic sources respectively, and
are considered as known and calculable from the background fluid flow field. In
the sequel, we shall deal rather with the formulation (1.2) and will refer to it as
to the Lighthill equation or to the Lighthill acoustic analogy.
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The physical sense of the terms at the right-hand side of equation (1.5) is the
following.

The first term ∂tσ represents the acoustic sources created by the changes of
control volumes due to changes of pressure or displacements of a rigid surface:
this source can be schematically described via a particle whose diameter changes
(pulsates) creating acoustic waves (density perturbations). It may be interpreted
as well as an instationary injection of a fluid mass σ per unit volume. The acoustic
noise of a gun shot is a typical example.

The second term divF describes the acoustic sources due to external forces
(usually resulting from the action of a solid surface on the fluid). These sources
are responsible for most of the acoustic noise in the machines and ventilators.

The third term div(div(T) is the acoustic source due to the turbulence and
viscous effects in the background fluid flow which supports the density oscillations
(acoustic waves). The noise of steady or non-steady jets in aero-acoustics is the
typical example.

The tensor T is called the Lighthill tensor. It is composed from three tensors
whose physical interpretation is the following: the first term is the Reynolds tensor
with components �uiuj describing the (nonlinear) turbulence effects, the term
(p−ω(�−�∞))I expresses the entropy fluctuations and the third one is the viscous
stress tensor S.

The method for predicting noise using Lighthill’s equation is usually referred
to as a hybrid method since noise generation and propagation are treated sepa-
rately. The first step consists in using data provided by numerical simulations to
form the sound sources. The second step then consists in solving the wave equation
forced by these source terms to determine the sound radiation. The main advan-
tage of this approach is that most of the conventional flow simulations can be used
in the first step.

In its simplest form of a large region of a fluid at rest surrounding a small
region containing a small Mach number, high Reynolds number turbulent flow,
the, so-called, hybrid method based upon Lighthill’s theory is, e.g., Wagner, Huttl
and Sagaut [46],

Step 1: Solve the incompressible Navier-Stokes equations for the velocity u.
Step 2: Compute div(div(ρ∞u⊗ u)) (possibly plus more terms that are often

dropped) and solve the inhomogeneous acoustic equation (1.5) in both
regions for the acoustic density fluctuations R.

In practical numerical simulations, the Lighthill tensor is calculated from the ve-
locity and density fields obtained by using various direct numerical methods and
solvers for compressible Navier-Stokes equations. Then the acoustic effects are
evaluated from the Lighthill equation by using diverse direct numerical methods
for solving the non-homogenous wave equations (see, e.g., Colonius [8], Mitchell
et al. [35], Freud et al. [23], among others). For flows in the low Mach number
regimes the direct simulations are often costly, unstable, inefficient and unreliable,
essentially due to the presence of rapidly oscillating acoustic waves (with periods



250 W. Layton and A. Novotný

proportional to the Mach number) in the equations themselves. In the low Mach
number regimes the acoustic analogies such as the Lighthill equation, in combina-
tion with the incompressible flow solvers, give more reliable results, see [23].

Indeed, if the Mach number is small, the background flow can be consid-
ered as incompressible, implying negligible entropy fluctuations for non-heated or
isentropic flows [36], Bogey et al. [4], Freud et al. [23]; thus the Lighthill tensor
reduces to

T = �u⊗ u− S, where �∞ = const., divu = 0. (1.6)

Moreover, due to the latter condition, for newtonian fluids, div(divS) = 0, and the
only relevant part of the Lighthill tensor in the Lighthill equation is the Reynolds
tensor �u⊗ u, cf. Lighthill [36].

The comparison of numerical simulations using compressible solvers on one
hand and incompressible solvers on the other hand at low Mach number regimes
show no noticeable difference in the evaluated acoustic fields and a good agreement
with experiments up to Ma = 0.6, see Boersma [3] and references quoted there.

For a complete review of numerical methods, evaluation and approximation
of various sound sources in the Lighthill equation from the point of view of math-
ematical modeling and acoustic simulations see Freud et al. [23].

The Lighthill acoustic analogy as described above involves the interaction of
two motions of different time scales: the slow variables describe the background
fluid flow governed by the Navier-Stokes equations; the fast variables describe the
sound propagation and are governed by a non-homogenous wave equation.

The main goal of the present paper is to establish a link between the recent
theory of low Mach number limits in various models describing viscous compress-
ible fluids (which started with the pioneering paper of Lions, Masmoudi [30]) on
one hand, and Lighthill’s acoustic analogy ([36], [37]) as well as underlying hybrid
methods used by numerical analysts in acoustics (see, e.g., Boersma [3] or Feud
et al. [23]). The point of view presented in this paper should be compared and
combined with other interpretations and results such as [22] or [18].

We shall prove rigorously, that the Lighthill equation (1.2) with the right-
hand side calculated from incompressible Navier-Stokes equations can be obtained
as a particular low Mach number limit of the Navier-Stokes-Poisson system de-
scribing viscous compressible gas in isentropic regime, more precisely, as a su-
perposition of slow variables being governed by the incompressible Navier-Stokes
equations and fast time variables solving a homogenous wave equation.

This result is obtained in the context of weak solutions, on an arbitrary large
time interval and for the ill prepared initial data. It is formulated in Theorem 2.1.

We also prove, under certain assumptions on initial data, that the right hand
side of the Lighthill equation is independent of time and can be calculated from
the steady incompressible Navier-Stokes equations. This result is formulated in
Theorem 2.2.

All these results can be reformulated and proved for the complete Navier-
Stokes-Fourier system describing the motion of viscous heat conducting gasses
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modulo overcoming additional technical difficulties in the underlying mathematical
analysis.

One may anticipate that the future development of mathematical fluid me-
chanics as well as capabilities of the related numerical simulations will depend
on understanding not only the asymptotic models (the Lighthill equation being
an example) but the way they can be rigorously derived. We therefore believe
that the theorems itself are as important as the methods leading to their proofs.
These methods have their mathematical background in physically motivated scal-
ing analysis of the Navier-Stokes-Poisson system; the main challenge and difficulty
consists in the fact that we deal with interaction of fluid motions characterized by
two different time scales.

2. Original and target problems, main results

2.1. Weak formulation of the Lighthill equations

We shall investigate the Lighthill equation (1.2) with σ = ∂tΣ, F and T a given
scalar-, resp. vector- resp. tensor-valued functions on a sufficiently smooth (at least
Lipschitz) bounded domain Ω on an arbitrary large time interval (0, T ), T > 0.

Hereafter, we explain what we mean under the weak solution of system (1.2):

Definition 1.1 Let T, F and Σ belong to L1(0, T ;L1(Ω)). We say that a couple
(R,Q) ∈ L1(0, T ;L1(Ω)) × L1(0, T ;L1(Ω;R3)) represents a weak solution of the
Lighthill equation (1.2) on (0, T )×Ω if there exists a couple (R(1)0 ,Q0) ∈ L1(Ω)×
L1(Ω;R3) (of initial conditions) such that∫ T

0

∫
Ω

(
(R − Σ)∂tϕ+Q · ∇xϕ

)
dxdt

= −
∫
Ω

R
(1)
0 ϕ(0)dx, ϕ ∈ C∞c ([0, T )× Ω)),

(2.1)

∫ T

0

∫
Ω

(
Q∂tϕ+ ωRdivϕ

)
dxdt

= −
∫ T

0

∫
Ω

(
F · ϕ+ T : ∇xϕ

)
dxdt−

∫
Ω

Q0 · ϕ(0, ·)dx,
(2.2)

ϕ ∈ C∞c ([0, T )× Ω);R3), ϕ · n = 0 on [0, T )× ∂Ω.

If (R,Q) is a sufficiently smooth weak solution to the Lighthill equation in a
sufficiently smooth domain Ω with sufficiently smooth external data F, Σ and T,
(Tn)× n = 0 at ∂Ω, corresponding to initial conditions (R(1)0 ,Q0) then it verifies

∂tR+ divQ = ∂tΣ in (0, T )× Ω,

∂tQ+ ω∇xR = F− divT in (0, T )× Ω,

Q · n = 0 at (0, T )× ∂Ω,
(2.3)
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and
R(0, x) = R(1)0 (x)− Σ(0, x), x ∈ Ω (2.4)

in the classical sense.

2.2. The Navier-Stokes-Poisson system with small Mach number

The time evolution of the density �, the velocity u of a viscous, compressible fluid
in isentropic and low Mach number regime characterized by the Mach number,
Ma = ε, is governed by the Navier-Stokes-Poisson system:

∂t�+ div(�u) = 0, (2.5)

∂t(�u) + div(�u⊗ u) +
1
ε2
∇xp(�) = div S+ �f . (2.6)

The other non-dimensional parameters in this system, such as Strouhal number,
Reynolds number and eventually Froude number, have been normalized to 1 (see,
for instance, Klein [25] or the survey paper by Klein et al. [26] for more details
about the dimensional analysis of fluid dynamics equations).

Once completed with the boundary conditions

u · n = 0, (Sn)× n = 0 on the boundary ∂Ω, (2.7)

the conservation of total energy in Ω,

d
dt

∫
Ω

(ε2
2
�|u|2 +H(�)

)
dx+ ε2

∫ τ

0

∫
Ω

S : ∇xudxdt = ε2
∫
Ω

�fdx, (2.8)

follows provided both � > 0 and u are “sufficiently” smooth.
In (2.5–2.8),

S = S(∇xu) = μ
(
∇xu+∇⊥x u− 2

3
divu I

)
+ ζdivuI, (2.9)

is the viscous stress tensor with shear (μ) and bulk (ζ) constant viscosities which
satisfy

μ > 0, ζ ≥ 0 (2.10)
and the so-called potential energy H is given by

H(�) = �P (�) where P (�) = P (1) +
∫ �

1

p(s)
s2

ds. (2.11)

Here and hereafter, the symbol 12 (∇xu+∇⊥x u) denotes the symmetrized gradient.
Since the entropy is supposed to be constant through the flow, the pressure takes
the form

p(�) = �γ , γ > 1, yielding H(�) =
1

γ − 1
�γ . (2.12)

The physical values of the adiabatic constant γ are given by formula γ = R+cv

cv
,

where cv is the specific heat at constant volume and R is the universal gas con-
stant; physically reasonable values of γ’s are in the range (1, 53 ], γ = 5

3 being
the adiabatic constant of the monoatomic gases. We notice that p(�) satisfies the
standard thermodynamics stability condition asserting its strict monotonicity (cf.
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Bechtel et al. [2]) and that function H in (2.11) is strictly convex on (0,∞). Later
on, we shall suppose

γ >
3
2

(2.13)

which is the condition required both by the existence theory and low Mach number
limit applied in this paper. Notice that at least adiabatic constants of monoatomic
gases do enter into this range.

We shall investigate the density fluctuations around a positive constant den-
sity �. Conformably to this fact, the Navier-Stokes-Poisson system (2.5–2.6) will
be supplemented with initial conditions

�(0, ·) = �0, (�u)(0, ·) = �0u0, (2.14)

where the initial data

�0 = �ε,0 = �+ ε�
(1)
ε,0, u0 = uε,0, (2.15)

are chosen so that

� =
1
|Ω|

∫
Ω

�ε,0 dx = const. > 0, (2.16)

with the quantities �(1)ε,0, uε,0, bounded uniformly with respect to ε→ 0.
Here and in what follows, we should always keep in mind that the absence

of density in the dependence of the transport coefficients μ and ζ is required by
the existence theory and does not play any significant role in the present paper.
We also should keep in mind that a more general pressure law than (2.12) could
be taken into account, provided p(�) ∼ �γ for large �’s and provided the function
H in (2.11) remains strictly convex on (0,∞).

Definition 1.2 We shall say that a couple {�,u} is a bounded energy weak solution
of the Navier-Stokes-Poisson system (2.5–2.12) on a time interval (0, T ) if the
following conditions are satisfied:

• the density � is a non-negative function, � ∈ L∞(0, T ;Lγ(Ω)), the velocity
field u belongs to the space L2(0, T ;W 1,2(Ω;R3)),

u · n = 0 on (0, T )× ∂Ω
and the integral identity∫ T

0

∫
Ω

(
�B(�)∂tϕ+ �B(�)u · ∇xϕ− b(�) divu ϕ

)
dx dt

= −
∫
Ω

�0B(�0)ϕ(0, ·) dx
(2.17)

holds for any test function ϕ ∈ D([0, T )× Ω)), and any b such that

b ∈ L∞ ∩ C[0,∞), B(�) = B(1) +
∫ �

1

b(z)
z2

dz; (2.18)
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• the momentum �u belongs to L∞(0, T ;L
2γ

γ+1 (Ω;R3)), and the integral identity∫ T

0

∫
Ω

(
�u · ∂tϕ+ (�u⊗ u) : ∇xϕ+

1
ε2
p(�, ϑ) divϕ

)
dxdt

=
∫ T

0

∫
Ω

(
S : ∇xϕ− �f · ϕ

)
dx dt−

∫
Ω

�0u0 · ϕ(0, ·) dx
(2.19)

is satisfied for any ϕ ∈ C∞c ([0, T )× Ω;R3), ϕ · n = 0 on (0, T )× ∂Ω;
• the total energy balance[ ∫

Ω

(ε2
2
�|u|2 +H(�)

)
dx

]
(τ) + ε2

∫ τ

0

∫
Ω

S : ∇xudxdt

≤ ε2
∫ τ

0

∫
Ω

�f · udxdt+
∫
Ω

(ε2
2
�0|u0|2 +H(�0)

)
dx

(2.20)

holds for a.a. τ ∈ (0, T ).
It follows from (2.17) and (2.19) that (�, �u) admit pointwise time values,

namely � ∈ Cweak([0, T ];Lγ(Ω) and �u ∈ Cweak([0, T ];L
2γ

γ+1 (Ω)), meaning among
other things the satisfaction of initial conditions �0, �0u0 in the weak sense.

Note that (2.17) is the so-called renormalized formulation of a continuity
equation introduced by DiPerna and Lions [13].

The existence of variational solutions in the sense of Definition 1.2 was estab-
lished in Lions [29] for γ ≥ 9/5 and in [19] for γ > 3/2 for Ω ⊂ R3 a bounded spatial
domain, where the velocity field was supposed to vanish on the boundary. The de-
tails about necessary modifications to accommodate the slip boundary conditions
(2.7) can be found in [18]. More recent information about the existence results for
the Navier-Stokes-Poisson system or for the Navier-Stokes-Fourier system can be
found in the monographs [14], [39], [18].

2.3. Incompressible Navier-Stokes equations, non-steady case

In order to conclude this part, we introduce a standard concept of weak solutions
to the system of Navier-Stokes equations describing incompressible Newtoninan
fluid introduced more than 70 years ago by Leray [28].

In the classical framework, one is searching for a couple (Π,U) representing
pressure and velocity fields, Π a scalar-valued and U a vector-valued functions of
time t ∈ [0, T ) and space x ∈ Ω, which satisfies

�∂tU+ �div(U⊗U) +∇Π = divS+ �f ,
divU = 0

(2.21)

endowed with the initial conditions

U(0, x) = U0(x) (2.22)

and boundary conditions (2.7).
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Multiplying the first (momentum) equation in (2.21) scalarly by U, and in-
tegrating over Ω, yields, for a classical solution (Π,U), the energy identity, which
reads

1
2
�
d
dt

∫
Ω

|U|2dx+
∫
Ω

S : ∇xUdx = �
∫
Ω

f ·Udx. (2.23)

In (2.22) we have denoted by � > 0 the constant density of the fluid and by S the
same viscous stress tensor as that one defined in (2.9–2.10); obviously, by virtue
of the second (continuity) equation in (2.21), it simplifies to

S = μ
(
∇xU+∇⊥x U

)
. (2.24)

Definition 1.3

(i) We shall say that function U is a weak solution of Navier-Stokes system
(2.21), supplemented with the boundary conditions (2.7) and the initial con-
ditions (2.22) if the following conditions are satisfied:

• U ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3)),
divU = 0 a.a. on (0, T )× Ω, U · n|(0,T )×∂Ω = 0;

• the integral identity∫ T

0

∫
Ω

(
�U · ∂tϕ+ �(U⊗U) : ∇xϕ

)
dxdt

= −
∫ T

0

∫
Ω

�f · ϕdxdt

+
∫ T

0

∫
Ω

μ(∇xU+∇⊥x U) : ∇xϕ dx dt−
∫
Ω

�U0 · ϕ(0, ·) dx

(2.25)

holds for any test function

ϕ ∈ C∞c ([0, T )× Ω;R3), div ϕ = 0, ϕ · n|[0,T )×∂Ω = 0. (2.26)

(ii) We say that U is a weak solution with bounded energy if U is a weak solution
which satisfies the energy inequality[1

2
�

∫
Ω

|U|2dx
]
(τ) +

∫ τ

0

∫
Ω

S : ∇xUdxdt

≤ �
∫ τ

0

∫
Ω

f ·Udxdt +A
(2.27)

for a.a. τ ∈ (0, T ), where A is a positive constant depending only on initial
data.

(iii) We shall say that function U is a Leray-Hopf weak solution of Navier-Stokes
system (2.21), supplemented with the boundary conditions (2.7) and the initial
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conditions (2.22) if it is a weak solution with bounded energy and the constant
A in (2.27) has the form

A =
1
2
�

∫
Ω

|U0|2dx. (2.28)

2.4. Incompressible Navier-Stokes equations, steady case

With the notation of the previous section the steady Navier-Stokes equations read

�div(U⊗U) +∇xΠ = divS+ �f ,
divU = 0.

(2.29)

They are completed with slip boundary condition (2.7). Weak solutions to this
system are defined as follows.

Definition 1.4 We say that a vector field U is a weak solution of the problem (2.29),
(2.7) if

U ∈ W 1,2(Ω;R3), U · n|∂Ω = 0, divU = 0 (2.30)
and

∀ϕ ∈ C∞c (Ω;R3) ϕ · n|∂Ω = 0,∫
Ω

(
�U⊗U)− μ(∇U +∇⊥U)

)
: ∇xϕdx = −

∫
Ω

�f · ϕdx.
(2.31)

In the context of steady Navier-Stokes equations, we shall investigate the
asymptotic limits to the Navier-Stokes-Poisson system (2.5–2.7) emanating from
initial data (2.15), (2.16) which are, in addition, well prepared, meaning

�
(1)
ε,0 → 0 a.e. in L∞(Ω),

�ε,0|uε,0|2 → �|u0|2 weakly in L1(Ω).
(2.32)

2.5. The main results – asymptotic limits

For the formulation of the main theorem and also throughout the proofs we shall
need the Helmholtz projection on the divergence free vector fields, H, and its
orthogonal complement, projection on gradients, H⊥.

For v ∈ Lp(Ω;R3), 1 < p <∞, where Ω is a Lipschitz domain,

H⊥(v) = ∇ψ, H(v) = v −∇ψ, (2.33)

where ψ ∈ W 1,p(Ω) := {z ∈ W 1,p(Ω) |
∫
Ω
zdx = 0} is a (unique) solution of the

weak Neumann problem

∀η ∈ C∞c (Ω),
∫
Ω

∇ψ · ∇ηdx =
∫
Ω

v · ∇ηdx. (2.34)

Thus
H⊥ : Lp(Ω;R3)→ Gp(Ω) := {∇z | z ∈ W 1,p(Ω)},

H : Lp(Ω;R3)→ L̇p(Ω) := {z ∈ Lp(Ω;R3) |divz = 0}
(2.35)
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are continuous linear operators from Lp(Ω;R3) to Lp(Ω;R3), where the spaces at
the right-hand side are closed subspaces of Lp(Ω;R3). In particular,

L2(Ω;R3) = H(L2(Ω))⊕H⊥(L2(Ω)) (2.36)

where the direct sum is orthogonal.
Due to the elliptic regularity applied to (2.34), H and H⊥ are continuous

linear operators from W k,p(Ω;R3) to W k,p(Ω;R3), k ∈ N .
Having introduced all the necessary material we are ready to state the main

result concerning the asymptotic limit of solutions to the Navier-Poisson-Stokes
system for low values of the Mach number.

Theorem 2.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1). Let
{�ε,uε}ε>0 be a family of bounded energy weak solutions to the Navier-Stokes-
Poisson system in the sense of Definition 1.2, with p, H determined in terms of
�ε by (2.12–2.13) and S defined in (2.9–2.10). Furthermore, assume the solutions
emanate from the initial state

�ε,0 = �+ ε�
(1)
ε,0, uε,0, with

∫
Ω
�
(1)
ε,0dx = 0, � = const. > 0, (2.37)

where
�
(1)
ε,0 → �

(1)
0 , uε,0 → u0, weakly-(*) in L∞(Ω) (2.38)

and from the right-hand side

f ∈ L∞(0, T ;L2(Ω;R3)). (2.39)

Let us introduce fast time variables

rε(t, x) = �(εt, x), vε(t, x) = u(εt, x),

r(1)ε (t, x) =
rε(t, x)− �

ε
, qε(t, x) = (rεvε)(t, x).

(2.40)

Then the following holds true:

• �ε → � in C([0, T ];Lr(Ω)) ∩ L∞(0, T ;Lγ(Ω)), r ∈ [1, γ) (2.41)

and, passing to a subsequence if necessary,

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)), (2.42)

∀T ∈ (0,∞), r(1)ε → r(1) in Cweak([0, T ];Lsγ (Ω)),

sγ = min{γ, 2},
(2.43)

∀T ∈ (0,∞), qε → q weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω;R3)). (2.44)

• Vector field U is a weak solution with bounded energy (in the sense of Defi-
nition 1.3) to the Navier-Stokes equations (2.21), (2.7) with initial conditions

U0 = H(u0), (2.45)

where H is the Helmholtz projection defined in (2.33–2.35).
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• If moreover

H(u0) ∈ W
2
5 , 5

4 (Ω;R3) (Sobolev-Slobodeckii space), (2.46)

then there exists a unique function

Π ∈ L 5
4 (0, T ;W 1,54 (Ω)) (2.47)

such that the couple (Π,U) satisfies the integral identity∫ T

0

∫
Ω

�U · ∂tϕ dx dt

+
∫ T

0

∫
Ω

(
�(U⊗U)− μ(∇xU+∇T

x U)
)
: ∇xϕ dx dt

+
∫ T

0

∫
Ω

Πdivϕ dx dt

= −
∫ T

0

∫
Ω

�f · ϕ dx dt−
∫
Ω

�U0 · ϕ(0, ·) dx

(2.48)

with test functions

ϕ ∈ C∞c ([0, T )× Ω;R3), ϕ · n|(0,T )×∂Ω = 0. (2.49)

• The couple (R,Q), where

R = r(1) −
(
1/[p′(�)]

)
Π, Q = q− �U (2.50)

satisfies equations (2.1–2.2) with

ω = p′(�), F = �f , T = �U⊗U− μ(∇xU+∇⊥x U), Σ = − 1
ωΠ (2.51)

and with initial conditions

Q0 = �u0 − �H(u0), R
(1)
0 = �(1)0 . (2.52)

Theorem 2.1 will be proved in several steps in Sections 3–5.

If the initial data are well prepared and close to a steady solution, the system
in the limit is again the Lighthill equation with the more regular right-hand side
which emanates from the steady Navier-Stokes equations. This result is the subject
of the following theorem.

Theorem 2.2. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1). Let
{(�ε,uε)} be a family of the bounded energy weak solutions to the Navier-Stokes-
Poisson system investigated in Theorem 2.1, which emanates from the same initial
conditions and right-hand side, meaning that (�0,ε, u0,ε) and f satisfy (2.37–2.39).
Suppose, in addition, that the right-hand side f is time independent, i.e.,

f ∈ L2(Ω;R3), (2.53)

that the initial data are well prepared, i.e., (2.32) holds, and close to the steady
state corresponding to f , meaning that

u0 satisfies (2.30-2.31). (2.54)
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Then the sequences �ε, uε, r
(1)
ε , qε, where r(1)ε , qε are defined in (2.40), admit

limits �, u, r(1), q specified in (2.41–2.44), and these limits have the following
properties:
• U = u0; (2.55)

• there exists a function Π ∈ L2(Ω) such that∫
Ω

(
�u0 ⊗ u0 − μ(∇xu0 +∇⊥x u0)

)
: ∇xϕdx+

∫
Ω

Πdivϕdx

= −
∫
Ω

�f · ϕdx
(2.56)

for all
ϕ ∈ C∞c (Ω;R3), ϕ · n|∂Ω = 0;

• the couple

(R,Q) =
(
r(1) − (p(�))−1Π , q

)
(2.57)

belongs to(
Cweak([0, T ];Lsγ (Ω)) ∩ L∞(0, T ;Lsγ (Ω))

)
× L∞(0, T ;L

2γ
γ+1 (Ω;R3)) (2.58)

and satisfies equations (2.5), (2.6) with

ω = p′(�), F = �f , T = �u0 ⊗ u0 − μ(∇xU+∇⊥x U), Σ = 0 (2.59)

and with initial conditions

Q0 = �u0, R
(1)
0 = �(1)0 . (2.60)

Theorem 2.2 will be proved in Section 7.

From the point of view of mathematical modeling of acoustic waves, where the
standard procedure consists in solving directly the non-homogenous wave equation
(2.3) for unknowns (R,Q) with zero initial data R(0) and Q(0), Theorems 2.1
and 2.2 suggest an alternative approach: To construct the solution (R,Q) of the
Lighthill equation via formulas (2.50) resp. (2.57) by using the solution (Π,U)
of the incompressible Navier-Stokes equations and the solution (r(1),q) of the
homogenous wave equation with the initial data r(1)(0) = 1

ωΠ(0), q(0) = 0.

In what follows we briefly describe the organization of proofs.

Section 3 is devoted to the a priori estimates. Lemma 3.1 shows the energy in-
equality in the form which takes into account the way the initial data are bounded.
It is then used in Lemma 3.2 to deduce estimates for the real-time variables (�ε,uε)
and in Lemma 3.3 to derive estimates for the fast-time variables (rε,vε).

Section 4 concerns the passage to the limit in the Navier–Stokes–Poisson
equations rescaled to the fast time; we show that the limiting density fluctuations
and gradient part of the momentum satisfy a conveniently weakly formulated ho-
mogenous wave equation. These results are concisely announced in Lemmas 4.1.
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Section 5 deals with the real-time limit of the bounded energy weak solutions
of the Navier-Stokes-Poisson equations to a weak solution with bounded energy of
the Navier-Stokes equations in the sense of Definition 1.3. The principal result is
formulated in Lemma 5.1 and proved through Sections 6.1–6.5. In Section 6.1, we
start to investigate basic limits which can be deduced from a priori estimates listed
in Lemma 4.1 via classical compactness tools of functional analysis and we show,
among others, the strong convergence of divergenceless parts of the sequence of
velocity fields. The projection to the gradient part suffers from the lack of estimates
of the time derivative; in fact, due to the presence of the singular term (1/ε2)∇p
in the momentum equation, they may rapidly oscillate. Consequently, as usual
in these type of problems, we will not be able to pass to the limit in the part
div(H⊥(�εuε) ⊗H⊥(uε)) of the convective term. We shall rather prove that the
latter expression tends to a gradient, and therefore is irrelevant from the point of
view of definition of weak solutions. This property, discovered by Schochet [41] in
the context of strong solutions (see also related papers by Kleinerman, Majda [24]
da Veiga [9], Métivier, Schochet [34], Alazard [1] as well as the survey papers [42],
[10], [11] plus references quoted there) , and by Lions, Masmoudi [30] (see also
the the survey paper [32], [33]) in the context of weak solutions, can be proved
nowadays by various methods see [12],[31], [6], [33], [15], [17], [16]. They are mostly
based on the observation that H⊥(�εuε) satisfy a non-homogenous wave equation
with vanishing right-hand side and exploit in various ways its structure. For the
sake of completeness, we show in Sections 6.2-6.3 a “short” proof based on the
spectral analysis of the underlying wave operator following Lions, Masmoudi [30].
Then we show in Section 6.4 that the limit velocity field U satisfies the energy
inequality.

The definition of weak solutions with bounded energy is apparently silent
about the pressure field, whose knowledge is, however, necessary to discover the
“low Mach number” Lighthill acoustic analogy. For the non-stationary Navier-
Stokes equations this question is not an elementary problem (see, e.g., the survey
paper of Galdi [21]). To complete the proof of Lemma 5.1, we investigate this
problem in Section 6.5 following Ladyzhenskaya [27].

Finally, the weak solutions of the Lighthill acoustic analogy in the sense of
Definition 1.1 are obtained combining the weak solutions of the homogenous wave
equation in the fast time limit constructed in Lemma 4.1 with the weak solutions
of the non-stationary Navier Stokes equation obtained in the real-time limit in
Lemma 5.1. The time dependent pressure is responsible for the singular source
term ∂tΣ which is equal to the distribution − 1

ω∂tΠ.
In the steady case, when the initial data are well prepared in the sense of

Theorem 2.2, the source term ∂tΣ = 0 and we discover the weak formulation of the
Lighthill equations with the right-hand side emanating from a weak solution of the
steady incompressible Navier-Stokes problem (2.29), (2.7). The precise formulation
of this result is subject of Theorem 2.2.

The proof is performed in Section 7. Its first part consists of the material
of Section 4 and the main auxiliary result serving for the construction of the
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Lighthill equation is formulated in Lemma 4.1. As far as the real-time limit, we
start by Lemma 5.1, where we have showed existence of a weak limit in the case of
ill-prepared data. We observe, that the weak solutions with bounded energy con-
structed in this lemma are Leray-Hopf solutions, provided the initial data are well
prepared. If, in addition, the initial data are close to a steady state correspond-
ing to the same specific external force f , the limit appears to be a weak solution
of steady Navier-Stokes problem with the same external force f . Since this solu-
tion (as any steady weak solution) satisfies the Prodi-Serrin conditions, we can
identify it with the Leray-Hopf weak solution constructed in Lemma 5.1. These
observations are formulated in Lemmas 7.1–7.2. Theorem 2.2 is then obtained as
a combination of the fast-time limit from Lemma 4.1 and real-time limit obtained
in Lemma 7.2.

3. Estimates for real-time and fast-time variables

An immediate consequence of the energy inequality (2.20) is the following lemma:

Lemma 3.1. Under assumptions of Theorem 2.1 the following estimate holds:[ ∫
Ω

(1
2
�εu2ε +

1
ε2
H(�ε)

)
dx

]
(τ) +

∫ τ

0

∫
Ω

S(∇xuε) : ∇uεdxdt

≤
∫
Ω

(1
2
�εu2ε,0 +

1
ε2
H(�ε,0)

)
dx+

∫ τ

0

∫
Ω

�f · udxdt,
(3.1)

where

H(�) = H(�) + ∂�H(�)(�− �)−H(�) = �γ − γ�γ−1(�− �)− �γ (3.2)

is a strictly convex nonnegative function with minimum at � = �.

Lemma 3.1 implies several estimates; in order to write them in a concise way
we shall introduce, inspired by [17], the essential and residual sets as follows:

Mess(t) = {x ∈ Ω |
�

2
≤ �ε(t, x) ≤ 2�}, Mres(t) = R3 \Mess(t),

M̃ess(t) =Mess(εt), M̃res(t) =Mres(εt).
(3.3)

For a function h : Ω→ R, there holds

h = [h]ess + [h]res, where [h]ess = h1Mess , [h]res = h1Mres ,

h = [h]ẽss + [h]r̃es, where [h]ẽss = h1M̃ess
, [h]r̃es = h1M̃res

.
(3.4)

We shall collect the estimates in the following two lemmas. Lemma 3.2 deals with
the estimates of “real-time” quantities while Lemma 3.3 deals with their “fast-
time” counterparts.



262 W. Layton and A. Novotný

Lemma 3.2. Under assumptions of Theorem 2.1 we have the following uniform
estimates uniformly with respect to ε:

ess sup
t∈(0,T )

|Mres| ≤ cε2, (3.5)

ess sup
t∈(0,T )

∥∥∥[�ε (t)
]
res

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.6)

ess sup
t∈(0,T )

∥∥∥[�ε(t)− �
]
res

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.7)

ess sup
t∈(0,T )

∥∥∥[�ε − �
ε

(t)
]
ess

∥∥∥
L2(Ω)

≤ c, (3.8)

ess sup
t∈(0,T )

∥∥∥[�ε − �
ε

(t)
]
res

∥∥∥
Lp(Ω)

≤ cε 2
p−1, p ≤ γ, (3.9)

ess sup
t∈(0,T )

∥∥∥�ε (t)
∥∥∥

Lγ(Ω)
≤ c, (3.10)

ess sup
t∈(0,T )

‖�εu2ε (t)‖L1(Ω) ≤ c, (3.11)

ess sup
t∈(0,T )

‖�εuε (t)‖
L

2γ
2+γ (Ω)

≤ c, (3.12)

‖uε‖L2(0,T ;W 1,2(Ω)) ≤ c. (3.13)

Lemma 3.3. Under assumptions of Theorem 2.1 we have the following uniform
estimates uniformly with respect to ε:

ess sup
t∈(0,T/ε)

|M̃res| ≤ cε2, (3.14)

ess sup
t∈(0,T/ε)

∥∥∥[rε (t)]
r̃es

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.15)

ess sup
t∈(0,T/ε)

∥∥∥[rε(t)− �]
r̃es

∥∥∥
Lγ(Ω)

≤ cε2/γ , (3.16)

ess sup
t∈(0,T/ε)

∥∥∥[rε − �
ε

(t)
]
ẽss

∥∥∥
L2(Ω)

≤ c, (3.17)

ess sup
t∈(0,T/ε)

∥∥∥[rε − �
ε

(t)
]
r̃es

∥∥∥
Lp(Ω)

≤ ε 2
p−1, p ≤ γ, (3.18)

ess sup
t∈(0,T/ε)

∥∥∥rε (t)∥∥∥
Lγ(Ω)

≤ c, (3.19)

ess sup
t∈(0,T/ε)

‖rεv2ε (t)‖L1(Ω) ≤ c, (3.20)

ess sup
t∈(0,T/ε)

‖qε (t)‖
L

2γ
2+γ (Ω)

≤ c, (3.21)

‖vε‖L2(0,T/ε;W 1,2(Ω)) ≤
c√
ε
. (3.22)
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4. Limit passage in fast-time variables and
homogenous wave equation

Lemma 4.1. Under assumptions of Theorem 2.1 we have, at least for a chosen
subsequence of ε→ 0+,

∀T > 0, r(1)ε → r(1) in Cweak([0, T ];Lsγ (Ω)), sγ = min{γ, 2},

∀T > 0, qε → q weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω)),
(4.1)

where the fast-time variables r(1)ε and qε have been defined in (2.40). Moreover,
the weak limits r(1), q satisfy the homogenous wave equation

∀ϕ ∈ C∞c ([0,∞)× Ω)),∫ ∞

0

∫
Ω

(
r(1)∂tϕ+ q · ∇xϕ

)
dxdt = −

∫
Ω

�
(1)
0 ϕ(0)dx,

(4.2)

∀ϕ ∈ C∞c ([0,∞)× Ω);R3), ϕ · n = 0 on (0,∞)× ∂Ω,∫ ∞

0

∫
Ω

(
q∂tϕ+ p′(�)r(1)divϕ

)
dxdt = −

∫
Ω

�0u0 · ϕ(0)dx,
(4.3)

where �(1)0 and u0 are defined in (2.38), �0 = �+ �
(1)
0 and

r(1)(0) = �(1)0 . (4.4)

Proof of Lemma 4.1: Let ϕ ∈ C∞c ([0,∞) × Ω;R3), ϕ · n|[0,∞)×∂Ω = 0; then there
exists ε0 such that for all 0 < ε < ε0, ϕ ∈ C∞c ([0, T/ε) × Ω). We rewrite (2.19)
with the test function ϕε(t, x) = ϕ(t/ε, x), where ϕε is compactly supported in
[0, T )×Ω. After the change of variables to the fast time variable τ = t

ε , we obtain∫ T/ε

0

∫
Ω

rεvε · ∂tϕ dxdt

+ ε
∫ T/ε

0

∫
Ω

(rεvε ⊗ vε) : ∇xϕ dxdt+
1
ε

∫ T/ε

0

∫
Ω

(rγε − �γ) divϕ dxdt

= ε
∫ T/ε

0

∫
Ω

(
S(∇xvε) : ∇xϕ+ rεfε · ϕ

)
dx dt−

∫
Ω

�ε,0uε,0 · ϕ(0, ·) dx,

(4.5)

where
fε(t, x) = f(εt, x).

Similarly, continuity equation (2.17), where we take b = 0, rescaled to the fast
time yields ∫ T/ε

0

∫
Ω

(
r(1)ε ∂tϕ+ rεvε · ∇xϕ

)
dxdt = −

∫
Ω

�
(1)
ε,0ϕ(0, ·)dx (4.6)

where ϕ ∈ C∞c ([0,∞) × Ω)) and 0 < ε < ε0, where ε0 > 0 is so small that ϕ is
supported in [0, T/ε)× Ω.
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By virtue of (3.21) and thanks to (4.6), the sequence{∫
Ω

r(1)ε ϕdx
}

ε>0
, where ϕ ∈ C∞c (Ω),

is a bounded and equi-uniformly continuous subset of C[0, T ] with any T ∈ (0,∞).
Arguing by the Arzelà-Ascoli theorem, the separability of Lsγ (Ω) and the diago-
nalization, keeping in mind estimates (3.17), (3.18), we conclude that

∀T > 0, r(1)ε → r(1) in Cweak([0, T ];Lsγ (Ω)), (4.7)

at least for a chosen subsequence. Moreover, (4.4) holds.
By virtue of (3.21) we also have

∀T > 0, qε = rεvε → q weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω)). (4.8)

This allows us to pass to the limit in (4.6) and to get equation (4.2). Writing

rγ − �γ

ε
=

[rγ − �γ

ε

]
ẽss

+
[rγ − �γ

ε

]
r̃es

= γ�γ−1
[r − �
ε

]
ẽss

+ εγ(γ − 1)zγ−2
[(r − �

ε

)2]
ẽss

+
[rγ − �γ

ε

]
r̃es
,

where �/2 ≤ z ≤ 2�, and exploiting (3.14), (3.16), (3.17–3.18), (3.20), we obtain

∀T > 0,
rγε − �γ

ε
→ r(1) weakly in L1(0, T ;L1(Ω)). (4.9)

For a given test function ϕ the upper bound of the time integrals in (4.5)
and (4.6) are independent of ε → 0+. With this observation and with estimates
(3.19), (3.20) and (3.22) in mind, we verify that

ε

∫ T/ε

0

∫
Ω

(rεvε ⊗ vε) : ∇xϕ dxdt→ 0,

ε

∫ T/ε

0

∫
Ω

S(∇xvε) : ∇xϕdxdt→ 0,

ε

∫ T/ε

0

∫
Ω

rεfε · ϕ dx dt→ 0.

Now, we are ready to let ε→ 0+ in (4.5) to get (4.3). The proof of Lemma 4.1 is
complete. �

5. Limit passage in the real-time variables
and the Navier-Stokes equations

Lemma 5.1. Under assumptions of Theorem 2.1 we have at least for a chosen
subsequence of ε→ 0+,

(i) uε → U weakly in L2(0, T ;W 1,2(Ω;R3)). (5.1)
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Moreover,

U ∈ L∞(0, T ;L2(Ω;R3)) ∩Cweak([0, T ];L2(Ω;R3)), (5.2)

divU = 0 a.a. on (0, T )× Ω, u · n|∂Ω = 0 (5.3)
and the integral identity∫ T

0

∫
Ω

(
�U · ∂tϕ+ �(U⊗U) : ∇xϕ

)
dxdt = −

∫ T

0

∫
Ω

�f · ϕdxdt

+
∫ T

0

∫
Ω

μ(∇xU+∇⊥x U) : ∇xϕ dx dt−
∫
Ω

�H(u0) · ϕ(0, ·) dx
(5.4)

holds for any test function

ϕ ∈ C∞c ([0, T )× Ω;R3), div ϕ = 0, ϕ · n|[0,T )×∂Ω = 0. (5.5)

In addition, u satisfies the energy inequality[1
2
�

∫
Ω

|u|2dx
]
(τ) +

∫ τ

0

∫
Ω

S(∇u) : ∇xudxdt

≤ lim inf
ε→0+

[ ∫
Ω

(1
2
�εu2ε,0 +

1
ε2
H(�ε,0)

)
dx

]
+

∫ τ

0

∫
Ω

�f ·Udxdt
(5.6)

for a.a. τ ∈ (0, T ).
In other words, U is a weak solution with bounded energy (in the sense of
Definition 1.3) to the Navier-Stokes equations (2.21) with slip boundary con-
ditions (2.7) and initial conditions U(0) = H(u0).

(ii) Moreover, if H(u0) satisfies conditions (2.46), then

U ∈W 1, 5
4 (0, T ;L

5
4 (Ω;R3)) ∩ L 5

4 (0, T ;W 2,54 (Ω))

and there exists a function Π ∈ L 5
4 (0, T ;W 1,54 (Ω)) such that the couple (Π,U)

verifies

�∂tU+ �div(U⊗U) +∇Π = μdiv(∇xU+∇T
x U) + �f (5.7)

almost everywhere in (0, T )× Ω.

Lemma 5.2. Let assumptions of Theorem 5.1 be satisfied. Suppose that the initial
data satisfy in addition conditions (2.30–2.32). Then we have:

(i) The energy inequality (5.6) is replaced by

1
2
�

∫
Ω

|U|2(τ) dx +
∫ τ

0

∫
Ω

μ

2
(∇xU+∇T

x U) : (∇xU+∇T
x U) dxdt

≤ �
∫ τ

0

∫
Ω

f ·Udxdt+
1
2
�

∫
Ω

|u0|2 dx for a.a. τ ∈ (0, T ).
(5.8)

In the other words, U is a Leray-Hopf weak solution (Definition 1.3) to the
Navier-Stokes equations (2.21) with slip boundary conditions (2.7) and initial
conditions U0 = u0.
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(ii) Moreover U = U0 ∈ W 2, 32 (Ω) and there exists a unique function Π ∈
W 1, 3

2 (Ω),
∫
ΩΠdx = 0 such that

�div(U⊗U)− μdiv(∇xU+∇T
x U) +∇xΠ = �f , (5.9)

almost everywhere in Ω.

Lemma 5.1 will be proved throughout Sections 6.1–6.5. Lemma 5.2 will be
proved in Section 7.

6. Proof of Lemma 5.1 and Theorem 2.1

6.1. Limits in the density, velocity and momentum

Since �ε satisfies (2.17) with uε on place of u and (3.6–3.10) it is a routine matter
to establish that �ε ∈ C([0, T ];Lr(Ω), 1 ≤ r < γ and that

�ε → � in L∞(0, T ;Lγ(Ω) and C([0, T ];Lr(Ω)), r ∈ [1, γ), (6.1)

where the second convergence is deduced from the fact that (�ε,uε) satisfies the
renormalized continuity equation (2.17) with uε obeying the bound (3.13). In
accordance with this bound,

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)), U · n|∂Ω = 0. (6.2)

By virtue of (6.1), (6.2) and (3.12),

�εuε → �U weakly-∗ in L∞(0, T ;L
2γ

γ+1 (Ω;R3)). (6.3)

Thus the limit ε→ 0+ in the continuity equation (2.17) yields

divU = 0. (6.4)

Due to the continuity properties of the projections H, H⊥ (see (2.33–2.35)), we
conclude from (6.2) and (6.4) that

H(uε)→ U weakly in L2(0, T ;W 1,2(Ω;R3)),

H⊥(uε)→ 0 weakly in L2(0, T ;W 1,2(Ω;R3)).
(6.5)

We deduce from (2.19) that the sequence of functions

t→
[ ∫

Ω

H(�εuε) · ϕdx
]
(t), ϕ ∈ C∞(Ω), ϕ · n|∂Ω = 0

is bounded and equi-uniformly continuous in C[0, T ]. Then, using the Arzelà-Ascoli
theorem, separability of L[

2γ
2γ+1 ]

′
(Ω;R3) and density plus diagonalization argument,

we obtain

H(�εuε)→ �H(U) = �U in Cweak([0, T ];L
2γ

γ+1 (Ω;R3)). (6.6)

For γ > 3
2 , W

1,2(Ω) ↪→↪→ L
2γ

γ+1 (Ω); standard compactness argument then yields

H(�εuε)→ �U in L2(0, T ; [W 1,2(Ω;R3)]∗). (6.7)
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We also observe that

(�ε − �)uε → 0, H
(
(�ε − �)uε

)
→ 0,

H⊥
(
(�ε − �)uε

)
→ 0 in L2(0, T ;L

6
5 (Ω;R3)),

(6.8)

where we have used (6.1–6.2) and continuity of H,H⊥. Writing

�
(
H(uε)

)2
= H

(
(�ε − �)uε

)
·H(uε) +H(�εuε) ·H(uε)

we infer due to (6.5), (6.7) and (6.8) that

H(u)ε → H(U) = U in L2(0, T ;L2(Ω;R3)). (6.9)

The projection of the convective term in (2.19) on the divergenceless vector
fields can be written as∫ T

0

∫
Ω

�εuε ⊗ uε : ∇xϕdxdt

=
∫ T

0

∫
Ω

H⊥
(
�εuε

)
⊗H

(
uε

)
: ∇xϕdxdt+

∫ T

0

∫
Ω

H
(
�εuε

)
⊗ uε : ∇xϕdxdt

+
∫ T

0

∫
Ω

H⊥
(
�εuε

)
⊗H⊥

(
uε

)
: ∇xϕdxdt, (6.10)

where
ϕ ∈ C∞c ([0, T )× Ω;R3), div ϕ = 0, ϕ · n|[0,T )×∂Ω = 0. (6.11)

By virtue of (6.2) and (6.7),∫ T

0

∫
Ω

H
(
�εuε

)
⊗ uε : ∇xϕdxdt→

∫ T

0

∫
Ω

�U⊗U : ∇xϕdxdt.

Further ∫ T

0

∫
Ω

H⊥
(
�εuε

)
⊗H

(
uε

)
: ∇xϕdxdt

=
∫ T

0

∫
Ω

H⊥
(
(�ε − �)uε

)
⊗H

(
uε

)
: ∇xϕdxdt

+ �
∫ T

0

∫
Ω

H⊥(uε)⊗H(uε) : ∇xϕdxdt,

where the first term tends to 0 due to (6.5) and (6.8), while the second one con-
verges to 0 by virtue of (6.5) and (6.9).

Thus, we have∫ T

0

∫
Ω

�εuε ⊗ uε : ∇xϕdxdt→
∫ T

0

∫
Ω

�U⊗U : ∇xϕdxdt (6.12)

for all ϕ belonging to (6.11) provided we show∫ T

0

∫
Ω

H⊥
(
�εuε

)
⊗H⊥

(
uε

)
: ∇xϕdxdt→ 0 (6.13)
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with any ϕ in (6.11). In classical interpretation the last identity means that

div
[
H⊥

(
�εuε

)
⊗H⊥

(
uε

)]
as ε→ 0 becomes a gradient.

We shall devote the next two paragraphs to the proof of (6.13).

6.2. Wave equation in real time and its spectral analysis

Following Schochet [41] and Lions-Masmoudi [30] we rewrite equations (2.17) (with
b = 0) and (2.19) as a wave equation

∀ϕ ∈ C∞c ((0, T )× Ω)),∫ T

0

∫
Ω

(
ε�(1)ε ∂tϕ+ zε · ∇xϕ

)
dxdt = 0,

(6.14)

∀ϕ ∈ C∞c ((0, T )× Ω;R3), ϕ · n = 0 on (0, T )× ∂Ω,∫ ∞

0

∫
Ω

(
εzε∂tϕ+ p′(�)�(1)ε divϕ

)
dxdt

= ε
∫ T

0

∫
Ω

(
− Tε : ∇ϕ− Fε · ϕ+ gεdivϕ

)
dxdt,

(6.15)

where we have set
�(1)ε =

�ε − �
ε

, zε = �εuε (6.16)

and
Tε = �εuε ⊗ uε − S(∇uε), Fε = �εf ,

gε =
(
γ�γ−1 1

ε

[�ε − �
ε

]
res
− γ(γ − 1)zγ−2

[(�ε − �
ε

)2]
ess

− 1
ε

[�γ
ε − �γ

ε

]
res

)
, z ∈ (�/2, 2�).

(6.17)

To identify the basic modes of (6.14), (6.15), we are naturally led to the eigenvalue
problem

∇xω = λV, divV = λω in Ω, V · n|∂Ω = 0, (6.18)
which is equivalent to the eigenvalue problem for the Laplace operator

Δω = −Λω, in Ω, ∇xω · n|∂Ω = 0, λ2 = −Λ. (6.19)

The latter problem admits in L2(Ω) a system of real eigenfunctions {ωj,m}∞,mj

j=0,m=1,
which forms an orthonormal basis in L2(Ω), corresponding to real eigenvalues

(Λ0 =)Λ0,1 = 0, ω0 = ω0,1 = 1/|Ω| and m0 = 1,

0 < Λ1,1 = · · · = Λ1,m1 = (Λ1) < Λ2,1 = · · · = Λ2,m2(= Λ2) < · · · ,
(6.20)

where mj denotes the multiplicity of the eigenvalue Λj .
Accordingly, the original system (6.18) admits solutions

Vj,m = −i(
√
Λj)−1∇ωj,m, λj = i

√
Λj , where j = 1, 2, . . .,

λ0 = 0, with eigenspace L̇(Ω) = H(L2(Ω;R3)),
(6.21)
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meaning that

L2(Ω;R3) = H(L2(Ω;R3))⊕H⊥(L2(Ω;R3)),

where H⊥(L2(Ω;R3)) = {span{iVj,m}∞,mj

j=1,m=1}
L2(Ω;R3)

.
(6.22)

In the sequel we denote, for a ∈ L1(Ω), z ∈ L1(Ω;R3),

[a]j,m =
∫
Ω

aωj,mdx, [z]j,m =
∫
Ω

z ·Vj,mdx (6.23)

and

{a}M =
∑

{j>0|Λj≤M}

mj∑
m=1

[a]j,mωj,m, {z}M =
∑

{j>0|Λj≤M}

mj∑
m=1

[z]j,mVj,m, (6.24)

where M is a fixed integer.
Since ωj,m, Vj,m are smooth functions on Ω and Vj,m ·n|∂Ω = 0, we can use

them as test functions in (6.14–6.15) to obtain

ε∂t[�(1)ε ]j,m + i
√
Λj [zε]j,m = 0,

ε∂t[zε]j,m + i
√
Λjp

′(�)[�(1)ε ]j,m = εAj,m
ε

(6.25)

where

Aj,m
ε =

∫
Ω

(
− Tε : ∇Vj,m − �εf ·Vj,m + gεdivVj,m

)
dx

is bounded in L2(0, T ).
Finally multiplying the first equation in (6.25) by ωj,m and the second one

by Vj,m, we get, after some calculus,{
ε∂t{�(1)ε }M + div{zε}M = 0,

ε∂t{zε}M + p′(�)∇x{�(1)ε }M = εaε,M ,

}
a.e. in (0, T )× Ω, (6.26)

where

aε,M =
∑

{j>0|Λj≤M}

mj∑
m=1

Aj,m
ε Vj,m

is bounded in L2(0, T ;Ck(Ω;R3)), k ∈ N
(6.27)

for any fixed natural number M , uniformly with respect to ε→ 0.

6.3. Treatment of the convective term

As far as term (6.13) is concerned, we can write

H⊥(zε)⊗H⊥(uε) =
[{

H⊥(zε)
}

M
+

[
H⊥(zε)−

{
H⊥(zε)

}
M

]]
(6.28)

⊗
[{

H⊥(uε)
}

M
+

[
H⊥(uε)−

{
H⊥(uε)

}
M

]]
.
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We have

H⊥(zε)−
{
H⊥(zε)

}
M
=

[
H⊥

(
(�ε − �)uε

)
−

{
H⊥

(
(�ε − �)uε

)}
M

]
+ �H⊥(uε)− �

{
H⊥(uε)

}
M
,

where, according to (6.8),[
H⊥

(
(�ε − �)uε

)
−

{
H⊥

(
(�ε − �)uε

)}
M

]
→ 0 in L2(0, T ;L

6
5 (Ω)).

Furthermore, in agreement with (6.18–6.22),

‖divuε‖2L2(Ω) =
∥∥∥ ∞∑

j=1

mj∑
m=1

[uε]j,mdivVj,m

∥∥∥2
L2(Ω)

=
∥∥∥ ∞∑

j=1

mj∑
m=1

[uε]j,m
√
Λjωj,m

∥∥∥2
L2(Ω)

=
∞∑

j=1

mj∑
m=1

Λj[uε]2j,m;

whence

‖H⊥(uε)− {H⊥(uε)}M‖L2(Ω) =
∑

{j>0|Λj>M}

mj∑
m=1

[uε]2j,m

≤ 1
M
‖divuε‖2L2(Ω).

(6.29)

In view of these observations, the proof of (6.13) reduces to showing∫ T

0

∫
Ω

{
H⊥

(
zε

)}
M
⊗

{
H⊥

(
uε

)}
M
: ∇xϕdxdt→ 0

or equivalently, due to (6.1), (6.8),∫ T

0

∫
Ω

{
H⊥

(
zε

)}
M
⊗

{
H⊥

(
zε

)}
M
: ∇xϕdxdt→ 0, (6.30)

for any divergenceless ϕ as in (6.11).
By virtue of (6.21–6.22), {H⊥(zε)}M = ∇xΨε and identity (6.26) can be

rewritten
ε∂tdε +ΔΨε = 0,

ε∂t∇Ψε + p′(�)∇dε = εaε,M ,
(6.31)

where

Ψε = i
∑

{j>0|Λj≤M}

mj∑
m=1

[zε]j,m
√
Λjωj,m,

dε =
∑

{j>0|Λj≤M}

mj∑
m=1

[�(1)ε ]j,mωj,m.

(6.32)
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With this notation, and recalling that dε is bounded inW 1,∞(0, T ;Ck(Ω)) and Ψε

in L∞(0, T ;Ck(Ω))∩W 1,2(0, T ;Ck(Ω)), k ∈ N , as a consequence of (6.23), (6.25),
we can rewrite (6.30) as the following chain of identities:∫ T

0

∫
Ω

{
H⊥

(
zε

)}
M
⊗

{
H⊥

(
zε

)}
M
: ∇xϕdxdt

=
3∑

j,k=1

∫ T

0

∫
Ω

∂kΨε∂jΨε∂jϕkdxdt

=
1
2

3∑
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt+
3∑

k=1

∫ T

0

∫
Ω

∂kΨεΔΨεϕkdxdt

=
1
2

3∑
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt− ε
3∑

k=1

∫ T

0

∫
Ω

∂kΨε∂tdεϕkdxdt

=
1
2

3∑
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt− ε
3∑

k=1

∫ T

0

∫
Ω

∂t

(
∂kΨεdε

)
ϕkdxdt

+ ε
3∑

k=1

∫ T

0

∫
Ω

∂t(∂kΨε)dεϕkdxdt

=
1
2

3∑
k=1

∫ T

0

∫
Ω

∂k|∇Ψε|2ϕkdxdt+ ε
3∑

k=1

∫ T

0

∫
Ω

∂kΨεdε∂tϕkdxdt

− 1
2
p′(�)

3∑
k=1

∫ T

0

∫
Ω

∂k|dε|2ϕkdxdt+ ε
∫ T

0

∫
Ω

dεaε,M · ϕdxdt

= ε
3∑

k=1

∫ T

0

∫
Ω

∂kΨεdε∂tϕk + ε
∫ T

0

∫
Ω

dεaε,M · ϕdxdt,

(6.33)

where we have used several times equations (6.31) and the properties (6.11) of
ϕ. By virtue of (6.27) the right-hand side of this chain of identities tends to 0 as
ε→ 0. Proof of the limit (6.13) and of the part (i) of Lemma 5.1 is complete.

6.4. Incompressible energy inequality

We can rewrite (3.1) in the form∫ T

0

η′(s)
∫
Ω

1
2
�εu2εdxds+

∫ T

0

η′(s)
∫ s

0

∫
Ω

S(∇xuε) : ∇uεdxdtds (6.34)

≤
∫ T

0

η′(s)
∫
Ω

(1
2
�εu2ε,0 +

1
ε2
H(�ε,0)

)
dxds+

∫ T

0

η′(s)
∫ s

0

∫
Ω

�εf · uεdxdtds,

where η ∈ C∞c ([0, T )), η ≤ 0, η′ ≥ 0. Due to (6.1–6.2) and (3.11),
√
�εuε →

√
�U weakly in L∞(0, T ;L2(Ω)). (6.35)
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Letting ε→ 0+ in (6.34), taking advantage of (6.2), (6.35), the lower weak conti-
nuity at the left-hand side and (6.3) at the right-hand side, we get∫ T

0

η′
∫
Ω

1
2
�U2dxds+

∫ T

0

η′(s)
∫ s

0

∫
Ω

S(∇xU) : ∇Udxdtds

≤ lim inf
ε→0+

[ ∫ ∞

0

η′
∫
Ω

(1
2
�εu2ε,0 +

1
ε2
H(�ε,0)

)
dxds

]
+

∫ T

0

η′
∫ s

0

∫
Ω

�f ·Udxdtds.

(6.36)

By properly choosing η’s we deduce by standard arguments (5.6).

6.5. Reconstruction of pressure in the non-steady case

In this Section we complete the proof of Lemma 5.1 by reconstructing the pressure.
The reconstruction of pressure in the non-steady case will be based on the maximal
Lp − Lp regularity to the non-stationary Stokes system

∂tU+∇Π = μdiv(∇xU+∇⊥x U) + F a.e. in (0, T )× Ω,

divU = 0, a. e. in (0, T )× Ω
(6.37)

endowed with the initial conditions

U(0, x) = U0(x), x ∈ Ω (6.38)

and boundary conditions

U · n|∂Ω = 0, (∇xU+∇⊥x U)n × n|∂Ω = 0 a.e. in (0, T ) (6.39)

in the sense of traces on ∂Ω. The theorem reads:

Lemma 6.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1), 1 < p <∞,
μ > 0. Suppose that

F ∈ Lp((0, T )× (Ω;R3), U0 ∈W 2− 2
p ,p(Ω;R3), divU0 = 0,

U0 · n|∂Ω = 0 if 1− 3
p < 0,

where W 2− 2
p ,p(Ω;R3) denotes the Sobolev-Slobodeckii space.

Then the problem (6.37–6.39) admits a solution (Π,U), unique in the class

U ∈ Lp(0, T ;W 2,p(Ω;R3)), ∂tU ∈ Lp(0, T ;Lp(Ω;R3)),

U ∈ C([0, T ];W 2− 2
p ,p(Ω;R3)), Π ∈ Lp(0, T ;W 1,p(Ω)),

∫
Ω

Πdx = 0.

Moreover, there exists a positive constant c = c(p, q,Ω, T, μ) such that

U(t)‖
W

2− 2
p

,p
(Ω;R3)

+ ‖∂tU‖Lp(0,T ;Lp(Ω;R3))

+ ‖div(∇xU+∇⊥x U)‖Lp(0,T ;Lp(Ω;R3)) + ‖∇Π‖Lp((0,T )×Ω;R3)

≤ c(‖F‖Lp((0,T )×Ω;R3) + ‖U0‖
W

2− 2
p

,p
(Ω;R3)

),

(6.40)

for any t ∈ [0, T ].
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The original formulation and proof of this result is due to Solonnikov [45].
For the more general Lp−Lq-versions see, e.g., Shibata, Shimizu [44] or Saal, [40].

Remark. The reader shall notice that the bounds for div(∇xU+∇⊥x U) and for U
in (6.40) imply in addition

‖U‖Lp(0,T ;W 2,p(Ω;R3)) ≤ c(‖F‖Lp((0,T )×Ω;R3) + ‖U0‖
W

2− 2
p

,p
(Ω;R3)

) (6.41)

via a standard uniqueness Agmon, Douglis, Nirenberg argument and the Lp version
of the Korn inequality.

Coming back to the proof, we rewrite identity (5.4) in the form∫ T

0

∫
Ω

(
�U · ∂tϕ+ μU · div(∇xϕ+∇⊥x ϕ)

)
dxdt

=
∫ T

0

∫
Ω

G · ϕdxdt−
∫
Ω

�H(U0) · ϕ(0, x) dx,
(6.42)

where
G = �U · ∇xU− �f

and
ϕ ∈ C∞c ([0, T )× Ω;R3), ϕ · n|[0,T )×∂Ω = 0,

(∇xϕ+∇⊥x ϕ)n× n|[0,T )×∂Ω = 0, divϕ = 0.
(6.43)

We compare U with V, the unique strong solution of the Stokes problem,

�∂tV − μdiv(∇xV +∇⊥x V) +∇xΠ = −G,

divV = 0, V(0, x) = [(H(u0)](x),

V · n|∂Ω = 0
(
(∇xV +∇T

x V)n
)
× n|∂Ω = 0 a.e. in (0, T ).

(6.44)

Due to (5.1–5.2), G ∈ L 5
4 ((0, T )×Ω)); whence Theorem 6.1 affirms, in particular,

that

V ∈ C([0, T ];L 5
4 (Ω;R3)) ∩ L 5

4 (0, T ;W 2, 54 (Ω;R3)),

∂tV ∈ L 5
4 ((0, T )× Ω;R3)), Π ∈ L 5

4 (0, T ;L
5
4 (Ω)),

∫
Ω

Πdx = 0.
(6.45)

Subtracting (6.42) and (6.44) we obtain∫ T

0

∫
Ω

(
�(U−V) · ∂tϕ+ μ(U−V)div(∇xϕ+∇T

xϕ)
)
dxdt = 0 (6.46)

with any ϕ such that

divϕ = 0,

ϕ ∈ ∩r∈(1,∞)L
r(0, T ;W 2,r(Ω;R3)), ∂tϕ ∈ ∩r∈(1,∞)L

r((0, T )× Ω;R3),

ϕ(T, x) = 0, x ∈ Ω,
ϕ · n|∂Ω = 0, (∇xϕ+∇T

xϕ)n× n|∂Ω = 0 a.e.in (0, T ),

(6.47)
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where the last two identities are satisfied in the sense of traces. In order to enlarge
the set of test functions from (6.43) to (6.47), we have employed (5.1–5.3), (6.45)
and density argument.

In view of Theorem 6.1 we can use in (6.46) any test function ϕ, ϕ(t, x) =
φ(T − t, x), where (p, φ) solves the Stokes problem

�∂tφ− μdiv(∇xφ+∇T
xφ) +∇xp = F, divφ = 0, a.e. in (0, T )× Ω,

φ(0, x) = 0, x ∈ Ω,
φ · n|∂Ω = 0, (∇xφ+∇T

x φ)n× n|∂Ω = 0 a.e.in (0, T ),

where F ∈ C∞c ((0, T )× Ω;R3). We thus get∫ T

0

∫
Ω

(U−V) ·F dxdt = 0 for all F ∈ C∞c ((0, T )× Ω;R3),

where we have used the fact that
∫ T

0

∫
ΩU · ∇xp dxdt =

∫ T

0

∫
Ω V · ∇xp dxdt = 0.

Therefore U = V. This completes the proof of identity (5.7) as well as of the whole
Lemma 5.1.

6.6. Conclusion

Combining the “fast” time solutions constructed in Lemma 4.1 with the “real”
time solutions of Lemma 5.1 finishes the proof of Theorem 2.1.

7. Proof of Lemma 5.2 and Theorem 2.2

7.1. Prodi-Serrin conditions

Sequences �ε, uε, r
(1)
ε , qε satisfy assumptions of Theorem 2.1. They therefore

admit limits �, U, r(1), q in the sense (2.41–2.44); r(1), q satisfy equations (4.2)
and (4.3) of Lemma 4.1, while U verifies equation (5.4) and inequality (5.6), where

lim inf
ε→0+

[ ∫
Ω

(1
2
�εu2ε,0 +

1
ε2
H(�ε,0)

)
dx

]
+

∫ τ

0

∫
Ω

�f ·Udxdt =
∫

1
2
�|u0|2 dx.

Therefore, U is a Leray-Hopf weak solution of problem (2.21), (2.7) with initial
data U0 = u0.

At this point, we recall the celebrated Prodi-Serrin uniqueness conditions for
the Navier-Stokes equations (cf. Serrin [43]).

Lemma 7.1. Let v and w be two weak solutions of Navier-Stokes equations (2.21)
with boundary conditions (2.7) and the same initial conditions. Let v be a Leray-
Hopf weak solution and

w ∈ Lr(0, T ;Ls(Ω;R3)), for some r, s such that 3
s +

2
r = 1, s ∈ (3,∞).

Then v = w.
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We apply this lemma with v = U and w = u0. We already know that U
is a Leray-Hopf weak solution with initial conditions u0. Recall that u0 verifies
(2.30–2.31) meaning that w is a weak solution of the non-stationary problem
with initial data w(0) = u0. Moreover, being time independent, w belongs to
L∞(0, T ;L6(Ω;R3)) and verifies therefore the Prodi-Serrin conditions. Lemma 7.1
yields v = w or equivalently U = u0.

7.2. Reconstruction of the pressure in the steady case

At this point we make a pause to introduce natural spaces useful for the investi-
gation of pressure in the Navier-Stokes equations (2.21) with boundary conditions
(2.7), and to list some of their properties needed in the sequel.

For 1 ≤ p <∞, we set

W 1,p
n (Ω;R3) = {z ∈ W 1,p(Ω;R3) | z · n|∂Ω = 0}

a closed subspace of W 1,p(Ω;R3) and by

Ẇ 1,p
n (Ω;R3) = {z ∈W 1,p(Ω;R3) | z · n|∂Ω = 0, divz = 0}.

The set
C2,νc,n = {z ∈ C2,ν(Ω;R3) | z · n|∂Ω = 0}

is dense in W 1,p
n (Ω;R3) and the set

Ċ2,νc,n = {z ∈ C2,ν(Ω;R3) | z · n|∂Ω = 0, divz = 0}

is dense in Ẇ 1,p
n (Ω;R3), see, e.g., [18, Section 10.7].

The functional

F :W 1,2
n (Ω)→ R defined by

Fτ (ϕ) =
∫
Ω

�(u(τ) − u0) · ϕdx

+
∫ τ

0

∫
Ω

[(
μ(∇xu+∇⊥x u)− �(u⊗ u)

)
: ∇xϕ− �f · ϕ

]
dxdt

(7.1)

is a continuous linear functional on W 1,2
n (Ω;R3) vanishing on Ẇ 1,2

n (Ω;R3).
Now, we shall recall several facts from functional analysis of (unbounded)

linear operators. Let A : X → Y , where X and Y are Banach spaces, be a linear
(unbounded) closed and densely defined operator. Denote by A∗ : Y ∗ → X∗ its
adjoint, where X∗ and Y ∗ are duals to X and Y , respectively. It is well known that
ker(A) = (R(A∗))⊥, ker(A∗) = (R(A))⊥, and also (R(A)) = (ker(A∗))⊥ provided
R(A) is closed (in Y ), (R(A∗)) = (ker(A))⊥ provided R(A∗) is closed (in X∗),
see, e.g., Brezis [7]. Thus, if a continuous linear functional F : X → R vanishes on
ker(A) then F ∈ (ker(A))⊥ = R(A∗), provided the last subspace is closed (in X∗).

Next, we mention some properties of the Bogovskii solution operator to the
problem divz = g, [5]. We shall need the following facts. For any bounded Lipschitz
domain, there exists a linear operator B with the following properties:
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• B : Lp(Ω) :=
{
g ∈ Lp(Ω) |

∫
Ω

zdx = 0
}
→W 1,p

0 (Ω, R3),

∀1 < p <∞; (7.2)

• divB(g) = g, ∀g ∈ Lp(Ω); (7.3)

• ‖B(g)‖W 1,p(Ω) ≤ c(p,Ω)‖g‖Lp(Ω), ∀g ∈ Lp(Ω); (7.4)

• if g ∈ C∞c (Ω) := {g ∈ C∞c (Ω) |
∫
Ω
gdx = 0} then B(g) ∈ C∞c (Ω). (7.5)

Such an operator can be constructed explicitly; we refer to Galdi [20] or to
[38], Section 3.3 for more details and further properties.

The operator A = div from X = W 1,p
n (Ω;R3) to Y = Lp(Ω) with D(A) =

W 1,p
n (Ω;R3), ker(A) = Ẇ 1,p

n (Ω;R3), R(A) = Lp(Ω) is a continuous operator
(henceR(A) is closed). (The surjectivity of A onto Lp(Ω) follows from the property
(7.3) of the Bogovskii operator.) Therefore, for all v ∈ W 1,p

n (Ω;R3), ψ ∈ C∞c (Ω)
a dense subset of Y ∗ = Lp′

(Ω), we have

〈ψ , Av〉Y ∗,Y =
∫
Ω

ψdivvdx =
∫
Ω

v · ∇xψdx = 〈A∗ψ , v〉X∗,X . (7.6)

The last identity implies that A∗ : Lp′
(Ω) → (W 1,p

n (Ω;R3))∗ is continuous with
D(A∗) = Lp′

(Ω) and a range R(A∗) closed in (W 1,p
n (Ω;R3))∗.

We apply this result to the linear functional

F : W 1,2
n (Ω)→ R,

F(ϕ) =
∫
Ω

[(
μ(∇xu+∇⊥x u)− �u⊗ u

)
: ∇xϕ− �f · ϕ

]
dx

and obtain existence of Π ∈ L2(Ω),
∫
Ω
Πdx = 0 such that F(ϕ) =

∫
Ω
Πdivϕdx.

We thus have

Lemma 7.2. Let u0 satisfy (2.30), (2.31). Then there exists a unique

Π ∈ L2(Ω),
∫
Ω

Πdx = 0

such that
∀ϕ ∈ C∞c ((0, T )× Ω), ϕ · n|(0,T )×∂Ω,∫ T

0

∫
Ω

(
�u0 ⊗ u0 − μ(∇xu0 +∇⊥x u0)

)
: ∇xϕdxdt

+
∫ T

0

∫
Ω

Πdivϕdxdt = −
∫ T

0

∫
Ω

�f · ϕdxdt.

(7.7)

Now, regarding (7.7) as a (steady) Stokes problem with the right-hand side
−�u0 · ∇xu0 ∈ L

3
2 (Ω;R3), we may use the standard regularity results for the

Stokes problem combined with the uniqueness (cf., e.g., Galdi [20]) to conclude
that u0 must necessarily belong to W 2, 3

2 (Ω;R3) and Π to W 1, 3
2 (Ω).
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7.3. Conclusion

Now, we conclude the proof of Theorem 2.2 by replacing in (4.2) r(1) by r(1) −
(p(�))−1Π (Π being time independent,

∫ T

0

∫
ΩΠ∂tϕdxdt = 0) and by subtracting

(7.7) from equation (4.3).
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[38] A. Novotný and I. Straškraba. Convergence to equilibria for compressible Navier-
Stokes equations with large data. Annali Mat. Pura Appl., 169:263–287, 2001.
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to Boundary Value Problems
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Abstract. We seek for extremely wide classes of generalized solutions to
boundary value problems for nonsteady Euler equations where uniqueness
still holds. Such classes appear to be formulated rather compactly in terms
of the Orlicz spaces. This result is obtained with extrapolatory techniques in
the scale of symmetric spaces which have been developed by the author based
on integral representations and transforms of N-functions generating Orlicz
spaces.
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1. Introduction

The subject of the paper is the Euler system which describes nonsteady flows of
an ideal incompressible fluid:

∂u

∂t
+ (u · ∇)u+∇p = f , divu = 0. (1.1)

Here, as usual, u stands for the velocity vector, p is the pressure, and f is the
specified vector of external mass forces; all these quantities are functions of the
time t and the space variables x ∈ Rn, n ∈ N; the operators div and ∇ act in x.

The model (1.1) is much simplified in the sense of mechanics, and nevertheless
appears to be rather substantial, which attracts mathematicians. The history of

This research was supported by the Russian Foundation for Basic Research (Grant 070100309),
Ministry of Education and Science of the Russian Federation (Project 2.1.1.4918), Siberian
Branch of the Russian Academy of Sciences (Project 90) and a Grant of the President of the
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study of its mathematical well-posedness is extremely extensive and it cannot
be reported in such a small paper as the present one. A more complete historical
review can be found in [79], [23], [9], [16] and [52]. A number of important problems
were solved as a result of this study, but, on the other hand, many mathematical
questions for (1.1) are still waiting for their answers. We mention here the results,
milestones and problems which are quite close to the subject of the paper.

1.1. Basic existence results

The study of solvability of the boundary value problems for the Euler equations
was started in [26] and [41], where the local existence and uniqueness of the clas-
sical solutions (as n = 3) were proved. These results concern two boundary value
problems: the Cauchy problem, i.e., the problem in Rn × (0, T ) with the initial
data

u|t=0 = u0, (1.2)
and the “nonpenetration problem” in QT = Ω× (0, T ) which describes flows in a
bounded domain Ω ⊂ Rn, with the initial data (1.2) and the boundary condition

u · n|∂Ω×(0,T ) = 0 (1.3)

(which means the impermeable boundary) where T > 0 is a sufficiently small
number, and n is the outward normal to ∂Ω. These problems do not seem to be
very important in applications, but they are the traditional starting point in the
study of well-posedness of hydrodynamical models, since this eliminates additional
difficulties in boundary conditions. In the framework of these two boundary value
problems the first group of global results for two-dimensional flows was obtained,
cf. [73] (classical solutions without external forces with some redundant smoothness
of input data), the final exposition and generalization of this result in [28] (see also
[27]); and finally the famous result [76] concerning the existence of solutions with
vorticity in Lp and their uniqueness in the class of bounded vorticity. The paper
[76] also deals with the external problem with the decay condition at ∞, and this
restriction (i.e., the decay) was later eliminated in [13] and [16]. In [68] the global
existence was proved for three-dimensional axisymmetric flows, and the paper [21]
contains the same result for similar but more general flows (helical etc.); further
development of these ideas is described in [16].

1.2. Irregular flows

Nevertheless, there are no global theorems for general three-dimensional flows
yet, even in “bad” classes or for small data. It may be caused, in particular, by
fundamental differences between the cases n = 2 and n = 3 in the transport
equation for the vorticity ω = rotu. Thus, the L∞-norm of the vorticity may not
be conserved in time as n = 3 [59]. Moreover, the famous result [10] showed that,
specifically, the infinite growth of this norm causes the appearance of singularities
in a finite time period, observed in numerical experiments and special classes of
solutions (such examples are mentioned, e.g., in [14], [15], [53] and [24]). Further
development of the result [10] is shown in [24] and [9].
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Singularities that inevitably appear in solutions of three-dimensional Euler
equations stimulate appropriate definitions of irregular solutions (and the proof of
their existence), as well as the proof of uniqueness in the widest possible classes.
As far as the former problem is concerned, we should mention first the result [54]
of global solvability of the two-dimensional non-penetration problem

(NP)={(1.1),(1.2),(1.3)}
with vorticity slightly better than L1 (see also the similar result [50] with more
convenient formulations), and the papers [18], [19], [20] and [17] (see also [9], [42],
[43] and [22]), where the similar result (three-dimensional axisymmetric case inclu-
sively) is obtained for measure-valued vorticity (but definite-signed, with locally
finite kinetic energy). Thus, the problem of a vortex sheet is partly solved. The
problem of smoothness of the boundary of a vortex patch was investigated in [12]
and [11]. The problem of point vortex (singularities of vorticity take the form of
a δ-function, the energy being locally infinite) is the subject of a series of papers;
here the local results were obtained in [71] and [72], and global ones were initially
obtained in [51] and [65] in particular cases, and then generally in [62] and [63] (as
n = 2).

1.3. Uniqueness problem

As against the global existence, the dimension of the flow is unessential in the
uniqueness problem. There exist nontrivial solutions of (1.1) with compact support
in space-time provided that no restrictions for the vorticity are accepted (cf. [60]
and [58]); this fact, in particular, stimulates the formulation of the uniqueness
classes in terms of the vorticity. The first advancement in the uniqueness problem
after [76] (where the uniqueness is proved for bounded vorticity) was the paper
[79], where the uniqueness for (NP) is proved in the class of vorticity in specially
normed scale of the spaces Lp (see also the paper [70] with formulations in Besov
spaces). A similar result is presented in [50] in terms of Orlicz spaces. The aim of
the present paper is to complete this result, in particular, to consider the “through
flow problems”1 (i.e., the problems of the flow of a fluid through a domain), which
are of greater interest in applications but are more difficult and less investigated
mathematically.

1.4. Through flow problems

In through flow problems the boundary ∂Ω of the flow domain Ω splits into three
non-intersecting fragments: Γ1, Γ2 and Γ0 (which are the inflow section, outflow
section and impermeable section correspondingly), where:

u · n|Γ0×(0,T ) = 0, (1.4)

u · n|Γ1×(0,T ) = g1 < 0, (1.5)
u · n|Γ2×(0,T ) > 0 (1.6)1

1When we write the term “through flow” we however do not imply, as in [56], that there are no
stagnant basins in the flow domain.
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(only the sign is specified) or

u · n|Γ2×(0,T ) = g2 > 0 (1.6)2

(the exact value is specified). It is clear that these conditions (as against (1.3))
are not sufficient now, and the choice of additional boundary conditions leads to
several versions of the problem.

The first experience of the statement and solving the through flow problem
was the paper [37], where the natural idea to specify the vorticity on the entrance
(since the trajectories, on which the transport equation for the vorticity holds,
start namely at Γ1× (0, T )) was proposed, and the local existence and uniqueness
theorem for the three-dimensional problem was announced. However, such a form
of this idea is faulty since the value divω, which must be zero in QT , is transported
along the mentioned trajectories, and consequently the compatibility condition for
the vorticity at the entrance arises: divω|Γ1×(0,T ) = 0. Nevertheless, the idea of [37]
was completed (after necessary corrections) in further papers devoted to correct
statements of three-dimensional through flow problem of the version under con-
sideration (i.e., with the vorticity specified at the entrance). Namely, zero normal
component and arbitrary tangent components of the vorticity were specified at
the entrance (with the corresponding compatibility conditions) as the additional
condition in [67], [80], and local existence and uniqueness of the strong solution
were proved for arbitrary n’s (with the use of preceding results [40] and [25]). To
specify two tangent components of the vorticity

ωσ|Γ1×(0,T ) = h (1.7)

(here h is a tangent vector field, and the index σ stands for tangent component
of a vector) as the additional condition at the entrance in the three-dimensional
problem was the idea of the papers [36] and [30], where the local existence and
uniqueness of classical solutions to the resulting problem

(TF.I)={(1.1),(1.2),(1.4),(1.5),(1.6)2, (1.7)}
(we call it “through flow problem of type I”)2 were proved. A.V.Kazhikhov (cf. [30],
[36] and [6]) also considered other versions of boundary conditions for the vorticity
(instead of (1.7)) and the case of a nonhomogeneous fluid, and he formulated the
compatibility conditions in the case of the plain vortex though specified at the
entrance, as in [37].

In the two-dimensional case, the problem (TF.I), as well as (NP), is deeply
investigated globally. When n = 2, the problem may be considered as a three-
dimensional one with Ω being the cylinder of infinite height, and the vorticity
taking the form ω = (0, 0, ω), so that the condition (1.7) means just that the
scalar vorticity ω is specified at the entrance. Namely such a formulation of two-
dimensional problem (TF.I) was studied in the classical paper [77], where the
global existence and uniqueness of rather smooth (up to classical) solutions were

2Further we also meet through flow problems of types II and III; such numeration follows the
paper [36].
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proved. This result was generalized to the three-dimensional axisymmetric case
in the paper [66]. Some additional constraints on Γk and input data made in
[77] were further released in [4], where (based on [8]) the global solvability of the
two-dimensional problem (TF.I) was shown in the class of bounded vorticity, and
further smoothness (and consequently the uniqueness)3 of the solutions (up to the
classical solution) was proved for more smooth data; in other words, the result of
[28] was generalized to the problem (TF.I). Finally, the class of global existence
for the two-dimensional problem (TF.I) was extended in [69] almost up to ω ∈ L1
(similarly to the result of [54] for the problem (NP)).

The steady version of the problem (TF.I) is also studied well. In the two-
dimensional (and three-dimensional axisymmetric) case the global existence was
proved in [2], and the uniqueness and smoothness of solutions were shown in [3],
where stagnant basins were also studied. The local existence of the generalized
solution to the three-dimensional steady problem is proved in [55]. Mention should
be also made of the remarkable result concerning the conditions of “washout of
vorticity” in a finite time period obtained in [5]. Additional information on the
study of the problem (TF.I) may be found in [55].

Thus, the through flow problem in the form (TF.I) has been investigated for a
long time and rather completely, however it does not seem to be very appropriate in
applications, since prescription of the velocity at the entrance is more natural than
the vorticity. The problems of the latter type were studied in detail in the papers
of A.V.Kazhikhov. In the first version of such problems (let us call it “the through
flow problem of type II”) the full velocity vector is specified at the entrance, i.e.,
the tangent components of the velocity are specified in addition to (1.5):

uσ|Γ1×(0,T ) = r, (1.8)

and the pressure (instead of (1.6)2) is specified at the exit:

p|Γ2×(0,T ) = p∗. (1.9)

As a result, we come to the problem

(TF.II)={(1.1),(1.2),(1.4),(1.5),(1.6)1, (1.8),(1.9)}.
The papers [36] and [35] contain the proof of classical local unique solvability of
two-dimensional (and three-dimensional axisymmetric) problem (TF.II) under the
condition u0 · n|Γ2 � C > 0, nonhomogeneous fluid inclusively.

Finally, one more version of the through flow problem with the condition
(1.8) at the entrance (let us call it “the through flow problem of type III”) differs
from the preceding one in the condition at the exit which is (1.6)2 instead of (1.9),
and the resulting problem is

(TF.III)={(1.1),(1.2),(1.4),(1.5),(1.6)2, (1.8)}.

3The specificity of the problem (TF.I) is that the uniqueness of its solution requires smoothness of

the vorticity one order higher than in the problem (NP) or in the problems (TF.II) and (TF.III)
stated below; see the details in Subsection 3.2.
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This problem was studied in the steady version in [1]. The existence and uniqueness
of a local classical solution to the nonsteady problem (TF.III) (as a matter of fact,
only in two-dimensional and three-dimensional axisymmetric cases) was proved
in [36] and [29] based on the ideas of [64] under the condition g1 � −C < 0
(nonhomogeneous fluid inclusively). Further investigation in [32] and [31] gave a
global result (in the class of bounded vorticity) for the two-dimensional problem
(TF.III) in a rectangular domain and under the condition that the initial data are
sufficiently close to the uniform (straight) flow4.

It is appropriate to mention here that most of the cited results of A.V.
Kazhikhov are included in the book of his selected works [33] published recently.

Thus, we have listed the main statements of boundary value problems for
(1.1), and we proceed to our main objective which is to describe the widest classes
of uniqueness for these problems.

2. Classes of uniqueness

Suppose we are given a number T > 0 and a bounded domain Ω ⊂ Rn with the
boundary such that the Gauss theorem holds (a Lipschitz-continuous boundary is
sufficient). The topological conditions will be mentioned as they will be necessary.
Let us consider, following [79], solutions to (1.1) of the following class:

∇⊗ u, ut ∈ L∞(0, T, Lr(Ω)), ∀r < +∞. (2.1)

This provides the corresponding regularity for p (provided that f is sufficiently
regular), so that the equations (1.1) may be treated almost everywhere, and initial
and boundary values in the problems (NP), (TF.II) and (TF.III) are accepted
in the sense of continuity. This way of defining a solution is more convenient in
boundary value problems than integral identities.

2.1. Gronwall-type lemma

Thus, if (u1, p1) and (u2, p2) are the solutions to (1.1) of the mentioned class, then

∂u

∂t
+ (u1 · ∇)u + (u · ∇)u2 +∇p = 0, divu = 0,

where u = u1 − u2, p = p1 − p2; and we come immediately to the relation
∂|u|2
∂t

+ div(|u|2u1) + 2(u⊗ u) : D(u2) + 2div(pu) = 0, (2.2)

almost everywhere in QT , where D(v) stands for the rate of deformations tensor

(for the vector field v) which has the components Dij(v) =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
. After

4This result is of particular interest because, as it was mentioned in Subsection 1.2, global results
for the Euler equations are difficult to obtain even for small data.
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integration of (2.2) over Qt we derive the equality

∫
Ω

|u|2dx+

t∫
0

dτ

∫
∂Ω

|u|2(u1 · n)dS + 2

t∫
0

dτ

∫
∂Ω

p(u · n)dS

+ 2

t∫
0

dτ

∫
Ω

(u ⊗ u) : D(u2)dx = 0

(2.3)

for almost all t ∈ (0, T ). It is clear that in the problems (NP), (TF.II) and (TF.III)
the third integral in (2.3) equals 0, and the second one is nonnegative, which leads
finally to the relation

∫
Ω

|u|2dx � 2

t∫
0

dτ

∫
Ω

|u|2|D(u2)|dx. (2.4)

In this way, during the proof of uniqueness of solutions in the class (2.1) we
come to the Gronwall-type inequality (Osgood’s inequality)

∫
Ω

ψ(t,x)dx �
t∫

0

∫
Ω

g(s,x)ψ(s,x)dxds (2.5)

with nonnegative functions ψ and g, in which it is necessary to prove that ψ = 0
(under minimal restrictions for g). This is trivial in the case of bounded g’s since
it reduces to classical Gronwall’s lemma, but the similar result for (2.5) remains
true for some classes of unbounded g’s as well. This fact was discovered in [76],
[79], and it was formulated in terms of specially normed scales of the spaces Lp.
Namely, in these papers the classes of the form

‖g‖L∞(0,T,Lr(Ω)) � θ(r), r ! 1 (2.6)

were considered with the functions θ growing sufficiently slowly (in [76] it was
θ(r) = Cr, and in [79] the growth rate was slightly diminished). However, the result
looks rather bulky in these terms5 and, in particular, it makes the formulation of
uniqueness classes for the Euler equations difficult.

Our present aim is to demonstrate how the final (and unimprovable) result
for the inequality (2.5) may be formulated in terms of Orlicz spaces and how it
affects the formulation of the uniqueness classes in boundary value problems for
the Euler equations.

5The formulation in terms of the whole family of estimates (2.6) seems to be bulky, and especially
the requirements for admissible θ’s found in [79] are complicated.
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2.2. Orlicz spaces

Let us recall some notions of the theory of Orlicz spaces (detailed exposition of this
theory may be found, e.g., in [38] and [39]). A function M of one real variable is
called an N -function if it is convex and even (hence, one can examine its behavior
only on the right half-axis), and if, on the right half-axis, it increases strictly and
satisfies the relations

M(s)
s

→ 0 as s→ 0,
M(s)
s

→ +∞ as s→ +∞.

For any N -function M , it is possible to determine its complementary N -function
M which is its Legendre transform. Since any N -function is differentiable almost
everywhere, M can be defined as M

′
= (M ′)−1.

If the set Ω ⊂ Rn has a finite measure (for example, is a bounded domain
which will further be considered)6, the Orlicz class KM (Ω) can be introduced as
a set of measurable functions u such that

∫
Ω

M(u(x))dx < ∞. The Orlicz space

LM (Ω) is the linear span of the class KM (Ω); therefore, it is natural to introduce
the Luxemburg norm in it:

‖u‖LM(Ω) = inf
{
k

∣∣∣∣ ∫
Ω

M

(
u(x)
k

)
dx � 1

}
.

Since the measure of Ω is finite, only the behavior of N -functions at +∞ is im-
portant; therefore, it is assumed below that the formulae for them are written for
large arguments.

Example 2.1. M(s) = sp/p, p > 1, M(s) = sq/q, q = p/(p− 1), LM (Ω) = Lp(Ω),
LM (Ω) = Lq(Ω).

Example 2.2. M(s) = es − s− 1, M(s) = (s + 1) ln(s + 1)− s. The space LM (Ω)
consists of functions which belong to all Lr(Ω), r < ∞ (but are nevertheless
unbounded, generally speaking), and the space LM(Ω) consists of functions which
are integrable (and even possess somewhat better properties) but do not belong
to any L1+ε(Ω). �

An increase of N -functions at ∞ can be compared by means of the relations
≺ and ≺≺ defined as follows:

M1 ≺M2, if M1(u) �M2(Cu), u! 1,

M1 ≺≺M2, if
M2(u)
M1(Cu)

→∞, u→∞, ∀C > 0.

In the first case, there is the continuous embedding LM2(Ω) ↪→ LM1(Ω), and,
in the second case, this embedding is strict (in the theoretical-set sense) and, in
some sense, compact (for example, LM2(Ω) ⊂ KM1(Ω)). Accordingly, the relation

6Generally speaking, the measure of Ω does not have to be finite, but this assumption makes the

considerations much simpler. This case is sufficient for the aims of the paper. In a general case
Ω does not have to be a subset of R

n.
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M1 ∼ M2 (which means the relations M1 ≺ M2 and M2 ≺ M1 simultaneously) is
a criterion of the coincidence LM1(Ω) = LM2(Ω).

For the functions with growth rate faster than polynomial growth, the so-
called Δ2-condition can be considered, which implies thatM2 ∼M , i.e.,M2(u) �
M(Cu) as u! 1. Ignoring “pathological” cases (which do not arise in the article),
this condition is satisfied by all N -functionsM that increase not more slowly than
the function F (s) = exp(sε).

The Lebesgue spaces Lr(Ω) are a particular case of the Orlicz spaces, for
which the theory is partly similar to the theory of the spaces Lr (especially in
the case where M and M simultaneously possess growth rate not faster than
polynomial growth) but differs from it in many respects and it allows a description
of the subtle properties of functions in Ω.

2.3. Orlicz spaces and scales of spaces Lp

There is also the following relationship between the Lebesgue and Orlicz spaces.
Let us consider the set (we denote it by Lω,β) of measurable functions u which
belong to all Lp(Ω) as p ∈ [α, β), and such that ‖u‖Lp(Ω) � Cω(p), p ∈ [α, β),
with the specified function ω. As has been noted by various researchers in various
situations, the sets of the type Lω,β are contained in the Orlicz spaces LM (Ω)
with appropriate M ’s. For example, we may mention the papers [74], [57] and
[61]7. However, a fairly complete investigation of the relation between Lω,β and
other symmetric spaces (the relation with Lp is most important) was made only
recently, see, e.g., [48], [49] and [7]. It is convenient to use here the terms and some
results of our paper [48]. Below, we will need only the case β = +∞. The set Lω,∞
becomes a Banach space if it is endowed with the norm

‖u‖Lω,∞ = sup
p∈[α,+∞)

‖u‖Lp(Ω)

ω(p)
.

This space does not depend on the choice of α (i.e., the corresponding norms are
equivalent) and does not vary if ω varies to within equivalence of the special form:

ω1
ϕ∼ ω2 def⇐⇒ C1ω1(p) � ω2(p) � C2ω1(p).

The operators

In∞[ω](v) =

+∞∫
α

vpdp

ωp(p)
and Sc∞[Φ](p) = max

v�1
v

Φ1/p(v)

generate the correspondence between the functions ω = ω(p) and N -functions
Φ = Φ(v). In particular, the relations ϕ∼ and ∼ correspond to each other under
these mappings. We do not need to formulate here all the details (cf. [48]) since

7More detailed review can be found in [48] and [49].
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it will suffice to use the fact that in the case of rapidly increasing Φ, i.e., slowly
increasing ω (which are used below) the equality

Lω,∞ = LΦ as Φ = In∞[ω], i.e., ω = Sc∞[Φ]

is valid. And, conversely, any space LΦ with a rapidly increasing Φ can be repre-
sented as Lω,∞ with the corresponding function ω.

Thus, in the case under consideration, the family of estimates in Lp of the
type (2.6) is equivalent to the estimate in an appropriate Orlicz space. Using this
fact, we could translate the results of the paper [79] into “the language of the
Orlicz spaces” (and this was done in [50]). However, such translation does not
seem to be very reasonable for the inequality (2.5), since the investigation of (2.5)
is already made in [34] in terms of Orlicz spaces, and the results were proved to
be exact (unimprovable). Below we formulate a part of this result.

2.4. Gronwall-type lemma in the Orlicz spaces

Definition 2.3. The class K is the set ofN -functions that satisfy one of the following
equivalent conditions:

+∞∫
lnM(s)
s2

ds = +∞,
+∞∫

ds

M(s)
= +∞,

+∞∫
ds

sM−1(s)
= +∞. (2.7)

Remark 2.4. All elements of K satisfy the Δ2-condition except few for a“patholog-
ical” examples.

Statement 2.5. Let the functions g and ψ be specified in QT and nonnegative,
ψ ∈ L1+ε(QT ), g ∈ KM (QT ), M ∈ K. Then the relation (2.5) implies that
ψ = 0. If M �∈ K then there exist nonnegative functions ψ ∈ L∞(QT ) and
g ∈ L∞(0, T, LM(Ω)) such that (2.5) holds but ψ �≡ 0. �

It is obvious from (2.7) that the class K consists of functions growing faster
than all polynomials. It is clear that, given anyM ∈ K, one can find M1 ∈ K such
that M1 ≺≺ M , so that the conditions of belonging to LM or KM generated by
some M ∈ K are the same.

Example 2.6. Mα(s) = exp(s/ lnα s), Mα ∈ K as α � 1. The corresponding
ω(p) = Sc∞[Mα](p)

ϕ∼ p lnα p. Thus, if we formulate the conditions for g in
the form ‖g‖Lp(QT ) � Cp lnα p, then the Gronwall lemma for (2.5) is valid as
α � 1. It is possible to refine the conditions for M by choosing, for example,
M(s) = exp

( s

ln s lnα ln s

)
, which will produce new logarithms in ω (cf. [79]), etc.

2.5. Uniqueness in terms of ∇⊗ u

Coming back to the problem (2.4), in view of Statement 2.5 we obtain the unique-
ness for the problems (NP), (TF.II) and (TF.III) in the class

∇⊗ u ∈ KΦ(QT ), Φ ∈ K. (2.8)

However, it is usual (in particular, for the reasons mentioned in Subsection 1.3)
to formulate the properties of solutions and classes of uniqueness for the Euler
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equations in terms of the vorticity. In order to do that, we need the properties of
the mapping ω �→ ∇⊗u in the Orlicz spaces. Since these properties are well-known
in Lp, it is convenient to make an abstraction from the nature of an operator and
use extrapolatory methods. If we used the representation of the Orlicz spaces in
the form of the spaces Lω,∞ then these methods would become a tautology, but
this representation is cumbersome and, hence, inconvenient. For the purposes of
the article, it is convenient to use the constructive extrapolatory method developed
in [46] and [47], which consists in the following.

2.6. Extrapolation of operators in Orlicz spaces

Let A be a bounded linear operator in Lp for all p! 1, and its norm ‖A‖L(Lp) �
Cϕ(p). Then, one should calculate the inverse Mellin transform of the function
ϕp(p):

ϕp(p) =

+∞∫
σ

ψ(s)spds (2.9)

(here σ � 0 may be chosen arbitrarily, and the formula (2.9) is extended in some
sense to the case of non-analytical functions ϕ [47]) and use the obtained function
ψ as the kernel of the convolution type integral transform:

Fψ,σ[Φ](v) =

+∞∫
σ

ψ(s)Φ(vs)ds. (2.10)

As a result, it can be argued that A acts boundedly from LM into LΦ for any N -
functions Φ and M linked by the relation M = Fψ,σ[Φ]. In particular, if ϕ(p) = p
then the relation (2.9) (to within ϕ∼ which is insignificant as shown in [47]) gives
ψ(s) = e−s, and the operator (2.10) becomes the operator S which was studied in
[44] and [45]:

S[Φ](v) =

+∞∫
0

e−sΦ(vs)ds. (2.11)

Thus, we obtain the following

Statement 2.7. If the linear operator A has the property ‖A‖L(Lp) � Cp for all
p ! 1 then A ∈ L(LM , LΦ) for all N -functions M and Φ linked by the relation
M = S[Φ], where the operator S is defined in (2.11).

2.7. Uniqueness in terms of vorticity

In the problem under consideration the operator A is the mapping ω �→ ∇ ⊗ u.
The properties of this mapping in Lp are easy to formulate at least in the problems
(NP) and (TF.III) since this is the operator of the problem

rotu = ω, divu = 0; u · n|∂Ω = g0, (2.12)
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where g0 = 0 in the problem (NP), and

g0 =

⎧⎪⎨⎪⎩
0 at Γ0,
g1 at Γ1,
g2 at Γ2

(2.13)

in the problem (TF.III). Let us, for the sake of simplicity, consider below only
singly connected domains Ω. This constraint may be released with the use of a
special technique (see, for example, [55]).

The problem (2.12) in the case g0 = 0 possesses the following properties in
Lp (cf. [75], [76] and [78]):

‖∇⊗ u‖Lr(Ω) � C1r‖ω‖Lr(Ω), r ! 1.

In view of Statement 2.7, this leads to the estimate ‖∇⊗ u‖LΦ(Ω) � C2‖ω‖LM(Ω)

for all pairs Φ, M such that M = S[Φ]. The properties of g1,2 are insignificant for
us, and we may suppose that g0 ∈ L∞(0, T,W 1

∞(∂Ω)). As a result for (2.12), we
can finally write down the estimate

‖∇⊗ u‖LΦ(Ω) � C2‖ω‖LM(Ω) + C3‖g0‖W 1∞(∂Ω), M = S[Φ]. (2.14)

It remains for us to understand which M ’s provide Φ ∈ K if M = S[Φ]. This
problem was solved in [50]:

Statement 2.8. If M = S[Φ], and M satisfies the Δ2-condition, then Φ ∈ K is
equivalent to M ∈ K1, where K1 consists of functions M that satisfy the condition

+∞∫
ln lnM(s)

s2
ds = +∞. (2.15)

Remark 2.9. As follows from Remark 2.4 and the fact that S increases the rate of
increase of functions to which it is applied, the Δ2-condition in Statement 2.8 is
not an additional essential constraint but it only filters the pathological functions
insignificant in applications.

2.8. Final result

Let us sum up Subsections 2.5 and 2.7:

Theorem 2.10. The problems (NP), (TF.II) and (TF.III) cannot have more than
one solution in the class (2.8). In particular, for singly connected domains Ω the
problems (NP) and (TF.III)8 cannot have more than one solution in the class

rotu ∈ L∞(0, T, LM(Ω)), M ∈ K1 (2.16)

(see (2.15)). As usual, the uniqueness of the pressure holds to within an additive
constant.

8The condition g0 ∈ L∞(0, T, W 1∞(∂Ω)) is sufficient in the problem (TF.III), see (2.13).
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3. Additional remarks

3.1. Theorem 2.10 and global existence

Generally speaking, Theorem 2.10 is a conditional result since we cannot guarantee
global existence of solutions in the corresponding classes in the framework of known
results. As far as we know, only two situations are exceptional:
1. The two-dimensional problem (NP): global existence theorem in the class

(2.16) can be easily obtained, as shown in [50], based on the technique of
[76]. This idea is also mentioned in [79]; as a matter of fact, global solvability
of the two-dimensional problem (NP) in the class (2.1) is proved in [76].
Moreover, as it was mentioned in Subsection 1.2, there are global existence
theorems for this problem in wider classes as well [54], [50].

2. As it was mentioned in Subsection 1.4, the two-dimensional problem (TF.III)
was studied in [31] and [32], where the global result was obtained in the sim-
plest case (however, locally in the initial data), in the class rotu ∈ L∞(QT )
inclusively. The similar result in the class (2.16) does not offer any difficul-
ties: it suffices to use the estimate for ω = rotu in the class (2.16) from the
equation

∂ω

∂t
+ u · ∇ω = rotf

(with the use of the technique developed in [34]) instead of the similar esti-
mate of ω in L∞(QT ) used in [31].

It is curious to note that specifically these two types of boundary value problems
(certainly, for any n) admit formulation of the result of Theorem 2.10 in the final
terms of the vorticity.

In other cases we can only argue the following: if the problems (NP), (TF.II)
and (TF.III) have solutions in QT of the classes mentioned in Theorem 2.10, then
these solutions are unique.

3.2. Problem (TF.I)

The problem (TF.I) essentially differs from the others in the fact that the smooth-
ness should be one order higher to provide the uniqueness. This assumption (i.e.,
the higher smoothness) was accepted, e.g., in [77] and [4]. However, global solv-
ability of the two-dimensional problem (TF.I) was proved in [4] in the class rotu ∈
L∞(QT ), but one order higher smoothness was essential in the proof of uniqueness.
It is not clear how to avoid this difficulty. However, the problem (TF.I) is the least
interesting (among other through flow problems) from the physical point of view,
despite the fact that it has historical priority and is the most studied globally
(certainly, only in the two-dimensional case) among other through flow problems,
in the “bad” classes inclusively [77], [4], [69].

3.3. Optimality and comparison of the results

In connection with the Gronwall-type lemma for (2.5) and Statement 2.5 we should
mention that the class K is an extremely wide class where the condition ∇⊗ u ∈
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LM with M ∈ K still provides uniqueness of trajectories of fluid particles, i.e.,
uniqueness of solutions to the Cauchy problem for ODE

dx

dt
= u(t,x), x(0) = x0.

This fact was proved in [34]. A similar result in other terms (namely, in terms of
scales of the spaces Lp, which correspond to the spaces Lω,∞ in our notation) was
obtained in [79] (for solenoidal fields). More details can be found in [50], where
the comparison between the results of [79] and the result of Theorem 2.10 for the
problem (NP) is also made. These results appeared to be equivalent, which, how-
ever, is discovered only a posteriori, with the use of extrapolatory representations
of the Orlicz spaces (as the scales Lω,∞), developed in [48] (see Subsection 2.3).
Moreover, the terms of Theorem 2.10 seem to be more convenient since they need
the verification of only one clear condition (2.15), (2.16). However, the mentioned
equivalence is not surprising since both papers [79] and [34] contain unimprovable
results for the Gronwall-type lemma (which is the basis in the uniqueness result
for the Euler equations), obtained in different terms (the scales of the spaces Lp,
and the Orlicz spaces correspondingly). Thus, the result of Theorem 2.10 is unim-
provable in the framework of the method used here to obtain uniqueness (i.e., with
the use of (2.4)), but there is no other method yet, as noted in [79].

More details about applications of the Orlicz spaces and extrapolatory tech-
niques (used in the paper) to other hydrodynamical problems can be found in our
paper [49].
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On Nonlinear Stability
of MHD Equilibrium Figures

M. Padula

Abstract. We study the problem of equilibrium figures of electro-conducting
fluids. Our first goal is to set correctly the initial boundary value problem
for the equations governing both incompressible and compressible flows of
electrically conducting fluids with unknown free surface. Notice that when the
exterior is a dielectric or a vacuum, attention cannot be confined merely to
the region of the conducting fluid; this represents a crucial point for the well-
posedness problem. The second goal is to study a new criterion of nonlinear
stability of the rest state of a heavy electro-conducting, incompressible or
compressible fluid in a section of horizontal layer with rigid plane bottom,
and upper unknown free boundary in a vacuum. The new criterion proposes
an alternative definition of perturbation, and is deeply related to the unknown
motion of the boundary. The third goal is to prove nonlinear stability, in the
class of global regular solutions, if the system has non-significant magnetic
susceptibility, in absence of surface currents, for large initial data. Kinematic
viscosity, magnetic diffusivity, surface tension are only non-negative.

Mathematics Subject Classification (2000). 76E25, 35M10, 76W05.

Keywords. Magneto-hydrodynamics, well-posedness for compressible and in-
compressible fluids with unknown free boundary, non-linear stability.

1. Introduction

During the second half of the twentieth century, a great number of papers and
books appeared to study mathematical properties of plasmas through the two
models: kinetic [20] and continuum [3], [6], [21], [13]. Also we quote the very
recent paper [12], where a non-relativistic theory for studying thermo-mechanical-
electromagnetic processes in deformable media has been presented, see also [1], [2],
[8], [22] [15] for further bibliography.

One of the most mathematically challenging, and physically crucial points is
the stability problem of equilibrium figures, such as the Tokamak figure plasma
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confinement, or electro-magnetic casting problems, where one meets a match-
ing problem between solutions of Maxwell’s equations in the region occupied by
plasma, and in the region exterior to the plasma. In these cases the fluid doesn’t
tend to conform to external influences, rather it modifies itself as if it had a mind
of its own.

This problem constitutes one of the main research subject for mathemati-
cians and physicists, and remains at the present time still open. We note in such
literature a proliferation of variational stability criteria, that arise from the in-
troduction of special variations. A condition which is sufficient for stability with
regard to a class of variations is not sufficient to drawn any conclusion at all with
regard to stability with respect to another class of variations, cf. [19], [20], there-
fore a different criterion should be used. Moreover, in the study of stability several
different linearizations of the unsteady problem around equilibrium configurations
have been proposed, hence even the definition of a linearized initial value problem
is still unclear.

Let us begin by recalling some papers related to the equilibrium configura-
tions [1], [2], [8], [13], [18], [19], [20], [21], [27], [35]. As a matter of fact, in the
literature of well-posedness of magnetohydrodynamic fluid flows with free surface
there is much confusion, see [15] where the initial value problem is not clearly
formulated, see equations (1.38), (1.39) of Chapter I. Indeed the mathematical
problem of confinement of MHD fluid flows in external insulating media has sev-
eral different formulations, and besides the case in which the surface is assumed
fixed, cf., e.g., [6], [11],[16], [23], [25], [34], [36], [37], [39], [32], [26], the complete
problem with unknown free surface is studied mostly in the linear case cf. [35], [4],
[12], [5], [33], [17], [24]. In most papers linear stability of the rest state is proved
when the magnetic permeability μ of the fluid coincides with that μ0 of vacuum,
i.e., the fluid is a plasma, and in absence of surface currents, see [35].

The analysis here developed is motivated by a criticism of previous ap-
proaches to the problem, see [15], and it brings us to a reformulation of the well-
posedness problem. A physical discussion of the loss of a balance equation for the
total energy arises naturally, cf., Subsection 3.6. Furthermore, we prove nonlinear
stability of an equilibrium figure with respect to large initial perturbations of do-
main, velocity, electric and magnetic fields when the magnetic permeability μ of
the fluid coincides with that μ0 of vacuum, i.e., the fluid is a plasma cf. [35], and
has no surface currents. To our knowledge, the problem of existence of global solu-
tions for the problem as stated here remains at the present time an open problem,
and will be the subject of future work.

On this note, we consider the equations governing electrically conducting,
incompressible and compressible fluid flows in a horizontal layer bounded below
by a rigid dielectric, and above by a free surface in the presence of an isolating
external medium. To simplify the problem we neglect thermal effects, and assume
periodicity on the horizontal variables x∗ and denote by Σ the periodicity cell.
We consider a simple geometry in R3, where we may use cartesian coordinates
R =: {O, x∗ ∈ R2, z ∈ R}, where O belongs to the bottom plane π of the layer,
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z is the vertical axis upward oriented, and with x∗ = xi + yj on π, and i, j,k
the corresponding ortho-normal basis. The entire problem develops in an infinite
vertical strip P , directed along k, and with constant cross section Σ. The fluid is
confined in the bounded section of P between the plane section

π = {(x∗, z) ∈ R3 : x∗ ∈ Σ, z = 0}
and the surface

Γt = {(x∗, z) ∈ R3 : x∗ ∈ Σ, z = ζ(x∗, t)},
where ζ is an unknown scalar function; finally

Ωt = {(x∗, z) ∈ R3 : x∗ ∈ Σ, 0 < z < ζ(x∗, t)}. (1.1)

Below Ωt, in the half-strip

Ω− = {x∗, z : x∗ ∈ Σ; 0 > z > −∞}, (1.2)

there is a perfect insulating rigid bar (dielectric). We add a superscript − to the
functions defined in Ω−. Above Γt, in the half strip

Ω̂t = {x∗, z : x∗ ∈ Σ; ζ(x∗, t) < z <∞} (1.3)

there is a vacuum. We add a superscript .̂ to functions defined in Ω̂t. The basic
rest state is a function of external data. In a vacuum we consider extensions to
P of pressure, density, and velocity defined in Ωt as constants, generally, except
for the density in Ω−, we take the constant to be zero. Since these variables are
discontinuous through Γt and Σ, the motion equations are intended to be written
in the open domains Ω̂t, Ωt, Ω−. If there is a vacuum in Ω̂t, the only solenoidal
field satisfying the Maxwell equation is a constant field Hbk. In this note we have
studied the stability of two basic states, say

Hb = Hbk, Ĥb = Hb
μ

μ̂

L

z
k, H−

b = Hb
μ

μ−
k, model rest state,

Hb = Hbk, Ĥb =
μ

μ̂
Hbk, H−

b = Hb
μ

μ−
k, true rest state,

Hb = const.

The model rest state helps in pointing out the differences between our approach
and the previous ones. The model rest state satisfies the Maxwell’s equations with
the magnetic field non solenoidal at initial time.

For incompressible fluids the unknowns are the velocity u, the pressure p,
the magnetic field H, the height ζ. If in correspondence of zero external forces, a
vertical uniform magnetic field is maintained, there exists the static solution Sb =
{(pb,ub,Hb, ζb)}, with the pressure pb = p, the velocity ub = 0, the magnetic field
Hb = Hbk, the height ζb = L, and with p, Hb, L constants. For compressible fluids
the unknown are the velocity u, the density ρ, the magnetic fieldH, the height ζ. If
in correspondence of potential external forces, a vertical uniform magnetic field is
maintained, there exists the static solution Sb = {(ρb,ub,Hb, ζb)}, with the density
ρb = ρ, the velocity ub = 0, the magnetic field Hb = Hbk, the height ζb = L, and
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with ρ, Hb, L constants. As concrete applications of the stability problem in this
geometry, we refer to electromagnetic casting processes, cf. [5], [10], [32], [33], [25],
[26]1. More general geometries are by no means restrictions, and will be considered
in forthcoming papers.

The plan of the work is the following. In Section 2 we write the equations
and the initial and boundary conditions both for incompressible and compressible
fluids. In Section 3 we derive the energy balance equation in case of large magnetic
susceptibility, and observe that in case of a moving boundary, the contribution to
the time derivative of the total energy is given by mechanical surface tension. In
Section 4 we give an alternative definition of perturbation to a basic flow, and
compare our definition with the previous one given in [4], [24], [26]. Moreover, in
Section 5 we derive a differential equation for the L2 norm of our perturbations.
Let E be the total energy of perturbations, it is worth distinguishing between the
classical and the new definition of perturbation to the magnetic field. Precisely,
assuming zero magnetic susceptibility, and in absence of surface currents, with
standard procedures, using the old perturbations, in the model rest state, it is not
known how to obtain a global estimate in the time for the total energy of pertur-
bation E(t) := E(p,u, H̃, ζ)−E(pb, 0, H̃b, ζb), while using the new perturbations it
is possible to deduce an a priori estimate in time of E(t) in terms of initial data;
in particular nonlinear stability follows. We end the paper with some concluding
remarks.

2. Initial boundary value problem

In this section we set the indefinite equation of magnetofluiddynamics both for
incompressible and compressible fluids.

We begin by recalling the Maxwell equations in the whole space R3:

μ∂tH = −∇×E,

j = ∇×H,
(2.1)

where j is the current density, H the magnetic field in the fluid, E the electric
field. Notice that H is related to E by

E =
1
σ
∇×H+ μH× u, (2.2)

the constants μ > 0 and σ > 0 are the magnetic permeability and the electric
conductivity. If the fluid is highly conducting (σ → ∞), the magnetic viscosity
(dissipation) disappears. This minor role to which E is reduced, is peculiar to
hydromagnetics where displacements currents are neglected. Moreover in a vacuum
it is u = 0, ∇ × H = 0, σ = 0, and relation (2.2) fails, hence in a vacuum the
electrical field is an independent field.

1It has been shown in [14] that the surface tension must be a function of temperature, thus more
elaborate computations arise. This is not considered in this paper.
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2.1. Incompressible fluids in Ωt

Let us consider a layer of fluid Ωt as defined in the introduction. We add the
subscript ∗ to denote quantities calculated on π. The unit normal n has components
(−∇∗ζ, 1)/

√
g, where g = 1 + |∇∗ζ|2 is the metric element.

The equations governing magnetohydrodynamical, incompressible fluid flows
are:

∂tu+ u · ∇u = ∇ ·T(u, p) +∇ ·T(H) +∇U,

μ∂tH = − 1
σ
∇× (∇×H)− μ∇× (H× u),

∇ · u = 0, x ∈ Ωt, t ∈ (0,∞),

(2.3)

where Ωt, u, p, H are the unknown domain, velocity, pressure, and magnetic field,
while ∇U is the potential force. To (2.3) we add the state equations

T(u, p) = −pI+ νS(u), p = p(x, t),

T(H) = μ
(
− H

2

2
I+H⊗H

)
, x ∈ Ωt, t ∈ (0,∞),

(2.4)

where ν > 0 is the kinematic viscosity, and S(u) = ∇u+∇uT .
In (2.3) ∇ ·T(H) denotes the Lorentz force

∇ ·T(H) = μj×H = μ(∇×H)×H.

2.2. Compressible fluids in Ωt

The equations governing magnetohydrodynamical, compressible fluid flows are:

∂tρ+ u · ∇ρ = −ρ∇ · u,
ρ∂tu+ ρu · ∇u = ∇ ·T(u, p) +∇ ·T(H) + ρ∇U,

μ∂tH = − 1
σ
∇× (∇×H)− μ∇× (H× u),

∇ ·H = 0,

(2.5)

where Ωt, u, ρ, H are the unknown velocity, density, and magnetic fields, while
∇U is the potential force.

In (2.5) T(H) is given by (2.4)2, while T(u, p) has the state equations

T(u, p) = −pI+ 2νS(u), p = p(ρ), (2.6)

where

νS(u) = λ1(∇u+∇uT ) + λ2∇ · uI,

and λ1, and λ2 are the constant shear and bulk viscosity coefficients.
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2.3. Equations in the exterior to Ωt

We notice that systems (2.3), (2.5) are not sufficient to solve the problem when
the fluid is embedded in an insulating medium, such as a vacuum. Actually, since
the vacuum and the bottom are perfect insulators, we must consider as unknown
the magnetic field H both inside and outside the strip containing Ωt. In (1.1),
(1.2), (1.3) we have defined the fluid domain Ωt, the rigid dielectric lower strip
Ω−, and the empty upper strip Ω̂t. Also we put a .̃ to denote functions defined
on Ω̃t = Ωt ∪ Ω− ∪ Ω̂t. We recall that outside Ωt the region is insulating, either
vacuum or a rigid dielectric. In the vacuum there is zero material density, and we
assume û = 0, −p̂ = 0, in the dielectric we set u− = 0, p− = 0. We assume the
equation of motion to be satisfied. Then for both compressible and incompressible
fluids the vector Ĥ must satisfy the system

(∇×H−)×H− = 0, ∇ ·H− = 0,

E− =
∇×H−

σ−
,

μ−
∂

∂t
H− +∇×E− = 0, x ∈ Ω−, t ∈ (0,∞),

(∇× Ĥ)× Ĥ = 0, ∇ · Ĥ = 0,

μ̂
∂

∂t
Ĥ+∇× Ê = 0, x ∈ Ω̂t, t ∈ (0,∞).

(2.7)

Equations (2.7) contain all equations of motion for the fluid and for the magnetic
field as well as in the exterior region Ω− ∪ Ω̂t.

2.4. Boundary conditions

To study the boundary conditions we introduce some preliminary geometrical for-
mulas on the surface Γt. Let us consider a layer of fluid over a fixed plane π. On
π we choose the coordinates x∗ = (x1, x2) and denote by z the axis orthogonal to
π. We assume that the deformable surface may be represented during all times in
cartesian coordinates by the equation

ζ = ζ(x∗, t) = L+ η(x∗, t), L > 0.

We add the subscript ∗ to denote quantities calculated on π. In the sequel, we
shall denote by Σ the periodicity cell given by Ω̃t ∩ π. The unit normal n has
components (−∇∗ζ, 1)/

√
g, where g = 1+ |∇∗ζ|2 is the metric element. We recall

that on Γt the two vectors

(t1, t2) := ∇∗(xi+ yj+ ζk) ≡ (i + ∂xηk, j+ ∂yηk)

represent two linearly independent, non-orthogonal, non-unitary vectors tangent
to Γt, with components t1 = (1, 0, ∂xη), t2 = (0, 1, ∂yη), i = 1, 2. Furthermore, the
unit normal vector n directed outward to Ωt, is given by

n = − 1√
g
t1 × t2, g = |t1 × t2|2 = 1 + |∇∗η|2,
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and the doubled mean curvature K(ζ) is given by

K(ζ) = K(η) = −∇ · n = ∇∗ ·
( 1√
g
∇∗η

)
.

For the velocity of fluid on the material surface we get

∂η

∂t
= u · n′, n′ =

√
g n, on Γt,

u = 0 on Σ.
(2.8)

The boundary conditions on H depend on electrical properties of the exterior do-
mains Ω̂t, Ω−, and of the material boundary Γt. It is customary to distinguish
between the magnetic field H, and the induced magnetic field B = μH, where μ
is the magnetic permeability of the medium. In the sequel we assume μ is con-
stant, and we use only the magnetic field H. We suppose Ω̂t, Ω− non-electrically
conducting, and denote by −n its normal unit vector. For a vector field v we set

vn := v · n, vτ = v − vnn. (2.9)

The normal and tangential components of H, E satisfy the following boundary
conditions:

μHn = μ̂Ĥn, Hτ = Ĥτ , onΓt,(
μH× u+

1
σ
∇×H

)
τ
= Êτ + jS , onΓt

μHn = μ−H−,n, Hτ = H−
τ , onπ,(

μH× u+
1
σ
∇×H

)
τ
= E−τ + jS , onπ,

(2.10)

where jS denote surface currents tangent to Γt, cf. [22, Section 53]. Furthermore
we have

u = 0 on π.

T(u, p) · n+T(H) · n = kK(ζ)n +T(Ĥ) · n, onΓt, (2.11)
where k denotes the mechanical surface tension. Notice that in the vacuum region
Ω̂t the exterior velocity û and the pressure p̂ are zero. Furthermore, (2.11)2 can
equivalently be written as

T(u, p) · n = kK(ζ)n −
[
T(H̃)

]
· n, onΓt, (2.12)

where[
T(H̃)

]
(ζ) = lim

x,y→ζ

(
T(H)(x) − T(Ĥ(y)

)
, x ∈ Ωt, y ∈ Ω̂t, ζ ∈ Γt.

If no confusion arises, using the jump symbol [ · ] we omit the term (ζ).
Finally, to have a uniquely determined exterior magnetic field Ĥ, cf., [35], we

set
lim
|x|→∞

Ĥ(x) = Ĥ∞, lim
|x|→∞

H−(x) = H−
∞.
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In the sequel Ĥ∞ will be zero for Ĥ variable, will be μ/μ̂ for Ĥ constant, and
H−
∞ will be μ/μ−. Also we shall continue to assume jS �= 0, μ �= μ̂ for the sake of

generality.

2.5. Initial conditions

To deal with unsteady incompressible motions, to (2.3), (2.7) we add the initial
conditions:

ζ(x∗, 0) = ζ0(x), x ∈ Σ, (2.13)

Ω0 := {x∗, z : x∗ ∈ Σ, 0 < z < ζ(x∗, 0) = ζ0(x∗)},
Ω̂0 := {x∗, z : x∗ ∈ Σ, ζ(x∗, 0) = ζ0(x∗) < z < ∞},

u(x, 0) = u0(x), x ∈ Ω0,
H(x, 0) = H0(x), x ∈ Ω0,
Ĥ(x, 0) = Ĥ0(x) x ∈ Ω̂0,

H−(x, 0) = H−
0 (x), x ∈ Ω−.

(2.14)

To deal with unsteady compressible motions, to (2.5), (2.7) we add the initial
conditions:

ζ(x∗, 0) = ζ0, x∗ ∈ Σ,

ρ(x, 0) = ρ0(x), x ∈ Ω0,
u(x, 0) = u0(x), x ∈ Ω0,

H(x, 0) = H0(x), x ∈ Ω0,
Ĥ(x, 0) = Ĥ0(x), x ∈ Ω̂0,

H−(x, 0) = H−
0 (x), x ∈ Ω−.

(2.15)

Conditions at infinity are

H∞ = lim
|z|→∞

H̃, E∞ = lim
|z|→∞

Ẽ.

Since H∞ is parallel to k, we can state

k×E ·H → 0, as |z| → ∞.

3. Energy identity

The aim of this section is to furnish an energy estimate both for incompressible
and compressible fluids.
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3.1. Magnetic field

We first obtain separately an energy estimate for the magnetic field H̃.
Let us notice that since the domain is unbounded, in general the energy is

not finite, and we need to introduce some cutoff energies, as follows:

Ez(Ĥ) :=
∫
Σ

∫ z

ζ

μ̂Ĥ2

2
dzdx∗ =:

∫
Ω̂tz

μ̂Ĥ2

2
dzdx∗, (3.1)

Ez(H−) :=
∫
Σ

∫ 0

z

μ−(H−)2

2
dzdx∗ :=

∫
Ω−

z

μ−(H−)2

2
dzdx∗ = Ez(H−

0 ).

Notice that in (3.1) the first symbol := defines the cutoff energies, while the second
=: defines the cutoff domains.

To derive energy estimates for the magnetic field, we first multiply by H
(2.5)3 and integrate over Ωt, by the Reynolds transport theorem, and recalling
that the normal to ∂Ωt is n, we get

d

dt

∫
Ωt

μH2

2
dx− μ

2

∫
Γt

H2 undS =
∫
Γt

n×
(
u×H− 1

σ
∇×H

)
·HdS

+
1
σ

∫
π

k× (∇×H) ·H dx∗ −
1
σ

∫
Ωt

(∇×H)2dx− μ
∫
Ωt

(∇×H) · (H× u) dx.

(3.2)

Thus we multiply (2.7)3 by H− and integrate over Ω−z , by the Reynolds transport
theorem, and recalling that the exterior normal to ∂Ω−z on π is k, taking into
account periodicity on the lateral surface, we obtain

d

dt

∫
Ω−

z

μ−(H−)2

2
dx =

∫
π

k×E− ·H−dx∗
∣∣∣
0
+

∫
Σ

k×E− ·H−dx∗
∣∣∣
z
. (3.3)

Next we multiply (2.7)5 by Ĥ and integrate over Ω̂tz , by the Reynolds trans-
port theorem, and recalling that the normal to ∂Ω̂tz is −n, taking into account
periodicity on the lateral surface, we obtain

d

dt

∫
Ω̂tz

μ̂Ĥ2

2
dx+

μ̂

2

∫
Γt

Ĥ2 undS =
∫
Γt

n× Ê · ĤdS −
∫
Σ

k×E− ·H−dx∗
∣∣∣
z
,

(3.4)

where
√
g un = ∂tζ =

∂η

∂t
denotes the velocity of points at boundary Γt.

Let us now observe that the boundary condition (2.10)3 yields∫
Γt

n×
(
μu×H− 1

σ
∇×H

)
·HdS +

∫
Γt

n× Ê · ĤdS

= −
∫
Γt

jS ·Hτ dS = −
∫
Γt

jS · Ĥτ dS =: BS .

(3.5)

Remark 3.1 It is important to notice that, since jS is given, BS(t) involves only
tangential components of H.
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Remark 3.2 Concerning the time derivative of magnetic energy in Ω−z , and Ω̂tz we
assume that it is summable in the limit z → ±∞.

Adding (3.2), (3.3), (3.4), using the boundary conditions (2.10)4,5 and (3.5)
we get, in the limits z → ±∞, the wanted energy equation for a magnetic field:

d

dt

μ̃

2

∫
Ω̃t

H̃2dx− 1
2

∫
Γt

[
μ̃H̃2

]
undS

= − 1
σ

∫
Ωt

(∇×H)2dx+ BS + μ
∫
Ωt

(∇×H) · (H× u) dx .
(3.6)

We set Ω̃z = Ω̂tz ∪ Ω−z , then

E(H̃) = lim
|z|→∞

μ̃

2

∫
Ω̃z

H̃2 dx− μ̃
2

∫
Ω̃bz

H̃2
b dx ,

D(H̃) : = D(H) : =
1
σ

∫
Ωt

(∇×H)2dx .
(3.7)

It holds that
d

dt
E(H̃) =

d

dt
Ez(H̃) , (3.8)

d

dt
E(H̃) + D(H̃) =

1
2

∫
Γt

[
μ̃H̃2

]
un dS + BS − μ

∫
Ωt

(∇×H) · (H× u) dx .

(3.9)

3.2. Incompressible fluids

In this subsection we derive a balance equation for the total energy of the system
governing incompressible fluid flows. Let us multiply (2.3)1 times u, and integrate
over Ωt; using Reynold’s transport theorem, and recalling that u is solenoidal we
obtain

d

dt

∫
Ωt

(u2

2
− U

)
dx = −ν

2

∫
Ωt

|S(u)|2dx+ μ
∫
Ωt

u · (∇×H)×H dx

+
∫
Γt

u ·T(u, p) · n dS.
(3.10)

Furthermore we have∫
Γt

u ·T(u, p) · n dS =
∫
Γt

(
kK(η)n + u · [T(Ĥ)−T(H)] · n

)
dS

=
∫
Γt

(
kK(η)n −

[
T(H̃)

]
· n

)
dS.

(3.11)

Moreover since the external pressure is constant, and u is solenoidal we get∫
Γt

p̂n · u dS = 0. (3.12)
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Also from (2.8), and the definition of K we get∫
Γt

K(η)u · ndS = − d
dt

∫
Σ

√
1 + |∇∗η|2 dx∗. (3.13)

Notice that
1
2

∫
Γt

[
μ̃H̃2

]
un dS −

∫
Γt

[
T(H̃)

]
· n dS =

[
μ̃
] ∫

Γt

Ĥ2
τ un dS. (3.14)

Adding (3.10), (3.9), and using boundary condition (2.10)3, and identities
(3.14), (3.13), we get

d

dt

[∫
Ωt

(u2

2
− U

)
dx+ E(H̃) + k

∫
Σ

√
1 + |∇∗η|2 dx∗

]
= −ν

2

∫
Ωt

|S(u)|2dx−D(H̃) + BS +
μ̂

μ

[
μ̃
] ∫

Γt

Ĥ2
n un dS,

(3.15)

which can be rewritten as
d

dt

[∫
Ωt

(u2

2
− U

)
dx+

μ̃

2

∫
Ω̃t

H̃2 dx + k
∫
Σ

√
1 + |∇∗ζ|2dx∗

]
+
ν

2

∫
Ωt

|S(u)|2dx+ 1
σ

∫
Ωt

(∇×H)2dx = BS(t) +
[
μ̃
]
M

(3.16)

where

M =
μ̂

μ

∫
Γt

Ĥ2
n un dS.

We set

E(t) =
∫
Ωt

(u2

2
− U

)
dx+ E(H̃) + k

∫
Σ

√
1 + |∇∗ζ|2dx∗

= E(u) + Π(ζ) + E(H̃) + E(ζ),
(3.17)

D(t) = ν
2

∫
Ωt

|S(u)|2dx+ 1
σ

∫
Ωt

(∇×H)2dx = D(u) +D(H).

Here we have introduced the potential energy

Π(ζ) = −
∫
Σ

∫ ζ

0

U dz dx∗.

With notations (3.17), equation (3.16) is written

d

dt
E(t) +D(t) = BS(t) +

[
μ̃
]
M. (3.18)

Remark 3.3 Equation (3.18) furnishes the wanted balance equation for the total
energy. It states that the variations of the total energy arise from surface currents,
and from a combination due to the variation of free surface with the tangential
component of H through the magnetic susceptibilities.
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3.3. Model rest state Sb

We write the model rest state, still called rest state, for a horizontal layer of a
heavy incompressible fluid. The model rest state is not divergence free. The basic
domain Ωb occupied by the fluid is a rectangular parallelepiped having as basis
below a horizontal rigid basis Σ and above the rectangle

ΣL := {(x∗, z) : x∗ ∈ Σ, z = L}.
The two basic domains exterior to Ωb are two vertical half channels Ω̂b, Ω− with
rectangular section Σ. Let∇U = −fk, with f the positive constant gravity acceler-
ation, and jS be given. We know that there exists a basic equilibrium configuration
Sb = {ub, pb, H̃b, ζb}, in Ω̃b = Ωb ∪ Ω̂b ∪ Ω− with

ũb = 0, in Ω̃b

ζb = L, inΣ
pb = − f z, inΩb,

p̂b = const., in Ω̂b ∪ Ω− (3.19)
Hb = Hbk, Eb = 0, in Ωb

Ĥb = Hb
μL

μ̂ z
k, Êb = −jS = 0, in Ω̂b

H−
b = Hb

μL

μ− z
k, E−b = 0, in Ω−,

and with Hb constant, as basic flow.
Also for the rest state we observe that the energy of the magnetic field is not

finite in Ω̂b, and Ω−, thus we use the cutoff energies introduced by (3.1), and we
shall work with

Êbz(t) =
∫
Ω̂bz

μ̂Ĥ2
b

2
dzdx∗ = Êbz(0),

E−bz(t) =
∫
P−z

μ−(H−)2b
2

dzdx∗ = E−bz(0),

also the dissipation is given by (3.17)2. In this way, the energy, and the dissipation
in the basic state are given by

Ẽbz(t) =
∫
Ω̃bz

μ̃H̃2
b

2
dx+

(f L2
2

+ k
)
|Σ| = Ẽbz(0),

Db =
1
σ

∫
Ωb

(∇×Hb)2dx = 0.

Also, jS is tangential to the boundary, in particular, since Γb is parallel to Σ, jS
is orthogonal to k, and it holds the trivial relation∫

Γb

jS · Ĥb dS =
∫
Σ

jS · kHbdx∗
∣∣∣
0
= 0.
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We remark that, under assumptions jS = 0, μ− μ̂ = 0, (3.18) reduces to

d

dt
Eb(t) +Db(t) = 0. (3.20)

3.4. True rest state Sb

All calculations given in the previous subsection hold true except the fact that
Ĥb = Hb = const. Here we write the differences.

Hb = Hbk, Eb = 0, Ĥb = Hb
μ

μ̂
k, Êb = Êb(jS) = 0, (3.21)

Hb constant, as basic flow. Again the magnetic energy is not finite in Ω̂t, and
Ω−, therefore we shall adopt all definitions previously introduced. Also, for plane
horizontal surface π it holds the trivial relation∫

Γt

jS · Ĥb dS =
∫
Σ

jS · kHbdx∗
∣∣∣
0
= 0.

We remark that, assumptions jS = 0, μ− μ̂ = 0, and the property (3.18) up
to a constant,

d

dt
Ebz(t) =

d

dt
Eb(t) = 0,

yields (3.20).

3.5. Compressible fluids

To obtain the energy identity we multiply (2.5)2 by u, and integrate over Ωt, using
the Reynolds transport theorem, utilizing the continuity equation, cf. [29] we get

d

dt

∫
Ωt

ρ
u2

2
dx = −ν

2

∫
Ωt

|S(u)|2dx +
∫
Ωt

ρ∇U · udx

+
∫
Ωt

p(ρ)∇ · udx+ μ
∫
Ωt

u · (∇×H)×H dx+
∫
Γt

u ·T(u, p) · n dS.
(3.22)

Set ψ(ρ) =
∫ ρ p(s)

s2 ds. Multiply by p(ρ)/ρ (2.5)1 and integrate over Ωt, to get

d

dt

∫
Ωt

ρψ(ρ)dx = −
∫
Ωt

p(ρ)∇ · udx. (3.23)

Adding (3.22) and (3.23), employing the Reynolds transport theorem, (2.12)
and (3.13) we obtain

d

dt

{∫
Ωt

[
ρ
u2

2
+ ρψ(ρ)− ρU

]
dx+ k

∫
Σ

√
1 + |∇∗ζ|2dx∗

}
(3.24)

= −ν
2

∫
Ωt

|S(u)|2dx+ μ
∫
Ωt

u · (∇×H)×H dx−
∫
Γt

u ·
[
T(H̃)

]
· n dS.
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Adding (3.24) to (3.9), using the identity (3.14), and operating as in the
previous section we get

d

dt

{∫
Ωt

[
ρ
u2

2
+ ρψ(ρ) + f z

]
dx+

μ̃

2

∫
Ω̃t

H̃2dx+ k
∫
Σ

√
1 + |∇∗ζ|2dx∗

}
= −ν

2

∫
Ωt

|S(u)|2 dx− 1
σ

∫
Ωt

∇×H2dx+ BS(t) +
[
μ̃
]
M. (3.25)

Clearly (3.25) cannot provide a control in time for the L2 norms of solutions
because the terms on the boundary have no definite sign. We remark that the
boundary terms coincide with those deduced in the case of incompressible fluids.

Set

E =
∫
Ωt

[
ρ
u2

2
+ ρψ(ρ) + f z

]
dx+

μ̃

2

∫
Ω̃t

H̃2dx+ k
∫
Σ

√
1 + |∇∗ζ|2dx∗,

D(t) =
ν

2

∫
Ωt

|S(u)|2dx + 1
σ

∫
Ωt

∇×H2dx. (3.26)

With notation (3.26), (3.25) furnishes again (3.18), see Remark 3.2.
In particular, under assumptions js = 0, μ− μ̂ = 0, (3.25) reduces to

d

dt
E(t) = −D(t). (3.27)

Equation (3.27) implies that the total energy is not increasing in time. Hence (3.27)
furnishes an “a priori estimate” for the solution for all initial data. We recall that
E(t) is equivalent, up to a constant, to the L2 norm of perturbations u, ρ − ρb,
η := ζ − L, if dp

dρ > 0, k > 0. To prove this statement it is enough to follow the
lines of [29].

3.6. Model rest state Sb

We write the rest state for a horizontal layer of heavy compressible fluid. Let
the gravity force ∇U = −fk, with f the positive constant gravity acceleration,
and jS be given. We know that there exists a basic equilibrium configuration
Sb = {ub, ρb, H̃b, ζb}, with

ub = 0, ψ(ρb) = − f z + c, ζb = L,
∫
Ωb

ρbdx =M,

Hb = Hbk, Eb = 0, in Ωb,

Ĥb = Hb
μL

μ̂ζ
k, Êb = Êb(jS), in Ω̂b,

H−
b = Hb

μL

μ− z
k, E−b = 0, in Ω−,

(3.28)

with ψ(ρb) =
∫ ρb p′(s)

s ds.
The energy Eb is not finite, thus we use the definitions of cut-off energies Êbz ,

E−bz of Subsections 3.3, 3.4.
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The energy and the dissipation in the basic state are given by

Ẽbz(t) =
∫
Ω̃bz

ρbψ(ρb) dx+
∫
Ω̃bz

μ̃H̃2
b

2
dx+

(f L2
2

+ κ
)
|Σ| = Ẽbz(0),

Db =
1
σ

∫
Ωb

(∇×Hb)2dx = 0.

3.7. True rest state Sb

All calculations given in the previous subsection hold true except the fact that
Ĥb = Hb = const. All remarks made in subsection “True rest state” continue to
hold. There are no further remarks.

3.8. Irreversible processes

Of course (3.18) is not sufficient to provide a control for the L2 norms of solutions,
because in general the right-hand side contains the unknown functions and has no
definite sign. More precisely the term

[
μ̃
]
M takes into account the irreversibility

of the process, see [9]. It is trivial that this term is not zero only when the sharp
discontinuity surface Γt is moving. Therefore we make the following assumption:
There exists a function α = α(x′, ζ(x′, t), t) coming from α = α([μ̃],Hn) such that

− μ̃
μ

∫
Γt

[
μ̃
]
H2

n un = −
d

dt

∫
Γt

αdS. (3.29)

We call the coefficient α responsible for variations of S, in measure and in time,
the magnetic surface coefficient.

Notice that [μ̃] has no definite sign!
We stress that in Subsections 3.2, 3.5 the energy identity has been obtained

in the general case.

4. Perturbations

In order to give a stability result for rest configuration of MHD fluids, we control,
in the energy norm, the difference between the basic equilibrium configuration
and the unsteady motion. To this end, we are led to define the perturbations to an
equilibrium configuration. We give here two different definitions of perturbation
to magnetic H̃b, and electric Ẽb in Eulerian coordinates.

As we shall show, the definition of perturbation is far to be trivial when the
surface is unknown. Our approach starts from a criticism of previous definitions
and shows that the perturbations ϕ, ψ to H̃b, Ẽb, usually used in previous liter-
ature, don’t satisfy the boundary conditions (2.10) even when it is μ = μ̂ and in
the linear approximation. Nevertheless conditions (2.10) appear in some papers
on linear stability theory, e.g., [38]. Next we propose an alternative definition of
perturbation. For the sake of generality, our definition of perturbation will be given
for different magnetic permeabilities in the fluid and in a vacuum cf. [33], [26], [4,
Section 5.2].
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We explicitly remark that, in the linear case, stability results are in-
dependent of definition of perturbations. The difference between the
perturbation fields for H̃b, Ẽb becomes sensible in the nonlinear case
only.
In this section before introducing our definition h̃ of a perturbation to an

electromagnetic field, we recall some previous definitions of perturbations ϕ, ψ to
magnetic and electric fields, [35], [4], and write the equations satisfied by these
fields ϕ, ψ.

4.1. Definition I: perturbation ϕ̃ to the rest state

Let there be given the domains Ωb, Ω̂b, Ω−, and the fields Hb = c constant, Ĥb

defined on Ωb, and Ω̂t, respectively. In order to define the perturbation to the field
H̃b it is customary to extend to Ω+ = P −Ω− the fields Hb, Ĥb in a natural way.

Here given a vector w defined in Ωt or Ω̂t with the exponent ∗ we denote the
extension of w in the whole P . Now, given the decomposition of P as Ω−, Ωt, Ω̂t,
we set

H(x∗, z, t) = H∗
b + ϕ(x∗, z, t), (x∗, z, t) ∈ Ωt × (0,∞),

Ĥ(x∗, z, t) = Ĥ∗
b(z) + ϕ̂(x∗, z, t), (x∗, z, t) ∈ Ω̂t × (0,∞),

H−(x∗, z, t) = H−
b + ϕ−(x∗, z, t), (x∗, z, t) ∈ Ω− × (0,∞),

E(x∗, z, t) = E∗b + ψ(x∗, z, t), (x∗, z, t) ∈ Ωt × (0,∞),

Ê(x∗, z, t) = Ê∗b(z) + ψ̂(x∗, z, t), (x∗, z, t) ∈ Ω̂t × (0,∞),

E−(x∗, z, t) = E−b + ψ−(x∗, z, t), (x∗, z, t) ∈ Ω− × (0,∞).

(4.1)

Notice that H−
b , E

−
b are not extended because the domain is fixed.

To compute boundary conditions of ϕ on Γt one starts from (2.10)1,2,3.
Developing vector and scalar products, one obtains on Γt,

ϕτ (x∗, ζ, t) +H∗
b,τ (ζ) = ϕ̂τ (x∗, ζ, t) + Ĥ∗

b,τ (ζ),

μϕn(x∗, ζ, t) + μH∗b,n(ζ) = μ̂ϕ̂n(x∗, ζ, t) + μ̂Ĥ∗b,n(ζ),

ϕτ (x∗, 0, t) +Hb,τ (0) = ϕ−τ (x∗, 0, t) +H−
b,τ (0).

(4.2)

Definition I: perturbation ϕ̃ to the model rest state.
For the model rest state, recalling the expression of the basic magnetic field,

ϕτ = ϕ̂τ +
∇∗η√
g
Hb

(μL
μ̂ζ

− 1
)
,

μϕn = μ̂ϕ̂n −
μ√
g
Hb
η

ζ
,

ϕτ (x∗, 0, t) = ϕ−τ (x∗, 0, t),

μϕn(x∗, 0, t) = μ−ϕ−n (x∗, 0, t),

n− = k, on π

(4.3)
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and the expected continuity conditions for ϕ on Γt are substituted by the jump
conditions (4.3)2. We notice that

(Ĥb −Hb)(ζ) = Hb

(μL
μ̂ζ

− 1
)
= Hb

( L
μ̂ζ
(μ− μ̂)− η

ζ

)
,

(μ̂Ĥb − μHb)(ζ) = μHb

(L
ζ
− 1

)
= −μHb

η

ζ

hold and the coefficient of Hb in (4.3)1 besides the term
L
μ̂ζ (μ− μ̂), which vanishes

for μ = μ̂, contains the term−∇∗η η
ζ which is at least quadratic in the perturbation.

Also the last term μHb
η
ζ in (4.3)2, is linear in η, and has no definite sign. Sometimes

these boundary conditions are not used, cf. [38]. An analogous result holds in Ω−

and we omit it. Consequences of this choice in the energy computation will be
given in the next section.

Notice that

ϕz = ϕ · k = ϕ ·
(
k · nn+ k · τ τ

)
=

1√
g
ϕn +

1√
g
∇∗η · ϕτ ,

ϕ̂z = ϕ̂ · k = ϕ̂ ·
(
k · nn+ k · τ τ

)
=

1√
g
ϕ̂n +

1√
g
∇∗η · ϕ̂τ .

(4.4)

For the next computations it will be useful to compute the difference ϕz− ϕ̂z ; then
it holds that

ϕz − ϕ̂z =
ϕ̂n√
g

( μ̂
μ
− 1

)
− Hb

g

η

ζ
+
Hb

g

(μ
μ̂

L

ζ
− 1

)
|∇∗η|2. (4.5)

Definition I: perturbation ϕ̃ to the true rest state.
All notations introduced in previous subsections still hold for the true rest state.
Recalling the expression of the basic magnetic field, we deduce

ϕτ = ϕ̂τ +
∇∗η√
g
Hb

(μ
μ̂
− 1

)
,

μϕn = μ̂ϕ̂n,

(4.6)

and the expected continuity conditions on ϕ on Γt are replaced by the jump
conditions (4.6)3. We notice that the coefficient of Hb in (4.6)1, linear in η contains
the term (μ−μ̂)

μ̂ , which vanishes for μ = μ̂. Sometimes these boundary conditions

2In the linear case, for general field Φ these equations are reduced to equations on Γb using the
expansion of functions Φ(x∗, z, t) in terms of the normal direction to Γt, cf. [4, Section 5.2],

Φ(x∗, ζ, t) = Φ(x∗, L, t) + n · ∇Φ(x∗, z, t)
∣∣∣
z=ζ

η.

3In linear case, for general field Φ these equations are reduced to equations on Γb using the
expansion of functions Φ(x∗, z, t) in terms of the normal direction to Γt, cf. [4, Section 5.2],

Φ(x∗, ζ, t) = Φ(x∗, L, t) + n · ∇Φ(x∗, z, t)
∣∣∣
z=ζ

η.
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are not used, cf. [38]. Consequences of this choice in the energy computation will
be given in the next section.

In the wake of the model rest state, by (4.4) we compute the difference ϕz−ϕ̂z.
It holds that

ϕz − ϕ̂z =
ϕ̂n√
g

( μ̂
μ
− 1

)
+
Hb

g

(μ
μ̂
− 1

)
|∇∗η|2. (4.7)

Perturbation equations for the magnetic field to both model and true rest state.
Of course in case η = 0 the usual definition of perturbation is recovered.

We end this subsection by writing the perturbation equations for the mag-
netic field ϕ̃:

μ
∂ϕ

∂t
= −∇×

(
(μHb + μϕ)× u+

1
σ
∇× ϕ

)
, x ∈ Ωt

μ̂
∂ϕ̂

∂t
= −∇× ψ̂, x ∈ Ω̂t,

μ−
∂ϕ−

∂t
= − 1

σ−
∇×∇× ϕ−, x ∈ Ω−.

(4.8)

4.2. Definition II of perturbation h̃ to H̃b, Ẽb

Our aim is a definition of perturbed fields, say h̃, ẽ, to H̃b, Ẽb satisfying the
boundary conditions (2.10) in the case μ = μ̂. We achieve this goal by introducing

A1

A2

A3

A4L

Figure 1

the following four sub-domains functions of time, see Fig. 1:

A1(t) = {x ∈ R3 : x ∈ Ωt ∩ Ωb};
A2(t) = {x ∈ R3 : x ∈ Ω̂t ∩ Ω̂b};
A3(t) = {x ∈ Ω̂t : 0 < z < L};
A4(t) = {x ∈ Ωt : z > L}.
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We remark that Fig. 1 is a simplified version of reality. Actually we shall have a
denumerable number of domains Aji, j = 1, . . . , 4 i ∈ N, with analogous definitions
as those already given. It holds

Aj = ∪i∈NAji, j = 1, . . . , 4.

The set Σ in the plane z = 0 is divided in two parts:

Σ−,t = {x∗ ∈ Σ : ζ(x∗, t) < L},
Σ+,t = {x∗ ∈ Σ : ζ(x∗, t) > L}.

The free boundary Γt is given by the union of the following two subsets:

Γt = {x∗, ζ ∈ Γt : x∗ ∈ Σ−,t} ∪ {x∗, ζ ∈ Γt : x∗ ∈ Σ+,t} = Γ+t ∪ Γ−t .

The boundaries of the subsets Ai, i = 1, . . . , 4 are constituted by the union of the
boundaries Γb and Γt as follows.

∂A1(t) = {(x∗, L) : x∗ ∈ Σ+,t} ∪ {(x∗, ζ) : x∗ ∈ Σ−,t} =: ∂A1(t)L ∪ ∂A1(t)η;
∂A2(t) = {(x∗, ζ) : x∗ ∈ Σ+,t} ∪ {(x∗, L) : x∗ ∈ Σ−,t} =: ∂A2(t)η ∪ ∂A2(t)L;
∂A3(t) = {(x∗, ζ) : x∗ ∈ Σ−,t} ∪ {(x∗, L) : x∗ ∈ Σ−,t} =: ∂A3(t)η ∪ ∂A3(t)L;
∂A4(t) = {(x∗, L) : x∗ ∈ Σ+,t} ∪ {(x∗, ζ) : x∗ ∈ Σ+,t} =: ∂A4(t)L ∪ ∂A4(t)η.

Boundaries of the sets Ai are oriented with normal N directed toward the exterior
of Ai. Concerning the normals, denoting by k the normal to the plane oriented
toward the vacuum region, and by n the normal to Γt oriented toward the vacuum
region, we have

N = k normal to ∂A1(t)L, N = n normal to ∂A1(t)η;

N = −n normal to ∂A2(t)η, N = −k normal to ∂A2(t)L;

N = −n normal to ∂A3(t)η, N = k normal to ∂A3(t)L;

N = −k normal to ∂A4(t)L, N = n normal to ∂A4(t)η.

(4.9)

We are now in the position to define the perturbation field h̃ in each domain Ωt,
Ω̂t. Here the basic electro-dynamical fields Hb, Ĥb, Êb, are not extended in P , and
are just defined in Ωb, Ω̂b respectively.

We define the perturbation to the magnetic field as

h̃(x, t) =

{
h(x, t) x ∈ Ωt,

ĥ(x, t) ∈ Ω̂t.
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Using this natural definition of h̃ we define H̃ as4

H̃(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hb + h(x, t) x ∈ A1(t),
Ĥb + ĥ(x, t) x ∈ A2(t),
Hb + ĥ(x, t) x ∈ A3(t),
Ĥb + h(x, t) ∈ A4(t).

(4.11)

Notice that for ẽ in Ω̃t it holds that

ẽ(x, t) =

⎧⎨⎩ e(x, t) = (μ̃H̃b + μh)× u+
1
σ
h x ∈ A1(t) ∪ A4(t) = Ωt,

ê(x, t) x ∈ A2(t) ∪ A3(t) = Ω̂t.
(4.12)

On both sides of Γt the basic magnetic H̃b, induction μ̃H̃b, and electric Ẽb fields
are continuous. This fact allows us to find very simple boundary conditions on the
perturbed fields h̃, μ̃h̃, ẽ.

Definition II: perturbation h̃ to the model rest state
For the model rest state, developing these relations we deduce the boundary con-
ditions on the perturbation h̃:

μhn = μ̂ĥn −
[
μ̃
]
H̃b · n hτ = ĥτ , on Γt, (4.13)

eτ = êτ , on Γt,

and for μ = μ̂ we recover the expected continuity conditions on h̃, ẽ at the bound-
ary5.

Let us make a comparison between previous definitions of perturbations and
definition (4.11). The field H in earlier papers was defined as H∗

b + ϕ in Ωt, while
in our paper it has been defined as H̃b + h6. As example let us compare the two
fields in the part A4(t) where Hb differs from H̃b; it holds that

H(x∗, z, t) = Hb + ϕ(x∗, z, t) = Ĥb(z) + h(x∗, z, t). (4.14)

4Different definitions of perturbation can be proposed. For example we may work using as un-
known field the induction magnetic field B = μH. In this case we find

B̃(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Bb + b(x, t) x ∈ A1(t),

B̂b + b̂(x, t) x ∈ A2(t),

Bb + b̂(x, t) x ∈ A3(t),

B̂b + b(x, t) ∈ A4(t).

(4.10)

The definition of perturbation strongly depends on the geometrical properties of the surface.
5For linear pinch, the equilibrium configuration is a cylinder of radius R. Hb is tangent to
circumferences of radius R in the cross sections of the cylinder. In the class of perturbations,

axially symmetric H̃ · n = 0, and we have continuity for the perturbation to H̃b. Our guess is

that the correct perturbation should depend on the basic motion.
6If one uses the perturbation of B, then one can make an analogous comparison.
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In general we deduce

h(x∗, z, t) = ϕ(x∗, z, t), inA1(t),

ĥ(x∗, z, t) = ϕ̂(x∗, z, t), inA2(t)

ĥ(x∗, z, t) = ϕ̂(x∗, z, t)−Hb

(
1− μL

μ̂z

)
k, inA3(t),

h(x∗, z, t) = ϕ(x∗, z, t) +Hb

(
1− μL

μ̂z

)
k, inA4(t).

(4.15)

Hence our definition of perturbed magnetic field differs from that given in the
previous papers even when μ = μ̂.

This difference may be expressed through other linear terms only if μ = μ̂.
This claim becomes understandable if one observes that domains A3,4(t), where
h, and ĥ are defined, are functions of η. In particular in A4(t) it holds that(

1− μ
μ̂

)
<

(
1− μL

μ̂z

)
<

(
1− μL

μ̂(L+ η)

)
,

and analogously in A3(t).
We remark that the perturbations ϕ, h coincide in domains with fixed bound-

ary. A motion which is linearly stable in the sense of the classical definition (control
of ϕ) is also linearly stable in the sense of our definition (control of h), and vice
versa. However the two vector fields ϕ, and h are deeply different, indeed also the
equation of motion are different.

Definition II: perturbation h̃ to the true rest state

Equations (4.13) are independent of the rest state, thus continue to hold when the
basic magnetic field is constant. For the true rest state eqution (4.15) are simplified
in the following ones:

h(x∗, z, t) = ϕ(x∗, z, t), inA1(t),

ĥ(x∗, z, t) = ϕ̂(x∗, z, t), inA2(t),

ĥ(x∗, z, t) = ϕ̂(x∗, z, t)−Hb

(
1− μ

μ̂

)
k, inA3(t),

h(x∗, z, t) = ϕ(x∗, z, t) +Hb

(
1− μ

μ̂

)
k, inA4(t).

(4.16)

Hence our definition of perturbed magnetic field coincides with that given in the
previous papers when μ = μ̂.

Perturbation equations for the magnetic field

We end this subsection by writing (2.3)2 in the sets A1(t) ∪ A4(t), A2(t) ∪ A3(t)
in terms of the perturbed magnetic field h̃ and obtain the perturbation equations
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for the magnetic field h̃:

μ∂th = −∇×
(
μ(Hb + h)× u+

1
σ
∇× h

)
, x ∈ A1(t),

μ∂th = −∇×
(
μ(Ĥb + h)× u+

1
σ
∇× h

)
, x ∈ A4(t),

μ̂∂tĥ = −∇× ê, x ∈ A2(t) ∪A3(t),

μ−∂th− = − 1
σ−
∇×∇× h−, x ∈ Ω−.

(4.17)

Comparing (4.17) with (4.8), one may find equations (4.8) simpler.

5. Nonlinear stability

In this section we use functions belonging to the following regularity classes:

Wi = {( p,u, H̃, Ẽ, ζ) : ζ ∈ L∞(0,∞;W 1,∞(Σ)),

( p,u, H̃, Ẽ) ∈ L∞(0,∞;L∞(Ωt))× [L∞(0,∞;L4(Ωt)) ∩ L2(0,∞;W 1,2(Ωt))]9}.
Wc = {(ρ,u, H̃, Ẽ, ζ) : ζ ∈ L∞(0,∞;W 1,∞(Σ)), ρ ∈ L∞(0,∞;L∞(Ωt)),

(ρ,u, H̃, Ẽ) ∈ L∞(0,∞;L∞(Ωt))× [L∞(0,∞;L4(Ωt)) ∩ L2(0,∞;W 1,2(Ωt))]9}.
In this section we develop a Lyapunov method using first the perturbation I,

and secondly the new perturbation II. Our aim is to prove the following two main
theorems

Nonlinear Stability Theorem I. Let the external forces be conservative, μ = μ̂, and
jS = 0. Then the rest state given by (3.19) is nonlinearly stable in the class of
motions (p,u, H̃, Ẽ, ζ) ∈ Wi, for every initial perturbation in Ω0 having the same
volume as Ωb.

Nonlinear Stability Theorem II. Let the external forces be conservative, μ = μ̂,
and jS = 0. Then the rest state given by (3.28) is nonlinearly stable in the class of
motions (ρ,u, H̃, Ẽ, ζ) ∈ Wi, for every initial perturbation having the same total
mass M as the basic rest state M =

∫
Ωb
ρbdx.

Proof. In the proof we use a variant of the Lyapunov second method. We achieve
this goal by computing the difference between the total energies of the perturbed
motion and the basic rest state. The energy identities (3.18), (3.25) hold for the
equilibrium configuration Sb and for the unsteady motion S(t) arising by per-
turbing initially Sb and using (3.17), and (3.26) as energies of perturbations for
incompressible and compressible fluids, respectively.

Remark 5.1 In Theorems I and II above it is tacitly assumed that there exist global
regular solutions to evolution equations both for incompressible and compressible
fluids. However the problem of existence of global motions in the classes Wi, Wc,
is still an open problem.
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Before giving a proof of stability Theorems I and II, we describe the difficulties
that arise by using the perturbation ϕ̃. We limit ourselves to incompressible fluids,
and we make complete calculations. To study the stability of compressible fluids
it is enough to follow the lines of Subsection 5.2 below, together with those of
Chapter 3 in [29]. We remark that the same obstacles are present in the study of
nonlinear stability of compressible fluids.

5.1. Energy of perturbation ϕ̃

We write (3.18) in terms of perturbations {u, H−Hb = ϕ, Ĥ−Ĥb = ϕ̂, ζ−h = η},
defined in Section 4. Since E(u) is already the L2 norm of perturbation to the zero
velocity, E(ζ) is up to a constant equivalent to k times the L2 norm of the gradient
∇∗η plus f times the L2 norm of η, cf. [30]7. It remains to show that E(H̃)−E(H̃b)
is equivalent to the L2 norm of perturbation to magnetic field H̃b in the sense just
defined. To this end, we compute the difference between the two energies, paying
attention to write the basic magnetic field in the new domain Ωt as follows:

2
[
E(H̃)− E(H̃b)

]
=

∫
Ωt

μH2dx−
∫
Ωt

μH2
bdx+

∫
Ω̂t

μ̂Ĥ2dx−
∫
Ω̂t

μ̂Ĥ2
bdx

+
∫
Ω−
μ−(H−)2dx−

∫
Ω−
μ−(H−

b )
2dx = μ

∫
Ωt

ϕ2dx+ 2μ
∫
Ωt

ϕ ·Hb dx

+ μ̂
∫
Ω̂t

ϕ̂2dx+ 2μ̂
∫
Ω̂t

ϕ̂ · Ĥbdx+
∫
Ω−
μ−(ϕ−)2dx+ 2μ−

∫
Ω−
ϕ− ·H−

b dx

=: 2E(ϕ̃) + J

(5.1)

with

J := 2μ
∫
Ωt

ϕ ·Hb dx+ 2μ̂
∫
Ω̂t

ϕ̂ · Ĥbdx+ 2μ−
∫
Ω−
ϕ− ·H−

b dx

a nonlinear functional in ϕ̃ and η. We notice at once that 2E(ϕ̃) is the L2 norm of
the perturbed magnetic field. It remains to control the time derivative of term J,
and to this end we use the Reynolds transport theorem, to find
d

dt
J =

d

dt

{
2μ

∫
Ωt

Hb · ϕdx+ 2μ̂
∫
Ω̂t

Ĥb · ϕ̂dx+ 2μ−
∫
Ω−

H−
b · ϕ− dx

}
(5.2)

= 2μ
∫
Ωt

∂t(Hb · ϕ)dx+ 2μ̂
∫
Ω̂t

∂t(Ĥb · ϕ̂)dx + 2μ−
∫
Ω−
∂t(H−

b · ϕ−)dx+ B,

B = 2μ
∫
Γt

Hb · ϕun dS + 2μ̂
∫
Γt

Ĥb · ϕ̂ un̂dS. (5.3)

7We recall that for the potential energy Π(ζ) the potential term, in case of gravitational force, is
represented by U = −f z = −π, with f the gravity acceleration, and using the incompressibility
assumption, implies

Π(ζ) :=

∫
Σ

∫ ζ

0
f z dz dx∗ =

∫
Σ

(L + η)2

2
dx∗ =

∫
Σ

η2

2
dx∗ + c ≡ Π(η),

with c a constant.
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We analyze the boundary terms specifying the sign of the normals n, n̂. In (5.3)
the normals n, n̂ differ in sign, since they are directed exterior to their respective
domains Ωt, Ω̂t. The time derivative of J will be computed once we compute the
volume integrals in (5.2). To this end we multiply (4.8)1 times Hb, and (4.8)2 times
Ĥb, (4.8)3 times H−

b integrate over the respective sets Ωt, Ω̂t, Ω−, recalling the
definition of ψ and that Hb and Ĥb, H−

b are constant in time, we get

μ

∫
Ωt

∂t(Hb · ϕ)dx = −
∫
Ωt

Hb · ∇ × ψ dx;

μ̂

∫
Ω̂t

∂t(Ĥb · ϕ̂) dx = −
∫
Ω̂t

Ĥb · ∇ × ψ̂dx;

μ−
∫
Ω−
∂t(H−

b · ϕ−)dx = −
∫
Ω−

H−
b · ∇ × ψ− dx.

(5.4)

Since ∇× Ĥb = ∇×Hb = ∇×H−
b = 0, using the boundary conditions on the

electric field, adding (5.4), by (5.2) it is easy to check that

1
2

( d
dt

J− B

)
= −

∫
Ωt

Hb · ∇ × ψ dx−
∫
Ω̂t

Ĥb · ∇ × ψ̂dx−
∫
Ω−

H−
b · ∇ × ψ− dx

=
∫
Γt

(Ĥb −Hb) · n× ψ̂dS +
∫
Σ

(Hb −H−
b ) · k× ψ− dS =:

1
2

C. (5.5)

In particular, the continuity of the tangential component of Hb yields

C = −2
∫
Γt

Hb

(μ
μ̂

L

ζ
− 1

)
k · n× ψ̂dS model rest state,

C = −2
∫
Γt

Hb

(μ
μ̂
− 1

)
k · n× ψ̂dS true rest state.

Gathering previous identities, we get

d

dt
J =

d

dt

{∫
Ωt

2μHb ·ϕdx+
∫
Ω̂t

2μ̂Ĥb ·ϕ̂dx
}
+2μ−

∫
Ω−

H−
b ·ϕ− dx = B+C. (5.6)

From (5.6), and the expression of B, C it follows that the time derivative of J in
general is not zero. Specifically, if μ = μ̂, in the model rest state, it furnishes a
nonlinear term in perturbations, while in the true rest state B+C = 0, see (5.8),
(5.9) below.

From (3.26) we have

E(η) =
∫
Σ

1√
(1 + |∇∗η|2)3

{
|∇∗η|2 + |∇∗η|2|∇∗η|2 − (∇∗η · ∇∗η)2

}
dx∗,

where η denotes a point between η and 0, for regular η we deduce that E(η) is
equivalent to the L2 norm of ∇∗η, cf. [30]. Moreover, since ∇ × H̃ = 0 it holds
that

D(H) = D(ϕ).
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Finally, in absence of surface currents, and for μ = μ̂, which is a typical assumption
in plasmas, the energy equation reduces to

d

dt
{E(u) + E(ϕ̃) + E(η)} +D(u) +D(ϕ) = B+ C. (5.7)

For the model problem using (4.5) after some calculations we deduce

B+ C = 2Hb

∫
Γt

Hb

g

[ η
ζ
++ (μ− μ̂) ϕ̂n√

g
+

(
μ

μ̂

L

ζ
− 1

)
|∇∗η|2

]
un dS

+ 2Hb

∫
Γt

[ L
μ̂ζ
(μ− μ̂)− η

ζ

]
k · n× ψ̂dS.

(5.8)

For the true problem, (5.8) reduces to

B+ C = 2Hb
(μ− μ̂)
μ̂

∫
Γt

[
− μ̂ ϕ̂n√

g
un +

|∇∗η|2
g

un + k · n× ψ̂
]
dS, (5.9)

which vanishes for μ = μ̂.
In general the term (5.8) has no definite sign even when μ = μ̂, and the

control of B+ C constitutes an open problem.

5.2. Energy of new perturbation h̃
The energy identity (3.18) holds for the equilibrium configuration Sb and for any
unsteady motion S(t) = {u, H̃ = H̃b + h̃, Ẽ = Ẽb + ẽ, ζ = L + η} that develops,
perturbing initially Sb with conditions S(0) = {u0, H̃b + h̃0, Ẽb + ẽ0, L+ η0}.

We write (3.18) in terms of perturbations {u, H̃−H̃b = h̃, ζ−h = η}, defined
in Subsection 4.2. Since E(u) is already the L2 norm of perturbation to velocity,
E(ζ) is up to a constant equivalent to k times the norm of the gradient ∇∗η in a
Orlicz space, plus f times the L2 norm of η, cf.[30], it remains to show that E(H̃)
up to a constant is equivalent to the L2 norm of perturbation to magnetic field
H̃b in the sense just defined. To this end, we compute the difference

E(H̃)− E(H̃b) =
∫
Ω̃t

μ̃H̃2dx−
∫
Ω̃b

μ̃H̃2
bdx

= μ
∫

A1(t)

(
(Hb + h)2 −H2

b

)
dx+ μ̂

∫
A2(t)

(
(Ĥb + ĥ)2 − Ĥ2

b

)
dx

+
∫

A3(t)

(
μ̂(Hb + ĥ)2 − μH2

b

)
dx+

∫
A4(t)

(
μ(Ĥb + h)2 − μ̂Ĥ2

b

)
dx

+ μ−
∫
Ω−

(
(H−

b + h−)2 − (H−
b )

2
)
dx

= μ̃
∫
Ω̃t

h̃2dx+ 2μ
∫

A1(t)

h ·Hb dx+ 2μ̂
∫

A2(t)

ĥ · Ĥbdx

+ 2μ̂
∫

A3(t)

ĥ ·Hbdx+ 2μ
∫

A4(t)

h · Ĥbdx
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+ (μ̂− μ)
(∫

A3

H2
b dx−

∫
A4

Ĥ2
b dx

)
+ 2μ−

∫
Ω−

h− ·H−
b dx

= E(h̃) + J+ (μ̂− μ)G, (5.10)

where

G =
( ∫

A3

H2
b dx−

∫
A4

Ĥ2
b dx

)
, (5.11)

J = 2μ
∫

A1(t)

h ·Hb dx + 2μ̂
∫

A2(t)

ĥ · Ĥbdx

+ 2μ̂
∫

A3(t)

ĥ ·Hbdx + 2μ
∫

A4(t)

h · Ĥbdx+ 2μ
∫
Ω−

h− ·H−
b dx.

(5.12)

The contribution of G appears to be new in literature.
For the model problem (5.11) furnishes

G = H2
b

( ∫
A3

dx−
∫

A4

μ2

μ̂2
L2

ζ2
dx

)
,

while for the true problem (5.11) yields

G = H2
b

( ∫
A3

dx−
∫

A4

μ2

μ̂2
dx

)
= −H2

b

μ2 − μ̂2
μ̂2

∫
Σ+t

ηdx∗

Multiply (4.17)1 times Hb in A1(t), and (4.17)2 times Ĥb in A4(t), (4.17)3
times Hb in A3(t), and times Ĥb in A2(t). Integrating over the respective sets,
recalling that the basic magnetic fields Hb and Ĥb are constant in time, we get

μ

∫
A1(t)

∂t(h ·Hb) dx = −
∫

A1(t)

Hb · ∇ × e dx =: F1;

μ̂

∫
A2(t)

∂t(ĥ · Ĥb) dx = −
∫

A2(t)

Ĥb · ∇ × ê dx =: F2;

μ̂

∫
A3(t)

∂t(ĥ ·Hb) dx = −
∫

A3(t)

Hb · ∇ × ê dx =: F3;

μ

∫
A4(t)

∂t(h · Ĥb) dx = −
∫

A4(t)

Ĥb · ∇ × e dx =: F4;

μ−
∫
Ω−
∂t(h− ·H−

b ) dx = −
∫
Ω−

H−
b · ∇ × e− dx =: F5.

(5.13)

Here we have used the hypothesis that the basic state is steady. Using the Reynolds
theorem, we deduce the identities∫

Ai(t)

∂t(h̃ · H̃b)dx =
d

dt

∫
Ai(t)

H̃b · h̃ dx−
∫

∂A1(t)

H̃b · hV (i)n dS

= :
dJi

dt
−

∫
∂Ai(t)

H̃b · hV (i)n dS.

(5.14)
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We study the boundary terms at right-hand sides of (5.14), because we have to
specify the values of the velocities V (i)n , i = 1, . . . , 4. Recalling the definitions of
∂Ai, since V

(i)
n = 0 on ∂Ai(t)L we get∫

∂A1(t)

Hb · hV(1)
n dS =

∫
Σ−,t

Hb · h(ζ, t) ∂tηdx∗;∫
∂A4(t)

Ĥb · hV(4)
n dS =

∫
Σ+,t

Ĥb(ζ) · h(ζ, t) ∂tηdx∗;∫
∂A2(t)

Ĥb · ĥV(2)
n dS = −

∫
Σ+,t

Ĥb(ζ) · ĥ(ζ, t) ∂tηdx∗;∫
∂A3(t)

Hb · ĥV(3)
n dS = −

∫
Σ−,t

Hb · ĥ(ζ, t) ∂tηdx∗.

(5.15)

Here the normals to ∂Aη
1 , and ∂A

η
4 have been taken toward Ω̂t, while the normals

to ∂Aη
2 , and ∂A

η
3 are taken toward Ωt. Next we multiply terms at r.h.s. of (5.15)1,2

times μ those at r.h.s. of (5.15)2,3 times μ̂, and sum over i, i = 1, . . . , 4. We get

μ

∫
Σ−,t

Hb · h(ζ, t)∂tη dx∗ + μ
∫
Σ+,t

Ĥb(ζ) · h(ζ, t)∂tη dx∗

− μ̂
∫
Σ+,t

Ĥb(ζ) · ĥ(ζ, t)∂tη dx∗ − μ̂
∫
Σ−,t

Hb · ĥ(ζ, t)∂tη dx∗

=
∫
Σ−,t

[
Hbn(μhn − μ̂ĥn) +Hbτ (μhτ − μ̂ĥτ )

]
∂tη dx∗

+
∫
Σ+,t

[
Ĥbn(μhn − μ̂ĥn) + Ĥbτ ĥτ (μ − μ̂)

]
∂tη dx∗ =:

I
2
.

(5.16)

Recalling (4.13)1,2 one has

I =
∫
Γt

[
(μ̂− μ )H̃2

bn + H̃bτ ĥτ (μ − μ̂)
]
u · n dS =: −(μ − μ̂)A,

with

A :=
∫
Γt

[
H̃2

bn − H̃bτ ĥτ

]
u · n dS.

Notice that A depends on ∂tη, therefore it vanishes for fixed boundaries.
Finally, we multiply (5.14)1,4 times 2μ, (5.14)2,3 times 2μ̂, and add the re-

sulting equations over i = 1, . . . , 4, thus we use (5.4), (5.12), (5.13), (5.16) to
get

d J

dt
= F+

(
μ̂− μ

)
A , (5.17)

where
F := 2F1 + 2F2 + 2F3 + 2F4.
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In order to compute the sum at r.h.s. of (5.17) we notice that they reduce to
boundary terms, because Hb = const. and ∇× Ĥb = 0, and it yields

F = − 2
∫

∂A1(t)h
Hb · (k × e)dS − 2

∫
∂A1(t)η

Hb · (n× e)dS

+ 2
∫

∂A4(t)h
Ĥb · (k × e)dS − 2

∫
∂A4(t)η

Ĥb · (n× e)dS

+ 2
∫

∂A2(t)h
Ĥb · (k × ê)dS + 2

∫
∂A2(t)η

Ĥb · (n× ê)dS

− 2
∫

∂A3(t)h
Hb · (k × ê)dS + 2

∫
∂A3(t)η

Hb · (n× ê)dS.

(5.18)

Since Hb ·k×a = 0, for any vector a, and n×e = n× ê, adding (5.18)1+(5.18)3+
(5.18)4 + (5.18)2, we deduce

F = −2
∫
Σ−,t

Hb · (n× ê)dx∗ + 2
∫
Σ−,t

Hb · (n× ê)dx∗

− 2
∫
Σ+,t

Ĥb · (n× ê)dx∗ + 2
∫
Σ+,t

Ĥb · (n× ê)dx∗ = 0 .
(5.19)

Hence,
d

dt
J = (μ̂− μ)A,

which for μ = μ̂ yields
d J

dt
= 0 . (5.20)

Also from previous calculations it follows that

d

dt
E(H̃) =

d

dt
E(h̃) + d

dt
J+ (μ̂− μ) d

dt
G =

d

dt
E(h̃) +

(
μ̂− μ

) d
dt

G+
(
μ̂− μ

)
A.

We recall that up to a constant E(η) is equivalent to the W 1,2 norm of η, cf. [30].
Moreover, since ∇× H̃ = 0 it holds that

D(H) = D(h),
and it yields
d

dt

{
E(u) + E(h̃) + Π(η) + E(η)− [μ̃]G

}
+D(u) +D(h) = BS(t) +

[
μ̃
]
M+

[
μ̃
]
A.

(5.21)
Finally, in absence of surface currents, and for μ = μ̂, the energy equation reduces
to

d

dt

{
E(u) + E(h̃) + E(η)

}
+D(u) +D(h) = 0. (5.22)

Equation (5.22) furnishes the wanted nonlinear stability theorem which states
a global-in-time a priori estimate for the L2 norm of perturbations to the rest,
however large are the initial data.
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6. Conclusions

We end the paper with some comments concerning our theory, and some compar-
isons with old methods and the one here developed.

In case μ �= μ̂ the term [μ̃](A+M) has no definite sign, and it must be estimated
in terms of dissipation. Also the term G defined by (5.11) is dimensionally an
energy whose physical meaning has to be clarified through the thermodynamics
of non-equilibrium. These problems constitute very challenging open problems
related to non-equilibrium thermodynamics.

The present stability result continues to hold, in the class of regular solu-
tions, for inviscid fluids, in absence of magnetic diffusivity, and of surface tension,
provided the fluid is heavy and above a horizontal layer, cf. [30], [31].

In the presence of kinematic, magnetic, and surface viscosities it is possible
to prove an exponential decay to zero for the perturbation; this may be proved
with the free work identity, and constitutes the subject of a paper in preparation.

Even when μ = μ̂, the two definitions of perturbations to the basic magnetic
field in model rest state, do not coincide. In particular in the proof of stability of
the model constant rest state one is lead to choose different perturbations. Up to
now we don’t know a proof of nonlinear stability with perturbations ϕ̃.

If μ �= μ̂, the two definitions of perturbations to a constant magnetic field
of the true rest state, do not coincide. However the proof of stability of a true
constant rest state is still unknown whatever one chooses the perturbations.

If μ = μ̂, the two definitions of perturbations to a constant magnetic field of
the true rest state, do coincide. Therefore in the proof of stability of true constant
rest state one is free to choose different perturbations.
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Viscous Flows in Domains
with a Multiply Connected Boundary

V.V. Pukhnachev

Abstract. In this paper we consider stationary Navier-Stokes equations in a
bounded domain with a boundary, which has several connected components.
The velocity vector is given on the boundary, where the fluxes differ from zero
on its components. In the general case, the solvability of this problem has been
an open question up to now. We provide a survey of previous results, which
deal with partial versions of the problem. We construct an a priori estimate
of the Dirichlet integral for a velocity vector in the case when the flow has
an axis of symmetry and a plane of symmetry perpendicular to it, which also
intersects each component of the boundary. Having available this estimate,
we prove an existence theorem for the axially symmetric problem in a do-
main with a multiply connected boundary. We consider also the problem in a
curvilinear ring and formulate a conditional result concerning its solvability.

Mathematics Subject Classification (2000). 35Q30, 76N10, 76D05.

Keywords. Navier–Stokes equations, incompressible liquid, multiply connected
boundary, Dirichlet integral, a priori estimate.

1. Introduction

Let Ω ⊂ Rn (n = 2, 3) be a bounded domain with smooth boundary ∂Ω consisting
of m disjoint components Σ1, . . . ,Σm. The stationary problem for the Navier-
Stokes equations in a zero external force field

v · ∇v = −∇p+ νΔv, ∇ · v = 0, x ∈ Ω, (1.1)

v = ai(x), x ∈ Σi (i = 1, . . . ,m) (1.2)
is considered. We introduce values

qi =
∫
Σi

ni · aidΣi (i = 1, . . . ,m) (1.3)

where ni is a unit vector of an exterior normal to the surface Σi. In view of the
continuity equation,

qi + · · ·+ qm = 0. (1.4)
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Let there be fulfilled a stronger condition

qi = 0 (i = 1, . . . ,m) (1.5)

instead of (1.4). In this case, under corresponding smoothness conditions, the
global existence theorem for the problem (1.1), (1.2) holds (J. Leray, [1]). The
proof is based on finiteness of the Dirichlet integral

I =
∫
Ω

∇v : ∇v dx (1.6)

for all possible solutions of the problem (1.1), (1.2), (1.5). Leray’s demonstration
used argument by contradiction and did not contain an a priori estimate of I in
terms of the problem data. E. Hopf [2] first obtained an effective estimate of the
Dirichlet integral. His construction is based on the following lemma.

Lemma 1. Assume that Σi ∈ C2+α, 0 < α < 1, and ai ∈ C2+α(Σi), i = 1, . . . ,m.
If condition (1.5) is satisfied, then for arbitrary ε > 0 there exists a solenoidal
continuation bi(x) ∈ C2+α(Ω̄) of vector ai(x) into domain Ω such that for any
u(x) ∈ H(Ω), ∣∣∣∫

Ω

bi · u · ∇u dx
∣∣∣ ≤ ε||∇u||2L2

, i = 1, . . . ,m. (1.7)

Here H(Ω) is the functional space introduced by O.A. Ladyzhenskaya [3].
Everywhere below the smoothness conditions formulated in Lemma 1 are assumed
to be fulfilled. A. Takeshita proved [4] that the condition (1.5) is not only a suffi-
cient but also a necessary one for the possibility of continuation of vector field ai

so that inequality (1.7) is satisfied for any ε > 0.
We will consider problem (1.1), (1.2) under general outflow conditions. It

means that qi �= 0 at least for one i ∈ 1, . . . ,m. It should be noted that violation
of condition (1.5) does not lead to principal difficulties for the non-stationary
problem for the Navier-Stokes equations [3]. As for the stationary one, there have
been no general results about its solvability in case qi �= 0 up to now. On the other
hand, there are a number of papers in which the existence theorems are proved
under some additional conditions on the problem data. The next section is devoted
to a description of results obtained in this direction.

2. Survey of previous results

As shown by R. Finn [5], the existence theorem for the problem (1.1), (1.2) re-
mains valid if one assumes that |qi| < c∗ν, i = 1, . . . ,m, and c∗ is small enough.
G.P. Galdi [6, 7] has given the bound c∗ in terms of imbedding constants depending
on the domain Ω and properties of solutions of a non-uniform divergence equation.
The constant was computed explicitly in the flow in an annulus. For special cases,
if domain Ω is confined by concentric spheres (or circles as n = 2 ) with radii R1
and R2 > R1, W. Borchers and K. Pileckas [8] have obtained effective estimates
of admissible |qi| bounds in terms of R1, R2 and ν.
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C.J. Amick [9] showed how to relax condition (1.5) without the smallness
assumption on |qi| quantities. He studied two-dimensional flow under a specific
symmetry assumption. Following [9], let us introduce

Definition 1. A bounded domain Ω ⊂ R2 is said to be admissible if (a) ∂Ω is of
class C2+α, (b) ∂Ω consists of m ≥ 2 components Σi, (c) Ω is symmetric about
the line {x2 = 0} and (d) each component Σi intersects the line {x2 = 0}.

A function h = (h1, h2) mapping Ω or ∂Ω into R2 is said to be symmetric
about the line {x2 = 0} if h1 is an even function of x2 while h2 is an odd function
of x2.

Definition 2. A vector a is said to be admissible data if (a) a ∈ C2+α(∂Ω → R2)
and (b) a is symmetric about the line {x2 = 0}.

It is well known that the Navier-Stokes equations are invariant with respect
to reflection about the coordinate axis. This property allows us to seek symmetric
solutions (v, p) of this system, with v being symmetric about {x2 = 0} and the
corresponding pressure p being an even function of x2 .

Theorem 1 [9]. Let Ω ⊂ R2 be an admissible domain and let (a1, . . . ,am) be ad-
missible data. Then for every ν > 0 there exists a solution (v, p) ∈ C2+α(Ω̄ →
R2) × C1+α(Ω̄ → R) of (1.1), (1.2). The function v is symmetric about {x2 = 0}
and the pressure p is an even function of x2.

Similarly to Leray’s basic work [1], Amick’s result was obtained via a proof by
contradiction. The next important step was done by H. Fujita [10], who presented
a constructive proof of an existence of symmetric solutions via an a priori estimate
of the Dirichlet integral (1.6). Fujita’s construction is based on the concept of a
virtual drain introduced by him.

Definition 3. Vector field ci(x) is said to be a virtual drain if (a) ci ∈ C2+α(Ω̄) is
solenoidal and parallel to the x1-axis, (b) the outflow of ci from each Σi coincides
with that of ai; namely,∫

Σ1

ni · ci dΣi =
∫
Σ1

ni · ai dΣi (i = 1, . . . ,m) (2.1)

and (c) ci contains a positive free parameter κ, and by choosing κ sufficiently
small, we can make sup(|x2||ci1(x)|) arbitrarily small.

Another method for obtaining an a priori estimate of the Dirichlet integral
under conditions of Theorem 1 was proposed by H. Morimoto [11]. Her construction
exploits the stream function ψ of plane flow defined by relations

v1 =
∂ψ

∂x2
, v2 = − ∂ψ

∂x1
. (2.2)

H. Fujita and H. Morimoto [12] studied problem (1.1), (1.2) in a domain Ω
with two components of the boundary Σ1 and Σ2. Functions ai in (1.2) were taken
in the form μ∇ϕ + ãi where μ ∈ R, ϕ is a fundamental solution of the Laplace
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operator and ãi (i = 1, 2) satisfy the condition (1.5). The authors proved that
there is a countable subset N of R such that if μ /∈ N and ãi are small (in a
suitable norm), then problem (1.1), (1.2) has a weak solution. Moreover, if Ω ∈ R2

is an annulus, then N is empty.
In the conclusion of this section, we mention results of papers [13–15] dedi-

cated to flows in an annular domain Ω = {x ∈ R2; R1 < |x| < R2} under boundary
conditions with non-vanishing outflow. H. Morimoto [13] considered this problem
in the case

ai = μR−1i er + bieθ on Σi = {x ∈ R
2; |x| = Ri}, i = 1, 2 (2.3)

where μ, b1, b2 are constants and er, eθ are the unit vectors in polar coordinates
{r, θ}. Problem (1.1), (2.3) has an exact rotationally symmetric solution, in which
v = v(r), p = p(r) are given by explicit formulae. As μ = 0, this solution describes
the well-known Couette flow. In [13] it was proved that if |μ|, |b1 − b2| are suffi-
ciently small and μ �= −2ν then the solution of problem (1.1), (2.3) is unique. The
uniqueness theorem is valid also in case μ = −2ν and |μ|, |b1|, |b2| are sufficiently
small. Besides, for sufficiently large ν, the above exact solutions are exponentially
stable.

Let now the boundary condition have the form

ai = {μR−1i +ϕi(θ)}er + {ωiRi+ψi(θ)}eθ on Σi = {x ∈ R
2; |x| = Ri}, i = 1, 2

(2.4)
where ϕi(θ), ψi(θ) are smooth functions of θ with a zero mean value. Problem
(1.1), (2.4) was studied by H. Morimoto and S. Ukai [14]. The main result of the
paper [14] is

Theorem 2. Suppose the inequality

|ω1 − ω2|
R21R

2
2

R22 −R21

(
log
R2
R1

)2
< 2ν (2.5)

holds. Then there exists at most a discrete countable set M such that for each
μ ∈ R\M the boundary problem (1.1), (2.4) has a solution for sufficiently small
ϕi(θ), ψi(θ) (i = 1, 2).

We note that under the condition of Theorem 2 the quantity |μ| can be large
in comparison with ν. It is interesting to distinguish a class of conditions (2.4),
as the set M is empty. H. Fujita, H. Morimoto and H. Okamoto [15] established
that this is true as ω1 = ω2; in this case, inequality (2.5) is fulfilled automatically.
The special case b1 = b2 = 0 in (2.3) corresponds to a radial flow with velocity
field vr = μr−1, vθ = 0. As it is shown in [15], the radial flow in an annulus is
stable to perturbation of the steady state, whatever the Reynolds number μ/ν
or the aspect ratio R1/R2 are. At the same time, the precise calculations carried
out in [15] provide numerical evidence that Hopf’s bifurcations occur for the case
b1R1 = b2R2. In this case, the solution of problem (1.1), (2.3) is self-similar; the
corresponding velocity field is vr = μr−1, vθ = λr−1 where λ = b1R1.
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3. Axially symmetric flows

In this section we consider problem (1.1), (1.2) in the case, when domain Ω ∈ R3

has an axis of symmetry and a plane of symmetry, which is perpendicular to this
axis.

Definition 4. A bounded domain Ω ∈ R3 is said to be admissible is (a) ∂Ω is of
class C2+α, (b) ∂Ω consists of m ≥ 2 simply connected components Σi, (c) Ω has
the axis of symmetry {x1 = x2 = 0} and the plane of symmetry {x3 = 0}, and (d)
each component Σi intersects the plane {x3 = 0}.

Let us introduce cylindrical coordinates r = (x21+x22)1/2, θ = arctg(x2/x1),
z = x3 and denote as vr, vθ, vz projections of vector v on the axes r, θ, z.

A function h = (hr, hθ, hz) mapping Ω or ∂Ω into R3 is said to be axially
symmetric if hθ = 0 while hr and hz do not depend on θ. A function h = (hr, 0, hz)
mapping Ω or ∂Ω into R3 is said to be symmetric about the planes {z = 0} if hr

is an even function of z while hz is an odd function of z.

Definition 5. A vector a is said to be admissible data if (a) a ∈ C2+α(∂Ω → R3)
and (b) a is axially symmetric and symmetric about the plane {z = 0}.

Our purpose is to prove the existence theorem for problem (1.1), (1.2) in
the class of axially symmetric flows. It means that the vector v = (vr, 0, vz) is
axially symmetric and symmetric about plane {z = 0}, moreover the corresponding
pressure p does not depend on θ. In consequence (1.1), functions vr, vz and p satisfy
the following system:

vr
∂vr
∂r

+ vz
∂vr
∂z

= −∂p
∂r

+ v
(
∂2vr
∂r2

+
1
r

∂vr
∂r

+
∂2vr
∂z2

− vr
r2

)
,

vr
∂vz
∂r

+ vz
∂vz
∂z

= −∂p
∂z

+ v
(
∂2vz
∂r2

+
1
r

∂vz
∂r

+
∂2vz
∂z2

)
,

1
r

∂(rvr)
∂r

+
∂vz
∂z

= 0.

(3.1)

Lemma 2. Let Ω→ R3 be an admissible domain and let (a1, . . . ,am) be admissible
data. Then the Dirichlet integral (1.6) is finite for all possible solutions of problem
(1.1), (1.2).

Proof. It is based on a special construction of the virtual drain, which generalizes
the Fujita construction [9].

According to the conditions of Lemma 2, the boundary of domain Ω consists
of m ≥ 2 disjoint smooth simply connected components Σ1, . . . ,Σm. We assume
that surface Σm encloses the other components Σ1, . . . ,Σm−1. Each of surfaces
Σ1, . . . ,Σm−1 is a surface of revolution. Let us denote as S1, . . . , Sm plane curves,
which are meridian sections of Σ1, . . . ,Σm−1. Further, we notice that the ray r > 0
in semi-plane {r, z : r > 0, z ∈ R} and each Si intersects orthogonally at two
different points Pi = (yi, 0) and P ∗i = (y∗i , 0) of which we can assume that yi >
y∗i (i = 1, . . . ,m). Moreover, we may assume that ym > ym−1 > · · · > y1 > 0.
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Now we define the domain Ω+ = {r, θ, z : r > 0, z > 0, (r, θ, z) ∈ Ω}.
In other words, Ω+ is “a half of Ω”. It should be noted that the domain Ω+ has
a simply connected boundary ∂Ω+, as domain Ω is admissible. Let us designate
Cδ = {r, θ, z : r ∈ R+, 0 < z < δ}. Then we choose a small positive number δ
so that the domain Ω+ ∩ Cδ consists of m disjoint components Ki. Each of the
domains Ki will be a support of the ith component of the virtual drain.

Let us consider domainK1. Its boundary consists of two basements, belonging
to planes z = 0, z = δ, and two lateral parts Ll

1 and L
r
1, which are surfaces of

revolution. The lower basement of K1 is a ring y1 < r < y∗2 , z = 0. The first virtual
drain ci(x) we take in the form

c1 = − 1
4πr

q1(η(z), 0, 0), (3.2)

where η(t) = η(t; δ, κ) is the Hopf-type cutting function [16] and κ ∈ (0, 1/2) is
a free parameter. Here we use a small modification of function η(t) construction
given in [9], namely:

η(t) =
1
γκδ
ζκ

(
t

δ

)
, ζκ ∈ C∞0 (R), ζκ(t) ≥ 0 (∀t ≥ 0),

ζκ(−t) = ζκ(t), ζκ(t) = 0 (t ≥ 1),

ζκ(t) ≤
1
t
(0 < t <∞), ζκ(t) =

1
t

(
κ ≤ t ≤ 1

2

)
,

γκ =

1∫
−1
ζκ(t) dt, γκ ≥ 2

1/2∫
κ

dt

t
→∞ (κ→ 0),

∞∫
−∞

η(t) dt =

δ∫
−δ

η(t) dt = 1. (3.3)

If m = 2, the structure of a virtual drain is completed. In fact, vector ci(x) is
solenoidal and smooth. In view of (3.2), (3.3), the equality∫

Ll
2

n1 · c1 dLl
2 =

1
2
q1 (3.4)

holds (we recall that n1 is unit vector of an exterior normal to the surface Σ1).
Taking into account (3.4) and extending function c1(x) on negative values of z as
an even function of these variables, we guarantee fulfillment of equality (2.1) as
i = 1. At last, choosing parameter κ small, we can provide sup(|z||c1,r(z)|), x ∈ K̄1,
arbitrarily small. In view of (1.4), q2 = −q1 if m = 2 . Replacing y∗2 by y2 in the
case m = 2 and identifying c2 with c1, we arrive at relation∫

Lr
2

n2 · c2 dLr
2 =

1
2
q2,

which ensures (2.1) for i = 2.



Viscous Flows in Domains with a Multiply Connected Boundary 339

Let now m = 3. In this case, we consider domain K2 connecting surfaces
Σ2 and Σ3. We define as before function c1(x) by formula (3.2). Further, let us
denote as Ll

2 and Lr
2 the left and right lateral sides of surface ∂K2, which intersects

orthogonally the plane z = 0, and set

c2 = −
1
4πr

(q1 + q2)(η(z), 0, 0).

By (3.4), the liquid flux through surface Ll
1 equals to q1/2 , hence the flux through

surface Lr
2 ⊂ Σ2 is −q1/2. At the same time, the flux through surface Ll

2 ⊂ Σ2 is
(q1 + q2)/2. It implies equality (2.1) for i = 2. Thus, the second component of the
virtual drain in the case m = 3 is constructed. The third component is defined by
relation

c3 =
1
4πr

q3(η(z), 0, 0) (3.5)

in an annular layer K2 and by continuation of the function given by (3.5) on
negative values of z. Relation (2.1) for i = 3 will be satisfied on account of equality
q1 + q2 + q3 = 0 (1.4). When m > 3, we continue the described procedure until its
completion for m− 1 steps.

Due to the symmetry condition, this is sufficient to estimate the integral

I+ =
∫
Ω+
∇v : ∇v dx (3.6)

to prove Lemma 2, since I = 2I+ where I is a Dirichlet integral (1.6). To this end,
we represent v(x) in the form

v = u+
m∑

i=1

(bi + ci). (3.7)

Here u ∈ H(Ω), {ci}, is the set of virtual drains, each of the solenoidal vector-
functions bi (i = 1, . . . ,m) satisfies the zero flux condition∫

Σi

ni · bi dΣi = 0 (3.8)

and
ai(x) = bi(x) + ci(x), x ∈ Σi, i = 1, . . . ,m. (3.9)

Moreover, the support of each function bi(x) is a narrow strip near the surface
Σi. Functions ci (virtual drains) are determined previously. Equality (3.9) means
that vector bi + ci is a solenoidal continuation of vector ai into domain Ω. As
far as (a1, . . . ,am) are admissible data and vectors ci (i = 1, . . . ,m) satisfy the
symmetry condition we can consider that vectors bi (i = 1, . . . ,m) satisfy the
same condition too. Then (3.7) implies that vector u is symmetric also. There is
a freedom in the choice of bi vectors. In view of (3.8) we can apply Lemma 1
and realize the construction of functions bi so that inequalities (1.7) hold with a
positive constant ε, which will be chosen later.
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To provide symmetry properties of vectors bi, we define their components in
the form

bi,r = −1
r

∂(η(n)Ψi)
∂z

, bi,z =
1
r

∂(η(n)Ψi)
∂r

, (i = 1, . . . ,m).

Here n is the distance of current point (r, z) ∈ Ω from ∂Ω, η(n) is the cutting
function defined by formula (3.3) and Ψi(r, z) is the stream function of an axially
symmetric solenoidal vector field admitted given boundary values bi = ai − ci on
the surface Σi.

For any smooth axially symmetric vector h we can define its strain tensor
D = D(h) with elements

Drr =
∂hr

∂r
, Dθθ =

hr

r
, Dzz =

∂hz

∂z
, Drz =

1
2

(
∂hr

∂z
+
∂hz

∂r

)
, Drθ = Dθz = 0.

If function h is symmetric about the planes {z = 0} then the following equalities
hold:

hz = 0, Drz = 0, (r, z) ∈ ∂Ω+ ∩ {z = 0}. (3.10)
The next step of our consideration is obtaining an integral relation for the

sought vector u. To get it, we substitute representation (3.7) into system (3.1),
multiply its first and second equation by ur, uz respectively and integrate the
result over domain Ω+. We note that each of the functions on the right-hand side
of (3.7) satisfies conditions (3.10). Having applied these conditions and the well-
known Green identity for the Stokes operator [3], we come after simple calculations
to the required relation:

2ν
∫
Ω+
D(u) : D(u) dx−

m∑
i=1

∫
Ω+

bi · u · ∇u dx−
m∑

i=1

∫
Ω+

ci · u · ∇u dx (3.11)

= −2ν
m∑

i=1

∫
Ω+
D(bi + ci) : D(u) dx+

m∑
i=1

∫
Ω+

u · (bi + ci) · ∇(bi + ci) dx.

Since function u is symmetric, the following equalities are valid:∫
Ω

∇u : ∇u dx = 2
∫
Ω+
∇u : ∇u dx,

∫
Ω

D(u) : D(u) dx = 2
∫
Ω+
D(u) : D(u) dx,∫

Ω

|u2| dx = 2
∫
Ω+
|u|2 dx. (3.12)

For any u ∈ H(Ω), the Korn inequality [7, 17]∫
Ω

D(u) : D(u) dx ≥M1

∫
Ω

∇u : ∇u dx, (3.13)

and the Poincare inequality [3, 7]∫
Ω

|u2| dx ≤M2

∫
Ω

∇u : ∇u dx (3.14)

are true with positive constants Mk =Mk(Ω), k = 1, 2. Relations (3.12) allow us
to replace the integration domain Ω in inequalities (3.13), (3.14) by domain Ω+.
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This gives the desired estimates of the right-hand side in relation (3.11) (upper
estimate) and the first term of its left side (lower estimate). To estimate the second
term on the left-hand side of (3.11) above, we apply Lemma 1 with ε = νM1/2m
that gives∣∣∣∫

Ω+
bi · u · ∇u dx

∣∣∣ ≤ νM1

2m

∫
Ω+
∇u : ∇u dx, i = 1, . . . ,m. (3.15)

The most crucial point of our examination is the derivation of the same
estimate for the third term on the left-hand side of (3.11),∣∣∣∫

Ω+
ci · u · ∇u dx

∣∣∣ ≤ νM1

2m

∫
Ω+
∇u : ∇u dx, i = 1, . . . ,m. (3.16)

The integral on the left-hand side of (3.16) can be written as∫
Ω+

ci · u · ∇u dx = J1 + J2, (3.17)

where

J1 = 2π
∫

Ki

ci,rur
∂ur

∂r
rdrdz,

J2 = 2π
∫

Ki

ci,ruz
∂ur

∂z
rdrdz.

Here we took into account that vector ci has only a nonzero component ci,r and
its support is Ki. Evaluating integral J2, we note that

sup
t
|t|η(t; δ, κ)→ 0 as κ→ 0 (3.18)

as follows from (3.3). Next, component uz of the symmetric vector u vanishes
on the plane z = 0 in the sense of trace. Hence, we can apply the Hardy-type
inequality [3, 7] ∫

Ki

u2z
z2
dx ≤ 4

∫
Ki

|∇uz|2 dx. (3.19)

Remembering the expressions for virtual drains (3.1), (3.4) and similar to them,
we obtain inequality

|J2| ≤
1
8π
(m− 1)q∗

∫
Ki

sup
Ki

(|z|η(z)) |uz|
z

∣∣∣∂ur

∂z

∣∣∣ dx,
where q∗ = max|qi|, i = 1, . . . ,m. Choosing sufficiently small κ, we arrive from
this inequality and (3.18), (3.19) at the desired estimate (3.16). As for integral J1,
it is equal to zero because rci,r does not depend on r and function ur vanishes on
the end-wall parts of Ki boundary, which belongs to ∂Ω.

Combining equalities (3.12), inequalities (3.13), (3.14) and estimates (3.15),
(3.16) we conclude from (3.11) that∫

Ω+
∇u : ∇u dx ≤ 1

ν
M3, (3.20)
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whereM3 =M3(Ω, ||bi||H1) is a positive constant. Inequality (3.20) and represen-
tation (3.7) lead to the required estimates of integral I+ (3.6) and consequently
of Dirichlet integral I = 2I+, ∫

Ω+
∇v : ∇v dx ≤M4 (3.21)

with constant M4 = M4(Ω, ν, ||bi||H1 , ||ci||H1 ) > 0. This completes the proof of
Lemma 2. �
Theorem 3. Under assumptions as in Lemma 2, there exists a solution v(x) ∈
C2+α(Ω̄), p(x) ∈ C1+α(Ω̄) of the problem (1.1), (1.2).

The proof of Theorem 3 is omitted here. It is based on estimate (3.20) and
follows the classical scheme given in [3] or [18].

4. Flow in a curvilinear ring

Here we return to the problem mentioned in Section 2. Let Ω ∈ R2 be a curvi-
linear ring bounded by smooth curves Σ1 (interior boundary) and Σ2 (exterior
boundary). All previous results on the solvability of problem (1.1), (1.2) for this
case had either a local character or dealt with an annular geometry of Ω [5–8,
12–15]. The point is to obtain an a priori estimate of the Dirichlet integral for
an arbitrarily large flux. This problem is still open. We postpone a discussion to
the next section and now propose some construction, which can be useful for the
problem treatment.

It is well known that any plane flow of an incompressible liquid is character-
ized by the stream function ψ defined by relations (2.2). Level lines of function
ψ coincide with trajectories of liquid particles in the case of steady-state flow.
If domain Ω is simply connected, the stream function is a single-valued one. In
the opposite case, this property holds only under condition (1.5). We consider the
situation when this condition is violated. If Ω is a curvilinear ring, it means that
q1 = −q2 �= 0. In this case, function ψ(x1, x2) is a multi-valued one, which receives
the increment q1 after going around Σ1. If q1 �= 0, there is at least one stream
line l1 which intersects both components Σ1 and Σ2 of ∂Ω. This assertion can
be proved by contradiction. We assume that the line about the above-mentioned
intersection is transversal and denoted by P1 and P2 the points of intersection of
l1 with Σ1 and Σ2, respectively.

Further, we assume that there exists another stream line l2, which also in-
tersects curves Σ1 and Σ2. Thus, both curves Σi (i = 1, 2) are divided by lines li
on two parts Σ−i and Σ+i . Respectively, the domain Ω is divided into two simply
connected domains Ω+ and Ω−. We suppose additionally that the flux through
components Σ−1 and Σ+1 are equal to q1/2. Choosing a single-valued branch of
function ψ and denoting it by Ψ(x1, x2), we can consider that Ψ→ q1/2 when one
tends to point P1 along curve Σ+1 and Ψ → −q1/2 when one tends to point P2
along curve Σ−1 . Now we will construct a virtual drain for the flow in domain Ω.
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The idea of the construction is close to the structure proposed in paper [11] for
symmetric flow, but we are not able to apply this structure word for word. Our
idea consists in construction of a virtual drain with support in a narrow curvilinear
strip near the line l1. To this end, we pass in system (1.1) to curvilinear orthogonal
coordinates following [19].

Let us denote the curvilinear orthogonal coordinates as s1 and s2, and the
corresponding Lame coefficients as H1 and H2. We preserve notations v1 and v2 for
projections of velocity vectors on the axes s1 and s2 because this will not lead to
misunderstanding. System (1.1) written in curvilinear coordinates takes the form

v1
H1

∂v1
∂s1

+
v2
H2

∂v1
∂s2

+
v2
H1H2

(
v1
∂H1

∂s2
− v2

∂H2

∂s1

)
(4.1)

= − 1
H1

∂p

∂s1
+ ν

[
1
H2
1

∂2v1
∂s21

+
1
H2
2

∂2v1
∂s22

+
1

H1H2

∂(H−11 H2)
∂s1

∂v1
∂s1

+
1

H1H2

∂(H−12 H1)
∂s2

∂v1
∂s2

+
2

H2
1H2

∂H1

∂s2

∂v2
∂s1

− 2
H1H2

2

∂H2

∂s1

∂v2
∂s2

+
1
H1

∂

∂s1

(
1

H1H2

∂H2

∂s1

)
v1 +

1
H2

∂

∂s2

(
1

H1H2

∂H1

∂s2

)
v1

+
1
H1

∂

∂s1

(
1

H1H2

∂H1

∂s2

)
v2 −

1
H2

∂

∂s2

(
1

H1H2

∂H2

∂s1

)
v2

]
,

v1
H1

∂v2
∂s1

+
v2
H2

∂v2
∂s2

− v1
H1H2

(
v1
∂H1

∂s2
− v2

∂H2

∂s1

)
= − 1

H2

∂p

∂s2
+ ν

[(
1
H2
1

∂2v2
∂s21

+
1
H2
2

∂2v2
∂s22

+
1

H1H2

∂(H−11 H2)
∂s1

∂v2
∂s1

+
1

H1H2

∂(H−12 H1)
∂s2

∂v2
∂s2

− 2
H2
1H2

∂H1

∂s2

∂v1
∂s1

+
2

H1H2
2

∂H2

∂s1

∂v1
∂s2

+
1
H1

∂

∂s1

(
1

H1H2

∂H2

∂s1

)
v2 +

1
H2

∂

∂s2

(
1

H1H2

∂H1

∂s2

)
v2

− 1
H1

∂

∂s1

(
1

H1H2

∂H1

∂s2

)
v1 +

1
H2

∂

∂s2

(
1

H1H2

∂H2

∂s1

)
v1

]
,

∂(H2v1)
∂s1

+
∂(H1v2)
∂s2

= 0.

Let us choose now a special coordinates system proposed at first by R. von
Mises in the paper [20] devoted to boundary layer theory (see also [19]). Taking
point P1 as the origin, we will determine the position of point P ∈ Ω by coordinates
s1 = s and s2 = n, where s is the arc length of line l1 and n is the length of the
normal to this line taken with an appropriate sign. Then the first quadratic form
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is written as

dσ2 =
[
1 +

n

ρ(s)

]2
ds2 + dn2

and therefore
H1 = 1 +

n

ρ(s)
, H2 = 1. (4.2)

Here ρ(s) is the curvature radius of curve l1 in the point with coordinate s. We
will suppose that the curve l1 is smooth enough so that ρ(s) ∈ C1[0, L] where L
is the length of l1.

Let us denote as Sδ the strip Sδ = {s, n : s ∈ R, |n| < δ} and define the
domain K1 by relation K1 = Ω ∩ Sδ . The virtual drain c1 is defined by formula

c1 = −λq1(η(n), 0) (4.3)

where η(n) is the cutting function introduced in [10] and λ = λ(Ω, l1, δ) is a positive
constant. In view of (4.2) and the last equation of (4.1), vector c1 is smooth and
solenoidal. Choosing a suitable correcting multiplier λ, we are able to provide the
required flux q1/2 through the curves Σ+1 and Σ−1 .

Having available two simply connected domains Ω+, Ω− and the virtual drain
(4.3), we can repeat almost literally the procedure described in the proof of Lemma
2. It consists in obtaining an identity like (3.10) for vector u ∈ H(Ω) defined by
an analogue of formula (3.6). As a result, we come to an a priori estimate of type
(3.20). Unfortunately, now constant M4 depends not only on Ω, v, ||b1||H1 and
||c1||H1 but also on the C3-norm of the function, which parametrizes curve l1.
Because of this reason, our result has a conditional character.

5. Discussion

a) An a priori estimate of the Dirichlet integral (1.6) for the solution of problem
(1.1), (1.2) has not only a theoretical interest but also allows us to justify approx-
imate methods, in particular, the Galerkin method [18]. The result of Lemma 2
guarantees such justification for symmetric flows in R3.

b) Detailing the proof of Lemma 2, we may conclude that dependence of value M4

in (3.20) on norms ||ci||H1 (i = 1, . . . ,m) is not more than a linear one. It means
that norm ||v||H1 has maximum linear growth in q∗ = max|qi| (i = 1, . . . ,m)
because norms ||bi||H1 (i = 1, . . . ,m) and valueM3 in (3.19) do not depend on q∗.
This assertion is compatible with results of article [13] where a number of exact
solutions to the problem are studied.

c) During our treatment of the problem, functions ai in boundary condition (1.2)
were supposed to be smooth. It is possible to relax this condition up to inclusion
ai ∈ H1/2(Σi), (i = 1, . . . ,m) as it was done in [10, 11]. The statement of Lemma 2
holds in this case.

d) We restrict our analysis to the case of absence of an external body force acting on
a liquid. The case of potential force is reduced to the previous case with the help of
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a pressure transform. Let us consider the general situation where an acceleration of
body force is f(x), where f is a given admissible function. Following the arguments
of [10, 11], we can prove an analogue of Lemma 2 if f ∈ L2(Ω) and analogues of
Theorem 3 and Theorem 4 if f ∈ Cα(Ω̄).

e) The conditional result declared in Section 4 stimulates the study of stream lines
structure in two-dimensional stationary incompressible viscous flows. For classical
symmetric solutions of the problem (1.1), (1.2) in admissible domain Ω ∈ R2,
we can apply the Kronrod theorem [21]. In particular, this theorem implies the
following conclusion.
Let us consider a set of level lines

ψ(x1, x2) = c (5.1)

where ψ ∈ C2(Ω̄) and c ∈ R. There exists a set N of zero measure such that for
any c ∈ R \ N the corresponding level line (5.1) comes out on ∂Ω or this line is
closed.

This illuminates the situation with the structure of stream lines in a plane
symmetric case. On the basis of Theorem 4, a similar statement is true for axially
symmetric flows. As for a general two-dimensional flow, we know almost nothing
about the structure of the set of stream lines.

Let us consider a flow in a curvilinear ring Ω under additional conditions

a1 · n1 < 0, x ∈ Σ1; a2 · n2 > 0, x ∈ Σ2 (5.2)

or
a1 · n1 > 0, x ∈ Σ1; a2 · n2 < 0, x ∈ Σ2. (5.3)

In other words, each point of curve Σ1 is an input (output) point of a stream
line inside (outside) domain Ω and the same property is valid for curve Σ2. The
following conjecture (C) seems to be likely.
Let v, p be a solution to problem (1.1), (1.2), (5.2) or (1.1), (1.2), (5.3) in a curvi-
linear ring Ω. Then each stream line connects Σ1 with Σ2 and intersects transver-
sally these curves.

This conjecture is the most plausible if the Reynolds number Re = |q1|/ν is
sufficiently large.

f) Let us consider the flow in a curvilinear ring, assuming that the Reynolds number
Re → ∞. In this case, a formal asymptotic solution of the problem (1.1), (1.2),
a solution can be constructed by a certain modification of the Vishik-Lyusternik
method [22]. In contrast to a boundary layer near a solid wall, the thickness of the
boundary layer in problem (1.1), (1.2) has an order of Re−1. This boundary layer
is localized near the curve Σ1 if q1 > 0 and near the curve Σ2 in the opposite case.

Unfortunately, we are not able to establish closeness of approximate and
exact solutions of the problem as Re → ∞. A natural approach based on the lin-
earization of the problem in the approximate solution and consequent application
of the Kantorovich theorem on convergence of the Newton method does not lead
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to success, since we do not have sufficient information concerning the linearized
operator.

g) In the conclusion, we discuss briefly how to weaken symmetry assumptions in
the solution to problem (1.1), (1.2). One of the reasonable ways is to preserve the
symmetry of the flow domain but to cancel the symmetry property of the boundary
conditions.

For simplicity, let us consider a curvilinear ring Ω, which is symmetric about
the line {x2 = 0}. Now we will not suppose the symmetry of functions ai (1 = 1, 2)
in boundary condition (1.2). Let us decompose functions ai into symmetric and
antisymmetric parts,

ai = hi + gi, i = 1, 2. (5.4)

Here hi is a symmetric function with respect to the line {x2 = 0} in the sense of
Definition 1, while gi is an antisymmetric one with respect to this line. The latter
means that g1 is an odd function of x2 while g2 is an even function of x2.

The solution to problem (1.1), (1.2) is sought in the form

v = u+w, p = ps + pa. (5.5)

Here u is a symmetric function, w is an antisymmetric function, ps is even in
variable x2 and pa is odd in this variable. Substituting (5.4), (5.5) into the sys-
tem (1.1) and boundary condition (1.2) we obtain as a result of a decomposition
procedure:

u · ∇u+w · ∇w = −∇ps + νΔu, ∇ · u = 0, x ∈ Ω, (5.6)

u = hi(x), x ∈ Σi, (i = 1, 2), (5.7)

u · ∇w +w · ∇u = −∇pa + νΔw, ∇ ·w = 0, x ∈ Ω, (5.8)

w = gi(x), x ∈ Σi, (i = 1, 2). (5.9)

At given u, function w is determined as the solution of the linear problem
(5.8), (5.9). If the corresponding linear operator is convertible and an appropriate
norm of gi is small, we can prove the solvability of problem (5.6), (5.7). Unfortu-
nately, there are no sufficient conditions for the existence of a unique solvability of
the problem (5.8), (5.9). It would be interesting to prove the following statement
in view of the result, obtained in paper [12]:

Let Ω be a symmetric curvilinear ring with a smooth boundary Σ1 ∪ Σ2. Let
hi ∈ C2+α(Σi) be symmetric functions while gi ∈ C2+α(Σi) are antisymmetric
functions (i = 1, 2). There is a countable subset N of R such that if q1 /∈ N and
||gi||C2+α are small, then problem (5.6)–(5.9) has at least one classical solution.
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Abstract. Problems with insufficient information about initial-boundary data
are studied in terms of irreducible Chapman–Enskog projection. The existence
conditions for Chapman–Enskog projection are formulated in terms of the
solvability of matrix equations for which necessary and sufficient existence
conditions are obtained.

UDC. 517.95

Keywords. hyperbolic regularizations, state equation, attracting invariant
manifold, the Chapman projection, the Navier-Stokes approximation, matrix
equation

Introduction

In this paper, we consider mathematical aspects arising in the study of the hyper-
bolic regularizations for the system of conservation laws [4]

∂tui + divx f
i(u, v) = 0, i = 1, . . . ,m, (1)

∂tvk + divx g
k(u, v) + bk(u)v = 0, k = m+ 1, . . . , N (2)

where x ∈ Rn, u ∈ Rm, v ∈ RN−m, b is an (N − m) × (N − m) relaxation
matrix, f(u, v) and g(u, v) respectively m×N and (N −m)×N flow matrices, u
are conservative variables, v are not-in-equilibrium variables, and m is the number
of conservative variables.

In dealing with from kinetic problems for not-in-equilibrium processes [4],
one must do so with insufficient information about initial-boundary data for most
not-in-equilibrium variables, which have no intuitive physical sense – they can not
be determined from experiment. Furthermore, a number of boundary conditions
that could be reasonable from the physical point of view are not sufficient for
useful formulations of boundary-value problems [5]. Therefore, it is necessary to
understand how the initial and boundary conditions should be interpreted.
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The Chapman–Enskog conjecture [3] reads: for well–posed models in con-
tinuum mechanics (from the physical point of view) the influence of most not-
in-equilibrium variables (higher order moments) is inessential. We do not list dif-
ferent versions of the notion of “well-posedness” from the physical point of view,
but discuss the expression “the influence of most not-in-equilibrium variables is
inessential”. Following [7] this means the following.

1. Projection

Nonequilibrium variables are expressed in terms of conservative variables. I.e.,
there exists an operator correspondence(state equation)

v = Qu, (3)

such that the system of projection

∂tw + ∂xf(w,Qu(w)) = 0 (4)

into the phase space of conservation variables remains in the class of hyperbolic
systems with relaxation (may be pseudodifferential) and solutions w to the Cauchy
problem for the system (4) with initial data

w|t=0 = w0,
define an attracting invariant manifoldMChEns of special solutions to the Cauchy
problem (1), (2)

UChEns = (w,Qw),
i.e., there is an operator connecting the initial data of the original system with
those of the system of projection

w0 = T (u0, v0)
in such a way that the special solutions UChEns to the Cauchy problem for (2)
determined by solutions to the Cauchy problem for (4) satisfies (in some norm)
the following:

‖U − UChEns‖ → 0, t→∞.
Moreover, if in the phase space of conservative variables there is

w → 0, when t→∞ (in some norm on the section t = const),

then the residual U − UChEns tends to zero faster than UChEns.

2. Separation of dynamics

Projections that are not representable as the composition of projections must cor-
respond to the basic (characteristic) dynamics of the simulated process. Moreover,
if relations for relaxation times are different (i.e., the so-called time relaxation
ranges are different, see [6]), then the corresponding attracting invariant mani-
folds are also different.

By virtue of these two statements the Cauchy problem will be called cor-
rect by Chapman–Enskog with respect to the projection in the phase space of
conservative variables.
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In the case of a mixed problem, such researches are more complicated since
not all well-posed mixed problems in original system allow us to define a state
equation (3). In general, only some subclass of well-posed mixed problems will
determine an attracting invariant manifold such asMChEns.

Problems such as (1), (2) in which some variables can be treated as inessential
are sufficiently more and they are more than just moment approximations of kinetic
equations [13], [14]. For example, multiphase mediums yield such problems. In
the Bio model for a saturated porous media, dissipation is determined by the
interphase friction. Over a long time period, pore pressure plays the role of a
conservative variable. The projection in the phase space of this variable is derived
from the Darcy law as an approximation to the operator state equation. This
allows us to describe fluid injection induced microseismicity in porous rock [16].

Navier–Stokes approximation. There are sufficiently more justifications of the
Chapman–Enskog conjecture on a physical level (see, for example, [19]). First,
the substantive justification to the Chapman–Enskog conjecture (from the math-
ematical point of view) for 2×2 systems (1) is made in [4]. In the general case, we
obtain an interesting artifact, which reduces to so-called ultraviolet catastrophe
[19], [20]. Following [4] consider the regular asymptotic expansion

u = u0 + εu1ε + · · ·
v = εv1ε + · · ·

for the solution of (1), (2) with rigid relaxation

∂tu+ ∂xjf
j(u, v) = 0, (5)

∂tv + ∂xjg
j(u, v) +

1
ε
b(u)v = 0,

where the small parameter ε = 1/Kn, Kn is the Knudsen number. We assume
that the matrix b(u) is invertible for all u ∈ Rm. The zero order approximation to
a state equation is

ve = 0
and the local equilibrium approximation to (4) is:

∂tue + ∂xk
fk(ue, 0) = 0,

The system (ε1),

v1 = −ε b−1(uε)∂xk
gk(uε, 0), (6)

∂tuε + ∂xk
fk(uε,−ε b−1(uε)∂xk

gk(uε, 0)) = 0,

is called the Navier–Stokes approximation of (5). It is easy to see that the stability
condition for the linearizations of (5) on constants can be expressed as follows:
the system (6) is parabolic and the linearizations of (6) are stable on constants.
However the next approximations (εk, k ≥ 2), so-called post-Navier–Stokes ap-
proximations, are unstable.We emphasize that this happens in spite of the stability
of the linearizations of the original system (5) on constants. This phenomenon is
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referred to as the ultraviolet catastrophe. For the Boltzmann kinetic equation this
approximation is the Navier–Stokes equations for incompressible fluid exactly.

What is a reason for this phenomenon? Whether the conjecture of the ex-
istence of a projection to the phase space of conservative variables fails or the
Navier–Stokes approximations are not sufficiently well justified?

Example. Hyperbolic regularization of the Hopf equation. Consider the artifact
considered above for the example of the hyperbolic regularization of the Hopf
equation:

∂tu+ ∂xv = −u∂xu, (7)

∂tv + α1∂xu+ ∂xw +
1
ε
β1 v = 0,

∂tw + α2∂xv +
1
ε
β2 w = 0;

1/βj are the relaxation times, β2 > β1 > 0. The dispersion equation of the lin-
earization of (22) on u = ue = 0, v = ve = 0, w = we = 0, is

D(ω, ξ) = det

⎛⎝ ω ξ 0
α1ξ ω − iβ1 ξ
0 α2ξ ω − iβ2

⎞⎠
= ω(ω − iβ1)(ω − iβ2)− α1ξ2(ω − iβ2)− α2ξ2ω
= P0(ω, ξ)− i P1(ω, ξ)− P2(ω, ξ) = 0

(8)

P0 = ω(ω2 − (α1 + α2)ξ2), P1 = (β1 + β2)
(
ω2 − α1β1

(β1 + β2)
ξ2

)
, P2 = β1β2 ω.

The polynomial D(ω, ξ) under ω satisfies the following conditions for the stability
of a hyperbolic pencil [2]):
1. The Hurwitz condition – the leading coefficients of the homogeneous polyno-

mials Pj are positive when

β1 + β2 > 0, β1β2 > 0.

2. The Sturm condition – the roots of neighboring polynomials of the pencil are
strictly separated if

α1 + α2 >
α1β1
β1 + β2

> 0.

In this case the Navier–Stokes approximation is

v = −εα1
β1
∂xuε, w = 0, ∂tuε + uε∂xuε = ε∂x

(
α1
β1
∂xuε

)
,

which dispersion equation
ω = iε

α1
β1
ξ2

is stable, with imaginary part of the root Imω > 0, ∀ξ �= 0.
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The post-Navier–Stokes approximation (ε2) is determined as

v = −εα1
β1
∂xuε + ε2

α1
β21
∂t∂xuε,

w = ε2
α1α2
β1β2

∂2xuε,

∂tuε + uε∂xuε = ε∂x

(
α1
β1
∂xuε

)
− ε2α1

β21
∂t∂

2
xuε

such that the dispersion equation(
1− ε2α1

β21
ωξ2

)
ω = iε

α1
β1
ξ2

is unstable. Such a situation is often observed in quantum mechanics and statistical
physics. It is clear that we should take sufficiently many terms in the regular
asymptotic expansion. However, the main question is: How many?

State equation. Linear analysis

This section is devoted to the analysis of the Chapman–Enskog conjecture in the
linear case(or for linearized problems). Consider the linear hyperbolic system of N
equations with relaxation [4]:

∂tu+
n∑

j=1

Aj∂xju+Bu = 0, (9)

where A and B are matrices with constant entries such that bij = 0, i = 1, . . . ,mc,
j = 1, . . . , N ; i = 1, . . . , N , j = 1, . . . ,mc, and mc, 1 ≤ mc < N , is the number
of conservative variables, or coinciding with conservative variables are said to be
consolidated.

We look for a projection to the phase space of m first equations (m ≥ mc)
in the form of the state equation

u = Puc, P
2 = P. (10)

The variables of projection uc = (u1, . . . , um, 0, . . . , 0)T including with conserva-
tive variables are said to be consolidated. The matrix pseudodifferential operator
P (∂x), corresponding to the projection we look for in the form

P (∂x) =
(
P11 P12
P21 P22

)
, (11)

where P11 = Em is the identity matrix of order m, P22 = 0N−m, P12 = 0m×(N−m)

is the zero quadratic matrix of order (N − m) × (N − m) and m × (N − m)
respectively. The resolvent matrix of the system (9)

Λ(ξ) =
n∑

j=1

Ajiξ +B
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has the form

Λ =
(
Λ11 Λ12
Λ21 Λ22

)
, (12)

where Λij have the same size as the matrices Pij . Let’s show that the matrix
symbol Π(ξ) of the projection is a solution of the matrix equation

Π21(ξ)(Λ11(ξ) + Λ12(ξ)Π21(ξ)) = Λ21(ξ) + Λ22(ξ)Π21(ξ), ξ ∈ Rn (13)

which completely determines the projection P . Observe that the matrix equation

XAX +BX +XC +Q = 0

is a nontrivial object(see [28], [29]). For example, we will consider two special 2×2
cases (13):

X2 = 0, X2 =
(
0 1
0 0

)
.

There are infinitely many such matrices in the first case, and they form a two-
dimensional cone in C4(detX = 0, trX = 0). There are no solutions to the
second equation, since a matrix has only the zero eigenvalue if the squared matrix
possesses this property, i.e., X is nilpotent and the squared nilpotent matrix of
second-order vanishes.

Observe, that the study of problems with insufficient information about
initial-boundary data for partial differential equations is reduced to the solvability
problem of the matrix equation depending on many-dimensional parameters. This
demands an additional investigation of the solvability problem when a solution
depends smoothly on a parameter and satisfies the conditions of the theory of
pseudodifferential operators (see [30]).

The problem reduction to a quadratic matrix equation. We formally construct a
Chapman–Enskog projection in the linear case (9). Since P is a projection, P 2 = P ,
one has

P∂tuc +
n∑

j=1

AP∂xjuc + BP uc = 0, (14)

and

P∂tuc + P
n∑

j=1

AP∂xjuc + P BP uc = 0. (15)

Subtracting (15) from (14), we find:

(E − P )(
n∑

j=1

A∂xj +B)P uc = 0. (16)

We denote by Π(ξ) the Fourier image of P (∂x) with respect to x. Then (16) can
be written in the terms of Fourier images as:

(E −Π)ΛΠvc = 0,
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i.e., Λ(ξ)Π(ξ)vc ∈ Ker(E − P ), ∀ξ ∈ Rn. Representing ∀v ∈ Ker(E − Π) as
vT = (vT

m, v
T
N−m), vk ∈ Rk, we obtain the equality

vN−m = Π21vm.

Hence we arrive at the system:

Π21(Λ11 + Λ12Π21) = Λ21 + Λ22Π21 (17)

which completely determines the projection P . If the Chapman–Enskog projection
is to be useful to us for study of mixed problems in the half-plane xn > 0, it needs
to express the derivatives ∂xnu and to pass to the Fourier image from (t, ξ′) to
x = (xn, ξ

′).

Existence of a matrix solution. Necessary and sufficient conditions. This section
is devoted to the solvability condition for the matrix equation.

Proposition 1. Let a matrix Π21 be a solution

Π21Λ12Π21 − Λ22Π21 +Π21Λ11 − Λ21 = 0 (18)

and X = ΛΠ, where Π =
(
Π11 Π12
Π21 Π22

)
is a quadratic matrix of order N , Π11

is the identity matrix of order m, and Π12, Π22 are zero matrices. Then X is a
solution to the quadratic matrix equation

X2 − ΛX = 0. (19)

As we will show below, the matrix equation (19) is simpler than the general
matrix equation and it is not difficult to describe one completely. Solutions of the
matrix equation (18) correspond to a part of the set of solutions for equation (19)
only. So we must define the selection rule. We restrict ourselves to the simple case,
when |Λ| �= 0.

Theorem 1. Let detΛ �= 0. The matrix equation (18) is solved then and only then,
when there exist two solutions X1, X2 for the equation (19) such that

X1ej = 0 ∀j > m,
eTj X2 = eTj Λ ∀j = 1, . . . ,m, (20)

ΛX2 = X1Λ.

Then Π = Λ−1 X.

Our study is based on the following assertion.

Lemma 1. Let |Λ| �= 0. The matrix Π has the form

Π =
(
Π11 Π12
Π21 Π22

)
,

where Π11 is the identity matrix of order m, P12, Π22 are zero matrices. Then
the quadratic matrix equation (18) is solved when and only when there exists a
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matrix Π of the earlier described form, which is a solution of the quadratic matrix
equation

(E −Π)ΛΠ = 0 (21)

where E is the identity matrix.

Concretely, let us first solve the matrix equation (18). We compute explicitly
the product (E−Π)ΛΠ. Since the first m rows of the matrix (E−P ) are zero, the
first m rows of the product (E−Π)ΛΠ are also zero. Since the last N−m columns
of the matrix P are zero, the last N −m columns of the product (E −Π)ΛΠ are
also zero. For ((E −Π)ΛΠ)21 we have

((E −Π)ΛΠ)21 = −P21Λ11 − P21Λ12P21 + Λ21 + Λ22P21 = 0.

Conversely, let Π be a solution of (21), having the view described above.
Thus, (E−Π)ΛΠ = 0. Consequently, the relation (21) is a necessary and sufficient
condition for the solvability of the matrix equation (18).

Proof of Theorem 1. Let at first the matrix equation (18) be solved, then the
matrix equation (21) will be solved. Observe that the matrix P corresponds to the
set described above when and only when Pej = 0 ∀j > m, eTj P = eTj ∀j ≤ m.
Multiplying (21) from the left by Λ, we see that X1 = ΛP is a solution to (19).
Analogously, multiplying (21) from the right by Λ , we see that X2 = PΛ is a
solution to (19). The first and second equations in (20) follow from the structure
of the matrix P . Further, since X1 = ΛP , X2 = PΛ the third equation in (20) is
fulfilled also.

Now let X1, X2 be two solutions to (19), satisfying the equations 1–3 in (20).
Set P = Λ−1X1 = X2Λ−1. Then from the equations 1, 2 (20) it follows that the
matrix P has the desired view. Next, setting X1 = ΛP in (19) and multiplying
the obtained expression from the left by Λ−1, we see that P is a solution to (21).

Describe the solution to X2 = ΛX . Below we bring some results of [8]:

Lemma 2. Let det(Λ) �= 0 and the vectors h1, . . . , hn form a Jordan basis for
the matrix X which is a solution to (19). Then there exists K ≥ 0 such that
h1, . . . , hK are a part of a Jordan basis for the matrix Λ that preserves the adjunc-
tion order (i.e., if hj is such that Xhj = λhj + hj−1, then Λ hj = λhj + hj−1)
and hK+1, . . . , hn are the eigenvectors to the zero eigenvalue.

Look once more at the geometrical formulation of the necessary and sufficient
conditions of the solvability of the quadratic matrix equation (18), when detΛ �= 0.
The case det Λ = 0 was considered in [10].

Theorem 2. Let |Λ| �= 0. Suppose besides that there exist vectors v1, . . . , vm such
that:
1. V = Lin{vj}m

1 is a proper subspace to the matrix Λ, i.e., ΛV = V .
2. Vectors v1, . . . , vm, em+1, . . . , en form a basis.

Then and only then the quadratic matrix equation (18) is solved.
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Hyperbolic regularization to the Hopf equation. Reduction to upper block-trian-
gular form. We continue the study of the system

∂tu+ ∂xv = −u∂xu, (22)
∂tv + α1∂xu+ ∂xw + β1 v = 0,
∂tw + α2∂xv + β2 w = 0.

This section is devoted to the proof of the following proposition.

Proposition 2. The Cauchy problem for the system (22) is L2-Chapman–Enskog
correct, if the following condition for the relaxation time is fulfilled:

β1
β2
> max

(
2α1 − α2
α1 + α2

,
1

α1 + α3

)
. (23)

Reduction to the block form. The projection makes possible the reduction of the
linearized system (22) to a block-triangular form (existence of the projection and
separation of the system (9) by putting it into block-triangular form are equivalent
(see [8])). Set

S =
(
Em 0
P21 En−m

)
.

We will find the projection conditions in the phase space of the variable u(the
projection to one equation). Let us show that

P21 = (q1(−∂2x)∂x, q2(−∂2x))�.
Making the change

U = S (z1, z2, z3)�

we transform the linearized system (22) to the block-triangular form. Here we have

S =

⎛⎝ 1 0 0
q1(−∂2x)∂x 1 0
q2(−∂2x) 0 1

⎞⎠ , S−1 =
⎛⎝ 1 0 0
−q1(−∂2x)∂x 1 0
−q2(−∂2x) 0 1

⎞⎠ .
Whence, the state equation U = Z + PZ can be written as

u = z1, v = q1(−∂2x)∂xz1 + z2, w = q2(−∂2x)z1 + z3.
In the new variables the resolvent matrix Λ(ξ) appears as follows:⎛⎝ 1 0 0

−q1(−∂2x)∂x 1 0
−q2(−∂2x) 0 1

⎞⎠×

⎛⎝ 0 ∂x 0
α1∂x β1 ∂x

0 α2∂x β2

⎞⎠×

⎛⎝ 1 0 0
q1(−∂2x)∂x 1 0
q2(−∂2x) 0 1

⎞⎠
=

⎛⎝ q1∂
2
x ∂x 0

−q21∂3x + α1∂x + β1q1∂x + q2∂x −q1∂x + β1 ∂x

−q1q2∂2x + α2q1∂2x + β2q2 −q2∂x + α2∂x β2

⎞⎠ .
The conditions of the block form are

−q21∂3x + α1∂x + β1q1∂x + q2∂x = 0, −q1q2∂2x + α2q1∂2x + β2q2 = 0.
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In terms of Fourier images we have

q21(ξ
2)ξ2 + α1 + q2(ξ2) + β1q1(ξ2) = 0,

q2(ξ2) =
α2ξ

2q1(ξ2)
(ξ2q1(ξ2) + β2)

.

We introduce the production function

Q = ξ2q1(ξ2), Q(0) = 0;

then the system for the symbols q1, q2 reduces to the equation

(Q(ξ2) + β2)(Q(ξ2) + β1)Q(ξ2) + ξ2[α1(Q(ξ2) + β2) + α2Q(ξ2)] = 0.

The existence condition of a smooth rootQ(|ξ|2)(so-called diffusion root) is defined
by the inequality

β2
α1 + α3

< β1.

From the properties of the diffusion root Q we obtain

Q(ξ2) → − β2
α1 + α3

|ξ| → ∞,

Q(ξ2) + β2 ≥ c0 > 0 for any ξ ∈ R for some constant c0 > 0.

Block system. In accordance with the above calculations, we transform the lin-
earized system (22) in the neighborhood of the equilibrium state to the form

∂tz1 −Q(−∂2x)z1 + ∂xz2 = 0, (24)

∂tz2 + (−q1∂x + β1)z2 + ∂xz3 = 0, (25)

∂tz3 + (−q2 + α2)∂xz2 + β2z3 = 0

with initial data

z01 = u0, z
0
2 = v0 − q1(−∂2x)∂xu

0, z03 = w0 − q2(−∂2x)u0.
The conditions

v0 − q1(−∂2x)∂xu
0 = 0, w0 − q2(−∂2x)u0 = 0

define the invariant manifold

MChEns = {Z = (z1, 0, 0), z1|t=0 = u0, z2|t=0 = 0, z3|t=0 = 0}
of the solutions to the Cauchy problem for the system (24), (25). Then there are

v0 − q1(−∂2x)∂xu
0 �= 0, w0 − q2(−∂2x)u0 �= 0.

We must find the existence conditions of a corrector

z1cor = T (v0, w0)
such that the solution Zcor ∈ MChEns to the Cauchy problem (24), (25) with the
initial data

Zcor|t=0 = (z1cor, 0, 0)
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is compatible with the solutions U for (24), (25) with the initial data

z1|t=0 = 0, z2|t=0 = v0 − q1(−∂2x)∂xu
0, z3|t=0 = w0 − q2(−∂2x)u0,

i.e., in a appropriate norm we have

‖U − Zcor‖ → 0, t→∞.
The solution structure. The general solution is

U = (z1, q1(−∂2x)∂xz1 + z2, q2(−∂2x)z1 + z3)�

= (z1, q1(−∂2x)∂xz1, q2(−∂2x)z1)� + (0, z2, z3)�.

Now compare U1 = (z1, q1(−∂2x)∂xz1, q2(−∂2x)z1)� and the spatial solution

UChEns(x, t) = (z, q1(−∂2x)∂xz, q2(−∂2x)z)�

where z is the solution to the Cauchy problem for the projection equation

∂tz −Q(−∂2x)z = 0, (26)

z|t=0 = z0.
Nonequilibrium variables are unessential if the solution to the Cauchy problem for
(22) is attracted to a special solution. In the Fourier image one has

z̃1(t, ξ) = eQ(ξ
2) t[ũ0 − i

∫ t

0

e−Q(ξ2) sξz̃2(s, ξ)ds]

= eQ(ξ
2) t[ũ0 − i

∫ ∞

0

e−Q(ξ2) sξz̃2(s, ξ)ds] + i
∫ ∞

t

eQ(ξ
2) (t−s)ξz̃2(s, ξ)ds

if the integral ∫ ∞

0

e−Q(ξ2) sξz̃2(s, ξ)ds

is finite (the crack condition). Then

eQ(ξ
2) t[ũ0 − i

∫ ∞

0

e−Q(ξ2) sξz̃2(s, ξ)ds]

belongs to the invariant manifold

MChEns = {UChEns(x, t) = (z, q1(−∂2x)∂xz, q2(−∂2x)z)�}
of spatial solutions

UChEns(x, t) = (z, q1(−∂2x)∂xz, q2(−∂2x)z)�, (27)

and is defined by initial data

z0 = u0 − i
∫

R1
ei(x,ξ)

∫ ∞

0

e−Q(ξ2) sξz̃2(s, ξ)dsdξ.

So we must find the condition when

U⊥ = (0, z2, z3)� + (z⊥, q1(−∂2x)∂xz
⊥, q2(−∂2x)z⊥)�

= eQ t
[
(0, e−Q tz2, e

−Q tz3)� + (1, q1(−∂2x)∂x, q2(−∂2x))� e−Q tz⊥
]
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tends to zero faster than (27), where

e−Q tz⊥ = i
∫ ∞

t

e−Q(ξ2) sξz̃2(s, ξ)ds.

It is sufficient that functions

e−Q tz2, e
−Q tz3, i

∫ ∞

t

e−Q(ξ2) sξz̃2(s, ξ)ds

tend to zero in an appropriate norm.

The crack condition. Note that ω = −iQ is the purely imaginary root of the
dispersion equation (33). One has

D(−iQ) = Q(Q2 + (α1 + α2)ξ2) + ((β1 + β2)Q2 + α1β1ξ2) + β1β2Q = 0. (28)

As may be seen, we obtained the equation for the production function Q. Let us
show that two other roots (28), different from the real root Q, are found to the
left from the vertical line Re Q = − α1β2

α1+α2
for any ξ ∈ R. Set

Q = − α1β2
α1 + α2

+ iZ, ∀Z ∈ R.

The equality to zero of the imaginary part Im P (− α1β2
α1+α2)

+ iZ) = 0 reduces to
the equation

Z2
(
β1 + β2 −

3α1β2
α1 + α2

)
+

α1α2β
2
2

(α1 + α2)2

(
β1 −

α1β2
α1 + α2

)
= 0

which has purely imaginary roots, if

β1 + β2 −
3α1β2
α1 + α2

> 0. (29)

Then two other roots of (28), different from the real root Q, lie on the left from
the vertical Re Q = − α1β2

α1+α2
for all ξ ∈ R. So that the condition (29) is the

sufficient condition when the set of special solution (27) is attracting and the
nonequilibrium variables (v, w) are unessential to the Cauchy problem for the
system (22) linearized in a neighborhood of the equilibrium state ue = ve = we = 0.

Observation 1. Now we can explain the mathematical nature of so-called ultraviolet
catastrophe. Making the transformation β1 → β/ε, β1 → β/ε in the hyperbolic
regularization for the Hopf equation we reduce the operator Q(−Δ) in the projection
equation (26) to the operator Q(−ε2Δ). Also, we obtain Uε = SεZε, whose regular
expansions lead to the Navier–Stokes and post-Navier–Stokes approximation. We
now have

Sε =

⎛⎝ 1 0 0
q1(−ε2∂2x)∂x 1 0
q2(−ε2∂2x) 0 1

⎞⎠ .
The instability problem of the post-Navier–Stokes approximations connects with
the bad approximation of the symbol Q(ξ2), which is the so-called kink function
with an inner layer, by polynomials.
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Chapman–Enskog projection and Schrödinger approximation

Now we consider the hyperbolic regularization [21,22] to the Maxwell system [25]
which possesses a number of remarkable properties:

iα
∂U

∂t
= rotU − β∇ �− f, (30)

iα1
∂ρ

∂t
= divU − γ1ρ,

or

i∂t

(
U
�

)
+Aj∂xj

(
U
�

)
+B

(
U
�

)
= 0

where α, α1, β are positive real constants and γ1 = μ1 + iμ2, μj > 0.

Connection of the hyperbolic regularization to the Maxwell system with basic
equations in quantum mechanics. Setting α1 = β = 0 in (30) we obtain the
Maxwell system

iα
∂U

∂t
= rot U − f, div U = γ1ρ.

Indeed, we introduce the notation α =
√
εμ/c,

U = U1 + iU2, U1 =
√
εE, U2 =

√
μH ;

f = f1 + if2, f1 = −
4π
c

√
ε jm, f2 =

4π
c

√
μ je;

where

ρ = ρ1 + iρ2, ρ1 =
4π√
ε
ρe, ρ2 =

4π√
μ
ρm.

Thus we obtain a “symmetrized” Maxwell system, which differs from the classi-
cal one [25] by the presence of the “magnetic” charge ρm, introduced by Dirac
and “magnetic” flow jm, introduced by Schwinger. The system (30) has the same
number of equations as the Dirac system, but they are not equivalent nevertheless.
We show that the former system is closely connected with the Schrödinger equa-
tion. Depending on the ratio γ1 = 1/ε, 0 < ε� 1, we introduce approximations,
called Schrodinger approximations, which are similar to Navier–Stokes approxi-
mations [4]. We use the method of regular asymptotic expansions. Then from the
second equation (30) we find for � the state equation in the first approximation,
connecting the nonequilibrium variable and the conservation variables

� = ε divU. (31)

From the first three equations (30) for the divergence to the potential part of the
solution we find the first approximation

iα∂t divU + εβΔdivU + div f = 0. (32)

The system (31), (32) is the Schrödinger approximation. From this case arise
problems analogous to the problems of the ultraviolet catastrophe [6, 19].
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Reduction to block form. Prove the existence of a projection in the phase space of
the variables U . The dispersion equation of the system (30) is

D4 = ((αω)2 − |ξ|2) (αω(α1ω − γ1)− β|ξ|2) = 0. (33)

1. The second factor

P2 = αα1ω2 − αγ1ω − β|ξ|2 = (αα1ω2 − αμ1ω − β|ξ|2)− iαμ2ω = 0

is stable (see [2], i.e., the imaginary part of roots Imωj(|ξ|2) > 0, j = 3, 4), since
this is a nonstrict hyperbolic pencil, whose homogeneous parts are strictly hyper-
bolic, and whose roots are separated from each other:

ω3(|ξ|2) =
1

2αα1

[
αμ1 −

√
α2μ21 + 4αα1β|ξ|2

]
< 0

< ω4(|ξ|2) =
1

2αα1

[
αμ1 +

√
α2μ21 + 4αα1β|ξ|2

]
, ∀|ξ| > 0.

For ξ = 0 we have
ω3(0) = 0 < ω4(0) =

μ1
α1
.

The second factor does not have multiple roots since

(αγ1)2 + 4αα1β|ξ|2 �= 0,

if μ1 �= 0.
2. There are two wave roots ω±(|ξ|) = ±|ξ|/α of the first factor.
3. The factors are the common root ω(0) = 0 when |ξ| = 0. For any |ξ| �= 0 there
is a common root ω∗, if

(α1ω∗ − γ1)− βαω∗ = (α1 − βα)ω∗ − γ1 = 0.

which is impossible, if α1 − βα = 0. When α1 − βα �= 0 we obtain

|ξ∗|2 = (αω∗)2 =
α2γ21

(α1 − βα)2
that contradicts Im γ1 > 0.

So that, for any ξ ∈ R3 there are four eigenvectors to the resolvent matrix

Λ(ξ) = Ajiξj +B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
iξ3
α

− iξ2
α

iβξ1
α

− iξ3
α

0
iξ1
α

iβξ2
α

iξ2
α

− iξ1
α

0
iβξ3
α

−i ξ1
α1

−i ξ2
α1

−i ξ3
α1

γ1
α1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (34)

corresponding to four roots of the dispersion equation. The results shown above
about the solvability of the matrix equation say that in this case there can be a
Chapman–Enskog projection in the phase space of the variables U . Our goal is the
proof of such projector existence.
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Proposition 3. The Cauchy problem for the system (30) is L2-Chapman–Enskog
correct with respect to the projection in the phase space of the variables U .

We will look for the operator transformation

(U, �)� = S(∇x)(V, r)�,

which reduces (30) to an upper block-triangular form. Then the symbol

S21(ξ) = (iξ1R1(ξ), iξ2R2(ξ), iξ3R3(ξ)),

where S11 = E is the identity matrix of 3 × 3 order and S22 = 1, S12 = 0 is the

zero matrix of 3×1 order. We introduce the production function Q(ξ) =
3∑

j=1

ξ2jRj .

Then in terms of Fourier images we can write

(S−1(ξ) ΛS)22 =
Q+ α

α1
γ1

α
,

(S−1ΛS)11 =

⎛⎜⎜⎜⎜⎝
−β
α
ξ21R1

iξ3
α
− β
α
ξ1ξ2R2 − iξ2

α
− β
α
ξ1ξ3R3

− iξ3
α
− β
α
ξ1ξ2R1 −β

α
ξ22R2

iξ1
α
− β
α
ξ2ξ3R3

iξ2
α
− β
α
ξ1ξ3R1 − iξ1

α
− β
α
ξ2ξ3R2 −β

α
ξ23R3

⎞⎟⎟⎟⎟⎠ ,
(35)

(S−1(ξ) ΛS)12 =
(
i
βξ1
α

i
βξ2
α

i
βξ3
α

)�
, (36)

(S−1(ξ) ΛS)21 = (π1, π2, π3),

π1 = −iξ1R1
(
−β
α
ξ21R1

)
− iξ2R2

(
−i ξ3
α
− β
α
ξ1ξ2R1

)
− iξ3R3

(
i
ξ2
α
− β
α
ξ1ξ3R1

)
− i ξ1
α1

+ i
γ1
α1
ξ1R1,

π2 = −iξ1R1
(
i
ξ3
α
− β
α
ξ1ξ2R2

)
− iξ2R2

(
−β
α
ξ22R2

)
− iξ3R3

(
−i ξ1
α
− β
α
ξ2ξ3R2

)
− i ξ2
α1

+ i
γ1
α1
ξ2R2,

π3 = −iξ1R1
(
−i ξ2
α
− β
α
ξ1ξ3R3

)
− iξ2R2

(
i
ξ1
α
− β
α
ξ3ξ2R3

)
− iξ3R3

(
−β
α
ξ23R3

)
− i ξ3
α1

+ i
γ1
α1
ξ3R3.

The system (30) is reduced to the upper block-triangular form, if

(S−1(ξ) ΛS)21 = 0. (37)
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Then we obtain the projector in the phase space of the variables U , when the
system (30) is transformed to

iα ∂tV − rotV + β B1V + β∇r + f = 0, (38)

iα1∂tr + (
βα1
α
Q(−Δ) + γ1(−Δ)) r =

α1
α
(∂x1R1f1 + ∂x2R2f2 + ∂x3R3f3). (39)

Here the Fourier image of B1 has the form

ξT ξ

⎛⎝ R1 0 0
0 R2 0
0 0 R3

⎞⎠ . (40)

Making the change Xj = ξjRj we reduce the system (37) to the equations

X1

(
β

α
ξ1X1 +

γ1
α1

)
−X2

(
−i ξ3
α
− β
α
ξ2X1

)
−X3

(
i
ξ2
α
− β
α
ξ3X1

)
=
ξ1
α1
, (41)

−X1

(
i
ξ3
α
− β
α
ξ1X2

)
+X2

(
β

α
ξ2X2 +

γ1
α1

)
−X3

(
−i ξ1
α
− β
α
ξ3X2

)
=
ξ2
α1
,

−X1

(
−i ξ2
α
− β
α
ξ1X3

)
−X2

(
i
ξ1
α
− β
α
ξ2X3

)
+X3

(
β

α
ξ3X3 +

γ1
α1

)
=
ξ3
α1
.

Whence, for the production function Q = ξ1X1 + ξ2X2 + ξ3X3 we obtain

P (Q) = βα1Q2 + γ1(|ξ|2)αQ− α |ξ|2 = 0, Q(0) = 0. (42)

Then

X1

(
β

α
Q+

γ1
α1

)
+ iX2

ξ3
α
− iX3

ξ2
α
=
ξ1
α1
, (43)

−iX1
ξ3
α
+X2

(
β

α
Q+

γ1
α1

)
+ iX3

ξ1
α
=
ξ2
α1
,

+iX1
ξ2
α
− iX2

ξ1
α
+X3

(
β

α
Q+

γ1
α1

)
=
ξ3
α1

where
Xj =

ξj

α1

(
β
αQ+ γ1

α1

) ⇒ Rj =
1

α1

(
β
αQ+ γ1

α1

) , j = 1, 2, 3,

are symbols of order zero. The denominator is(
β

α
Q+

γ1
α1

)
�= 0, ∀|ξ| ≥ 0,

on solutions of (42), since we have

P (Q)|Q=− γ1α
α1β

= βα1

(
γ1α

α1β

)2

− γ1α
γ1α

α1β
− α |ξ|2 = −α |ξ|2 �= 0, ξ �= 0,

where γ1(0) �= 0. The dispersion equation of (38), (39) is

D4(ω) = D3(ω)
(
α1ω −

(
βα1
α
Q(−Δ) + γ1

))
,
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where

D3(ω) = ((αω)2 − |ξ|2)
(
ω − 1

2αα1

(
αγ1 −

√
α2γ21 + 4αα1β|ξ|2

))
.

Concretely, Q(ξ2) = α
β ω4(ξ) −

βγ1
α1α , where ω4 is the boundary layer root of the

dispersion equation (33). Setting this expression in the equation for the product
function we have

P (Q)|
Q=α

β ω4− βγ1
α1α

=
α1α

2

β
ω24 −

α2γ1
β
ω4 − α |ξ|2

=
α

β
[αα1ω24 − αγ1ω4 − β|ξ|2].

So we have obtained the second factor of the dispersion equation (33).

Observation 2. Therefore, we have proved the existence of the smooth transforma-
tion S(∂x), which reduces (30) to the block-triangular form (38), (39). Whence,
it follows that the eigenvectors R±(ξ), R3(ξ) of the resolvent matrix Λ(ξ), corre-
sponding to the roots ω±(|ξ|), ω3(|ξ|2) of the dispersion equation (33), satisfy the
solvability condition

Lin{V, e4} = R
4,

for the matrix equation of the projection in the phase space of the variables U ,
where V is the proper subspace of the eigenvectors R±(ξ), R3(ξ)

Unessentialness of the nonequilibrium variable r. Now we prove the unessentialness
of the nonequilibrium variable r. For this we need to prove that the set of special
solutions for (30) is an attracted invariant manifold. For simplicity consider the
case when there are no exterior forces f = 0. Then we have invariant manifolds:

1.MChEns is determined by special solutions (UChEns, ρChEns) to the Cauchy prob-
lem (30):

(UChEns, ρChEns) = (W1,W2,W2, ∂x1R1(∂x)W1 + ∂x2R1(∂x)W2 + ∂x3R3(∂x)W3),

where

iα ∂tW − rotW + β B1W = 0, (44)

W |t=0 = U0. (45)

Observe, that B1W = −i∇xR(−Δ)divW is a potential field. Whence we have
W = ∇xΨ, W 0 = ∇xΨ0, where

iα ∂tΨ+ βQ(−Δ)Ψ = 0, (46)

Ψ|t=0 = Ψ0 (47)

and the solution to the Cauchy problem is described as

Ψ = eit
β
α Q(−Δ)Ψ0. (48)
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2. Next, the invariant manifold M = {(U, ρ) = S(V, r)} coincides with the solu-
tions of (38), (39)

iα ∂tV − rotV + β B1V + β∇r = 0, (49)

iα1∂tr +
(
βα1
α
Q(−Δ) + γ1

)
r = 0, (50)

V 0 = 0, r0 = �0 − ∂x1R1(∂x)U01 + ∂x2R1(∂x)U02 + ∂x3R3(∂x)U03 (51)

with initial data

V 0 = 0, r0 = �0 − ∂x1R1(∂x)U01 + ∂x2R1(∂x)U02 + ∂x3R3(∂x)U03 .

Hence, the solution of (49) is potential, i.e.:

V = ∇xΨ,

where

iα ∂tΨ+ βQ(−Δ)Ψ + β r = 0, (52)

iα1∂tr +
(
βα1
α
Q(−Δ) + γ1

)
r = 0, (53)

with the initial data

Ψ0 = 0, r0 = �0 − ∂x1R1(∂x)U01 + ∂x2R1(∂x)U02 + ∂x3R3(∂x)U03 .

Then for div V we have

iα ∂t div V − βQ(−Δ)div V + βΔr = 0, (54)

iα1∂tr +
(
βα1
α
Q(−Δ) + γ1

)
r = 0. (55)

Here we used that ΔR(−Δ) = Q(−Δ).
The question is when the manifold MChEns of the special solutions will be

attractive to the solutions of the Cauchy problem (U, ρ) = S(∇xΨ, r). Observe,
that for potential solutions of the projection system (44) we have

iα ∂t divW + βQ(−Δ)divW = 0, (56)

divW |t=0 = divU0. (57)

Whence, it follows that to solve this problem we need to show that the solution of
the nonhomogeneous Cauchy problem (52) is represented in the form

div V = eit
β
α Q(−Δ)

(
div V 0cor + o

(
1
t

))
. (58)

Also we have

r = eit(
β
α Q(−Δ)+ γ1

α1
)
r0 = eit

β
α Q(−Δ)

[
e

it
γ1
α1 r0

]
.
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Using the Duhamel principle we write V – components of the solution to the
Cauchy problem (51) –

V = eit
β
α Q(−Δ)

∫ t

0

e
is

γ1
α1 r0ds = −ieit β

α Q(−Δ)α1
γ1

(
e

it
γ1
α1 − 1

)
= eit

β
α Q(−Δ)

[
i
α1
γ1
r0 − iα1

γ1
e

it
γ1
α1 r0

]
.

Compare this with (48). We see that we will obtain the desired result if we set
div V 0 = −α1

γ1
r0 and take into account that

Re
(
i
γ1
α1

)
= −μ2

α1
.

Then we obtain in (58) the exponential decreasing o(1t ) = O(e
−δt).

Auxiliary propositions

In this section we will formulate, with an explanation of the proofs, some technical
results, which are necessary for a verification of the separation dynamics under
the projection in the phase space of the conservative variables.

The Liapunov equation and the corrector construction. Note that the Liapunov
matrix equation

−M11Q12 +Q12M22 −M12 = 0 (59)

is a partial case of (18), when the quadratic part is strictly equal to zero. Then we
have the following result:

Theorem 3. Let det(M11) �= 0, det(M22) �= 0 such that the matrix

M =
(
M11 M12

0 M22

)
has no eigenvalue λ for which, after subdivision into blocks of corresponding size,

the eigenvector to λ has the form v0 =
(
v0,1
0

)
, and a corresponding adjoint

vector is v1 =
(
v1,1
v1,2

)
, where v1,2 �= 0. Then there exists a solution Q12 of the

equation (59), corresponding to the matrixes M11, M12, M22.

Consider the equation (59) as a partial case of a matrix equation. Then the
matrix Λ corresponding to this equation is obtained from the matrix M by a
permutation of lines and columns:

Λ =
(
M22 0
M12 M11

)
.

Since det(M11) �= 0, det(M22) �= 0, then det(Λ) �= 0. The solvability of the equation
(59) follows from Theorem 2, if the system of vectors is reduced from the Jordan
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basis to Λ by the receding of vectors
(
0
v

)
, determining the basis of the proper

subspace for the matrix Λ (see the proof of this theorem considered below and
in [27]). The answer to the question when the matrix Λ can be reduced to the
block-diagonal form, is given by the following result.

Theorem 4. Let the matrix Λ be invertible such that there exist the basis v1, . . . , vm
of the proper subspace V and Lin{v1, . . . , vm, em+1, . . . , en} = Rn and such that V
can not be expanded up to a proper subspace to the matrix Λ of m + 1 dimension
by an addition to the basis v1, . . . , vm of an adjoint vector of the matrix Λ. Then
there exist matrices P21, Q12 such that(
E −Q12
0 E

)(
E 0

−P21 E

)
Λ

(
E 0
P21 E

)(
E Q12
0 E

)
=

(
M11 0
0 M22

)
.

The condition of the stiff crack and the existence of an attracting invariant man-
ifold. Let the matrix Λ satisfy the conditions of Theorem 4. Reduce our problem
to the Fourier image and make the transformation Ũ = S−1u. Then the solution
to the Cauchy problem (9) with the initial data

U |t=0 =
(
U0
V0

)
can be rewritten in the form

U = e−Mt

(
U0
V0

)
,

where M = S−1ΛS. Due to Theorem 4, the matrix M has the form

M =
(
E Q12
0 E

)(
M11 0
0 M22

)(
E −Q12
0 E

)
,

whence we obtain

U =
(
E Q12
0 E

)
exp

(
−

(
M11 0
0 M22

)
t

)(
E −Q12
0 E

)(
U0
V0

)
=

(
e−M11tU0

0

)
+

(
−e−M11tQ12V0

0

)
+

(
Q12e

−M22tV0
e−M22tV0

)
= e−Mt

(
U0
0

)
+ e−Mt

(
−Q12V0

0

)
+

(
Q12e

−M22tV0
e−M22tV0

)
.

Set

UCh = e−Mt

(
U0
0

)
, UCor = e−Mt

(
−Q12V0

0

)
,

UH =
(
Q12e

−M22tV0
e−M22tV0

)
.

Whence the solution of the Cauchy problem is represented as the sum of three
terms:

U = UCh + UCor + UH , (60)
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and also each of these terms is a solution of the equation (9) with some initial
data. The first term corresponds to the projection in the phase space consolidated
variables. The second is a correction term, describing the influence of the initial
data for the nonequilibrium variables, and the third term is the unessential part.
Look for the conditions under which the following estimates are fulfilled:

||UH || = o(||UCh||), t→∞,
where ||f || is L2− norm of f . For this use the auxiliary statement (see [27]):

Lemma 3. Let the matrix Λ depend on the parameter ξ polynomially such that
there is a number k0 > 0, that ∀ξ : |ξ| > k0 all eigenvalues of the matrix Λ are
algebraic of multiplicity 1 and that the following estimates are fulfilled:

|λ(ξ)| ≤ C1(1 + |ξ|)d1 ,

where C1, d1 are constant. Let the vector v be an eigenvector for Λ. Then for
|ξ| > k0 the following inequality is true:

max{|eTi v|}
min{|eTi v| �= 0} ≤ C2(1 + |ξ|)

d2 , (61)

where C2, d2 are some constants.

Lemma 4. Let the matrix Λ, depending on the parameter ξ, be determined for all
ξ ∈ R and satisfy the conditions of Theorem 3 for all ξ ∈ Ξ also, where the set
Ξ = R\Ξ− and the set Ξ− consist of a finite number of points. Then P21, Q12 are
determined on the set Ξ.

Moreover, let the matrix P21(ξ), Q12(ξ) be continued on the set Ξ− and in
addition the matrix Λ depend on ξ polynomially such that there exists a number
k0 > 0, that ∀ξ : |ξ| > k0 all eigenvalues of the matrix Λ are algebraic of multiplicity
1 and that the estimate

|λ(ξ)| ≤ C1(1 + |ξ|)d1

is fulfilled, where C1, d1 are some constants. Then there exists N ∈ N such that
for all ξ ∈ R the following estimate is true:

|P21| ≤ K1(1 + |ξ|)N ,
|Q12| ≤ K2(1 + |ξ|)5N ,

where K1, K2 are some constants and |A| is the matrix norm of A in L∞.

Dessination 1. Denote the smallest N from all N ∈ N, satisfying Lemma 4, by NΛ.

Except the estimates cited above, we use the two-sides estimate for |e−Mtv|,
where |.| is the L∞(R)-norm. For shortening of the formulations, we introduce
some designations.

Dessination 2. LetM be a quadratic matrix, irreducibly depending on the parameter
ξ such that λj, j = 1, . . . , s are its eigenvalues. Denote by dj the maximum size
of the Jordan box, corresponding to the eigenvalue λj. Let in addition λj be put in
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order of the increase of real parts, such that the minimum from these is l(M), and
the maximum is L(M), i.e.:

l(M) = Reλ1 ≤ Reλ2 ≤ · · · ≤ Reλs = L(M).

Also write d(M) = d1.

Now we can formulate the lemma of the two-sides estimate.

Lemma 5. Let M be a quadratic matrix, continuously depending on the parameter
ξ. Then for all ε > 0 there exists T0 > 0 such that ∀t > T0 the following estimate
is fulfilled:

e−L(M)t|v| ≤ |e−Mtv| ≤ 1 + ε
(d(M)− 1)!

|M |d(M)−1e−l(M)ttd(M)−1|v|, (62)

where |A| is the matrix norm of A in L∞(R).

The proof of this lemma can also be found in [27]. Next define:

Dessination 3. Let Γ(ξ) be a finite set of continuous functions γ1(ξ), . . . , γs(ξ) in ξ.
Designate by l(ξ,Γ(ξ)) = infs{γs(ξ) ∈ Γ(ξ)}, l0(Γ) = infξ l(ξ,Γ(ξ)), L(ξ,Γ(ξ)) =
sups{γs(ξ) ∈ Γ(ξ)}, L0(Γ) = supξ L(ξ,Γ(ξ))).

We introduce the so-called condition of the stiff crack.

Condition 1 (Condition of stiff crack). We will say that for a pair of sets Γ1(ξ),
Γ2(ξ) the stiff crack condition is true, if

∃γ > 0 : l0(Γ2)− L0(Γ1) ≥ γ. (63)

Next we can formulate and prove the existence of an attracting manifold.

Theorem 5 (L2-Chapman–Enskog correctness). Let the matrix Λ, determined by
the problem (9), satisfy Condition 4. Let in addition, Γ1 be the set of all eigenvalues
of the matrix Λ, corresponding to the proper subspace V which yields the dynamic
separation. Let Γ2 be all other eigenvalues of Λ such that for Γ1, Γ2 the stiff crack
Condition 1 is fulfilled. Then, if the Fourier images V0 of the initial data for
nonequilibrium variables satisfy the condition

(1 + |ξ|)5NΛ |M22|d(M22)−1V0 ∈ L2(R),
i.e., the initial nonequilibrium data are sufficiently smooth, and the initial data
of conservative variables are not equal to zero (it means that ||U0|| �= 0), then
there exists T0 > 0 such that for the solution expansion (60) constructed above,
the following estimate is true:

||UH ||(t)
||UCh||(t)

≤ Ke−δ t, t > T0, (64)

where K, δ > 0 are some constants. Here K depends on ||U0||, ||V0|| and δ is
determined by γ and the properties of the matrix M .
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We will refer to the estimate obtained here as L2-Chapman–Enskog correct-
ness with respect to the projection in the phase space of the consolidated variables.

Concretely, we have

||UH(t)|| =
(∫

R

∣∣∣∣( Q12e
−M22tV0

e−M22tV0

)∣∣∣∣2 dξ
) 1

2

≤
(∫

R

|1 + |Q12|2||e−M22tV0|2dξ
) 1

2

.

Whence, using the lemma obtained above we obtain:

||UH(t)|| ≤
(∫

R

(1 +K2
2(1 + |ξ|)10NΛ)(

1 + ε
(d(M22)− 1)!

)2

×|M22|2d(M22)−2e−2l(M22)tt2d(M22)−2|V0|2dξ
) 1

2
.

Next, from the condition (63) it follows that

e−l(M22)t ≤ e−l0(Γ2)t ≤ e−γte−L0(Γ1)t;

e−L(M11)t ≥ e−L0(Γ1)t.

In addition, from Lemma 5 we have

||UCh(t)|| ≥
(∫

R

e−2L(M11)t|U0|2dξ
) 1

2

.

Combining the last lammas we obtain( ||UH ||(t)
||UCh||(t)

)2

≤
e−2γtt2d(M22)−2 ∫

R
e−2L0(Γ1)t(1 +K2

2(1 + |ξ|)10NΛ)
(

1+ε
(d(M22)−1)!

)2
|V0|2dξ∫

R
e−2L0(Γ1)t|U0|2dξ

.

Whence, since L0(Γ1) does not depend on ξ, the demonstrated estimate (64) fol-
lows.

Observation 3. The results above allow us to finish the proof of L2-Chapman–
Enskog correctness of the Cauchy problem for the system (30) with respect to the
projection in the phase space of the variables U . I.e., the statement about the
attracting manifold (the unessentialness of the variable �) for the system (30) is
true since in this case the condition of the stiff crack is fulfilled (Condition 1).

The conditions on the relaxation operator γ1 in (30) can be weakened, if we
assume that μ2 = μ2(|ξ|2), where μ2(0) = 0 and μ2(|ξ|2) is a smooth, stabilizing-
at-infinity function, like the so-called kink function, such that we could apply to the
Fourier operator the Lp−Lq estimates (see, for example, [22, 23]). More essential
will be the opening of the exterior force in (30) by a construction of conservation
laws with dissipation determining the magnetic and electric currents.
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Condition of a degenerate crack. In this section we study the example of a violation
of the stiff crack condition, when the expression in Condition 1 can be equal to
zero: l0(Γ2)− L0(Γ1) = 0, i.e., l(ξ,Γ(ξ)) = L(ξ,Γ(ξ))) for some |ξ| > 0 and

l(ξ,Γ(ξ)) = L(ξ,Γ(ξ))) ≥ 0, ∀ξ ∈ Rn.

This condition will be called the condition of the degenerate crack. Consider the
two-dimensional isothermal 9-moment Grad system of the Boltzmann kinetic equa-
tion

(∂t + u · ∂x)�+ � divx u = 0, (65)

(∂t + u · ∂x)ui +
1
�
∂xip+

1
�
∂xjσij = 0,

(∂t + u · ∂x)p+
5
3
p divx u+

2
3
σij(∇̃u)ij = 0,

(∂t + u · ∂x)σij +
4
3
p(∇̃u)ij +

7
3
σij div u+

√
p�

η(p)
σij = 0, i, j = 1, 2,

We will assume that the particle mass m = 1. Then pressure is p = kB� T ),
the sound velocity c2 = kBT , the viscosity coefficient μ(T ) = η(T )T , η(T ) is
determined by the choice of a model of the interaction particles (η = const for
the Maxwell molecule, η ≈

√
T in the case of the hard sphere). Here ∇̃u =

∇xu+∇xu
�−divx u I is a traceless deformation tensor, I is a unique matrix, the

matrix ∇xu = (∂xiuj). Since the tensor is traceless it follows that

σ11 + σ22 = 0, (66)

i.e., it is sufficient to consider independent variables

�, u = (u1, u2), T, σ11, σ12.

Then the last equation for σ33 follows from another one and it can be discarded,
if we substitute σ33 in the remaining equations in (66). The linearization of this
system in the neighborhood of an equilibrium state �e, ue = 0, pe, σe = 0 is

∂t�+ divx u = 0,

∂tp+
5
3
divx u = 0,

∂tui + ∂xip+ ∂xjσij = 0,

∂tσij +
4
3
(∇̃u)ij +

1
μ(pe)

σij = 0,

(67)

where pe = c2e. In the isothermal case the density equation is separated in the
system (67), such that below we can study this system only. Our goal is the proof
of the following statement:
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Proposition 4. The Cauchy problem for the linearized system (65) is L2-Chapman–
Enskog correct with respect to the projection in the phase space of conservative vari-
able U = (�, u, p) with an additional restriction on the initial data for nonequilib-
rium variables in the following form: the supports of the Fourier image of nonequi-
librium variables (σ11, σ12) do not intersect the critical set Mcr = {ξ ∈ R2; |ξ|2 =
1/2μ(pe) and |ξ| = 0}.
The spectrum properties of the resolvent matrix Λ(ξ). In the considered case the
resolvent matrix Λ has the form:

Λ =

⎛⎜⎜⎜⎜⎝
0 5

3 iξ1
5
3 iξ2 0 0

iξ1 0 0 iξ1 iξ2
iξ2 0 0 −iξ2 iξ1
0 4

3 iξ1 − 4
3 iξ2 Π0 0

0 4
3 iξ2

4
3 iξ1 0 Π0

⎞⎟⎟⎟⎟⎠ ,
Π0 = 1/μ(pe), and the Fourier image of the system 1D13-lin) is

∂tŨ(t, ξ) + Λ(ξ)Ũ = 0

where Ũ(t, ξ) is the Fourier transformation of vector-function U = (u, p, σ11, σ12).
It is not difficult to obtain the factorization for the characteristic polynomial of
the resolvent matrix Λ as the following:

det(Λ− λE) = λ5 − 2Π0λ4 +
(
13
3
|ξ|2 +Π20

)
λ3 − 6|ξ|2Π0λ2 (68)

+ |ξ|2
(
4|ξ|2 + 5

3
Π20

)
λ− 20

9
|ξ|4Π0

=
(
λ3 −Π0λ2 + 3c20|ξ|2λ−

5
3
c20|ξ|2Π0

)(
λ2 −Π0λ+

4
3
c20|ξ|2

)
.

Set λ = iτ , ζ2 = 1
3c
2
0|ξ|2 and multiply the characteristic polynomial by i. Then we

obtain the dispersion equation of (67):

P (τ, ζ) = τ(τ4 − 13ζ2τ2 + 36ζ4) + 2iΠ0(τ4 − 9ζ2τ2 + 10ζ4)−Π20τ(τ
2 − 5ζ2)

= P0(τ, ζ)− iΠ0P1(τ, ζ)−Π20P2(τ, ζ), (69)

P0 = τ(τ4 − 13ζ2τ2 + 36ζ4) = 0, τ21,2 = 9ζ2, τ23,4 = 4ζ2,

P1 = τ4 − 9ζ2τ2 + 10ζ4 = 0, τ25,6 =
1
2
ζ2(9 +

√
41), τ27,8 =

1
2
ζ2

(
9−

√
41

)
,

P2 = τ(τ2 − 5ζ2) = 0, τ29,10 = ±
√
5 ζ2.

The polynomials, corresponding to different degrees of Π0, are strictly hyperbolic
and the roots τk,j of the polynomials to neighboring degrees of Π0 separate each
other. Hence (see [2]) the polynomial P (τ, κ) is stable. Study the roots of the
characteristic polynomial. Take the following designations: the roots λ(κ) are called
wave-roots, if λ(0) = 0, λ′(0) �= 0; as the diffusion root, if λ(0) = 0, λ′(0) =
0, λ′′(0) �= 0; and as boundary-layer root, if λ(0) �= 0. Set κ2 = c20|ξ|2.
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Lemma 6. For sufficiently large Π0 > 9
52

(
13 +

√
13

)
, simple complex conjugate

wave roots λw
j , j = 1, 2, of the cubic factor P3 satisfy the condition

Reλw
j (κ

2) <
2
9
Π0, j = 1, 2, ∀κ2 ≥ 0;

the simple real boundary-layer root λb
3, λ

b
3(0) = Π0, of the cubic factor P3 lies

on the half-interval (5Π0/9,Π0], λb
3(κ

2) → 5Π0/9, κ2 → ∞. The diffusion and
boundary-layer roots of the quadratic factor P2 satisfy the condition

Reλb
2(κ

2) ≥ 1
2
Π0, Reλd(κ2) ≤

1
2
Π0, ∀κ2 ≥ 0;

λb
2(κ

2), λd(κ2)→ 1
2Π0, κ

2 → 3Π2
0

4 , λ
b
2(0) = Π0.

Concretely, we have:
1. Factors P3, P2 of the characteristic polynomial have no common root when
κ �= 0. There are P3 = λP2 + 5

3κ
2(λ−Π0), where P |λ=Π0 = (43κ

2)2 �= 0, ∀ξ �= 0.
2. The cubic factor has no three-multiple for κ ≥ 0, i.e., for all κ ≥ 0 there are two
different roots. For three-multiple root a we have

3a = Π0, 3a2 = 3κ2, a3 =
5
3
κ2Π0.

Obviously, this system is not solved for all κ2 ≥ 0. So that for all |ξ| ≥ 0 the
polynomial P3 has two different roots.

For a two-multiple root one obtains

P3 =
(
1
3
λ− 1

9
π0

)
P ′3 + 2

(
κ2 − 1

9
Π20

)
λ− 4

3
κ2Π0.

Hence, for a multiple real root we have

P ′3 = 0,
(
κ2 − 1

9
Π20

)
λ− 2

3
κ2Π0 = 0.

This system is not solved, if κ2 − 1
9Π

2
0 ≤ 0. When κ2 − 1

9Π
2
0 > 0 we have(

κ2 − 1
9
Π20

)2

P ′3 =
4
27
κ2Π20 + 3κ2

(
κ2 − 1

9
Π20

)2

�= 0

for all κ2 > 0. Whence we obtain that complex conjugate wave roots λw
1 , λ

w
2 ,

λw
j (0) = 0, (λw

j )
′(0) �= 0, of the cubic factor P3 are simple. At the same time, from

the representation

(λ−Π0)λ2 = −3κ2(λ −
5
9
Π0)

follows the existence of the smooth simple real boundary-layer root λb
3(κ

2), such
that λb

3(0) = Π0 λb
3(κ

2)→ 5/9, κ2 →∞.
3. The boundary-layer root λb

2, λ
b
2(0) = Π0 �= 0, and the diffusion root λd,

λd(|ξ|2) = O(|ξ|2) of the quadratic factor P2, for small |ξ| � 1, are real up
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to κ2 = 3Π2
0

4 and are complex conjugate when κ2 > 3Π2
0

4 with the real part
Reλb

2 = Reλd = 1
2Π0.

4. Now show that

Reλw
j (κ

2) <
1
2
Π0 ∀κ2 ≥ 0.

At first, verify the root asymptotics for large κ! 1. We have

λw = ±i
√
3κ+

2
9
Π0 +O

(
1
κ

)
.

At the same time, due to the difference of roots for factors P3 and P2 and the fact
that Imλb

2 = λd = Π0/2 for κ2 ≥ 3Π2
0

4 , the phase picture on complex plane λ shows
that graphics of the wave roots λw

j are situated on the left from the straight line

λ = Π0/2 or intersect this line on the interval 0 < κ2 <
3Π2

0
4 and after this come

back on the straight line |ξ|2 = 2
9Π0.

Next, observe that if a+ ib is a root of the cubic factor, the equations for real
and imaginary parts are

b2 = 3a
(
a− 2

3
Π0

)
+ 3κ2

and

p(a) = a(13a2 − 13Π0a+ 3Π20) + 6κ2
(
a− 2

9
Π0

)
= 0.

Whence, it follows that p(a) > 0, ∀a ≥ 2
9Π0, if

Π0 >
9
52

(
13 +

√
13

)
.

By this condition the wave root trajectories are situated on the left from the
vertical λ = 2

9Π0 and Reλ
w
j (κ

2)→ 2
9Π0, κ

2 →∞.
Therefore, for construction of the Chapman–Enskog projection in the phase

space of the variables u, p we can choose three eigenvectors of the resolvent matrix,
corresponding to two wave roots λw

j , j = 1, 2, of the cubic factor P3 and the
diffusion root λd of the factor P2 if

κ2 �= Π0/2, 0.

For κ2 �= Π0/2 we can separate the roots of the characteristic polynomial (68) on
two groups

Γ1 = {λw
j , j = 1, 2, λd}, Γ1 = {λb

3, λ
b
2},

such that

max
λ(κ2)∈Γ1

Reλ(κ2) < min
λ(κ2)∈Γ2

Reλ(κ2), ∀κ2 �= Π0/2, κ �= 0. (70)

Whence follows the existence of the special proper subspace. For such values of |ξ|
the resolvent matrix Λ has the proper subspace V of three dimensions such that
Lin{V, e4, e5} = R5. The following statement is true.
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Lemma 7. Let V = Lin{v1, v2, v3}, where v1, v2, v3 are eigenvectors correspond-
ing to the roots of the characteristic polynomial (68) from the first group G1 when
κ2 �= Π0/2. Then

Lin{V, e4, e5} = R
5. (71)

Hence, in this case for any small ε > 0 on the set of the regular values for |ξ|:
Mε = {ξ ∈ R2; ε < |ξ|2 < Π0/2− ε} ∪ {ξ ∈ R2; Π0/2 + ε < |ξ|2},

thus the stiff crack condition (1) is fulfilled. So we can use the results of Theorem 5
with only one restriction, that the supports of the Fourier image of nonequilib-
rium variables (σ11, σ12) do not intersect the critical set Mcr = {ξ ∈ R2; |ξ|2 =
1/2μ(pe)} ∪ {ξ ∈ R2; |ξ| = 0}. The proof of Proposition 4 is complete.
Observation 4. 1. We can not obtain the result of Lemma 7 when κ2 = Π0/2,
since in this case for a two-multiple root of P2 (λd|κ2=Π0/2 = λb

2|κ2=Π0/2) we have
the Jordan box. Whence, due to the main result about the solvability of the matrix
equation, we can not separate the roots λd, λb

2 into two different groups to derive
the proper subspace V determining the projection in the phase space of the variables
(�, u, p).
2. For the resolvent matrix Λ there exists the proper subspace V of dimension 1 such
that Lin{V, e2, e3, e4, e5} = R5 and this subspace V depends on the parameter
ξ smoothly for all |ξ| �= 0. Obviously, the subspace V is determined by separating
the roots of the characteristic polynomial (68) into two groups

Γ1 = {λw
j , j = 1, 2, λd, λ

b
2}, Γ1 = {λb

3},
such that

max
λ(κ2)∈Γ1

Reλ(κ2) < min
λ(κ2)∈Γ2

Reλ(κ2), ∀κ �= 0. (72)

In this case the full Jordan basis of the multiple root, when |ξ|2 = Π0/2, belongs
to the proper subspace V and the unessential variable is σ12. Whence, we can
use again the results of Theorem 5 with the restriction that the supports of the
Fourier image of nonequilibrium variables σ12 does not intersect the critical point
M

(1)
cr = {ξ = 0}. To annulate this restriction we need to consider the asymptotics

of the roots λb
2, λ

b
3 in a neighborhood of ξ = 0. We have

λb
2 = Π0 −

2
3
κ2 +O(κ4), |κ| � 1,

λb
3 = Π0 −

4
3
1
π0
κ2 + O(κ4), |κ| � 1,

so that there is

λb
3 − λb

2 =
2
3

(
1− 2

1
Π0

)
κ2 +O(κ4), |κ| � 1.

We can assume that
1− 2

1
Π0
> 0
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which is true for large Π0 > 2. Hence, in an ε-neighborhood Oε(M
(1)
cr ) of the point

M
(1)
cr we can use a modification Theorem 5 in the case of a degenerate crack, taking

into account Lp → Lq estimates in [23, 27].

Conclusion. The above analysis of linear and linearized problems allows us to study
the specific character of the Cauchy problem with insufficient information about
initial data and conformation to the Chapman–Enskog conjecture. The study
shows the meaning of this subject from the physical and mathematical points of
view. Our next publication will be devoted to linear analysis of the mixed problem
with insufficient information about initial-boundary data.
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Figures of Rotating Self-gravitating Liquid not
Subjected to Capillary Forces
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Abstract. The paper contains a justification of the principle of minimum of
potential energy in the problem of stability of a rotating viscous incompress-
ible self-gravitating liquid bounded only by a free surface. It is assumed that
the domain occupied by a rotating liquid that is referred to as an equilib-
rium figure is not symmetric with respect to the axis of rotation. The surface
tension is not taken into account. The proof of stability is based on analysis
of the evolution free boundary problem for perturbations of the velocity and
pressure.
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1. Introduction

In the present article we continue the analysis of the stability of an isolated mass
of uniformly rotating viscous incompressible self-gravitating liquid initiated in [1].
As in [1], we do not take into account capillary forces on the free boundary. We
recall that the velocity and the pressure of a liquid rotating as a rigid body about
the x3-axis is given by

V (x) = ω(e3 × x) = ω(−x2, x1, 0), P (x) =
ω2

2
|x′|2 + p0 (1.1)

where x′ = (x1, x2, 0), p0 = const, e3 is a unit vector directed along the x3-axis
and ω is the angular velocity of rotation. The domain F occupied by the liquid,
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so called equilibrium figure, is defined by the equation

ω2

2
|x′|2 + κU(x) + p0 = 0, x ∈ G = ∂F , (1.2)

where

U(x) =
∫
F

dz

|x− z|
is a gravitational potential of the domain F (the density of the liquid equals 1).

We consider the functions (1.1) given in F as a solution of a free boundary
problem governing the evolution of an isolated liquid mass bounded only by a free
surface. This problem consists of determination of a bounded domain Ωt ⊂ R3,
t > 0, as well as of the vector field of velocities v(x, t) = (v1, v2, v3) and the
pressure function p(x, t), x ∈ Ωt, t > 0, satisfying the equations

vt + (v · ∇)v − ν∇2v +∇p = 0,

∇ · v = 0, x ∈ Ωt, t > 0, (1.3)

T (v, p)n = κU(x, t)n, Vn = v · n, x ∈ Γt ≡ ∂Ωt,

v(x, 0) = v0(x), x ∈ Ω0,
where ν, κ = const > 0,

U(x, t) =
∫
Ωt

dz

|x− z|
is the Newtonian potential depending on an unknown domain Ωt, T (v, p) = −pI+
νS(v) is the stress tensor, S(v) =

(
∂vj

∂xk
+ ∂vk

∂vj

)
j,k=1,2,3

is the doubled rate-of-strain

tensor, n is the exterior normal to Γt, and Vn is the velocity of evolution of Γt in
the normal direction. The domain Ω0 is given.

We assume that the equilibrium figure F is a given bounded domain. If it is
axially symmetric with respect to the x3-axis (as the Maclaurin ellipsoids), then
the functions (1.1) given in the domain F represent a stationary solution of (1.3).
If F does not possess the symmetry property (as the Jacobi ellipsoids, pear-formed
figures of Poincaré etc., see [2–5]), then there exists a one-parameter family of the
equilibrium figures, Fθ, obtained by rotation of the angle θ about the x3-axis of
one of them, F0. We assume that θ ∈ R and Fθ = Fθ+2π. In this case the functions
(1.1) defined in the variable domain Fωt+ϕ represent a periodic solution of (1.3).

We observe that in the case of non-symmetric F the function h(y) = N(y) ·
(e3 × y)|G , where N(y) is the exterior normal to G = ∂F and e3 is a unit vector
directed along the x3-axis, is different from identical zero, whereas for axially
symmetric F this function vanishes.

We are interested in the problem of stability of these solutions, that is closely
related to the well-known problem of stability of equilibrium figures. According to
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the classical theory, the figure is stable, if the quadratic form

δ2R[ρ] =
∫
G
b(x)ρ2(x)dS +

ω2∫
F |z′|2dz

( ∫
G
|y′|2ρ(y)dS

)2
− κ

∫
G

∫
G

ρ(y)ρ(z)
|y − z| dSydSz (1.4)

where

b(x) = −ω2x′ ·N(x) − κ∂U(x)
∂N

≥ b0 > 0, (1.5)

is positive definite, i.e.,

c1‖ρ‖2L2(F) ≤ δ
2R[ρ] ≤ c2‖ρ‖2L2(F) (1.6)

for arbitrary function ρ(x) given on G and satisfying the conditions∫
G
ρ(x)dS = 0,

∫
G
ρ(x)xidS = 0, i = 1, 2, 3, (1.7)∫

G
ρ(x)h(x)dSx = 0, (1.8)

and unstable, if this form can take negative values. We give the justification of
the first statement by the analysis of the evolution free boundary problem for
the perturbations w(x, t) = v − V , s = p − P of the velocity and pressure. This
problem consists of determination of a bounded domain in R3 (denoted also by
Ωt) with the boundary Γt, t > 0, as well as of the functions w(x, t) and s(x, t),
satisfying the relations

wt + (w · ∇)w + 2ω(e3 ×w)− ν∇2w +∇s = 0,

∇ ·w = 0, x ∈ Ωt, t > 0,

T (w, s)n =
(ω2
2
|x′|2 + κU(x, t) + p0

)
n, (1.9)

Vn = w · n, x ∈ Γt,

w(x, 0) = w0(x), x ∈ Ω0.
The vector field w0 = v0 − V should satisfy the orthogonality conditions∫

Ω0

w0(x)dx = 0,∫
Ω0

w0(x) · ηi(x)dx + ω
∫
Ω0

η3(x) · ηi(x)dx = ω
∫
F

η3(x) · ηi(x)dx, (1.10)

and it is easily verified that they hold at any moment of time t ≥ 0:∫
Ωt

w(x, t)dx = 0, (1.11)∫
Ωt

w(x, t) · ηi(x)dx + ω
∫
Ωt

η3(x) · ηi(x)dx = ω
∫
F

η3(x) · ηi(x)dx,
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i = 1, 2, 3. In addition, we have

|Ωt| = |F|, (1.12)∫
Ωt

xidx = 0, i = 1, 2, 3.

We find it convenient to pass to the Lagrangian coordinates ξ ∈ Ω0 connected
with the Eulerian coordinates x ∈ Ωt by

x = ξ +
∫ t

0

u(ξ, τ)dτ ≡ X(ξ, t), (1.13)

where u(ξ, t) = w(X(ξ, t), t). Under this transformation (1.9) is converted to

ut + 2ω(e3 × u)− ν∇2
uu+∇uq = 0,

∇u · u(ξ, t) = 0, ξ ∈ Ω0, t > 0, (1.14)

Tu(u, q)n =
(
κU(X, t) +

ω2

2
|X ′2(ξ, t)|2 + p0

)
n, ξ ∈ Γ0,

u(ξ, 0) = w0(ξ), ξ ∈ Ω0,
where q(ξ, t) = s(X(ξ, t), t), and∇u, Tu are the transformed gradient and the stress
tensor, respectively. Since the Jacobian of the transformation (1.13) equals 1, we
have ∇u = A∇ξ, Tu(u, q) = −qI + νSu(u), where Su(u) = A∇uu + (A∇uu)T is
the transformed doubled rate-of-strain tensor, and A(ξ, t) = (Aij)i,j=1,2,3 is the
co-factors matrix corresponding to the transformation (1.13). Finally, U(X, t) =∫
Ω0
|X(ξ, t)−X(η, t)|−1dη and n(x) is the exterior normal to the surface Γt = XΓ0

connected with the normal n0(ξ) to Γ0 by

n(X(ξ, t)) =
A(ξ, t)n0(ξ)
|A(ξ, t)n0(ξ)|

. (1.15)

The problem (1.14) is studied in the weighted anisotropic Sobolev–Slobo-
detskii spaces introduced by Y. Hataya [6]. Let QT =Ω0×(0,T ) and letW l,l/2

2 (QT ),
l ≥ 1, be a standard anisotropic Sobolev–Slobodetskii space. The weighted space
W̃

l,l/2
2 (QT ) is defined as the set of functions (or vector fields) u(ξ, t), such that

u ∈ W l,l/2
2 (QT ), tu ∈ W l−1,l/2−1/2

2 (QT ) (the weight improves the behavior of u
for large t), and supplied with the norm

‖u‖
W̃

l,l/2
2 (QT )

= ‖u‖
W

l,l/2
2 (QT )

+ ‖tu‖
W

l−1,l/2−1/2
2 (QT )

.

We also set

‖u‖
W̃ l,0

2 (QT )
= ‖u‖W l,0

2 (QT )
+ ‖tu‖W l−1,0

2 (QT )
,

‖u‖
W̃

0,l/2
2 (QT )

= ‖u‖
W

0,l/2
2 (QT )

+ ‖tu‖
W

0,l/2−1/2
2 (QT )

.

The weighted spaces of functions given on smooth manifolds, in particular, on
GT = Γ0 × (0, T ), are defined in a similar way.

The main result of the paper is as follows.

Theorem 1.1. Assume the following:
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1. w0 ∈W l+1
2 (Ω0), l ∈ (1, 3/2), satisfies the orthogonality conditions (1.10) and

the compatibility conditions

∇ ·w0 = 0, Π0S(w0)n0|Γ0 = 0, (1.16)

where Π0f = f − n0(f · n0) is the projection on the tangent plane to Γ0.
2. The domain Ω0 satisfies (1.12), the surface Γ0 = ∂Ω0 is given by the equation

x = y +N0(y)ρ0(y), y ∈ G, (1.17)

where N 0 is the unit normal to G0, and ρ0(y) ∈ W l+3/2
2 (G) satisfies the

condition ∫
Γ0

ρ0(ξ̄)N (ξ̄) · (e3 × ξ̄)dSξ = 0, (1.18)

ξ̄ being the closest point of G0 to ξ.
3. The following smallness condition holds:

‖w0‖W l+1
2 (Ω0)

+ ‖ρ0‖W
l+3/2
2 (G) ≤ ε� 1. (1.19)

4. The quadratic form (1.4) satisfies the condition (1.6), where G is an arbitrary
Gθ.

Then the problem (1.14) has a unique solution

u ∈ W̃ 2+l,1+l/2
2 (Q∞), ∇s ∈ W̃ l,l/2

2 (Q∞)

such that s|ξ∈Γ0 ∈ W̃
1/2+l,1/4+l/2
2 (G∞), and

‖u‖
W̃

2+l,1+l/2
2 (Q∞)

+ ‖∇s‖
W̃

l,l/2
2 (Q∞)

+ ‖s‖
W̃

1/2+l,1/4+l/2
2 (G∞)

≤ c
(
‖w0‖W l+1

2 (Ω0)
+ ‖ρ0‖W l+1

2 (G)
)
. (1.20)

The surface Γt is given by the equation

x = z +Nθ(t)(z)ρ̂(z, t), z ∈ Gθ(t), (1.21)

where Nθ is a unit exterior normal to Gθ. The derivative of θ(t) satisfies the
inequality

|θ′(t)| ≤ c
∫
Γ0

|u(ξ, t)|dSξ, (1.22)

whereas

θ(t) =
∫ t

0

θ′(τ)dτ → θ∞ (1.23)

as t→∞. The function
r(ξ, t) ≡ ρ̂(z, t), (1.24)

where z is the closest point of Gθ(t) to X(ξ, t) ∈ Γt, satisfies the condition∫
Γ0

r(ξ, t)hθ(t)(z)dSξ =
∫
Γ0

ρ̂(z, t)hθ(t)(z)dSξ = 0 (1.25)
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and the inequality

‖r‖
W̃

l+1/2,0
2 (G∞)

+ sup
t>0

‖r(·, t)‖W l+1
2 (Γ0)

+ sup
t>0
t‖r(·, t)‖W l

2(Γ0)

≤ c
(
‖w0‖W l+1

2 (Ω0)
+ ‖ρ0‖W l+1

2 (G)
)
. (1.26)

Thus, w, s → 0 and Ωt → Fθ∞ as t → ∞, which means the stability of the
regime (1.1) of rigid rotation.

The conditions (1.8), (1.18) are trivial in the case of axially symmetric F
(since h(y) = 0). In the general case we have (1.25); as we shall see, it may be
regarded as the approximate condition (1.8) for ρ̂(z, t), z ∈ Gθ(t).

The quadratic form (1.4) is the second variation of the energy functional

R =
β2

2
∫
Ω |x′|2dx

− κ
2

∫
Ω

∫
Ω

dxdy

|x− y| − p0|Ω| (1.27)

where β = ω
∫
F |x′|2dx is the magnitude of the total angular momentum of the

rotating liquid and Ω is the domain in R3 close to F and having the same volume
and the position of the barycenter as F . If the boundary of Ω is given by the
equation x = y + N (y)ρ(y, t), y ∈ F , then the above-mentioned properties of Ω
can be expressed in terms of ρ as follows:∫

G
ϕ(y, ρ)dS = 0,

∫
G
ψi(y, ρ)dS = 0, i = 1, 2, 3, (1.28)

where

ϕ(y, ρ) = ρ− ρ
2

2
H(y) + ρ

3

3
K(y),

ψi(y, ρ) = ϕ(y, ρ)yi +Ni(y)
(ρ2
2
− ρ

3

3
H(y) + ρ

4

4
K(y)

)
, (1.29)

H(y) and K(y) are the doubled mean curvature and the Gaussian curvature of G,
respectively. In particular, these conditions are satisfied by ρ̂. Direct calculation
shows that the first variation of R (considered as a functional defined on the set
of small ρ satisfying (1.28)) vanishes in view of (1.2) and the second variation
coincides with the form (1.4); moreover, if the form (1.4) is positive definite for
arbitrary ρ satisfying (1.7), (1.8), then the difference R−R0 where R0 = R|ρ=0
is equivalent to ‖ρ‖2L2(G) for small ρ satisfying (1.28), (1.25).

It should be observed that δ2R[h] = 0.
When the surface tension is taken into account, then the extra term σH

appears in the boundary conditions, where σ is a positive constant coefficient
of the surface tension and H is the doubled mean curvature of Γt. This term is a
strong regularizer of the problem, moreover, it guarantees the exponential decay of
the solution of (1.9), as t→∞. The problem of stability of the rotating capillary
viscous incompressible self-gravitating liquid is treated in a series of papers of
the author, partly in collaboration with Professor M. Padula. In particular, the
analogue of Theorem 1.1 for non-symmetric equilibrium figures is proved in [7].
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As it has been pointed out, our main attention is given to the case of non-
symmetric F . Section 2 is devoted to the construction of θ(t) and to the proof of
(1.22). In Section 3 the general scheme of the proof of Theorem 1.1 is presented and
the necessary transformations of the problem (1.14) are carried out. In Section 4
the main estimate of θ′(t) is obtained, as well as some important auxiliary inequal-
ities, whose proof requires additional calculations in the case of non-symmetric F .
Finally, in Section 5 the “generalized energy” is estimated, which furnishes uni-
form bounds for some weak norms of the solution of the problem (1.14). In the
case of symmetric F these bounds are obtained in [8].

2. On the construction of θ(t)

This section is devoted to the construction of the function θ(t). At first we intro-
duce some notations (some of them are introduced above).

By Fθ we mean the family of equilibrium figures obtained by rotation of the
angle θ of one of them, F0, about the x3-axis, Gθ is the boundary of Fθ, Nθ is the
exterior normal to Gθ.

We set
Rθ(x) = ±dist (x,Gθ), (2.1)

with the signs “+” and “−” corresponding to the cases x ∈ R3 \Fθ and x ∈ Fθ, re-
spectively. The function Rθ is smooth in a certain neighborhood (δ1-neighborhood)
of Gθ and it possesses the property

∇Rθ(x) = N θ(x̄θ), (2.2)

where x̄θ is the closest point of Gθ to x. We have x = x̄θ +N(x̄θ)Rθ(x), i.e.,

x̄θ = x−Rθ(x)∇Rθ(x) ≡ Rθ(x). (2.3)

The function Rθ is also smooth in the δ1-neighborhood of Gθ. In the case θ = 0
the index 0 is sometimes omitted, in particular, R0(x) = R(x).

It is easily seen that R(y) = Rθ(Z(θ)y), i.e., Rθ(z) = R(Z(−θ)z), and
Z(θ)N 0(y) = Nθ(z). It is also easily verified that hθ(Z(θ)y) = h0(y), y ∈ G0,
and that bθ(z) = b0(y), where bθ(z) = −ω2z′ ·N θ(z)− κ∂Uθ(z)

∂Nθ
, Uθ(z) =

∫
Fθ

dζ
|z−ζ| .

It follows that the quadratic form (1.4) is invariant under the rotation about the
x3-axis.

Let us consider the family of surfaces Γt given by the equation (1.13) with
ξ ∈ Γ0. In the case of small ρ0 and u these surfaces are close to a certain G (say,
G0) – see [1], Proposition 4.5. We want to construct the function θ(t) such that Γt

can be given by (1.21) with ρ̂ satisfying the condition similar to (1.8).
Let Γt,λ be a surface obtained by rotation of Γt through the angle λ about

the x3-axis: Γt,λ = Z(λ)Γt, where

Z(λ) =

⎛⎝ cosλ − sinλ 0
sinλ cosλ 0
0 0 1

⎞⎠ .
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For small λ, Γt,λ is also located in a certain small neighborhood of G0, and can be
defined by the equation

x = y +N0(y)ρ̃(y, t, λ), y ∈ G0. (2.4)

It follows that
ρ̃(y, t, λ) = R(Z(λ)X(ξ, t))

and y = Z(λ)X.
We look for the function λ(t) such that∫

Γ0

R(Z(λ(t))X(ξ, t))h0(ZX)dSξ = 0, (2.5)

which is equivalent to (1.25) with r(ξ, t) = R(Z(λ(t))X(ξ, t)), θ(t) = −λ(t). More-
over, by Proposition 4.2 in [1], (2.5) can be written in the form∫

G0

ρ̃(y, t, λ(t))h0(y)Ψ−1dS = 0, (2.6)

where

Ψ =
|A(ξ, t)n0(ξ)|
|L̂T (y, ρ̃)N 0(y)|

, y = Z(λ(t))X(ξ, t). (2.7)

By L̂T (y, ρ̃) we mean the co-factors matrix of the matrix of Jacobi of the transfor-
mation (2.4), and the sign “T ” means transposition. If ρ0 and u are small, then
Ψ−1 is close to 1.

In the paper [7] where the stability of the rotating capillary liquid was ana-
lyzed, we were looking for λ = λ(t) such that∫

G0

ρ̃(y, t, λ(t))h0(y)dS = 0,

but when the surface tension is neglected, then the equation (2.5) is more conve-
nient for technical reasons.

Let us compute the partial derivative of the function

f(t, λ) =
∫
Γ0

R(Z(λ)X(ξ, t))h0(ZX)dSξ (2.8)

with respect to λ. Since

∂R(Z(λ)X(ξ, t))
∂λ

= N0(ZX) · Z ′(λ)X = N0(ZX) · Z(e3 ×X)

= Nθ(X̄θ) · (e3 × X̄θ) = hθ(X̄θ) = h0(Z(λ)X),
we have

fλ(t, λ) =
∫
G0

h20(y)Ψ
−1dSy+

∫
Γ0

R(ZX)∇h0(ZX)·
(
∇R(Z(λ)X)Z(e3×X)

)
dSξ.

(2.9)
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If u ∈ W̃ 2+l,1+l/2
2 (QT ) is small, then, by Proposition 5.4 in [9], X(ξ, t) is bounded

by a constant independent of t and |Ψ−1| ≥ k > 0. This implies

fλ(t, λ) ≥ k
∫
G0

h20(y)dS − c0δ1 ≥
k

2

∫
G0

h20(y)dS, (2.10)

provided c0δ1 ≤ k
2

∫
G0
h20(y)dS. For λ = 0 we have

f(t, 0) =
∫
Γ0

R(X)h0(X̄)dSξ,

hence in the interval

|λ| ≤ 2k−1|f(t, 0)|
(∫

G0

h20(y)dS
)−1

= 2k−1
∣∣∣ ∫

Γ0

R(X)h0(X̄)dS
∣∣∣( ∫

G0

h20(y)dS
)−1

there exists the number λ(t) that is sought.
We set ρ̃(y, t) = ρ̃(y, t, λ(t)), y ∈ G0, θ(t) = −λ(t) and

ρ̂(z, t) = ρ̃(Z(λ(t))z, t), z ∈ Gθ(t). (2.11)

It is clear that the equation (2.4) for the surface Z(λ)Γt is equivalent to the
equation (1.21) for Γt. The condition (1.25) is equivalent to (2.5) and to∫

Gθ(t)

ρ̂(z, t)hθ(t)(z)Ψ
−1
θ(t)dS = 0, (2.12)

where

Ψθ =
|A(ξ, t)n0(ξ)|
|L̂T (z, ρ̂)N θ(z)|

, z = X̄θ(ξ, t),

and L̂T (z, ρ̂) is a co-factors matrix corresponding to the transformation (1.21). It
can be verified that Ψθ = Ψ.

In particular, if Γ0 is sufficiently close to a certain G′, then there exists such
θ0 that Γ0 is representable in the form (1.17) with y ∈ Z(θ0)G′ ≡ G0 and with ρ0
satisfying (1.18). This defines the choice of G0; we also have λ(0) = 0.

By the implicit function theorem, λ(t) possesses the derivative

λ′(t) = − ft(t, λ)
fλ(t, λ)

∣∣∣
λ=λ(t)

, (2.13)

where

ft(t, λ) =
∫
Γ0

N0(ZX) · Z(λ)u(ξ, t)h0(ZX)dS

+
∫
Γ0

R(ZX)∇h0(ZX) · ∇R(ZX)Z(λ)u(ξ, t)dS, (2.14)

and fλ is defined in (2.9). It is easily seen that

|λ′(t)| ≤ |ft(t, λ)|
|fλ(t, λ)|

∣∣∣
λ=λ(t)

≤ c
∫
Γ0

|u(ξ, t)|dSξ, (2.15)
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hence for u ∈ W̃ l+2,1+l/2
2 (Q∞)

λ(t) =
∫ t

0

λ′(τ)dτ → λ∞, as t→∞. (2.16)

Thus we have proved the following proposition.

Proposition 2.1. If Γt is defined by (1.13) with ξ ∈ Γ0 and the norms ‖ρ0‖W
l+3/2
2 (Γ0)

and ‖u‖
W̃

2+l,1+l/2
2 (QT )

are sufficiently small, then there exists a function λ(t) sat-
isfying (2.15), (2.16) such that Γt can be given by (1.21), and ρ̂ satisfies (2.12)
with θ(t) = −λ(t).

Moreover, the following proposition holds.

Proposition 2.2. If u ∈ W̃ 2+l,1+l/2
2 (QT ), then

‖λ′‖
W̃

l/2+3/4
2 (0,T )

+ sup
t<T

|λ(t)| ≤ c‖u‖
W̃

0,l/2+3/4
2 (GT )

≤ c‖u‖
W̃

2+l,1+l/2
2 (GT )

(2.17)

with the constant independent of T ≤ ∞.
We observe in conclusion that λ′(t) can be represented in the form

λ′(t) = −
∫
Γ0

N 0(ξ̄) · u(ξ, t)h0(ξ̄)dSξ∫
Γ0
h20(ξ̄)dSξ

+m(t), (2.18)

where

m(t) =

∫
Γ0

N 0(ξ̄) · u(ξ, t)h0(ξ̄)dSξ − ft(t, λ(t))
fλ(t, λ(t))

+
∫
Γ0

N 0(ξ̄) · u(ξ, t)h0(ξ̄)dSξ

( 1∫
Γ0
h20(ξ̄)dSξ

− 1
fλ(t, λ(t))

)
. (2.19)

The first term in (2.18) is a linear part of λ′(t) with respect to u and m(t) is
a nonlinear remainder. The estimate of m(t) and the proof of Proposition 2.2 is
given below in Section 4.

3. Scheme of the proof of Theorem 1.1

As the first step, we reproduce (with necessary modifications) the transformation of
the problem (1.14) made in [1] in the symmetric case. We introduce the projection
Πf = f − n(n · f) and write the boundary condition Tu(u, q)n = Mn, where
M = ω2

2 |x′|2 + κU(x, t) + p0, in an equivalent way as follows:
Π0ΠSu(u)n = 0, −q + νn · Su(u)n =M.

Next, we make use of (1.2) and write M in the form

M =
ω2

2
|X ′|2 + κU(X, t) + p0 =

ω2

2
(|x′|2 − |z′|2) + κ(U(x, t) − U(z)),
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where x = X(ξ, t) ∈ Γt and z = X̄θ ∈ Gθ(t). Let y = Z(λ(t))z. As in [1], we have

M = −B0(z)ρ̂(z, t) +
ω2

2
|N ′

θ(z)|2ρ̂2(z, t) + κ
∫ 1

0

(1− s)∂
2Us

∂s2
ds, (3.1)

where

B0(z)ρ̂(z, t) = b(z)ρ̂(z, t)−κ
∫
Gθ(t)

ρ̂(ζ, t)dS
|z − ζ| = b(y)ρ̃(y, t)−κ

∫
G0

ρ̃(η, t)dS
|y − η| , (3.2)

Us(z, t) =
∫
Fθ

Ls(ζ, t)dζ
|esρ̂(z)− esρ̂(ζ)|

, (3.3)

esρ̂(z) = z +N∗
θ(z)ρ̂

∗(z, t), (3.4)
N∗ and ρ̂∗ are extensions ofN θ and ρ̂ from Gθ in Fθ, and Ls(z, t) is the Jacobian of
the transformation (3.4). When we pass in (3.2) to the variables ξ ∈ Γ0, according
to the formula y = Z(λ(t))X(ξ, t), we obtain

B0ρ̂ = b(X̄θ)r(ξ, t) − κ
∫
Γ0

r(η, t)Ψ(η, t)dS
|X̄θ(ξ, t)− X̄θ(η, t)|

= b(Z(λ(t))X)r − κ
∫
Γ0

r(η, t)Ψ(η, t)dS
|ZX(ξ, t)−ZX(η, t)|

,

where r is the function (1.24), i.e.,

r(ξ, t) = R(Z(λ(t))X(ξ, t)) = ρ̃(ZX, t) = ρ̂(X̄θ, t).

It follows that
B0ρ̂ = B′0(ξ)r +B1(r,u),

where

B′0(ξ)r = b(ξ̄)r(ξ, t) − κ
∫
Γ0

r(η, t)dS
|ξ̄ − η̄| ,

B1(r,u) = (b(Z(λ(t))X)− b(ξ̄))r(ξ, t)

− κ
∫
Γ0

r(η, t)Ψ(η, t)dS
|ZX(ξ, t)−ZX(η, t)|

+ κ
∫
Γ0

r(η, t)dS
|ξ − η|

,

M = −B′0r +B1(r,u) +
ω2

2
|N ′

0(y)|2ρ̃2(y, t) + κ
∫ 1

0

(1 − s)∂
2Us

∂s2
ds.

(3.5)

Next, we make one more modification of the problem (1.14) by inserting the
function r into it. We note that r(ξ, 0) = R(ξ) = ρ0(ξ̄) and

rt(ξ, t) = N 0(Z(λ(t))X) · Z(λ(t))
(
u(ξ, t) + λ′(t)(e3 ×X(ξ, t))

)
= N 0(ZX) · Zu+ h0(ZX)λ′(t), (3.6)

because

N0(ZX) · Z(e3 ×X) = Nθ(X̄θ) · (e3 × X̄θ +N θ(X̄θ)ρ̂)

= Nθ(X̄θ) · (e3 × X̄θ) = hθ(X̄θ) = h0(Z(λ)X).
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Thus, (u, q, r) can be regarded as a solution to the problem

ut + 2ω(e3 × u)− ν∇2u+∇q = l1(u, q),

∇ · u = l2(u), ξ ∈ Ω0, t > 0,
Π0S(u)n0 = l3(u), (3.7)

−q + νn0 · S(u)n0 +B′0(ξ)r = l4(u) + l5(u, r),

rt(ξ, t) = N0(ξ̄) · u−
h0(ξ̄)

‖h0(ξ̄)‖2L2(Γ0)

∫
Γ0

u(η, t) ·N 0(η̄)h0(η̄)dS + l6(u), ξ ∈ Γ0,

u(ξ, 0) = w0(ξ), ξ ∈ Ω0, r(ξ, 0) = ρ0(ξ̄), ξ ∈ Γ0.
The expressions l1, l2, l3, l4, l5, l6 are nonlinear (at least quadratic) with respect
to u, q, r; they are given by the formulas

l1(u, q) = ν(∇2
uu−∇2u) +∇q −∇uq,

l2(u) = (∇−∇u) · u,
l3(u) = Π0(Π0S(u)n0 −ΠSu(u)n), (3.8)
l4(u) = ν(n0 · S(u)n0 − n · Su(u)n),

l5(u, R) =
ω2

2
|N ′

0(ZX)|2r2(ξ, t) +
∫ 1

0

(1− s)d
2Us

ds2
ds+B1(r,u), (3.9)

and, in view of (2.18), (2.19),

l6(u) = (Z−1(λ(t))N 0(ZX)−N0(ξ̄))·u(ξ, t)+(h0(ZX)−h0(ξ̄))λ′(t)+h0(ξ̄)m(t).
(3.10)

Owing to the Piola identity ∇·AT =
(∑3

j=1
∂

∂xj
Aij

)
i=1,2,3

= 0, where AT means

the transposed matrix A, we have

l2(u) = ∇ ·L(u), L(u) = (I −AT )u. (3.11)

Now we outline the proof of Theorem 1.1. As in [1], we use maximum regu-
larity estimates for the solutions of the linear problem

vt + 2ω(e3 × v)− ν∇2v +∇p = f(ξ, t),

∇ · v = f(ξ, t), ξ ∈ Ω0, t ∈ (0, T ),
Π0S(v)n0 = Π0d(ξ, t),

−q + νn0 · S(v)n0 +B′0(ξ)r = d(ξ, t), (3.12)

rt(ξ, t) = N0(ξ̄) · v −
h0(ξ̄)

‖h0(ξ̄)‖2L2(Γ0)

∫
Γ0

v(η, t) ·N 0(η̄)h0(η̄)dS + g(ξ, t), ξ ∈ Γ0,

v(ξ, 0) = v0(ξ), ξ ∈ Ω0, r(ξ, 0) = r0(ξ), ξ ∈ Γ0.
and of a similar problem in F0:

v′t + 2ω(e3 × v′)− ν∇2v′ +∇p′ = f ′(x, t), ∇ · v′ = f ′(x, t) x ∈ F0,
ΠGS(v)N 0(x) = ΠGd′(x, t),

−p′ + νN 0 · S(v′)N 0 +B0(x)r′(x, t) = d′(x, t), (3.13)
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r′t = N 0(x) · v′(x, t) −
h0(x)

‖h0‖2L2(G0)

∫
G0

v′(y, t) ·N0(y)h0(y)dS + g′(x, t), x ∈ G0,

v′(x, 0) = v′0(x), x ∈ F0, r′(x, 0) = r′0(x), x ∈ G0,
where ΠGf = f −N0(N0 · f). In comparison with the case of axially symmetric
F , these problems contain an extra integral term in the boundary conditions.

We consider at first the problem (3.13).

Theorem 3.1. Let l ∈ (1, 3/2), QT = F0× (0, T ), GT = G0× (0, T ) and let the data
of the problem (3.13) possess the following regularity properties:

f ′ ∈W l,l/2
2 (QT ), f ′ ∈ W 1+l,0

2 (QT ), f ′ = ∇ · F ′, F ′ ∈W 0,1+l/2
2 (QT ),

v′0 ∈W 1+l
2 (F), r′0 ∈W l+1

2 (G0), d′ ∈W l+1/2,l/2+1/4
2 (GT ),

d′ ∈W l+1/2,l/2+1/4
2 (GT ), g′ ∈W l+3/2,l/2+3/4

2 (GT ).

Assume also that the compatibility conditions

∇ · v′0 = f ′(x, 0), x ∈ F0, ΠGS(v′0)N 0 = ΠGd′(x, 0), x ∈ G0
are satisfied. Then the problem (3.13) has a unique solution v′ ∈W 2+l,1+l/2

2 (QT ),
∇p′ ∈ W l,l/2

2 (QT ), r′ ∈ W l+1/2,0
2 (GT ), such that p′|GT ∈ W l+1/2,l/2+1/4

2 (GT ),
r′(·, t) ∈W l+1

2 (G0) for arbitrary t ∈ (0, T ), and

Y(T ) ≡ ‖v′‖
W

2+l,1+l/2
2 (QT )

+ ‖∇p′‖
W

l,l/2
2 (QT )

+ ‖p′‖
W

l+1/2,l/2+1/4
2 (GT )

+ ‖r′‖
W

l+1/2,0
2 (GT )

+ sup
t<T

‖r′(·, t)‖W l+1
2 (G0)

≤ c
(
N (T ) +

(∫ T

0

(‖v′‖2L2(F0)
+ ‖r′‖2

W
−1/2
2 (G0)

)dt
)1/2)

, (3.14)

where

N (T ) = ‖f ′‖
W

l,l/2
2 (QT )

+ ‖f ′‖W l+1,0
2 (QT )

+ ‖F ′‖
W

0,1+l/2
2 (QT )

+ ‖r′0‖W l+1
2 (G0)

+ ‖v′0‖W 1+l
2 (F0)

+ ‖d′‖
W

l+1/2,l/2+1/4
2 (GT )

+ ‖d′‖
W

l+1/2,l/2+1/4
2 (GT )

+ ‖g′‖
W

l+3/2,l/2+3/4
2 (GT )

.

Moreover, if

f ′ ∈ W̃ l,l/2
2 (QT ), d′ ∈ W̃ l+1/2,l/2+1/4

2 (GT ), d′ ∈ W̃ l+1/2,l/2+1/4
2 (GT ),

g′ ∈ W̃ l+3/2,l/2+3/4
2 (GT ), f ′ ∈ W̃ 1+l,0

2 (QT ), F ′ ∈ W̃ 0,1+l/2
2 (QT )

(this means that

f ′ ∈W 1+l,0
2 (QT ), tf ′ ∈W l,0

2 (QT ),

F ′ ∈W 0,1+l/2
2 (QT ), tF ′ ∈ W 0,(l+1)/2

2 (QT )),
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then

Ỹ(T ) ≡ ‖v′‖
W̃

2+l,1+l/2
2 (QT )

+ ‖∇p′‖
W̃

l,l/2
2 (QT )

+ ‖p′‖
W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖r′‖
W̃

l+1/2,0
2 (GT )

+ sup
t<T

‖r′(·, t)‖W l+1
2 (G0)

+ sup
t<T

t‖r′(·, t)‖W l
2(G0)

≤ c
(
Ñ (T ) +

( ∫ T

0

(1 + t2)(‖v′‖2L2(F0)
+ ‖r′‖2

W
−1/2
2 (G0)

)dt
)1/2)

, (3.15)

where

Ñ (T ) = ‖f ′‖
W̃

l,l/2
2 (QT )

+ ‖f ′‖
W̃ l+1,0

2 (QT )
+ ‖F ′‖

W̃
0,1+l/2
2 (QT )

+ ‖r′0‖W l+1
2 (G0)

+ ‖v′0‖W 1+l
2 (F) + ‖d

′‖
W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖d′‖
W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖g′‖
W̃

l+3/2,l/2+3/4
2 (GT )

.

The constants in (3.14), (3.15) are independent of T .

In fact, the inequality (3.14) is valid for l ∈ (0, 5/2), and (3.15) is obtained by
combination of (3.14) with l and l − 1. The proof is given in [9, 10]. The problem
(3.12) reduces to (3.13) by the transformation

ξ = x+N ∗
0(x)ρ

∗
0(x) ≡ eρ0(x), x ∈ F0, (3.16)

where N ∗
0 and ρ

∗
0 are extensions of N0 and ρ0 from G0 into F0 such that N∗

0 is
sufficiently regular and

‖ρ∗0‖W l+2
2 (F0)

≤ c‖ρ0‖W
l+3/2
2 (G0)

. (3.17)

This transformation converts (3.12) to

v′t + 2ω(e3 × v′)− ν∇2v′ +∇p′ = f ′(x, t) +m1(v′, p′),

∇ · v′ = L0f ′(x, t) +m2(v′), x ∈ F ,
ΠGS(v′)N 0 = ΠGΠ0d′ +m3(v′),

−p′ + νN 0 · S(v′)N 0 +B0(x)r′(x, t) = d′(x, t) +m4(v′), (3.18)
r′t = N 0(x) · v′(x, t)

− h0(x)
‖h0‖2L2(G0)

∫
G0

v′(y, t) ·N 0(y)h0(y)dS + g′(x, t) +m5(v′, r′), x ∈ G,

v′(x, 0) = v′0(x), x ∈ F , r′(x, 0) = r′0(x), x ∈ G,
where “′” denotes the change of variables (3.16): f ′(x, t) = f(e−1ρ0

(ξ), t). The ex-
pressions mi are given by

m1(v′, p′) = ν(∇̂2 −∇2)v′(y, t) + (∇− ∇̂)p′(y, t),
m2(v′) = (∇− L0∇̂) · v′,

m3(v′) = ΠG(ΠGS(v′)N0 −Π0Ŝ(v′)n0), (3.19)

m4(v′, r′) = ν(N 0·S(v′)N0−n0·Ŝ(v′)n0)+κ
∫
G0

r′(z, t)
|y − z| (|L̂

T
0 (z, ρ0)N 0(z)|−1)dS,
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m5(v′, r′) = h0(x)
(( ∫

G0

h20(y)dS
)−1

−
(∫

G0

h20(y)|L̂T
0 (y, ρ0)N0(y)|dS

)−1)
×

∫
G0

v′ ·N 0(y)h0(y)dS

+ h0(x)
( ∫

G0

h20(y)|L̂T
0 (y, ρ0)N 0(y)|dS

)−1
×

∫
G0

v′ ·N 0(y)h0(y)(1 − |L̂T
0 (y, ρ0)N 0(y)|)dS.

By L0 = detL0 we mean the Jacobian of the transformation eρ0 , L0 is its Jacobian
matrix, L̂0 = L0L−10 , ∇̂ = L−T

0 ∇ is a transformed gradient with respect to ξ,
∇ =

(
∂

∂y1
, ∂

∂y2
, ∂

∂y3

)
, Ŝ(v) = ∇̂v + (∇̂v)T is a transformed rate-of-strain tensor.

The normals N0 and n0 are connected with each other by

n0(eρ0(y)) =
L̂T
0 N 0(y)

|L̂T
0 N 0(y)|

.

We notice that m2(v′) is representable in the divergence form:

(∇− L0∇̂) · v′ = (∇− L̂T∇) · v′ = ∇ · (I − L̂T )v′ ≡ ∇ ·M ,

where M = (I − L̂)v′.
The expressions (3.19) are linear functions of their arguments with small

coefficients proportional to the derivatives of ρ0. Under the assumption (1.19)
they satisfy the inequality

‖m1‖W̃
l,l/2
2 (QT )

+ ‖m2‖W̃ l+1,0
2 (QT )

+ ‖M‖
W̃

0,1+l/2
2 (QT )

+ ‖m3(v)‖W̃
l+1/2,l/2+1/4
2 (GT )

+ ‖m4(v, r)‖W̃
l+1/2,l/2+1/4
2 (GT )

+ ‖m5(v, r)‖W̃
l+3/2,l/2+3/4
2 (GT )

≤ cεỸ(T ), (3.20)

that can be obtained with the help of Proposition 4.1 in [1]. The estimate of m5

follows from ∣∣∣1− ∣∣∣L̂T
0 (z, ρ0)N 0(z)

∣∣∣∣∣∣ ≤ cε. (3.18)

Using (3.14) and (3.20), it is possible to prove the solvability of the problem (3.12)
and estimate the solution in a standard way, provided ε is sufficiently small (the
details are omitted). We obtain the following result.

Theorem 3.2. Let l ∈ (1, 3/2),QT = Ω0×(0, T ),GT = Γ0×(0, T ) and let the data of
the problem (3.12) possess the following regularity properties: f ∈W l,l/2

2 (QT ), f ∈
W 1+l,0
2 (QT ), f = ∇ ·F , F ∈W 0,1+l/2

2 (QT ), v0 ∈W 1+l
2 (Ω0), r0 ∈W l+1

2 (Γ0), d ∈
W

l+1/2,l/2+1/4
2 (GT ), d ∈ W l+1/2,l/2+1/4

2 (GT ), g ∈ W l+3/2,l/2+3/4
2 (GT ). Assume

also that the compatibility conditions

∇ · v0 = f(ξ, 0), ξ ∈ Ω0, Π0S(v0)n0 = Π0d(ξ, 0), ξ ∈ Γ0
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are satisfied. Then the problem (3.12) has a unique solution v ∈ W 2+l,1+l/2
2 (QT ),

∇p ∈ W
l,l/2
2 (QT ), r ∈ W

l+1/2,0
2 (GT ), such that p|GT ∈ W

l+1/2,l/2+1/4
2 (GT ),

r(·, t) ∈ W l+1
2 (Γ0) for arbitrary t ∈ (0, T ), and

Y (T ) ≡ ‖v‖
W

2+l,1+l/2
2 (QT )

+‖∇p‖
W

l,l/2
2 (QT )

+‖p‖
W

l+1/2,l/2+1/4
2 (GT )

+‖r‖
W

l+1/2,0
2 (GT )

+sup
t<T

‖r(·, t)‖W l+1
2 (Γ0)

≤ c
(
N(T ) +

(∫ T

0

(‖v‖2L2(Ω0)
+ ‖r‖2

W
−1/2
2 (Γ0)

)dt
)1/2)

,

(3.21)
where

N(T ) = ‖f‖
W

l,l/2
2 (QT )

+ ‖f‖W l+1,0
2 (QT )

+ ‖F ‖
W

0,1+l/2
2 (QT )

+ ‖r0‖W l+1
2 (Γ0)

+‖v0‖W 1+l
2 (Ω0)

+‖d‖
W

l+1/2,l/2+1/4
2 (GT )

+‖d‖
W

l+1/2,l/2+1/4
2 (GT )

+‖g‖
W

l+3/2,l/2+3/4
2 (GT )

.

Moreover, if

f ∈ W̃ l,l/2
2 (QT ), d ∈ W̃ l+1/2,l/2+1/4

2 (GT ), d ∈ W̃ l+1/2,l/2+1/4
2 (GT ),

g ∈ W̃ l+3/2,l/2+3/4
2 (GT ), f ∈ W̃ 1+l,0

2 (QT ), F ∈ W̃ 0,1+l/2
2 (QT )

(this means that
f ∈W 1+l,0

2 (QT ), tf ∈W 1,0
2 (QT ),

F ∈W 0,1+l/2
2 (QT ), tF ∈ W 0,(l+1)/2

2 (QT )),
then

Ỹ (T ) ≡ ‖v‖
W̃

2+l,1+l/2
2 (QT )

+ ‖∇p‖
W̃

l,l/2
2 (QT )

+ ‖p‖
W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖r‖
W̃

l+1/2,0
2 (GT )

+ sup
t<T

‖r(·, t)‖W l+1
2 (Γ0)

+ sup
t<T

t‖r(·, t)‖W l
2(Γ0)

≤ c
(
Ñ(T ) +

(∫ T

0

(1 + t2)(‖v‖2L2(Ω0)
+ ‖r‖2

W
−1/2
2 (Γ0)

)dt
)1/2)

, (3.22)

where

Ñ(T ) = ‖f‖
W̃

l,l/2
2 (QT )

+ ‖f‖
W̃ l+1,0

2 (QT )
+ ‖F ‖

W̃
0,1+l/2
2 (QT )

+ ‖r0‖W l+1
2 (Γ0)

+ ‖v0‖W 1+l
2 (G) + ‖d‖W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖d‖
W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖g‖
W̃

l+3/2,l/2+3/4
2 (GT )

.

The constants in (3.21), (3.22) are independent of T .

The norm ‖r‖
W

−1/2
2 (Γ0)

is defined in a standard way:

‖r‖
W

−1/2
2 (Γ0)

= sup
ϕ∈W

1/2
2 (Γ0)

∣∣∣ ∫Γ0
r(x)ϕ(x)dx

∣∣∣
‖ϕ‖

W
1/2
2 (Γ0)

.

In order to be able to apply the inequality (3.22) to the problem (3.7), we
need to estimate the nonlinear terms in (3.7) and the lower order norms in (3.21),
(3.22).
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Theorem 3.3. If (u, q, r) satisfy the inequality

Ỹ (T ) ≤ δ � 1, (3.23)

where Ỹ (T ) is the norm of (u, q, r) defined in (3.22), then

‖l1‖W̃
l,l/2
2 (QT )

+ ‖l2‖W̃ 1+l,0
2 (QT )

+ ‖L‖
W̃

0,(l+1)/2
2 (QT )

+ ‖l3‖W̃
l+1/2,l/2+1/4
2 (GT )

+ ‖l4‖W̃
l+1/2,l/2+1/4
2 (GT )

+ ‖l5‖W̃
l+1/2,l/2+1/4
2 (GT )

+ ‖l6‖W̃
l+3/2,l/2+3/4
2 (GT )

≤ cỸ 2(T ). (3.24)

with the constant c independent of T ≥ 1.

Theorem 3.4. If the solution of the problem (3.7) is defined for t ∈ (0, T ) and (3.23)
holds, then w and ρ̂ satisfy the inequality

‖w(·, t)‖2L2(Ωt)
+ ‖ρ̂(·, t)‖2L2(Gθ(t))

+
∫ t

0

(
‖w(·, t)‖2L2(Ωτ )

+ ‖ρ̂(·, t)‖2
W

−1/2
2 (Gθ(t))

)
dτ

≤ c
(
‖w0‖2L2(Ω0)

+ ‖ρ0‖2L2(G0)

)
(3.25)

with the constant independent of T .

The proof of Theorem 3.4 is given in Section 5. By Proposition 4.6 in [1],
(3.25) implies

‖u(·, t)‖2L2(Ω0)
+ ‖r(·, t)‖2L2(Γ0)

+
∫ t

0

(
‖u(·, t)‖2L2(Ω0)

+ ‖r(·, t)‖2
W

−1/2
2 (Γ0)

)
dτ

≤ c
(
‖w0‖2L2(Ω0)

+ ‖ρ0‖2L2(G0)

)
. (3.26)

As in the case of axially symmetric F , inequalities (3.22), (3.24), (3.26) allow
us to obtain the following uniform estimate of the solution of (3.7) playing a crucial
role in the analysis of the problem (1.9) (cf. [1], Theorem 2.3).

Theorem 3.5. Assume that the assumptions of Theorem 1.1 are satisfied. If the
solution of (3.7) is defined for t ∈ (0, T ) and (3.23) holds, then

Ỹ (T ) ≤ c
(
‖w0‖W l+1

2 (Ω0)
+ ‖ρ0‖W l+1

2 (G0)

)
. (3.27)

Inequality (3.23) is verified in the process of the proof of the solvability of
the problem (1.14). As in [1], the proof is carried out in two steps. First, using the
maximum regularity estimates for the Neumann problem

vt − ν∇2v +∇p = f(x, t), ∇ · v = f(x, t) x ∈ Ω0,

T (v, p)n0 = d(x, t), x ∈ Γ0,

v(x, 0) = v0(x), x ∈ Ω0,
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and the estimate (3.24) of the nonlinear terms, we prove the solvability of the
problem (1.14) in the interval t ∈ (0, 1), and obtain the estimate

‖u‖
W

2+l,1+l/2
2 (Q1)

+ ‖∇q‖
W

l,l/2
2 (Q1)

+ ‖q‖
W

l+1,(l+1)/2
2 (G1)

≤ c
(
‖w0‖W l+1

2 (Ω0)
+ ‖ρ0‖W l+1

2 (G0)

)
for the solution (cf. [1], Theorem 3.1). Then we construct θ(t) = −λ(t), as made
in Propositions 2.1, 2.2, and estimate the function

r(ξ, t) = ρ0(ξ̄) +
∫ t

0

(
N 0(Z(λ(τ)X(ξ, τ)) · Zu+ h0(ZX)λ′(τ)

)
dτ.

If ε in (1.19) is small, then we arrive at (3.23) and, by Theorem 3.5, at (3.27) for
t ∈ (0, 1). Now we can make one more step and define the solution for t ∈ (T, 2T ).
Assume that the solution of (3.7), as well as the function θ(t), is defined for t ∈
(0, T ) and inequalities (3.23) and (2.17) are satisfied. Then it is possible to extend
the solution in the time interval t ∈ (0, T + 1). As in [1] (see Theorem 3.2), this
reduces to the problem (3.5) in [1], slightly more complicated than (1.14). It is
essential that in the proof of Theorems 3.1 and 3.2 in [1] the symmetry properties
of F are not used. If u and q are constructed for t ∈ (0, T + 1), then it is possible
to define θ(t), t ∈ (0, T + 1), satisfying (2.17), and estimate

r(ξ, t) = r(ξ, T ) +
∫ t

T

(
N0(ZX) · Zu+ h0(ZX)λ′(τ)

)
dτ,

t ∈ (T, T + 1). By Theorem 3.5, the extended functions satisfy (3.27), (2.17) with
constants independent of T , as in the symmetric case. In this way we construct
the solution in the infinite time interval and conclude the proof of Theorem 1.1.

4. Proof of Proposition 2.2 and of the estimate (3.24)

This section is devoted to some estimates presented in Sections 2 and 3.

Proof of Proposition 2.2. We consider the function f(t, λ) defined in (2.8). When
we extend h0 from G0 in the δ1-neighborhood of G0 so that this function remains
smooth (which reduces to the extension of N 0, as it has been done above) and
take account of the relation h0(ȳ) = h0(R(y)), then we can write f(t, λ) as

f(t, λ) =
∫
Γ0

F (Z(λ)X(ξ, t))dSξ , (4.1)
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where F is a smooth function in a certain neighborhood of Γ0. The partial deriva-
tives of f with respect to λ are given by

fλ(t, λ) =
∫
Γ0

∇F (Z(λ)X(ξ, t)) · Z ′XdSξ =
∫
Γ0

∇F (Z(λ)X) · Z ′Z−1ZXdSξ

=
∫
Γ0

∇F (Z(λ)X(ξ, t)) · (e3 ×ZX)dSξ ≡
∫
Γ0

F1(ZX)dS,

fλλ(t, λ) =
∫
Γ0

∇F1(Z(λ)X) · (e3 ×ZX))dS ≡
∫
Γ0

F2(ZX)dSξ, (4.2)

where F1 and F2 are also smooth functions. Moreover,

ft(t, λ) =
∫
Γ0

∇F (Z(λ)X) · Zu(ξ, t)dSξ ,

ftλ(t, λ) =
∫
Γ0

∇F1(Z(λ)X) · Zu(ξ, t)dSξ, (4.3)

ftλλ(t, λ) =
∫
Γ0

∇F2(Z(λ)X) · Zu(ξ, t)dSξ,

ftt(t, λ) =
∫
Γ0

∇F (Z(λ)X) · ZutdSξ +
∫
Γ0

Zu · ∇∇F (ZX) · ZudSξ

≡ φ1(t) + φ2(t). (4.4)

Differentiating (2.13) with respect to t, we obtain

λ′′(t) = −
( ∂
∂t

ft
fλ

)
λ=λ(t)

−
( ∂
∂λ

ft
fλ

)
λ=λ(t)

λ′(t) = λ1(t) + λ2(t). (4.5)

Since X(ξ, t) and u(ξ, t) are bounded uniformly with respect to t and fλ
satisfies (2.10), we have∣∣∣( ∂

∂λ

ft
fλ

)
λ=λ(t)

∣∣∣ ≤ c,∣∣∣( ∂
∂t

ft
fλ

)
λ=λ(t)

∣∣∣ ≤ c ∫
Γ0

(|ut(ξ, t)|+ |u(ξ, t)|)dS,

and in view of (2.15)

|λ′′(t)| ≤ c
∫
Γ0

(|ut(ξ, t)| + |u(ξ, t)|)dS,

‖λ′′‖L2(0,T ) ≤ c‖u‖W 0,1
2 (GT )

. (4.6)

Now we estimate( ∫ min(T,1)

0

dh

h1+2μ

∫ T

h

|Δt(−h)λ′′(t)|2dt
)1/2

,
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where μ = l/2−1/4, Δt(−h)λ′′(t) = λ′′(t−h)−λ′′(t). Using (4.2) it is not difficult
to verify that( ∫ min(T,1)

0

dh

h1+2μ

∫ T

h

|Δt(−h)λ2(t)|2dt
)1/2

≤ ‖λ2‖W 1
2 (0,T )

≤ c‖u‖W 0,1
2 (GT )

.

(4.7)
The function λ1(t) is given by

λ1(t) = −
(ftt
fλ
− ftfλt

f2λ

)
λ=λ(t)

≡ λ3(t) + λ4(t)

with λ4 also satisfying (4.7). Now we consider the difference

Δt(−h)λ3(t) = −
1

fλ(t− h, λ(t− h))
Δt(−h)ftt(t, λ(t))

− ftt(t, λ(t))Δt(−h)
1

fλ(t, λ(t))
.

Since |fλ(t, λ(t))| ≥ c > 0 and | ∂
∂t

1
fλ(t,λ(t))

| ≤ c, we have( ∫ min(1,T )

0

dh

h1+2μ

∫ T

h

|ftt|2
∣∣∣Δt(−h)

1
fλ

∣∣∣2dt)1/2 ≤ c‖ftt‖L2(0,T ),( ∫ min(1,T )

0

dh

h1+2μ

∫ T

h

|Δt(−h)ftt|2
1

|fλ|2
dt

)1/2
≤ c

( ∫ min(1,T )

0

dh

h1+2μ

∫ T

h

|Δt(−h)ftt|2dt
)1/2

,

which implies

‖λ3‖W μ
2 (0,T )

≤ c‖ftt‖W μ
2 (0,T )

,

‖λ′′‖W μ
2 (0,T )

≤ c
(
‖ftt‖W μ

2 (0,T )
+ ‖u‖W 0,1

2 (QT )

)
.

The function ftt(t) is representable in the form (4.4) with φ2 satisfying

‖φ2‖W μ
2 (0,T )

≤ c‖φ2‖W 1
2 (0,T )

≤ c‖u‖W 0,1
2 (GT )

(4.8)

and

φ1(t) =
∫
Γ0

b(ξ, t) · ut(ξ, t)dS,

where b = Z−1(λ(t))∇F (Z(λ(t))X(ξ, t)) is the function such that
sup
GT

|b(ξ, t)|+ sup
GT

|bt(ξ, t)| ≤ c.

Hence

‖φ1t‖W μ
2 (0,T )

≤ c‖ut‖W 0,μ
2 (GT )

,

‖ftt‖W μ
2 (0,T )

≤ c‖u‖W 0,1+μ
2 (GT )

.
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Together with (4.8), this inequality implies

‖λ′‖
W

l/2+3/4
2 (0,T )

≤ c‖u‖
W

0,l/2+3/4
2 (GT )

. (4.9)

In order to conclude the proof of (2.17), we need to estimate the norm

‖(1 + t)λ′‖W
μ1
2 (0,T )

with μ1 = l/2+ 1/4. This can be done by repeating the above arguments. In view
of (2.15), we have

‖(1 + t)λ′‖L2(0,T ) ≤ c‖(1 + t)u‖L2(GT ),( ∫ min(1,T )

0

dh

h1+2μ1

∫ T

h

(1 + t)2
∣∣∣Δt(−h)λ′(t)

∣∣∣2dt)1/2
≤ c

(∫ min(1,T )

0

dh

h1+2μ1

∫ T

h

(1 + t)2
∣∣∣Δt(−h)ft(t)

∣∣∣2dt)1/2 + c‖(1 + t)ft‖L2(0,T )

≤ c‖(1 + t)u‖
W

0,μ1
2 (GT )

,

which concludes the proof of (2.17) and of Proposition 2.2. �

On the estimate (3.24). The expressions l1, l2, l3, l4 are the same as in the sym-
metric case, and they have been estimated in [9], Propositions 5.5 and 5.6, but
l5 and l6 are somewhat different. As in the symmetric case, the main technical
difficulties arise in the estimate of l5, in particular, of the second derivative ∂2Us

∂s2

of the potential (3.3). It has the same form as the analogous function in [1], only
the role of ρ is played by ρ̂ or ρ̃. We have:

∂2Us(z, t)
∂s2

= V1(z, t) + V2(z, t)−W 1(z, t) ·Nθ(t)(z)ρ̂(z, t)

−W 2(z, t) ·Nθ(z)ρ̂(z, t), (4.10)

V1(z, t) =
∫
Gθ(t)

ρ̂(ζ, t)
∂Λ(ζ, sρ̂)
∂s

dSζ

|esρ̂(z)− esρ̂(ζ)|
,

V2(z, t) =
∫
Gθ

ρ̂(ζ, t)Λ(ζ, sρ̂)
∂

∂s

1
|esρ̂(z)− esρ̂(ζ)|

dS,

W 1(z, t) =
∫
Fθ

∂L(ζ, sρ̂∗)
∂s

esρ̂(z)− esρ̂(ζ)
|esρ̂(z)− esρ̂(ζ)|3

dζ,

W 2(z, t) =
∫
Fθ

L(ζ, sρ̂∗)
∂

∂s

esρ̂(z)− esρ̂(ζ)
|esρ̂(z)− esρ̂(ζ)|3

dζ.

Since ρ̃(y, t) = ρ̂(Z(θ(t))y, t), the formula (4.10) is equivalent to
∂2Us(Z(θ(t))y, t)

∂s2

= V (0)1 (y) + V (0)2 (y, t)−W
(0)
1 (y, t) ·N 0(y)ρ̃(y, t)−W

(0)
2 (y, t) ·N0(y)ρ̃(y, t),
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where y ∈ G0,

V
(0)
1 (y, t) =

∫
G0

ρ̃(η, t)
∂Λ(η, sρ̃)
∂s

dSη

|esρ̃(y)− esρ̃(η)|
,

V
(0)
2 (y, t) =

∫
G0

ρ̃(η, t)Λ(η, sρ̃)
∂

∂s

1
|esρ̃(y)− esρ̃(η)|

dS,

W
(0)
1 (y, t) =

∫
F0

∂L(η, sρ̃∗)
∂s

esρ̃(y)− esρ̃(η)
|esρ̃(y)− esρ̃(η)|3

dη,

W
(0)
2 (y, t) =

∫
F0

L(η, sρ̃∗)
∂

∂s

esρ̃(y)− esρ̃(η)
|esρ̃(y)− esρ̃(η)|3

dη.

Estimates of these potentials are made exactly as in [11] and they lead to the
inequality analogous to (3.20) in [11], namely,

‖∂
2Us

∂s2

∣∣∣
y=ZX

‖
W̃

l+1/2,l/2+1/4
2 (GT )

(4.11)

≤ c sup
t<T

‖r(·, t)‖W l+1
2 (Γ0)

(
‖r‖

W
l+1/2,0
2 (GT )

+ ‖(1 + t)u‖
W

1/2,0
2 (GT )

)
.

The proof is based on the estimates of the Newtonian and single layer po-
tentials obtained in [12]. We also make use of the estimate of the time derivative
ρ̃t. Let V ′n be the velocity of the evolution of the surface Z(λ(t))X(ξ, t) in the
direction of the exterior normal n′. We have

V ′n =
∂

∂t
Z(λ(t))X(ξ, t) · n′ = Zu · n′ + Z ′Xn′λ′(t)

= u · n+ (e3 ×X) · nλ′(t).

Hence

ρ̃t(y, t) =
V ′n

n′ ·N0
=

u · n
n′ ·N0

+
(e3 ×X) · n

n′ ·N0
λ′(t) (4.12)

=
u(ξ, t) · L̂T (z)Nθ(z)

Λ(z, ρ̂)
+
(e3 ×X) · L̂T (z)Nθ(z)

Λ(z, ρ̂)
λ′(t).

Here, as usual, the points y and z are connected with Z(θ(t))y = z and Λ(z, ρ̂) =
1 − ρ̂Hθ(z) + ρ̂2Kθ(z), where Hθ is the doubled mean curvature and Kθ is the
Gaussian curvature of Gθ. From (4.12) and (2.15) it follows that

‖ρ̃t(·, t)‖W
1/2
2 (G0)

≤ c‖u(·, t)‖
W

1/2
2 (Γ0)

,

which is analogous to the estimate (3.19) in [11] for ρt. This allows us to obtain
(4.11).

Now we turn our attention to B1(r,u). According to (3.5),

B1(r,u) = B2(r,u)− κB3(r,u)− κB4(r,u)− κB5(r,u),
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where

B2(r,u) = (b(Z(λ(t)X)− b(ξ̄))r(ξ, t),

B3(r,u) =
∫
Γ0

r(η, t)(Ψ(η, t) − 1)dSη

|ZX(ξ, t)−ZX(η, t)|
,

B4(r,u) =
∫ 1

0

ds

∫
Γ0

r(η, t)
∂

∂s

1
|X̄s(ξ, t)− X̄s(η, t)|

dS,

B5(r,u) =
∫ 1

0

ds

∫
Γ0

r(η, t)
∂

∂s

1
|Z(sλ(t))X(ξ, t) −Z(sλ)X(η, t)|

dS.

In the case of axially symmetric F we have Z = I and the term B5 drops
out.

We start with the estimate of B2 and show that

‖B2‖W̃
l+1/2,l/2+1/4
2 (GT )

≤ c
(
‖u‖

W̃ l+2,0
2 (QT )

+ ‖r‖
W̃

l+1/2,0
2 (GT )

)
‖u‖

W̃ l+2,0
2 (QT )

.

(4.13)
Following the arguments in the proof of Proposition 5.7 in [9], we estimate the
difference

b0(ZX)− b0(ξ̄). (4.14)

In Proposition 5.7 it is proved that

‖b0(X̄(ξ, t))− b0(ξ̄)‖W
l+1/2
2 (Γ0)

≤ c‖u‖
W̃ 2+l,0

2 (Qt)
, ∀t ∈ (0, T ). (4.15)

The difference (4.14) satisfies the same inequality; indeed,

b0(ZX)− b0(ξ̄) = (b0(ZX)− b0(X̄)) + (b0(X̄)− b0(ξ̄)),

b0(ZX)− b0(X̄) =
∫ 1

0

∂

∂s
b0(Z(sλ)X)ds =

∫ 1

0

∇b0(Z(sλ)X)dsλ(t),

where b0(·) = b0(R(·)). Hence, by (2.15),

‖b0(ZX)− b0(X̄)‖W
l+1/2
2 (Γ0)

≤ c
(
1 + ‖u‖

W̃ l+2,0
2 (Qt)

)
|λ(t)| (4.16)

≤ c
∫ t

0

∫
Γ0

|u(ξ, τ)|dSdτ ≤ c‖u‖
W̃ l+2,0

2 (Qt)
.

We also need to estimate the time derivative

∂

∂t

(
b0(ZX)− b0(ξ̄)

)
r

=
(
b0(ZX)− b0(ξ̄)

)
rt + r∇b0(ZX)

(
Z(λ)u(ξ, t) + Z ′(λ)Xλ′(t)

)
.
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Using the inequalities (4.16), (2.15), we obtain∥∥∥∥ ∂∂t(b0(ZX)− b0(ξ̄))r
∥∥∥∥

L2(Γ0)

≤ sup
Γ0

|(b0(ZX)− b0(ξ̄)|‖rt(·, t)‖L2(Γ0) +
∥∥∥∥∂b0(ZX)∂t

∥∥∥∥
L2(Γ0)

sup
Γ0

|r(ξ, t)|

≤ c‖u(·, t)‖L2(Γ0)

(
‖u‖

W̃ l+2,0
2 (Qt)

+ sup
Γ0

|r(ξ, t)|
)
.

Together with (4.15), (4.16), this estimate implies (4.13).
For the estimate of B3, B4, B5 we can use Proposition 2.10 in [11]. It concerns

the surface integrals of the form

v(y, t) =
∫
Γ0

|T (y, t)− T (η, t)|−1g(η, t)dS,

v1(y, t) =
∫
Γ0

T (y, t)− T (η, t)
|T (y, t)− T (η, t)|3 · (a(y, t)− a(η, t))g(η, t)dS,

where T (y, t) is an invertible mapping of class W l+3/2−ε
2 (Ω0), ε ∈ (0, l − 1), with

Tt ∈ W 1
2 (Ω0) and a is as regular as ρ̃. It is easily seen that the transformation

T = Z(λ(t))X(ξ, t) possesses these properties and ZX = e−1ρ̃ X. Therefore the
application of Proposition 2.10 leads to the same estimates for B1 (and for l5) as
in [11], namely,

‖l5‖W̃
l+1/2,l/2+1/4
2 (GT )

(4.17)

≤ c
(
sup
t<T

‖r(·, t)‖W l+1
2 (Γ0)

+ ‖r(·, t)‖
W̃

l+1/2,l/2+1/4
2 (GT )

+ ‖u‖
W̃

l+2,l/2+1
2 (QT )

)2
.

Now we pass to the estimate of

l6(u) = (Z−1(λ(t))N 0(ZX)−N0(ξ̄)) · u(ξ, t)
+ (h0(ZX)− h0(ξ̄))λ′(t) + h0(ξ̄)m(t)

≡ l(1)6 (u) + l(2)6 (u) + l(3)6 (u)

where m(t) is defined in (2.19). We have already seen above that

‖h0(ZX)− h0(ξ̄)‖W
l+1/2
2 (Γ0)

≤ c‖u‖
Ŵ l+2.0

2 (Qt)
, (4.18)

‖Z−1(λ(t))N 0(ZX)−N 0(ξ̄))‖W
l+1/2
2 (Γ0)

≤ c|λ(t)|‖N 0(ZX)‖W
l+1/2
2 (Γ0)

+ ‖N0(ZX)−N0(ξ̄)‖W
l+1/2
2 (Γ0)

≤ c‖u‖
Ŵ l+2.0

2 (Qt)
.

Exactly in the same way we obtain

‖h0(ZX)− h0(ξ̄)‖W
l+3/2
2 (Γ0)

+ ‖Z−1(λ(t))N 0(ZX)−N 0(ξ̄))‖W
l+1/2
2 (Γ0)

≤ c(1 +
√
t)‖u‖

W̃ l+2,0
2 (Qt)

.
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In addition, we have∥∥∥ ∂
∂t
h0(ZX)

∥∥∥
L2(Γ0)

+
∥∥∥ ∂
∂t
Z−1N0(ZX)

∥∥∥
L2(Γ0)

≤ c‖u‖L2(Γ0),∥∥∥ ∂2
∂t2
h0(ZX)

∥∥∥
L2(Γ0)

+
∥∥∥ ∂2
∂t2

Z−1N0(ZX)
∥∥∥

L2(Γ0)
≤ c

(
‖ut‖L2(Γ0 + ‖u‖L2(Γ0)

)
.

These inequalities allow us to estimate l(1)6 and l(2)6 exactly in the same way as l6
has been estimated in [9], Proposition 5.8:

‖l(1)6 (u)‖
W̃

3/2+l,3/4+l/2
2 (GT )

+ ‖l(2)6 (u)‖
W̃

3/2+l,3/4+l/2
2 (GT )

≤ c‖u‖
W̃

l+2,l/2+1
2 (QT )

(
‖u‖

W̃ l+2,0
2 (QT )

+ sup
QT

|u(ξ, t)|
)
.

The proof reduces to repeating the arguments in this Proposition. Finally, it is
easily seen that

‖l(3)6 (u)‖
W̃

3/2+l,3/4+l/2
2 (GT )

≤ c‖m‖
W̃

l/2+3/4
2 (0,T )

.

According to (2.19), m(t) = m1(t) +m2(t), where

m1(t)=−
1

fλ(t,λ(t))

∫
Γ0

(
Z−1(λ(t))N 0(ZX)h0(ZX)−N0(ξ̄)h0(ξ̄)

)
·u(ξ,t)dSξ,

m2(t)=

∫
Γ0

N0(ξ̄) ·u(ξ,t)h0(ξ̄)dS
fλ(t,λ(t))

∫
Γ0
h20(ξ̄)dS

∫
Γ0

r(ξ,t))∇h0(ZX) ·
(
∇R(ZX)(e3×ZX)

)
dS

− 1
fλ(t,λ(t))

∫
Γ0

r(ξ,t)∇h0(ZX) ·∇R(ZX)Z(λ(t))u(ξ,t)dS. (4.19)

In view of (4.18), (2.15),∣∣∣Z−1(λ(t))N 0(ZX)h0(ZX)−N0(ξ̄)h0(ξ̄)
∣∣∣ ≤ c‖u‖W̃ 2+l,0

2 (Qt)
,∥∥∥ ∂

∂t

(
Z−1(λ(t))N 0(ZX)h0(ZX)−N 0(ξ̄)h0(ξ̄)

)∥∥∥
L2(Γ0)

≤ c‖u(·, t)‖L2(Γ0),∥∥∥ ∂2
∂t2

(
Z−1(λ(t))N 0(ZX)h0(ZX)−N 0(ξ̄)h0(ξ̄)

)∥∥∥
L2(Γ0)

≤ c
(
‖ut(·, t)‖L2(Γ0) + ‖u(·, t)‖L2(Γ0)

)
,

hence

m′1(t)

=
ftλ(t, λ(t))
f2λ(t, λ(t)

∣∣∣
λ=λ(t)

∫
Γ0

(
Z−1(λ(t))N 0(ZX)h0(ZX)−N0(ξ̄)h0(ξ̄)

)
· u(ξ, t)dSξ

− 1
fλ(t, λ(t))

(∫
Γ0

∂

∂t

(
Z−1(λ(t))N 0(ZX)h0(ZX)−N0(ξ̄)h0(ξ̄)

)
· u(ξ, t)dSξ

− 1
fλ(t, λ(t))

∫
Γ0

(
Z−1(λ(t))N 0(ZX)h0(ZX)−N0(ξ̄)h0(ξ̄)

)
· ut(ξ, t)dSξ

)
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satisfies the inequalities

‖m′1‖L2(0,T ) ≤ c‖u‖W 0,1
2 (GT )

(
‖u‖

W̃ 2+l,0
2 (QT )

+ sup
t<T

‖u‖L2(Γ0)

)
,

( ∫ 1

0

dh

h1+2μ

∫ T

h

|Δt(−h)m′1(t)|2dt
)1/2

≤ c‖u‖W 0,1+μ
2 (GT )

(
‖u‖

W̃ l+2,0
2 (QT )

+ sup
t<T

‖u‖L2(Γ0)

)
,

and (∫ 1

0

dh

h1+2μ1

∫ T

h

(1 + t)2|Δt(−h)m1(t)|2dt
)1/2

+ ‖(1 + t)m1‖L2(0,T )

≤ c‖(1 + t)u‖
W

0,μ1
2 (GT )

(
‖u‖

W̃ l+2,0
2 (QT )

+ sup
t<T

‖u‖L2(Γ0)

)
,

established in the same way as (2.17). Hence

‖m1‖W̃
l/2+3/4
2 (0,T )

≤ c‖u‖
W̃

0,l/2+3/4
2 (GT )

(
‖u‖

W̃ 2+l,0
2 (QT )

+ sup
t<T

‖u‖L2(Γ0)

)
. (4.20)

The function m2(t) is estimated by similar arguments. Taking (3.6) into ac-
count we obtain

‖m2‖W̃
l/2+3/4
2 (0,T )

≤ c‖u‖
W̃

0,l/2+3/4
2 (GT )

(
sup
t<T

‖u‖L2(Γ0) + sup
t<T

‖r‖L2(Γ0)

)
.

This implies

‖l6(u)‖W̃
l+3/2,l/2+1/2
2 (GT )

≤ c‖u‖
W̃

l+2,l/2+1
2 (QT )

(
‖u‖

W̃ l+2,0
2 (QT )

+ sup
QT

|u(ξ, t)|+ sup
t<T

‖r‖L2(Γ0)

)
.

Thus (3.24) is proved.

5. Proof of Theorem 3.4

We start by obtaining some auxiliary relations and estimates. Let w be a solution
of the problem (1.9) and let w⊥ be a projection of w on the subspace of vector
fields orthogonal to all rigid displacements. In view of (1.11),

w(x, t) = w⊥(x, t) +
3∑

k=1

gk(t)ηk(x), (5.1)

where ηk(x) = ek × x, ek = (δik)i=1,2,3. and gk(t) are functions defined as a
solution of a linear algebraic system

3∑
k=1

Sik(t)gk(t) =
∫
Ωt

w(x, t) · ηi(x)dx = Ii(t) (5.2)
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with

Sik(t) =
∫
Ωt

ηi(x) · ηk(x)dx,

Ii(t) = −ω
(∫

Ωt

η3(x) · ηi(x)dx −
∫
F

η3(x) · ηi(x)dx
)
; (5.3)

by F we mean arbitrary Fθ. Since

−
∫
F

η3 · ηjdx =
∫
F
xjx3dx = 0, j = 1, 2 (5.4)

(see [2]), we have
Ii(t) = βδi3 − Si3(t)ω, (5.5)

where β = ω
∫
F |x′|2dx is the magnitude of the angular momentum of the rotating

liquid. The matrix S = (Sik(t))i,k=1,2,3 is symmetric and positive definite, because,
for arbitrary real ξk,

3∑
i,k=1

Sik(t)ξiξk =
∫
Ωt

∣∣∣ 3∑
i=1

ξiηi(x)
∣∣∣2dx = ∫

Ωt

|ξ × x|2dx ≥ c|ξ|2.

Hence there exists the inverse matrix S−1 = (Sik(t))i,k=1,2,3, and

gk(t) =
3∑

m=1

Skm(t)(βδm3 − Sm3(t)ω) = βSk3(t)− δk3ω. (5.6)

We recall that Γt is given by the equation (1.21) with ρ̂ satisfying (1.25). We
compute the projection ρ̂⊥ of ρ̂ on the subspace of L2(Gθ) orthogonal to the func-
tions (1, x1, x2, x3, hθ(t)(x)). It is clear that (1, x1, x2, x3) are linearly independent
functions of x ∈ G and hθ(x) = Nθ(x) · η3(x) is orthogonal to them, because∫

Gθ

Nθ(z) · η3(z)dS =
∫
Fθ

∇ · η3(x)dx = 0, (5.7)∫
Gθ

ziNθ(z) · η3(z)dS =
∫
Fθ

∇ · xiη3(x)dx = 0. (5.8)

We have

ρ̂ = ρ̂⊥ +
4∑

k=0

ck(t)ϕk,

where ϕ0(x) = 1, ϕi(x) = xi, i = 1, 2, 3, ϕ4(x) = hθ(x). By (5.7), (5.8),∫
Gθ

ρ̂ϕadS =
3∑

b=0

cb(t)
∫
Gθ

ϕa(x)ϕb(x)dS, a = 0, 1, 2, 3,

and

ca(t) =
3∑

b=0

φab(t)
∫
Gθ

ρ̂ϕbdS,
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where φab(t) are elements of the matrix inverse to Φ =
( ∫
Gθ
ϕaϕbdS

)
a,b=0,1,2,3

. It

follows that

ρ̂ = ρ̂⊥ +
3∑

a,b=0

φab

∫
Gθ

ρ̂ϕbdSϕa(x) + hθ(x)‖hθ‖−2L2(Gθ)

∫
Gθ

ρ̂hθ(y)dS.

Conditions (1.28) for ρ̂ imply∫
Gθ

ρ̂(x, t)dS =
∫
Gθ

ρ̂(x, t)(1 − ϕ(x, ρ̂))dS,∫
Gθ

ρ̂(x, t)xidS =
∫
Gθ

ρ̂(x, t)(xi − ψi(x, ρ̂))dS,∫
Gθ

ρ̂(x, t)hθ(x)dS =
∫
Gθ

ρ̂(x, t)hθ(x)(1 −Ψ)dS,

and, as a consequence,∣∣∣ ∫
Gθ

ρ̂(x, t)dS
∣∣∣ ≤ ‖ρ̂‖W

−1/2
2 (Gθ)

‖1− ϕ‖
W

1/2
2 (Gθ)

≤ cδ‖ρ̂‖
W

−1/2
2 (Gθ)

,∣∣∣ ∫
Gθ

ρ̂(x, t)xidS
∣∣∣ ≤ cδ‖ρ̂‖W

−1/2
2 (Gθ)

;

moreover, since

|1−Ψ| ≤ c
(
|1− |An0||+ |1− |L̂T (z, ρ̂)N θ||

)
≤ c

(
‖u‖

W̃ 2+l,0
2 (Gt)

+ ‖ρ̂‖W l+1−ε
2 (Gθ)

)
≤ cδ,

we have ∣∣∣ ∫
Gθ

ρ̂(x, t)hθ(x)dS
∣∣∣ ≤ cδ‖ρ̂‖W

−1/2
2 (Gθ)

.

Hence
‖ρ̂− ρ̂⊥‖

W
−1/2
2 (Gθ)

≤ cδ‖ρ̂‖
W

−1/2
2 (Gθ)

,

which means that for small δ the norms ‖ρ̂‖
W

−1/2
2 (Gθ)

and ‖ρ̂⊥‖
W

−1/2
2 (Gθ)

are equiv-
alent to each other:

c1‖ρ̂‖W
−1/2
2 (Gθ)

≤ ‖ρ̂⊥‖
W

−1/2
2 (Gθ)

≤ c2‖ρ̂‖W
−1/2
2 (Gθ)

. (5.9)

Now we proceed to the proof of Theorem 3.4, assuming that the solution of
(1.9), (1.14) is constructed for t ∈ (0, T ) and the condition (3.23) is satisfied. The
following propositions play an important role in the proof.

Proposition 5.1. Given the function f0 ∈ W 1/2
2 (G0) such that

∫
G0
f0dS = 0, there

exists a divergence free vector field W ∈W 1
2 (Ωt) satisfying the conditions

W (x, t) · n =
f0(y, t)

|L̂T (y, ρ̃)N0(y)|
, x = eρ̃(Z(θ(t))y), y ∈ G0,
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Ωt

W (x, t) · ηj(x)dx = 0, j = 1, 2, 3, (5.10)

and the inequalities

‖W‖W 1
2 (Ωt) ≤ c‖f0‖W

1/2
2 (G0)

,

‖W‖L2(Ωt) ≤ c‖f0‖L2(G0), (5.11)

‖W t‖L2(Ωt) ≤ c
(
‖f0‖W

1/2
2 (G0)

+ ‖f0t‖L2(G0)

)
.

Sketch of the proof. At first we construct a divergence free W̃ in the domain Ω̃t =
Z(λ(t))Ωt with the normal component on ∂Ω̃t equal to f0(eρ̃(y))|L̂T (y, ρ̃)N0|−1
that satisfies inequalities (5.11) and the condition (5.10) in Ω̃t. The construction
(for a particular f0) is given in [13], Lemma 4.1, and it is valid for arbitrary
f0 ∈W 1/2

2 (G0). The vector field W is defined by

W (x, t) = Z−1(λ(t))W̃ (Z(λ(t))x, t), x ∈ Ωt.

Direct computation shows that W satisfies (5.10). Inequalities (5.11) follow from
similar inequalities for W̃ .

Proposition 5.2. Let Us be a potential defined in (3.3). For arbitrary f1 ∈W 1/2
2 (G0)

the following inequality holds:∣∣∣ ∫
Gθ

∂2Us

∂s2
f1(z)dS

∣∣∣ ≤ cδ‖ρ̂‖W
−1/2
2 (Gθ)

‖f1‖W
1/2
2 (Gθ)

. (5.12)

Proof. According to (4.10),∫
Gθ

∂2Us

∂s2
f1(z)dS =

∫
Gθ

(
V1(z, t) + V2(z, t)−W 1(z, t) ·Nθ(t)(z)ρ̂(z, t)

−W 2(z, t) ·Nθ(z)ρ̂(z, t)
)
f1dS

=
∫
Gθ

ρ̂(z, t)
(∂Λ(z, sρ̂)

∂s
V3[f1] + Λ(z, sρ̂)V4[f1]

)
dS

−
∫
Gθ

ρ̂(z, t)f1(z)Nθ(z) · (W 1(z, t) +W 2(z, t))dS, (5.13)

where

V3[f1] =
∫
Gθ

f1(ζ)dS
|esρ̂(z)− esρ̂(ζ)|

, V4[f1] =
∫
Gθ

f1(ζ)
∂

∂s

1
|esρ̂(z)− esρ̂(ζ)|

dS.

The right-hand side of (5.13) does not exceed

‖ρ̂‖
W

−1/2
2 (Gθ)

(∥∥∥∂Λ
∂s
V3[f1]

∥∥∥
W

1/2
2 (Gθ)

+ ‖ΛV4[f1]‖W
1/2
2 (Gθ)

+ ‖f1N θ · (W 1 +W 2)‖W
1/2
2 (Gθ)

)
.
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Applying Proposition 4.1 in [1] that concerns the estimate of the product of two
functions, we obtain∣∣∣ ∫

Gθ

∂2Us

∂s2
f1(z)dS

∣∣∣ ≤ c‖ρ̂‖W
−1/2
2 (Gθ)

(∥∥∥∂Λ
∂s

∥∥∥
W

l+1/2
2 (Gθ)

‖V3[f1]‖W
1/2
2 (Gθ)

+ ‖Λ‖
W

l+1/2
2 (Gθ)

‖V4[f1]‖W
1/2
2 (Gθ)

+ ‖f1‖W
1/2
2 (Gθ)

(‖W 1‖|W l+1/2
2 (Gθ)

+ ‖W 1‖|W l+1/2
2 (Gθ)

)
)
.

In view of the estimates of the volume and surface potentials obtained in [11],
Section 3, this inequality implies (5.12). The proposition is proved. �

Inequality (3.25) follows from the estimate of a “generalized energy”. We
multiply the first equation in (1.9) by w and integrate over Ωt. Making use of
the transport theorem and of the boundary conditions, we arrive at the energy
relation
1
2
d

dt

(
‖w‖2L2(Ωt)

−ω2
∫
Ωt

|x′|2dx−κ
∫
Ωt

U(x, t)dx
)
+
ν

2

∫
Ωt

|S(w)|2dx = 0. (5.14)

By (5.1) and (5.5),

‖w‖2L2(Ωt)
= ‖w⊥‖2L2(Ωt)

+
3∑

k,j=1

Skj(t)gk(t)gj(t)

= ‖w⊥‖2L2(Ωt)
+

3∑
k,j=1

Skj(βSk3(t)− δk3ω)(βSj3(t)− δj3ω)

= ‖w⊥‖2L2(Ωt)
+ S33(t)β2 + S33(t)ω2 − 2βω

= ‖w⊥‖2L2(Ωt)
+

β2∫
Ωt
|x′|2dx + β

2(S33 − S−133 ) + ω2
∫
Ωt

|x′|2dx − 2βω.

The expression

β2(S33 − S−133 ) = −β2S−133
2∑

j=1

S3jSj3

=
β2

S33 detS
(S11S223 + S22S

2
13 − 2S12S13S23) ≡ Q(t)

is a positive definite quadratic form with respect to S13, S23, since

2S12 ≤
√
S11

√
S22.

Hence (5.14) may be written in the form

d

dt

(1
2
‖w⊥‖2L2(Ωt)

+Q(t) +R(t)−R0

)
+
ν

2

∫
Ωt

|S(w⊥)|2dx = 0, (5.15)

where R(t) is defined in (1.27) with Ω = Ωt and R0 = R|Ω=F .
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Now we use the relations

2(e3 × ηi) = −∇(ηi · η3) + ηi, i = 1, 2, 3,

where η1 = η2, η2 = −η1, η3 = 0, and write the first equation in (1.9) in the
form

w⊥
t + (w · ∇)w⊥ + (w · ∇)w′ + 2ω(e3 ×w⊥)− ν∇2w⊥ (5.16)

+∇
(
p− ω

3∑
j=1

gj(t)η3 · ηj

)
= −w′t − ω

2∑
α=1

gαηα(x),

where w′ =
∑3

j=1 gj(t)ηj(x). Since (w
′ · ∇)w′ = − 1

2∇|w′|2, (5.16) is equivalent
to

w⊥t + (w · ∇)w⊥ + (w⊥ · ∇)w′ + 2ω(e3 ×w⊥)− ν∇2w⊥ (5.17)

+∇
(
p− ω

3∑
j=1

gj(t)η3 · ηj −
1
2
|w′|2

)
= −w′t − ω

2∑
α=1

gαηα(x).

We multiply (5.17) by the auxiliary vector field W constructed in Proposi-
tion 5.2 leaving for the moment the function f0 indefinite. Then we integrate the
product over Ωt. Elementary calculations lead to

d

dt

∫
Ωt

w⊥ ·W dx−
∫
Ωt

w⊥ · (W t + (w · ∇)W )dx + 2ω
∫
Ωt

(e3 ×w⊥) ·W dx

+
ν

2

∫
Ωt

S(w⊥) · S(W )dx+
∫
Ωt

(w⊥ · ∇)w′ ·W dx (5.18)

−
∫
Γt

(
M + ω

3∑
j=1

gj(t)η3(x) · ηj(x) +
1
2
|w′|2

)
W · ndS = 0.

We multiply (5.18) by a small positive γ and add to (5.15). As a result we obtain

dE(t)
dt

+ E1(t) = 0 (5.19)

with

E(t) =
1
2
‖w‖2L2(Ωt)

+Q+ (R−R0) + γ
∫
Ωt

w⊥ ·W dx, (5.20)

E1(t) =
ν

2
‖S(w⊥)‖2L2(Ωt)

− γ
∫
Ωt

w⊥ · (W t + (w · ∇)W )dx + 2ωγ
∫
Ωt

(e3 ×w⊥) ·W dx

+
νγ

2

∫
Ωt

S(w⊥) · S(W )dx+ γ
∫
Ωt

(w⊥ · ∇)w′ ·W dx − γJ , (5.21)

where J is the surface integral in (5.18).
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We pass to the estimates of E and E1. At first we consider the integral J . It
can be written in the form

J = −
∫
Gθ(t)

(M + ω
3∑

j=1

gj(t)η3(x) · ηj(x) +
1
2
|w′|2)

∣∣∣
x=eρ̂−1(z)

f1dSz

where f1 = W · n|x=eρ̂(z)|L̂T (z, ρ̂)N θ(z)|.
We introduce the matrix S0 = (S0jk)j,k=1,2,3 with the elements

S0jk =
∫
Fθ(t)

ηj(x) · ηk(x)dx.

In view of (5.4), S0α3 and S03α vanish, S033 =
∫
Fθ
|x′|2dx and the matrix (S0αβ)α,β=1,2

is positive definite. We make use of the relation

M + ω
3∑

j=1

gj(t)η3(x) · ηj(x) +
1
2
|w′|2

∣∣∣
x=eρ̂(z)

= −B0(z)ρ̂(z, t) + ω
3∑

k,j=1

Sjk
0 dk(t)η3(z) · ηj(z) +M

′, (5.22)

where

B0(z) = b0(z)ρ̂− κ
∫
Gθ

ρ̂(ζ, t)dS
|z − ζ)| ,

dk(t) = −ω
∫
Gθ

ρ̂(z, t)η3(z) · ηk(z)dS,

M ′ =
ω2

2
|N ′

θ(z)|2ρ̂2(z, t) + κ
∫ 1

0

(1− s)∂
2Us

∂s2
ds+

1
2
|w′|2

+ ω
3∑

j,k=1

(Sjk(t)Ik(t)− Sjk
0 (t)dk(t))η3(z) · ηj(z) (5.23)

+
3∑

j,k=1

Sjk(t)Ik(t))(η3(x) · ηj(x) − η3(z) · ηj(z)), x = eρ̂(z)

is the sum of nonlinear terms with respect to ρ̂ in (5.22). Let

B(z)ρ̂(z, t) = B0(z)ρ̂(z, t)− ωS330 d3(t)|η3(z)|2

= B0(z)ρ̂(z, t) +
ω2|z′|2∫
Gθ
|ζ′|2dS

∫
Gθ

ρ̂(ζ, t)|ζ′|2dS,
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B1(z)ρ̂(z, t) = B0(z)ρ̂(z, t)− ω
3∑

k,j=1

Sjk
0 dk(t)η3(z) · ηj(z)

= B(z)ρ̂(z, t) + ω2
2∑

α,β=1

Sαβ
0 zαz3

∫
Gθ

ρ̂(ζ, t)ζβζ3dS,

B1ρ̂ = PB1P ρ̂+
4∑

k=1

ϕk(z)
∫
Gθ

ρ̂(ζ, t)ϕk(ζ)dS,

where P is the projection on the subspace of L2(Gθ) orthogonal to the functions
ϕk, i.e., to (1, z1, z2, z3, hθ(t)(z)) defined on Gθ. The quadratic form

∫
Gθ
ρBρdS of

the operator B coincides with the form (1.4), hence, for ρ satisfying (1.7), (1.8)
we have

∫
Gθ
B1(ρ)ρdS ≥ c‖ρ‖2L2(Gθ)

. It follows that
∫
Gθ
ρB1(ρ)dS ≥ c‖ρ‖2L2(Gθ)

for
arbitrary ρ ∈ L2(Gθ). The integral equation

B1f = g

of the Fredholm type is uniquely solvable for arbitrary g ∈ L2(Gθ); moreover, if
g = Pg, then f = Pf and the equation PB1f = g holds. Finally, if g ∈ W 1/2

2 (Gθ),
then f ∈W 1/2

2 (Gθ), and

‖f‖
W

1/2
2 (Gθ)

≤ c‖g‖
W

1/2
2 (Gθ)

. (5.24)

Now we define f1 as the solution of the equation

B1f1 = P (−Δθ)−1/2P ρ̂ = P (−Δθ)−1/2ρ̂⊥,

where Δθ is the Laplace-Beltrami operator on Gθ (in fact, the equation PB1f1 =
P (−Δθ)−1/2ρ̂⊥ is satisfied). By virtue of (5.24) and (5.9),

‖f1‖W
1/2
2 (Gθ)

≤ c‖(−Δθ)−1/2ρ̂⊥‖W
1/2
2 (Gθ)

≤ c‖ρ̂⊥‖
W

−1/2
2 (Gθ)

≤ c‖ρ̂‖
W

−1/2
2 (Gθ)

.

The function f0(y) = f1(Z(θ(t))y, t), y ∈ G0, is a solution of the equation

P0B1(y)f0 = P0(−Δ0)−1/2ρ̃⊥, y ∈ G0,

where Δ0 is the Laplace-Beltrami operator on G0 and P0 is a projection on the
subspace of functions orthogonal to (1, y1, y2, y3, h0(y)). Hence

‖ρ̃‖
W

−1/2
2 (G0)

= ‖ρ̂‖
W

−1/2
2 (Gθ)

.
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We set W · n|x=ρ̂(z) = f1(z, t)|L̂T (z, ρ̂)N θ|−1.

−J ′ ≡
∫
Gθ(t)

(
B0(z)ρ̂(z, t)− ω

3∑
j=1

Sjk
0 dk(t)η3(z) · ηj(z)

)
f1(z, t)dS

=
∫
Gθ

B1(z)ρ̂f1(z, t)dS =
∫
Gθ

ρ̂B1f1dS

=
∫
Gθ

ρ̂⊥(−Δθ)−1ρ̂⊥dS ≥ c‖ρ̂‖2W−1/2
2 (Gθ)

.

Now we consider the contribution of the nonlinear terms (5.23) into −J , i.e.,
the integral

−J ′′ =
∫
Gθ

M ′f1(z, t)dS.

We have∣∣∣ ∫
Gθ

|N ′(z)|2ρ̂2(z, t)f1(z, t)dS
∣∣∣ ≤ ‖ρ̂‖W

−1/2
2 (Gθ)

‖|N ′(z)|2ρ̂f1‖W
1/2
2 (Gθ)

≤ cδ‖ρ‖
W

−1/2
2 (Gθ)

‖f1‖W
1/2
2 (Gθ)

≤ cδ‖ρ̂‖2
W

−1/2
2 (Gθ)

.

From the formula (2.9) in [14] it follows that (5.3) can be written in the form

Ik(t) = −ω
∫ 1

0

ds

∫
Gθ

ρ̂(z, t)η3(esρ̂(z)) · ηk(esρ̂(z))Λ(z, sρ̂)dS,

which implies

Ik(t)−dk(t) = −ω
∫ 1

0

ds

∫
Gθ

ρ̂(z, t)(η3(esρ̂(z))·ηk(esρ̂(z))Λ(z, sρ̂)−η3(z)·ηk(z))dS,

|dk(t)|+ |Ik(t)| ≤ c‖ρ̂‖W
−1/2
2 (Gθ)

,

|Ik(t)− dk(t)| ≤ cδ‖ρ̂‖W
−1/2
2 (Gθ)

.

For the estimate of Sjk(t)−Sjk
0 (t) we use the relations S−1−S−10 = S−10 (S0−S)S−1

and

Sjk(t)− S0jk =
∫ 1

0

ds

∫
Gθ

ρ̂(z, t)ηj(esρ̂(z)) · ηk(esρ̂(z))Λ(z, sρ̂)dS.

It follows that

|Sjk(t)− S0jk| ≤ c‖ρ‖W
−1/2
2 (Gθ)

. (5.25)
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From the above inequalities it is easy to conclude that∣∣∣ ∫
Gθ

(1
2
|w′2|+ ω

3∑
j,k=1

(SjkIk − Sjk
0 dk(t))η3(z) · ηj)(z)

+
3∑

j,k=1

SjkIk(t)(η3(esρ̂(z)) · ηk(esρ̂(z))− η3(z) · ηk(z)
)
f1(z, t)dS

∣∣∣
≤ cδ‖ρ̂‖2

W
−1/2
2 (Gθ)

.

Finally, by Proposition 5.2,∣∣∣ ∫ 1

0

(1 − s)ds
∫
Gθ

∂2Us

∂s2
f1dS

∣∣∣ ≤ cδ‖ρ̂‖2
W

−1/2
2 (Gθ)

.

Putting all the estimates together we see that for small δ,

−γJ ≥ cγ‖ρ̂‖2
W

−1/2
2 (Gθ)

= cγ‖ρ̃‖2
W

−1/2
2 (G0)

.

We pass to the estimates of the volume integrals in (5.21). By Proposition 5.1,∣∣∣ ∫
Ωt

w⊥ ·W tdx
∣∣∣ ≤ c‖w⊥‖L2(Ωt)

(
‖f0‖W

1/2
2 (G0)

+ ‖f0t‖L2(G)
)

≤ c‖w⊥‖L2(Ωt)

(
‖ρ̃‖

W
−1/2
2 (G0)

+ ‖ρ̃t‖L2(G)
)
,

and since

‖ρ̃t‖L2(G0) ≤ c‖w‖L2(Γt) ≤ c‖w⊥‖L2(Γt) + c
3∑

k=1

|Ik(t)|

≤ c
(
‖w⊥‖

W
(
2Ωt)

+ ‖ρ̃‖
W

−1/2
2 (G0)

)
,

we have

γ
∣∣∣ ∫

Ωt

w⊥ ·W tdx
∣∣∣ ≤ cγ‖w⊥‖W 1

2 (Ωt)

(
‖w⊥‖W 1

2 (Ωt) + ‖ρ̃‖W
−1/2
2 (G0)

)
.

In view of Proposition 5.1, other integrals in (5.21) do not exceed

cγ‖w⊥‖W 1
2 (Ωt)‖f0‖W

1/2
2 (G0)

≤ cγ‖w⊥‖W 1
2 (Ωt)‖ρ̃‖W

−1/2
2 (G0)

= cγ‖w⊥‖W 1
2 (Ωt)‖ρ̂‖W

−1/2
2 (Gθ)

,

which allows us to conclude, taking the Korn inequality into account, that for
small γ,

E1(t) ≥ c
(
ν‖w⊥‖2W 1

2 (Ωt)
+ γ‖ρ̂‖2

W
−1/2
2 (Gθ)

)
.

As for E(t), this function satisfies (also for small γ) the inequality

c1

(
‖w⊥‖2L2(Ωt)

+ ‖ρ̂‖2L2(Gθ)

)
≤ E(t) ≤ c2

(
‖w⊥‖2L2(Ωt)

+ ‖ρ̂‖2L2(Gθ)

)
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that is a consequence of the estimate

c3‖ρ̃‖2L2(G0)
= c1‖ρ̂‖2L2(Gθ)

≤ R−R0 ≤ c4‖ρ̂‖2L2(G)θ = c2‖ρ̃‖
2
L2(G0)

(see the remark at the end of Section 1). When we integrate (5.19), we arrive at
(3.25). Thus Theorem 3.4 is proved.
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Dynamics of a Non-fixed Elastic Body
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Dedicated to the memory of Alexander Vasilievich Kazhikhov

Abstract. In this paper, we present a model of the motion of a non-fixed
elastic body. The word “non-fixed” means that the body can move as a whole
under the action of external bulk and surface forces. Besides, these forces
cause the elastic deformation of the body. We decompose the motion of the
body on the rigid and deformation parts and write down governing equations
for them.
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Keywords. Elastic body, large displacement, small deformation.

1. Introduction

The goal of this paper is to write down equations of the motion of an elastic body
under the action of prescribed external surface and bulk forces. The body is as-
sumed to change its form as well as its position in a designated space; therefore,
the work done by the forces can be split into two parts. The first one is spent
on the displacement of the body as a whole and the second part produces elastic
deformations. So, the main task consists in decomposing the motion of the body,
considered as a continuum, into a mean rigid motion and deformations. Investiga-
tion of various mechanical systems leads to solving of such a problem. For instance,
the most useful information for captains of submarines or for pilots is related to
the position and orientation of their ships in their designated space, i.e., to the
rigid part of the motion, while the designer would be also interested to know the
elastic deformations and the stresses.

In what follows, we will not focus on the smoothness of the functions en-
countered and will assume that they are smooth enough to perform all neces-
sary operations. Let S∗ be a domain in R3 occupied by the body at the time

The work of V.N. Starovoitov is supported by the Russian Science Support Foundation and by
the Russian Foundation for Basic Research (grant No. 07-01-00309).
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moment t∗. Suppose that the motion of the body is prescribed by the mapping
φ : S∗ × [t∗,∞) → R3 and at the time moment t ∈ (t∗,∞) the body occupies
the domain S(t) = φ(S∗, t). If t = t∗, then φ(·, t∗) is the identical mapping and
φ(S∗, t∗) = S∗. We will denote by ξ and x the points in S∗ and in the actual
configuration S(t), respectively. Thus, φ(ξ, t∗) = ξ and for every x ∈ S(t) there
exists ξ ∈ S∗ such that φ(ξ, t) = x. Our task is to represent φ in the form

φ(ξ, t) = ψ(ξ, t) + δ(ξ, t), ξ ∈ S∗, t ∈ (t∗,∞), (1.1)

where the mappings ψ : S∗ × [t∗,∞)→ R3 and δ : S∗ × [t∗,∞)→ R3 represent a
rigid motion and an elastic deformation, respectively. Besides, we have to derive
the governing equations for these mappings. It is clear that such a representation
can be done by numerous methods, however, a simple and at the same time not
too artificial one would be most preferable.

At first, we define the notion of rigid motion. The point is that in many papers
this term is used for infinitesimal rigid displacements that are characterized by the
zero linear strain tensor. We say that a mapping ψ : S∗× [t∗,∞)→ R3 determines
a rigid motion if it can be represented as a composition of a translation and a
rotation for every t ∈ [t∗,∞). The space of rigid displacements will be denoted by
Rd. Thus, ψ(·, t) ∈ Rd for t ∈ [t∗,∞) if and only if there exist a vector τ (t) ∈ R3

and a rotation matrix R(t) ∈ SO(3) such that ψ(ξ, t) = τ (t) + R(t)ξ for all
ξ ∈ S∗. Notice that a matrix M from SO(3) is characterized by the following
properties: MMT = MT M = I and detM = 1, where MT is the transpose of
M and I is the identity matrix. We suppose also that τ (t∗) = 0 and R(t∗) = I,
i.e., ψ(ξ, t∗) = ξ.

In a very interesting paper [1], the authors propose a decomposition of the
form (1.1) by defining ψ(·, t) as the minimizer of the functional ‖φ(·, t)−ψ(·, t)‖2
among all ψ ∈ Rd for each t ∈ (t∗,∞), where ‖f‖2 =

∫
S∗
|f(ξ)|2 dξ. That is,

ψ is the orthogonal projection of φ in L2(S∗) onto Rd. Such a method has both
advantages and disadvantages. One can read about its advantages in the paper [2].
Its disadvantage is the complexity of the obtained model as well as the following
observation. The point is that the space Rd is not linear, therefore the suggested
minimization problem admits in general a non-unique solution. The solution will be
unique if φ is sufficiently close to Rd. For this reason, some additional restrictions
on the mapping φ are imposed in [1]. From a mechanical point of view, these
restrictions mean that the elastic deformations of the body should be small enough.
Such a suggestion is quite acceptable of course.

In this work, we employ another method of constructing the decomposition
(1.1). The basic idea consists in the fact that unlike Rd the space represented
the Eulerian coordinates velocities of rigid displacements is linear. Therefore, the
orthogonal projection in L2(S(t)) of the Eulerian velocity field onto this space will
be uniquely defined and we do not need the restrictions on the mapping φ imposed
in [1]. Notice also that the system of equations derived in the present work looks
simpler than that in [1].
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2. Decomposition of the motion

Let us denote by �∗ = �∗(ξ) and � = �(x, t) the functions of the density distribu-
tion in the body at the time moments t∗ and t > t∗, respectively. These functions
satisfy the following equation:

�∗(ξ) = �(φ(ξ), t)J(ξ, t), ξ ∈ S∗, t � t∗, (2.1)

where J(ξ, t) = det(∇ξφ(ξ, t)). Further on, we will always suppose that the map-
ping φ(·, t) is invertible for each t > t∗, i.e., the mapping φ−1(·, t) : S(t) → S∗ is
well defined. Recall that we assumed these mappings to be smooth enough. This
means in particular that the Jacobian J does not vanish and is always positive
because J(ξ, t∗) = 1 for all ξ ∈ S∗. We can rewrite (2.1) in Eulerian coordinates:

�(x, t) = �∗(φ−1(x, t))J−1(φ−1(x, t), t), x ∈ S(t), t � t∗.
Denote by xc(t) the mass center of the body at the time moment t:

xc(t) = m−1
∫

S(t)

�(x, t)x dx,

where m =
∫

S(t)
�(x, t) dx is the mass of the body. Notice that m =

∫
S∗
�∗(ξ) dξ,

which can be obtained from the definition of m by changing the variables x =
φ(ξ, t) and taking into account (2.1). This in particular implies that m is indepen-
dent of t. Without loss of generality, we suppose that the mass center coincides
with the origin of the coordinate system at the time moment t∗, i.e., xc(t∗) = 0.

Let us define the space Rv of the Eulerian velocities of rigid displacements.
We say that a vector field u(·, t) : S(t) → R3 is an element of the space Rv at
the instant t if there exist a vector a(t) and a skew-symmetric matrix Q(t) (i.e.,
QT = −Q) such that

u(x, t) = a(t) +Q(t)
(
x− xc(t)

)
for all x ∈ S(t). (2.2)

Every skew-symmetric matrix Q can be associated with a vector ω such that
Qb = ω × b for all b ∈ R3. This correspondence is bijective and will be denoted
later on as Q = [ω]. Therefore, (2.2) can be rewritten as

u(x, t) = a(t) + [ω(t)]
(
x− xc(t)

)
= a(t) + ω(t)×

(
x− xc(t)

)
for all x ∈ S(t).

Since the space Rv is a closed linear subspace in L2(S(t)), for every vector field
v ∈ L2(S(t)) there exists a unique vector field V ∈ Rv which is the orthogonal
projection of v in L2(S(t)) onto Rv.

The vector field v∗(ξ, t) = ∂tφ(ξ, t), ξ ∈ S∗, is the velocity field in the
Lagrangian description of the motion of the body. The Eulerian velocity is defined
as follows: v(x, t) = v∗(φ−1

(
x, t), t

)
, x ∈ S(t). In order to find the orthogonal

projection V of the velocity field v in L2(S(t)) onto Rv we have to solve the
following minimization problem: it is necessary to find V ∈ Rv such that∫

S(t)

�(x, t) |v(x, t)− V (x, t)|2dx �
∫

S(t)

�(x, t) |v(x, t)− u(x, t)|2dx (2.3)
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for all u ∈ Rv. Notice that we have defined the norm in L2(S(t)) as

‖f‖2L2(S(t)) =
∫

S(t)

�(x, t) |f(x)|2 dx =
∫

S∗
�∗(ξ) |f(φ(ξ, t))|2 dξ.

Problem (2.3) has a unique solution V and there exist vectors a(t) and ω(t) such
that V (x, t) = a(t)+[ω(t)]

(
x−xc(t)

)
. It is not difficult to see that for an arbitrary

vector b ∈ R3 these vectors satisfy the following relations:∫
S(t)

�(x, t)
(
v(x, t)− a(t)

)
· b dx = 0, (2.4)

∫
S(t)

�(x, t)v(x, t) · [ω(t)]
(
x− xc(t)

)
dx

+
∫

S(t)

�(x, t)
(
x− xc(t)

)
·
(
[ω(t)]T [b]+ [b]T [ω(t)]

)(
x− xc(t)

)
dx = 0. (2.5)

Since r ·
(
[ω(t)]T [b] + [b]T [ω(t)]

)
r = 2 [ω(t)]r · [b]r for every r ∈ R3, equality

(2.5) can be rewritten:∫
S(t)

�(x, t)
(
[ω(t)]

(
x− xc(t)

)
− v(x, t)

)
· [b]

(
x− xc(t)

)
dx = 0. (2.6)

Due to the arbitrariness of b, (2.4) and (2.6) imply that

a(t) = m−1
∫

S(t)

�(x, t)v(x, t) dx, (2.7)

ω(t) = J−1c (t)
∫

S(t)

�(x, t)
(
x− xc(t)

)
× v(x, t) dx, (2.8)

where

Jc(t) =
∫

S(t)

�(x, t)
(
I
∣∣x− xc(t)

∣∣2 − (
x− xc(t)

)
⊗

(
x− xc(t)

))
dx

is the matrix of the inertia moments of the body S(t) with respect to its mass
center xc(t).

The vector field V is a velocity field of some rigid motion that will be denoted
by ψ = ψ(ξ, t). The field ψ is the unique solution of the following Cauchy problem:

∂tψ(ξ, t) = V
(
ψ(ξ, t), t

)
, ψ(ξ, t∗) = ξ, ξ ∈ S∗. (2.9)

Since ψ ∈ Rd, there exist a vector τ (t) and a rotation matrix R(t) such that

ψ(ξ, t) = τ (t) +R(t)ξ, for all ξ ∈ S∗.
Let us derive relations satisfied by τ and R.

At first we note that

xc(t) = m−1
∫

S∗
�∗(ξ)φ(ξ, t) dξ. (2.10)
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The change of the variable x = φ(ξ, t) in (2.7) gives:

a(t) = m−1
∫

S∗
�∗(ξ)v∗(ξ, t) dξ = m−1

∫
S∗
�∗(ξ) ∂tφ(ξ, t) dξ

=
d

dt

(
m−1

∫
S∗
�∗(ξ)φ(ξ, t) dξ

)
= ẋc(t), (2.11)

where ẋc = dxc/dt. Since the point ξ = 0 is the mass center of the body S∗,
multiplying (2.9) by �∗ and integrating over S∗ give:

τ̇ (t) = m−1
∫

S∗
�∗(ξ)

(
ẋc(t) + [ω(t)]

(
ψ(ξ, t)− xc(t)) dξ

= ẋc(t) +m−1[ω(t)]
∫

S∗
�∗(ξ)

(
τ (t) +R(t)ξ − xc(t)

)
dξ

= ẋc(t) + [ω(t)]
(
τ (t)− xc(t)

)
.

Thus, we have obtained an ordinary differential equation
d

dt

(
τ (t)− xc(t)

)
= [ω(t)]

(
τ (t)− xc(t)

)
with the initial condition τ (t∗)−xc(t∗) = 0 that follows from the fact that xc(t∗) =
τ (t∗) = 0. As [ω(t)] is a skew-symmetric matrix, the unique solution of this
problem is zero. That is

τ (t) = xc(t) for all t � t∗.
Therefore,

ψ(ξ, t) = xc(t) +R(t)ξ, ξ ∈ S∗, t ∈ [t∗,∞). (2.12)
This relation implies in particular that∫

S∗
�∗(ξ)

(
φ(ξ, t)−ψ(ξ, t)

)
dξ = 0, t ∈ [t∗,∞).

As for the matrix R, it follows from (2.9), (2.11), and (2.12) that

Ṙ(t) = [ω(t)]R(t), (2.13)

or, in other words,
ṘRT = [ω]. (2.14)

Let us write
η(ξ, t) = RT (t)

(
φ(ξ, t)−ψ(ξ, t)

)
.

The vector field η is the elastic displacement of the body’s particles in the frame
whose motion is determined by the mapping ψ. Thus, solving problem (2.3) gives
us the following decomposition of the motion φ of the body S∗ into the rigid
motion (ψ) and the deformation (η):

φ(ξ, t) = ψ(ξ, t) +R(t)η(ξ, t) = xc(t) +R(t)
(
ξ + η(ξ, t)

)
, (2.15)

where xc(t) and R(t) are defined by (2.10), (2.14), and (2.8). Here, R η plays the
role of δ in (1.1).
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Let us investigate properties of the vector field η. As it follows directly from
the definition of η,

η(ξ, t∗) = 0 for all ξ ∈ S∗
and ∫

S∗
�∗(ξ)η(ξ, t) dξ = 0 for all t � t∗. (2.16)

Proposition 2.1. For each t � t∗ the vector field η defined above satisfies the
following relations: ∫

S∗
�∗(ξ) ∂tη(ξ, t) dξ = 0, (2.17)∫

S∗
�∗(ξ)

(
ξ + η(ξ, t)

)
× ∂tη(ξ, t) dξ = 0. (2.18)

Equation (2.18) can be rewritten as∫
S∗
�∗(ξ)R(t) ∂tη(ξ, t) · [b]R(t)

(
ξ + η(ξ, t)

)
dξ = 0 for all b ∈ R

3. (2.19)

Proof. Relation (2.17) for t > t∗ is a direct consequence of (2.16).
Let us show that it holds true also for t = t∗. Due to (2.7) and (2.11), ẋc(t∗) =

m−1
∫

S∗
�∗(ξ)∂tφ(ξ, t∗) dξ. Besides that, ∂tφ(ξ, t∗) = ẋc(t∗)+[ω(t∗)] ξ+∂tη(ξ, t∗)

and
∫

S∗
�∗(ξ) ξ dξ = 0. Therefore, we obtain (2.17) for t = t∗.

Let us prove the equivalence of (2.18) and (2.19). Since the matrix RT [b]R is
skew-symmetric, there exists a unique vector q such thatRT [b]R = [q]. Therefore,
(2.19) implies that

q ·
∫

S∗
�∗ (ξ + η)× ∂tη dξ = 0.

Due to the arbitrariness of q we obtain (2.18). Here, we used the equality u·[q]v =
u · (q×v) = q · (v×u) that holds true for all vectors u,v ∈ R3. In order to derive
(2.19) from (2.18), multiply (2.18) by an arbitrary vector q. If we denote by b the
vector such that [b] = R[q]RT , then we obtain (2.19).

Thus, we have only to establish (2.19). The passage in (2.6) to the Lagrangian
coordinates gives:∫

S∗
�∗(ξ)

(
[ω(t)]

(
φ(ξ, t)−xc(t)

)
−∂t(φ(ξ, t)−xc(t))

)
· [b]

(
φ(ξ, t)−xc(t)

)
dξ = 0

for every b ∈ R3. Taking into account (2.15) and (2.13), we find that [ω](φ−xc)−
∂t(φ − xc) = −R ∂tη. The substitution of this expression into the last integral
identity yields (2.19). The proposition is proved. �

Conditions (2.17)–(2.19) are necessary for the vector field ẋc + [ω](x − xc)
to be the solution of problem (2.3). The next proposition shows that, in a certain
sense, they are also sufficient.
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Proposition 2.2. Suppose that we have functions xc : [t∗,∞)→ R3, ω : [t∗,∞)→
R3, η : S∗ × [t∗,∞)→ R3, and R : [t∗,∞)→ SO(3) such that:

1. xc(t∗) = 0, R(t∗) = I, and η(ξ, t∗) = 0 for all ξ ∈ S∗;
2. Ṙ(t) = [ω(t)]R(t) for t ∈ [t∗,∞);
3. the mapping φ(·, t) : S∗ → R3 defined as φ(ξ, t) = xc(t) + R(t)(ξ + η(ξ, t))

is invertible;
4. either pair of conditions (2.17) and (2.18) or (2.17)and (2.19) is satisfied.

Then xc(t) is the mass center of the body S(t) = φ(S∗, t) and V (x, t) =
ẋc(t) + [ω(t)](x − xc(t)) is the solution of the minimization problem (2.3) with
v(x, t) = ∂tφ(ξ, t)

∣∣
ξ=φ−1(x,t)

and �(x, t) = �∗
(
φ−1(x, t)

)
det(∇ξφ(ξ, t)).

Proof. As problem (2.3) has a unique solution, it is enough to verify that

d

dλ

∫
S(t)

�
∣∣∣ẋc + λa+ [ω + λ b](x− xc)− v

∣∣∣2 dx ∣∣∣
λ=0

= 0

for arbitrary vectors a and b. This condition is equivalent to the following two
equations: ∫

S∗
�∗

(
ẋc − ∂tφ

)
dξ = 0, (2.20)∫

S∗
�∗

(
[ω](φ− xc)− ∂tφ

)
· [b](φ− xc) dξ = 0. (2.21)

Relation (2.20) follows directly from the facts that the point ξ = 0 is the
mass center of the body S∗,

∫
S∗
�∗(ξ)η(ξ, t) dξ = 0 for all t � t∗ (due to the first

assumption of the proposition and (2.17)), and ∂t(φ− xc) = Ṙ(ξ + η) +R ∂tη.
In order to prove (2.21), we make use of equality (2.19) that can be rewrit-

ten as ∫
S∗
�∗

(
∂t(φ− xc)− [ω] (φ− xc)

)
· [b] (φ− xc) dξ = 0.

Since
∫

S∗
�∗ ẋc · [b] (φ−xc) dξ = 0, we immediately obtain (2.21). The proposition

is proved. �

Notice that the function η in the constructed decomposition (2.15) must
satisfy the nonlinear condition (2.18). This fact was a cause for negative evaluation
of this method in [2]. The author gave preference to another decomposition that
was thoroughly investigated subsequently in [1].

3. Equations of motion

Proposition 2.2 implies that if we know the functions xc, ω, and η, then we are
able to reconstruct the motion φ of the body. Of course, the mapping φ(·, t) must
be invertible for all t. Let us derive the governing equations for these functions.
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The general equations of body dynamics in Eulerian variables read as follows:

�
(
∂tv + (v · ∇)v

)
= div T + �f , (3.1)

∂t�+ div (�v) = 0, (3.2)

where T = T (x, t) is the Cauchy stress tensor and f = f(x, t) is the external mass
force. Notice that the tensor T is symmetric: T = T T . These equations should be
supplemented with boundary and initial conditions:

T (x, t)n(x, t) = g(x, t), x ∈ ∂S(t), t � t∗,
S(t∗) = S∗, v(ξ, t∗) = v∗(ξ), �(ξ, t∗) = �∗(ξ), ξ ∈ S∗,

where g = g(x, t) is the vector of a force acting on the boundary of the body.
More precisely, it is the density of the force, i.e., the force acting on the unit area
of the boundary.

The multiplication of (3.1) by an arbitrary function h that is equal to zero
at t = T > t∗ and t = t∗ and the integration over {(x, t) | t ∈ [t∗, T ], x ∈ S(t)}
give us the following integral identity:∫ T

t∗

∫
S(t)

(
�v ·

(
∂th+(v ·∇)h

)
−T : ∇h+ �f ·h

)
dxdt = −

∫ T

t∗

∫
∂S(t)

g ·h dsxdt,

(3.3)
where dsx is the area measure on the surface ∂S(t).

At first, we take an (independent of x) test function h: h(x, t) = a(t) for all
x. Then ∫ T

t∗
ȧ ·

∫
S(t)

�v dx dt = −
∫ T

t∗
a ·

(∫
∂S(t)

g dsx +
∫

S(t)

�f dx
)
dt.

But, as it follows from (2.7) and (2.11),
∫

S(t) �v dx = m ẋc. Therefore, due to the
arbitrariness of a, we obtain:

m ẍc(t) =
∫

∂S(t)

g(x, t) dsx +
∫

S(t)

�(x, t)f(x, t) dx. (3.4)

If we take h(x, t) = [b(t)]
(
x−xc(t)

)
in (3.3) with an arbitrary vector b(t) ∈

R3, then we find that∫ T

t∗

∫
S(t)

(
�v ·

(
[ḃ](x− xc)− [b] ẋc

)
+

(
� (v ⊗ v)− T

)
: [b]

)
dxdt

= −
∫ T

t∗

∫
∂S(t)

g · [b](x− xc) dsxdt−
∫ T

t∗

∫
S(t)

�f · [b](x− xc) dxdt.

Since the matrix
(
� (v⊗v)−T

)
is symmetric,

(
� (v⊗v)−T

)
: [b] = 0. Moreover,

using (2.6) and the fact that the matrices [b] and [ḃ] are skew-symmetric, we
obtain that∫

S(t)

�v · [b]ẋc dx =
∫

S(t)

�v dx · [b]ẋc = m ẋc · [b]ẋc = 0,
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S(t)

�v · [ḃ](x− xc) dx =
∫

S(t)

� [ω](x− xc) · [ḃ](x− xc) dx

=
∫

S(t)

�
(
ω × (x− xc)

)
·
(
ḃ× (x− xc)

)
dx = ḃ · Jc ω,

where Jc is the matrix of the inertia moments of the body S(t) with respect to its
mass center xc(t) (see (2.8)). Thus,∫ T

t∗
ḃ · Jc ω dt = −

∫ T

t∗
b ·

(∫
∂S(t)

(x− xc)× g dsx +
∫

S(t)

� (x− xc)× f dx
)
dt

and as a consequence
d

dt

(
Jc(t)ω(t)

)
=

∫
∂S(t)

(
x− xc(t)

)
× g(x, t) dsx

+
∫

S(t)

�(x, t)
(
x− xc(t)

)
× f(x, t) dx. (3.5)

Remark. If we consider the body as a closed system of material points, then the
vectorsmẋc and Jcω are its vectors of linear and angular momenta with respect to
the mass center xc, respectively. Therefore, equations (3.4) and (3.5) are entirely
in accordance with the fundamental theorems of classical mechanics. •

Let us obtain an equation for η. The change of the variable x = φ(ξ, t) in
(3.3) gives the following identity:∫ T

t∗

∫
S∗

(
�∗ ∂tφ·∂th∗−(∇ξφ T (2)) : ∇ξh∗+�∗f∗·h∗

)
dξdt = −

∫ T

t∗

∫
∂S∗

g∗·h∗ dsξdt,
(3.6)

where h∗(ξ, t) = h
(
φ(ξ, t), t

)
, f∗(ξ, t) = f

(
φ(ξ, t), t

)
,

T (2)(ξ, t) = ∇ξφ
−1(ξ, t)T (1)(ξ, t)

is the second Piola–Kirchhoff stress tensor (see [3]),

T (1)(ξ, t) = T
(
φ(ξ, t), t

)
∇ξφ

−T (ξ, t) det∇ξφ(ξ, t)

is the first Piola–Kirchhoff stress tensor,

g∗(ξ, t) = det∇ξφ(ξ, t)
∣∣∇ξφ

−T (ξ, t)n∗
∣∣g(φ(ξ, t), t)

is the density of the surface force in the Lagrangian variables, and n∗ = n∗(ξ, t) is
the external normal to ∂S∗. Notice that the second Piola–Kirchhoff stress tensor
is symmetric: T (2) = T (2)T .

When deriving equations (3.4) and (3.5), we took an arbitrary function from
the space Rv as the test function h in (3.3). Generally speaking, in order to
obtain an equation for η, it suffices to take h from Rv

⊥, i.e., from the space that
is orthogonal to Rv in L2

(
S(t)

)
:∫

S(t)

�h ·
(
a+ [b](x− xc)

)
dx = 0 for all a, b ∈ R

3. (3.7)
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However, we will meet some difficulties when doing so. We say that h∗ ∈ Rv
⊥
∗ , if

h∗ satisfies the following relation:∫
S∗
�∗h∗ ·

(
a+ [b]R(ξ + η)

)
dξ = 0 for all a, b ∈ R

3

that is obtained by passage to the Lagrangian coordinates in (3.7). The orthogonal
in L2(S∗) projector onto Rv

⊥
∗ has a sufficiently complicated structure and we get

a complicated equation after substituting the test functions from Rv
⊥
∗ into (3.6).

For this reason, we apply another approach.
Let us substitute φ(ξ, t) = xc(t) + R(t)

(
ξ + η(ξ, t)

)
into (3.6). Since the

function h in (3.3) is arbitrary, we can use an arbitrary function ζ instead of h∗
in (3.6). As a result, we obtain the following identity:∫ T

t∗

∫
S∗

(
�∗

(
ẋc+Ṙ(ξ+η)+R∂tη

)
·∂tζ−

(
R(I+∇ξη)T (2)

)
:∇ξζ+�∗f∗ ·ζ

)
dξdt

=−
∫ T

t∗

∫
∂S∗

g∗ ·ζdsξdt (3.8)

for an arbitrary function ζ such that ζ|t=t∗ = ζ|t=T = 0. We forget for a moment
that the functions xc, R, and η must satisfy the variational principle (2.3) (or,
equivalently, the conditions of Proposition 2.2) and suppose that the functions xc,
ω, and R in (3.8) are determined from equations (3.4), (3.5), and (2.13). Let us
rewrite equations (3.4) and (3.5) in Lagrangian variables:

m ẍc =
∫

∂S∗
g∗ dsξ +

∫
S∗
�∗ f∗ dξ, (3.9)

d

dt

(
Jc ω

)
=

∫
∂S∗

R(ξ + η)× g∗ dsξ +
∫

S∗
�∗R(ξ + η)× f∗ dξ, (3.10)

Jc =
∫

S∗
�∗

(
I|ξ + η|2 −R(ξ + η)⊗R(ξ + η)

)
dξ.

One can put the question, are equations (3.8), (3.9), and (3.10) independent?
It seems that if we take the test function ζ in (3.8) of the form a(t)+[b(t)]R(ξ+η),
then, exactly as it was done when deriving equation (3.4) and (3.5), we obtain (3.9)
and (3.10). However, we have obtained equations (3.4) and (3.5) with the help of
relations (2.7), (2.11), and (2.8) that are equivalent to (2.17) and (2.18). So, we will
suppose that xc, ω, R, and η satisfy (3.8), (3.9), (3.10), and (2.13) only. The next
proposition shows that relations (2.17) and (2.18) follow from these equations.

Proposition 3.1. Suppose that functions xc : [t∗,∞) → R3, ω : [t∗,∞) → R3,
η : S∗ × [t∗,∞)→ R3, and R : [t∗,∞)→ SO(3) satisfy the following conditions:
(a) xc(t∗) = 0, R(t∗) = I, and η(ξ, t∗) = 0 for all ξ ∈ S∗;
(b) Ṙ(t) = [ω(t)]R(t) for all t � t∗;
(c) for every t � t∗ the mapping φ(·, t) : S∗ → R3 defined as φ(ξ, t) = xc(t) +

R(t)(ξ + η(ξ, t)) is invertible;
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(d) equations (3.8), (3.9), and (3.10) are satisfied;
(e) conditions (2.17) and (2.18) are satisfied for t = t∗.

Then conditions (2.17) and (2.18) are satisfied for all t � t∗.

Proof. At first we prove (2.17). Let us take an (independent of ξ) function a :
[t∗, T ] → R3 such that a(t∗) = a(T ) = 0 as the test function in (3.8). Then, due
to (3.9), it is not difficult to find that∫ T

t∗
ȧ · d
dt

∫
S∗
�∗R η dξ dt = 0.

Since
∫

S∗
�∗Rη dξ = 0 and

∫
S∗
�∗∂t(R η) dξ = 0 at the time t = t∗, this equation

implies that
∫

S∗
�∗R η dξ = 0 and, as a consequence, that

∫
S∗
�∗η dξ = 0 for all

t > t∗. Differentiation of the last equality with respect to t gives (2.17).
Let us prove (2.18). If we take ζ = [b]R(ξ + η) with an arbitrary function

b : [t∗, T ]→ R3 such that b(t∗) = b(T ) = 0 in (3.8), then after a simple calculation
we get the equality ∫ T

t∗
ḃ ·

∫
S∗
�∗R(ξ + η)×R ∂tη dξ dt = 0.

Since
∫

S∗
�∗R(ξ+η)×R ∂tη dξ =

∫
S∗
�∗(ξ+η)× ∂tη dξ = 0 at t = t∗, we obtain

that ∫
S∗
�∗R(ξ + η)×R ∂tη dξ = 0 for all t > t∗.

Multiplication of this equality by an arbitrary vector b gives (2.19) which is equiv-
alent to (2.18) (see Proposition 2.1). The proposition is proved. �

Proposition 3.1 implies that if we find functions xc, ω, R, and η that satisfy
conditions (a)–(e), then we completely determine the motion φ of the elastic body
by (2.15). Moreover, as it follows from Proposition 2.2, the variational principle
(2.3) holds true. Supplementing (a)–(e) with a constitutive equation for T (2), we
obtain a closed model of the motion of the elastic body.

Let us make a remark concerning this model. Condition (c) should be satisfied
if we want to obtain a mechanically acceptable solution. Since the mapping φ(·, t)
is identical at t = t∗, it will be invertible for t sufficiently closed to t∗. Thus, we
should consider the problem on a sufficiently short time interval. Notice that such
a restriction must be met in all non-steady elasticity problems. However, we can
consider a mathematical problem of determining the functions xc, ω, R, and η
that satisfy conditions (a), (b), (d), and (e). In this case, we do not need any
external restrictions on the time interval, where we solve the problem. Notice that
in [1], besides condition (c) there appears one more restriction that was discussed
at the end of Section 1.
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4. Model with small deformations

The model derived in the previous section is general and can be used for describing
the motion of any elastic body. However, it is difficult to investigate even in the
case of simple constitutive equations. In this section, we simplify this model as-
suming that the deformations are small and t∗ is the time when the body was in its
reference (natural) configuration that is characterized by the absence of internal
stresses.

Let u(ξ, t) = φ(ξ, t)−ξ be the field of displacements and E(u) be the Green–
Saint-Venant deformation tensor:

2E(u) = ∇ξu+∇ξu
T +∇ξu

T∇ξu.

It is not difficult to see that

2E(u) = 2E(η) = ∇ξη +∇ξη
T +∇ξη

T∇ξη.

We suppose that the body is of a Saint-Venant–Kirchhoff material, that is the
second Piola–Kirchhoff stress tensor is a linear function of E(u):

T (2) = λ I trE + 2μE, (4.1)

where λ and μ are positive constants called Lamé coefficients. Suppose also that
the deformations of the body are small and we can neglect in the equations the
terms of the order |∇ξη|2. Then after substitution of (4.1) into (3.8), we obtain:∫ T

t∗

∫
S∗

(
�∗ ∂t

(
ẋc + Ṙ(ξ + η) +R ∂tη

)
· ζ +

(
R Σ(η)

)
: ∇ξζ − �∗f∗ · ζ

)
dξdt

=
∫ T

t∗

∫
∂S∗

g∗ · ζ dsξdt (4.2)

where Σ(η) = λ I div ξη+μ(∇ξη+∇ξη
T ). However, this equation is not satisfac-

tory since we cannot prove a statement similar to Proposition 3.1 with equation
(4.2) instead of (3.8). That is the original variational principle (2.3) will be bro-
ken. Of course, we can also consider the problem with equation (4.2), but it will
be another problem and it will be not so easy for investigation. There will appear
difficulties even with obtaining the energy estimate. For this reason, we choose
another way. Namely, at first we rewrite equation (3.8) in an equivalent form and
then linearize it. We will need an auxiliary result.

Let us decompose the space L2(S∗) at every time moment t into the orthog-
onal sum of the subspaces Rv∗(t) and Rv

⊥
∗ (t), where Rv∗(t) =

{
a+ [b]R(t)

(
ξ +

η(ξ, t)
)
| a ∈ R3, b ∈ R3

}
. The projectors onto these subspaces will be denoted

by P t and Qt, respectively. Sometimes, the subscript t will be omitted. It is not
difficult to verify that

(P tζ)(ξ, t) = a+ [b(t)]R(t)
(
ξ + η(ξ, t)

)
, ζ ∈ L2(S∗),

where
a = m−1

∫
S∗
�∗ζ dξ, b = J−1c

∫
S∗
�∗

(
R(ξ + η)

)
× ζ dξ.
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Notice that R ∂tη ∈ Rv
⊥
∗ (i.e., Q(R ∂tη) = R ∂tη) due to Proposition 2.1.

Lemma 4.1. Let S be a symmetric tensor field in S∗. Then∫
S∗

R(I +∇η)S : ∇ζ dξ =
∫

S∗
R(I +∇η)S : ∇Q(ζ) dξ.

Proof. Since ζ = P (ζ) + Q(ζ), it is enough to prove that
∫

S∗
R(I + ∇η)S :

∇P (ζ) dξ = 0. For arbitrary a, b ∈ R3 we have:∫
S∗

R(I +∇η)S : ∇
(
a+ [b]R(ξ + η)

)
dξ

=
∫

S∗
R(I +∇η)S : [b]R(I +∇η) dξ =

∫
S∗

S : B dξ,

where B = (I + ∇η)T RT [b]R(I + ∇η). As the matrix B is skew-symmetric,
S : B = 0. The lemma is proved. �

By making use of the lemma above, we can rewrite (3.8) in the following
form:∫ T

t∗

∫
S∗

(
�∗∂t

(
ẋc+Ṙ(ξ+η)+R∂tη

)
·ζ+R(I+∇ξη)T (2) :∇ξQ(ζ)−�∗f∗ ·ζ

)
dξdt

=
∫ T

t∗

∫
∂S∗

g∗ ·ζdsξdt.

Now, suggesting that the deformations are small, substitute (4.1) into this identity
and neglect the terms of the order |∇η|2. Notice that in general Q(ζ) is not small
and can be any vector field from Rv

⊥
∗ . As a result, we obtain the integral identity∫ T

t∗

∫
S∗

(
�∗ ∂t

(
ẋc + Ṙ(ξ + η) +R ∂tη

)
· ζ +

(
RΣ(η)

)
: ∇ξQ(ζ)− �∗f∗ · ζ

)
dξdt

=
∫ T

t∗

∫
∂S∗

g∗ · ζ dsξdt, (4.3)

where Σ(η) = λ I div ξη + 2μ ε(η), ε(η) = (∇ξη + ∇ξη
T )/2. Compared with

(4.2), equation (4.3) has several advantages and the principal one is that the fol-
lowing statement holds.

Proposition 4.2. The assertion of Proposition 3.1 holds true with condition (d)
replaced by the following one:

(d′) equations (4.3), (3.9), and (3.10) are satisfied.

The proof is absolutely similar to that of Proposition 3.1.
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5. The energy estimate

In this section, we obtain an energy equality for the linearized problem. Let us
take ζ = R ∂tη in equation (4.3). Then, as it follows from Proposition 2.1, Q(ζ) =
R ∂tη and

∫
S∗
�∗ẍc ·R ∂tη dξ = 0. Therefore,∫ T

t∗

∫
S∗

(
�∗ R̈(ξ + η) ·R ∂tη + �∗ Ṙ ∂tη ·R ∂tη + �∗ ∂t(R ∂tη) ·R ∂tη

+Σ(η) : ∂t∇η − �∗f∗ ·R ∂tη
)
dξdt =

∫ T

t∗

∫
∂S∗

g∗ ·R ∂tη dsξdt. (5.1)

Notice that

Ṙ ∂tη ·R ∂tη = ṘRT R ∂tη ·R ∂tη = [ω]R ∂tη ·R ∂tη = 0,

∂t(R ∂tη) ·R ∂tη =
1
2
∂t|∂tη|2,

Σ(η) : ∂t∇η = ∂t

(λ
2
|div η|2 + μ |ε(η)|2

)
,

where |ε(η)|2 = ε(η) : ε(η). Let us investigate the first term on the left-hand side
of equality (5.1).

Since R̈ = [ω̇]R + [ω]Ṙ = [ω̇]R+ [ω][ω]R,∫
S∗
�∗R̈(ξ + η) ·R ∂tη dξ

=
∫

S∗
�∗[ω̇]R(ξ + η) ·R ∂tη dξ +

∫
S∗
�∗[ω][ω]R(ξ + η) ·R ∂tη dξ.

The first term on the right-hand side of this equality is equal to zero due to
Proposition 2.1; we transform the second one as follows:∫

S∗
�∗[ω][ω]R(ξ + η) ·R ∂tη dξ =

∫
S∗
�∗ω ×

(
ω ×R(ξ + η)

)
·R ∂tη dξ

=
∫

S∗
�∗

(
ω
(
ω ·R(ξ + η)

)
− |ω|2R(ξ + η)

)
·R ∂t(ξ + η) dξ

=
∫

S∗
�∗ω ·

(
R (ξ + η)⊗R ∂t(ξ + η)− I

(
R(ξ + η) ·R ∂t(ξ + η)

))
ω dξ.

Notice that

ω · J̇c ω = 2
∫

S∗
�∗ω ·

(
I
(
R(ξ+η) ·R ∂t(ξ+ η)

)
−R (ξ+ η)⊗R ∂t(ξ+ η)

)
ω dξ.

Therefore, ∫
S∗
�∗R̈(ξ + η) ·R ∂tη dξ = −

1
2

ω · J̇c ω.
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Thus, (5.1) is equivalent to the following equality:∫ T

t∗

∫
S∗

(�∗
2
∂t|∂tη|2+∂t

(λ
2
|div η|2+μ |ε(η)|2

)
−�∗f∗ ·R ∂tη

)
dξdt− 1

2
ω ·J̇c ω

=
∫ T

t∗

∫
∂S∗

g∗ ·R ∂tη dsξdt. (5.2)

Since Jc is a symmetric matrix,
d

dt
(ω · Jc ω) = 2ω · d

dt
(Jc ω)− ω · J̇c ω.

Hence, by multiplying (3.10) by ω, we obtain
1
2
d

dt
(ω ·Jc ω)+

1
2

ω · J̇c ω =
∫

∂S∗
g∗ · [ω]R(ξ+η) dsξ +

∫
S∗
�∗f∗ · [ω]R(ξ+η) dξ.

(5.3)
At the same time, multiplication of (3.9) by ẋc gives

m

2
d

dt
|ẋc|2 =

∫
∂S∗

g∗ · ẋc dsξ +
∫

S∗
�∗f∗ · ẋc dξ. (5.4)

Identities (5.2), (5.3), and (5.4) imply the following energy equality:∫ T

t∗

1
2
d

dt

( ∫
S∗
�∗|∂tη|2 dξ+m|ẋc|2+ω ·Jc ω+

∫
S∗

(
λ|div η|2+2μ|ε(η)|2

)
dξ

)
dt

=
∫ T

t∗

∫
S∗
�∗f∗ ·

(
ẋc + Ṙ(ξ + η) +R ∂tη

)
dξdt

+
∫ T

t∗

∫
∂S∗

g∗ ·
(
ẋc + Ṙ(ξ + η) +R ∂tη

)
dsξdt.

Here, T can be an arbitrary number greater than t∗. So that, for any T and t0
such that T > t0 > t∗, we find:∫

S∗
�∗|∂tη(T )|2 dξ +m|ẋc(T )|2 + ω(T ) · Jc(T )ω(T )

+
∫

S∗

(
λ|div η(T )|2 + 2μ|ε(η(T ))|2

)
dξ

=
∫

S∗
�∗|∂tη(t0)|2 dξ +m|ẋc(t0)|2 + ω(t0) · Jc(t0)ω(t0)

+
∫

S∗

(
λ|div η(t0)|2 + 2μ|ε(η(t0))|2

)
dξ

+ 2
∫ T

t0

∫
S∗
�∗f∗ ·

(
ẋc + Ṙ(ξ + η) +R ∂tη

)
dξdt

+ 2
∫ T

t0

∫
∂S∗

g∗ ·
(
ẋc + Ṙ(ξ + η) +R ∂tη

)
dsξdt. (5.5)
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By making use of Proposition 2.1, it is not difficult to show that∫
S∗
�∗|∂tη|2 dξ +m|ẋc|2 + ω · Jc ω =

∫
S∗
�∗|∂tφ|2 dξ.

Therefore, equality (5.5) can be also rewritten as∫
S∗
�∗|∂tφ(T )|2 dξ +

∫
S∗

(
λ|div η(T )|2 + 2μ|ε(η(T ))|2

)
dξ

=
∫

S∗
�∗|∂tφ(t0)|2 dξ +

∫
S∗

(
λ|div η(t0)|2 + 2μ|ε(η(t0))|2

)
dξ

+ 2
∫ T

t0

∫
S∗
�∗f∗ · ∂tφ dξdt+ 2

∫ T

t0

∫
∂S∗

g∗ · ∂tφ dsξdt.

6. The final formulation of the problem

We have suggested that the body is in its natural state at the time t∗, i.e., S∗ is
the reference configuration of the body. However, the problem can be considered
on an arbitrary time interval [t0, T ] with t0 � t∗. At the time moment t0, we have
to prescribe xc ẋc, R, ω, η, and ∂tη. From a mechanical point of view, the values
of these functions at t = t0 cannot be arbitrary but must be found by solving
the problem (a)–(e) on the interval [t∗, t0] with some external forces g∗ and f∗.
The point is that, generally speaking, not every state of the body can be achieved
from the reference configuration. On the other hand, if we consider a mathematical
problem, then we can take any initial values of these functions.

Problem L. Suppose that the body in its reference configuration occupies a
domain S∗ ⊂ R3 at the time moment t∗. Let �∗ : S∗ → (0,∞) be its density
distribution at this moment and T and t0 be real numbers such that T > t0 � t∗.
It is necessary to find functions xc : [t0, T ] → R3, ω : [t0, T ] → R3, R : [t0, T ] →
SO(3), and η : S∗ × [t0, T ]→ R3 that satisfy the following conditions:

(i) xc(t0) = xc, ẋc(t0) = xc, R(t0) = R, ω(t0) = ω, η(t0) = η, ∂tη(t0) = η,
where xc, xc, ω are prescribed vectors, R is a prescribed matrix from SO(3),
and η,η : S∗ → R3 are prescribed functions such that∫

S∗
�∗(ξ)η(ξ) dξ = 0,

∫
S∗
�∗(ξ)η(ξ) dξ = 0,∫

S∗
�∗(ξ)

(
ξ + η(ξ)

)
× η(ξ) dξ = 0.

(ii) The following equations are satisfied on the time interval [t0, T ]:

Ṙ(t) = [ω(t)]R(t),

mẍc(t) =
∫

∂S∗
g∗(ξ, t) dsξ +

∫
S∗
�∗(ξ)f∗(ξ, t) dξ,
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d

dt

(
Jc(t)ω(t)

)
=

∫
∂S∗

R(t)
(
ξ + η(ξ, t)

)
× g∗(ξ, t) dsξ

+
∫

S∗
�∗(ξ)R(t)

(
ξ + η(ξ, t)

)
× f∗(ξ, t) dξ,

where m =
∫

S∗
�∗(ξ) dξ is the mass of the body, g∗ : ∂S∗ × [t0, T ] → R3,

f∗ : S∗ × [t0, T ]→ R3 are prescribed functions of external forces,

Jc(t) =
∫

S∗
�∗(ξ)

(
I |ξ + η(ξ, t)|2 −R(t)

(
ξ + η(ξ, t)

)
⊗R(t)

(
ξ + η(ξ, t)

))
dξ

is the tensor of the inertia moments of the body with respect to its mass
center.

(iii) The integral identity∫ T

t0

∫
S∗

(
�∗ ∂t

(
ẋc + Ṙ(ξ + η) +R ∂tη

)
· ζ +RΣ(η) : ∇ξQ(ζ)

)
dξdt

=
∫ T

t0

∫
S∗
�∗f∗ · ζ dξdt+

∫ T

t∗

∫
∂S∗

g∗ · ζ dsξdt

holds true for an arbitrary function ζ : S∗ × [t0, T ] → R3. Here, Σ(η) =
λ I div ξη + 2μ ε(η), ε(η) = (∇ξη +∇ξη

T )/2, and Q(ζ) is the projection in
L2(S∗) of the function ζ onto Rv

⊥
∗ (see Section 4). •

If we want the solution of the problem to be mechanically appropriate, then
we need one more condition:
(iv) The mapping φ(·, t) : S∗ → R3 defined as φ(ξ, t) = xc(t) +R(t)

(
ξ+ η(ξ, t)

)
is invertible for all t ∈ [t0, T ].

Remark. As it follows from (i) and Proposition 4.2, conditions (2.17) and (2.18)
are satisfied for all t � t0. Therefore, the solution of Problem L solves also prob-
lem (2.3) which was our starting point. •
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