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1 AN INTRODUCTION TO GENERAL
LINEAR MODELS: REGRESSION,
ANALYSIS OF VARIANCE AND
ANALYSIS OF COVARIANCE

1.1 Regression, analysis of variance and analysis of
covariance

Regression and analysis of variance are probably the most frequently applied of

all statistical analyses. Regression and analysis of variance are used extensively

in many areas of research, such as psychology, biology, medicine, education,

sociology, anthropology, economics, political science, as well as in industry and

commerce.

One reason for the frequency of regression and analysis of variance (ANOVA)

applications is their suitability for many different types of study design.

Although the analysis of data obtained from experiments is the focus of this text,

both regression and ANOVA procedures are applicable to experimental, quasi-

experimental and non-experimental data. Regression allows examination of the

relationships between an unlimited number of predictor variables and a response

or dependent variable, and enables values on one variable to be predicted from

the values recorded on one or more other variables. Similarly, ANOVA places no

restriction on the number of groups or conditions that may be compared, while

factorial ANOVA allows examination of the in¯uence of two or more indepen-

dent variables or factors on a dependent variable. Another reason for the

popularity of ANOVA is that it suits most effect conceptions by testing for

differences between means.

Although the label analysis of covariance (ANCOVA) has been applied to a

number of different statistical operations (Cox & McCullagh, 1982), it is most

frequently used to refer to the statistical technique that combines regression

and ANOVA. As the combination of these two techniques, ANCOVA calcula-

tions are more involved and time consuming than either technique alone.

Therefore, it is unsurprising that greater availability of computers and statisti-

cal software is associated with an increase in ANCOVA applications. Although

Fisher (1932; 1935) originally developed ANCOVA to increase the precision of

experimental analysis, to date it is applied most frequently in quasi-experi-

mental research. Unlike experimental research, the topics investigated with

quasi-experimental methods are most likely to involve variables that, for

practical or ethical reasons, cannot be controlled directly. In these situations,



the statistical control provided by ANCOVA has particular value. Nevertheless,

in line with Fisher's original conception, many experiments can bene®t from

the application of ANCOVA.

1.2 A pocket history of regression, ANOVA and
ANCOVA

Historically, regression and ANOVA developed in different research areas and

addressed different questions. Regression emerged in biology and psychology

towards the end of the 19th century, as scientists studied the correlation between

people's attributes and characteristics. While studying the height of parents and

their adult children, Galton (1886; 1888) noticed that while short parents'

children usually were shorter than average, nevertheless, they tended to be taller

than their parents. Galton described this phenomenon as `̀ regression to the

mean''. As well as identifying a basis for predicting the values on one variable

from values recorded on another, Galton appreciated that some relationships

between variables would be closer than others. However, it was three other

scientists, Edgeworth (e.g. 1886), Pearson (e.g. 1896) and Yule (e.g. 1907),

applying work carried out about a century earlier by Gauss (or Legendre, see

Plackett, 1972), who provided the account of regression in precise mathematical

terms. (Also see Stigler, 1986, for a detailed account.)

Publishing under the pseudonym `̀ Student'', W.S. Gosset (1908) described

the t-test to compare the means of two experimental conditions. However, as

soon as there are more than two conditions in an experiment, more than one t-

test is needed to compare all of the conditions and when more than one t-test is

applied there is an increase in Type 1 error. (A Type 1 error occurs when a true

null hypothesis is rejected.) In contrast, ANOVA, conceived and described by

Ronald A. Fisher (1924, 1932, 1935) to assist in the analysis of data obtained

from agricultural experiments, is able to compare the means of any number of

experimental conditions without any increase in Type 1 error. Fisher (1932) also

described a form of ANCOVA that provided an approximate adjusted treatment

sum of squares, before he described the exact adjusted treatment sum of squares

(Fisher, 1935, and see Cox & McCullagh, 1982, for a brief history). In early

recognition of his work, the F-distribution was named after him by G.W.

Snedecor (1934).

In the subsequent years, the techniques of regression and ANOVA were

developed and applied in parallel by different groups of researchers investigat-

ing different research topics, using different research methodologies. Regres-

sion was applied most often to data obtained from correlational or non-

experimental research and only regression analysis was regarded as trying to

describe and predict dependent variable scores on the basis of a model

constructed from the relations between predictor and dependent variables. In

contrast, ANOVA was applied to experimental data beyond that obtained from

agricultural experiments (Lovie, 1991), but still it was considered as just a way

of determining whether the average scores of groups differed signi®cantly. For
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many areas of psychology, where the interest (and so tradition) is to assess the

average effect of different experimental conditions on groups of subjects in

terms of a particular dependent variable, ANOVA was the ideal statistical

technique. Consequently, separate analysis traditions evolved and encouraged

the mistaken belief that regression and ANOVA constituted fundamentally

different types of statistical analysis. Although ANCOVA illustrates the com-

patability of regression and ANOVA, as a combination of two apparently

discrete techniques employed by different researchers working on different

topics, unsurprisingly, it remains a much less popular method that is frequently

misunderstood (Huitema, 1980).

1.3 An outline of general linear models (GLMs)

Computers, initially mainframe but increasingly PCs, have had considerable

consequence for statistical analysis, both in terms of conception and implemen-

tation. From the 1980s, some of these changes began to ®lter through to affect

the way data is analysed in the behavioural sciences. Indeed currently, descrip-

tions of regression, ANOVA and ANCOVA found in psychology texts are in a

state of ¯ux, as alternative characterizations based on the general linear model

are presented by more and more authors (e.g. Cohen & Cohen, 1983; Hays,

1994; Judd & McClelland, 1989; Keppel & Zedeck, 1989; Kirk, 1982, 1995;

Maxwell & Delaney, 1990; Pedhazur, 1997; Winer, Brown & Michels, 1991).

One advantage afforded by computer based analyses is the easy use of matrix

algebra. Matrix algebra offers an elegant and succinct statistical notation.

Unfortunately however, human matrix algebra calculations, particularly those

involving larger matrices, are not only very hard work, but also tend to be error

prone. In contrast, computer implementations of matrix algebra are not only

error free, but also computationally ef®cient. Therefore, most computer based

statistical analyses employ matrix algebra calculations, but the program output

usually is designed to accord with the expectations set by traditional (scalar

algebra±variance partitioning) calculations.

When regression, ANOVA and ANCOVA are expressed in matrix algebra

terms, a commonality is evident. Indeed, the same matrix algebra equation is

able to summarize all three of these analyses. As regression, ANOVA and

ANCOVA can be described in an identical manner, clearly they follow a

common pattern. This common pattern is the GLM conception. Unfortunately,

the ability of the same matrix algebra equation to describe regression, ANOVA

and ANCOVA has resulted in the inaccurate identi®cation of the matrix algebra

equation as the GLM. However, just as a particular language provides a means

of expressing an idea, so matrix algebra provides only one notation for express-

ing the GLM.

The GLM conception is that data may be accommodated in terms of a model

plus some error, as illustrated below:

data � model� error: (1:1)
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The model in this equation is a representation of our understanding or

hypotheses about the data. The error component is an explicit recognition that

there are other in¯uences on the data. These in¯uences are presumed to be

unique for each subject in each experimental condition and include anything and

everything not controlled in the experiment, such as chance ¯uctuations in

behaviour. Moreover, the relative size of the model and error components is used

to judge how well the model accommodates the data.

The model part of the GLM equation constitutes our understanding or

hypotheses about the data and is expressed in terms of a set of variables

recorded, like the data, as part of the study. As will be described, the tradition in

data analysis is to use regression, ANOVA and ANCOVA GLMs to express

different types of ideas about how data arises.

1.3.1 Regression analysis

Regression analysis attempts to explain data (the dependent variable scores) in

terms of a set of independent variables or predictors (the model) and a residual

component (error). Typically, a researcher who applies regression is interested in

predicting a quantitative dependent variable from one or more quantitative

independent variables, and in determining the relative contribution of each

independent variable to the prediction: there is interest in what proportion of the

variation in the dependent variable can be attributed to variation in the

independent variable(s). Regression also may employ categorical (also known as

nominal or qualitative) predictors: the use of independent variables such as sex,

marital status and type of teaching method is common. Moreover, as regression

is the elementary form of GLM, it is possible to construct regression GLMs

equivalent to any ANOVA and ANCOVA GLMs by selecting and organizing

quantitative variables to act as categorical variables (see Chapter 2). Neverthe-

less, the convention of referring to these particular quantitative variables as

categorical variables will be maintained.

1.3.2 Analysis of variance

ANOVA also can be thought of in terms of a model plus error. Here, the

dependent variable scores constitute the data, the experimental conditions

constitute the model and the component of the data not accommodated by the

model, again, is represented by the error term. Typically, the researcher applying

ANOVA is interested in whether the mean dependent variable scores obtained in

the experimental conditions differ signi®cantly. This is achieved by determining

how much variation in the dependent variable scores is attributable to differ-

ences between the scores obtained in the experimental conditions, and compar-

ing this with the error term, which is attributable to variation in the dependent

variable scores within each of the experimental conditions: there is interest in

what proportion of variation in the dependent variable can be attributed to the

manipulation of the experimental variable(s). Although the dependent variable
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in ANOVA is most likely to be measured on a quantitative scale, the statistical

comparison is drawn between the groups of subjects receiving different experi-

mental conditions and is categorical in nature, even when the experimental

conditions differ along a quantitative scale. Therefore, ANOVA is a particular

type of regression analysis that employs quantitative predictors to act as

categorical predictors.

1.3.3 Analysis of covariance

As ANCOVA is the statistical technique that combines regression and ANOVA,

it too can be described in terms of a model plus error. As in regression and

ANOVA, the dependent variable scores constitute the data, but the model

includes not only experimental conditions, but also one or more quantitative

predictor variables. These quantitative predictors, known as covariates (also

concomitant or control variables), represent sources of variance that are thought

to in¯uence the dependent variable, but have not been controlled by the

experimental procedures. ANCOVA determines the covariation (correlation)

between the covariate(s) and the dependent variable and then removes that

variance associated with the covariate(s) from the dependent variable scores,

prior to determining whether the differences between the experimental condition

(dependent variable score) means are signi®cant. As mentioned, this technique,

in which the in¯uence of the experimental conditions remains the major

concern, but one or more quantitative variables that predict the dependent

variable also are included in the GLM, is labelled ANCOVA most frequently,

and in psychology is labelled ANCOVA exclusively (e.g. Cohen & Cohen, 1983;

Pedhazur, 1997, cf. Cox & McCullagh, 1982). A very important, but seldom

emphasized, aspect of the ANCOVA method is that the relationship between the

covariate(s) and the dependent variable, upon which the adjustments depend, is

determined empirically from the data.

1.4 The ``general'' in GLM

The term `̀ general'' in GLM simply refers to the ability to accommodate

variables that represent both quantitative distinctions that represent continuous

measures, as in regression analysis, and categorical distinctions that represent ex-

perimental conditions, as in ANOVA. This feature is emphasized in ANCOVA,

where variables representing both quantitative and categorical distinctions are

employed in the same GLM.

Traditionally, the label linear modelling was applied exclusively to regression

analyses. However, as regression, ANOVA and ANCOVA are but particular

instances of the GLM, it should be no surprise that consideration of the

processes involved in applying these techniques reveals any differences to be

more apparent than real.

Following Box and Jenkins (1976), McCullagh and Nelder (1989) distinguish
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four processes in linear modelling: (1) model selection, (2) parameter estima-

tion, (3) model checking and (4) the prediction of future values. (Box & Jenkins

refer to model identi®cation rather than model selection, but McCullagh &

Nelder resist this terminology, believing it to imply that a correct model can be

known with certainty.) While such a framework is useful heuristically, McCul-

lagh and Nelder acknowledge that in reality these four linear modelling

processes are not so distinct and that the whole, or parts, of the sequence may be

iterated before a model ®nally is selected and summarized.

Usually, prediction is understood as the forecast of new, or independent,

values with respect to a new data sample using the GLM already selected.

However, McCullagh and Nelder also include Lane and Nelder's (1982) account

of prediction, where it is employed to unify conceptions of ANCOVA and

different types of standardization. Lane and Nelder consider prediction in more

general terms and regard the values ®tted by the GLM (graphically, the values

intersected by the GLM line or hyperplane) to be instances of prediction and

part of the GLM summary. As these ®tted values are often called predicted

values, the distinction between the types of predicted value is not always

obvious, although there is greater standard error associated with the values

forecast on the basis of a new data sample (e.g. Cohen & Cohen, 1983; Neter,

Wasserman & Kutner, 1990; Pedhazur, 1997).

With the linear modelling process of prediction so de®ned, the four linear

modelling processes become even more recursive. For example, when selecting

a GLM, usually the aim is to provide a best ®t to the data with the least number

of predictor variables (e.g. Draper & Smith, 1998; McCullagh & Nelder, 1989).

However, the model checking process that assesses best ®t employs estimates of

parameters (and estimates of error), so the processes of parameter estimation

and prediction must be executed within the process of model checking.

The misconception that this description of general linear modelling refers

only to regression analysis is fostered by the effort invested in the model

selection process with correlational data obtained from non-experimental stud-

ies. Usually in non-experimental studies, many variables are recorded and the

aim is to identify the GLM which best predicts the dependent variable. In

principle, the only way to select the best GLM is to examine every possible

combination of predictors. As it takes relatively few potential predictors to

create an extremely large number of possible GLM selections, a number of

predictor variable selection procedures, such as all-possible-regressions, forward

stepping, backward stepping and ridge regression (Draper & Smith, 1998; Neter,

Wasserman & Kutner, 1990) have been developed to reduce the number of

GLMs that need to be considered.

Correlations between predictors, termed multicollinearity (but see p. 137,

Pedhazur, 1997; Neter, Wasserman & Kutner, 1990) creates three problems that

affect the processes of GLM selection and parameter estimation. The three

problems are the substantive interpretation of partial coef®cients (if calculated

simultaneously, correlated predictors' partial coef®cients are reduced), the sam-

pling stability of partial coef®cients (different data samples do not provide similar

estimates) and the accuracy of their calculation (Cohen & Cohen, 1983). The
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reduction of partial coef®cient estimates is due to correlated predictor variables

accommodating similar parts of the dependent variable variance. Because corre-

lated predictors share association with the same part of the dependent variable,

but partial coef®cients re¯ect only the unique association between predictors and

the dependent variable, the shared association is excluded from the estimates of

the partial coef®cients. Moreover, when a correlated predictor is included in a

GLM, all of the dependent variable variance common to the correlated predictors

is accommodated by this ®rst correlated predictor, making it appear that the

remaining correlated predictors are of little importance.

When multicollinearity exists and there is interest in the contribution to the

GLM of sets of predictors or individual predictors, a hierarchical regression

analysis can be adopted (Cohen & Cohen, 1983). Essentially, this means that

predictors (or sets of predictors) are entered into the GLM cumulatively in a

principled order. After each predictor has entered the GLM, the new GLM may

be compared with the previous GLM, with any changes attributable to the

predictor just included. Although there is similarity between hierarchical regres-

sion and forward stepping procedures, they are distinguished by the, often

theoretical, principles employed by hierarchical regression to determine the

entry order of predictors into the GLM. Hierarchical regression analyses also

concord with Nelder's (1977; McCullagh & Nelder, 1989) approach to ANOVA

and ANCOVA, which attributes variance to factors in an ordered manner,

accommodating the marginality of factors and their interactions (also see

Bingham & Fienberg, 1982).

After selection, parameters must be estimated for each GLM and then model

checking engaged. Again, due to the nature of non-experimental data, model

checking is likely to detect more problems, which will require remedial meas-

ures. Finally, the nature of the issues addressed by non-experimental research

make it much more likely that the GLMs selected will be used to forecast new

values.

In contrast, a seemingly concise analysis of experimental data occurs. How-

ever, consideration reveals identical GLM processes underlying a typical analy-

sis of experimental data. For experimental data, the GLM selected is an

expression of the experimental design. Moreover, most experiments are de-

signed so that the independent variables translate into independent (i.e. uncorre-

lated) predictors, so avoiding multicollinearity problems. The model checking

process continues by assessing the predictive utility of the GLM components

representing the experimental effects. Each signi®cance test of an experimental

effect requires an estimate of that experimental effect and an estimate of a

pertinent error term. Therefore, the GLM process of parameter estimation is

engaged to determine experimental effects, and as errors represent the mismatch

between the predicted and the actual data values, the calculation of error terms

also engages the linear modelling process of prediction. Consequently, all four

GLM processes are involved in the typical analysis of experimental data. The

impression of concise experimental analyses is a consequence of the experi-

mental design acting to simplify the process of GLM selection and only

attending to certain model checks.

AN INTRODUCTION TO GENERAL LINEAR MODELS 7



1.5 The ``Linear'' in GLM

To explain the distinctions required to appreciate model linearity, it is necessary

to describe a GLM in more detail. This will be done by outlining the application

of a simple regression GLM to data from an experimental study. This example

of a regression GLM also will be useful when least squares estimators and

regression in the context of ANCOVA are considered.

Consider a situation where the relationship between study time and memory

was examined. 24 subjects were divided equally between three study time

groups and were asked to memorize a list of 45 words. Immediately after

studying the words for 30, 60 or 180 s, subjects were given 2 min to write down

on as many of the words they could remember. The results of this study are

presented in a scatterplot in Figure 1.1. The scatterplot follows the convention

that independent or predictor variables are plotted on the X-axis and dependent

variables are plotted on the Y-axis.

Although it would be more usual for regression to be applied to a non-

experimental situation, where the predictor variable could take any value and

not just the three times de®ned by the experimental conditions, the nature of the

regression analysis is unaffected. In geometric terms, the relationship between

list study time and word recall can be described by the straight line drawn on the

graph in Figure 1.1. This line is described by the equation,

Ŷi � â0 � â1 X i (1:2)

where the subscript i denotes values for the ith subject (ranging from i � 1, 2,

. . ., N), Ŷi is the predicted dependent variable (free-recall) score for the ith

subject, the parameter â0 is a constant (the intercept on the Y-axis), the parameter

â1 is a regression coef®cient (equal to the slope of the regression line) and X i is

the value of the independent variable (study time) recorded for the same ith

subject. (â is called `̀ beta''.)

15

10

5

0
30 60 180

STUDY TIME

RE
C

A
LL

Figure 1.1 A plot of the number of words recalled as a function of
word list study time
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As the line describes the relationship between study time and recall, and

equation (1.2) is an algebraic version of the line, equation (1.2) is also a

description of the relationship between study time and recall. Indeed, the terms

(â0 � â1 X 1) constitute the model component of the regression GLM applicable

to this data. However, the full GLM equation also includes an error component.

The error represents the discrepancy between the scores predicted by the model,

through which the regression line passes, and the actual data values. Therefore,

the full regression GLM equation that describes the data is

Yi � â0 � â1 X i � åi (1:3)

where Yi is the observed score for the ith subject and åi is a random variable

denoting the error term for the same subject. (å is called `̀ epsilon''.) Note that it

is a trivial matter of moving the error term to right of equation (1.3) to obtain

the formula that describes the predicted scores,

Ŷi � Yi ÿ åi � â0 � â1 X i (1:4)

Now that some GLM parameters and variables have been speci®ed, it makes

sense to say that GLMs can be described as being linear with respect to both

their parameters and predictor variables. Linear in the parameters means no

parameter is mutiplied or divided by another, nor is any parameter above the ®rst

power. Linear in the predictor variables also means no variable is mutiplied or

divided by another, nor is any above the ®rst power. However, as shown below,

there are ways around the variable requirement.

For example, equation (1.3) above is linear with respect to both parameters

and variables. However, the equation

Yi � â0 � â2
1 X i � åi (1:5)

is linear with respect to the variables, but not to the parameters, as â1 has been

raised to the second power. Linearity with respect to the parameters also would

be violated if any parameters were multiplied or divided by other parameters or

appeared as exponents. In contrast, the equation

Yi � â0 � â1 X 2

i
� åi (1:6)

is linear with respect to the parameters, but not with respect to the variables, as

X 2

i is X i raised to the second power. However, it is very simple to de®ne

Zi � X 2

i
and to substitute Zi in place of X 2

i
. Therefore, models such as described

by equation (1.6) continue to be termed linear, whereas such as those described

by equation (1.5) do not. In short, linearity is presumed to apply only to the

parameters. Models which are not linear with respect to their parameters are

described speci®cally as nonlinear. As a result, models can be assumed to be

linear, unless speci®ed otherwise, and frequently the term linear is omitted.

Nevertheless, the term `̀ linear'' in GLM often is misunderstood to mean that

the relation between any data and any predictor variable must be described by a

straight line. Although GLMs can describe straight line relationships, they are

capable of much more. Through the use of transformations and polynomials,
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GLMs can describe many complex curvilinear relations between the data and

the predictor variables (Draper & Smith, 1998; Neter et al., 1990).

1.6 Least squares estimates

In statistics, parameters describe complete populations. However, it is rare for

data from whole populations to be available. Much more available are samples

of these populations. Consequently, parameters usually are estimated from

sample data. A standard form of distinction is to use Greek letters, such as á
(alpha) and â, to denote parameters and to place a hat on them, e.g. á̂, â̂, when

they denote parameter estimates. Alternatively, ordinary letters, such as a and b,

may be used to represent parameter estimates.

By far the most frequently applied parameter estimation method is that of

least squares. This method identi®es parameter estimates that minimize the sum

of the squared discrepancies between predicted and observed values. Given the

GLM equation

Yi � â0 � â1 X i � åi (1:3, rptd)

the sum of the squared deviations may be described asXN

i�1

å2
i �

XN

i�1

(Yi ÿ â0 ÿ â1 X 1)2 (1:7)

The estimates of â0 and â1 are chosen to provide the smallest value of
PN

i�1å
2
i
.

(Ó is called sigma.) By differentiating equation (1.6) with respect to each

parameter, two (simultaneous) normal equations are obtained. (More GLM

parameters require more differentiations and produce more normal equations.)

Solving the normal equations for each parameter provides the formulae for

calculating their least squares estimates and in turn, all other GLM (least

squares) estimates.

Least squares estimates have a number of useful properties. Employing an

estimate of the parameter â0 ensures that the residuals sum to zero. Given that

the error terms are also uncorrelated, with constant variance, the least squares

estimators are unbiased and have the minimum variance of all unbiased linear

estimators. As a result they are termed the best linear unbiased estimators

(BLUE). However, for conventional signi®cance testing, it is also necessary to

assume that the errors are distributed normally. Checks of these and other

assumptions are considered in Chapter 7. (For further details of least squares

estimates see Draper & Smith, 1998; Neter et al., 1990; Searle, 1987.)

1.7 Fixed, random and mixed effects analyses

Fixed effects, random effects and mixed effect analyses refer to different

sampling situations. Fixed effects analyses employ only ®xed variables in the
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GLM model component, random effects analyses employ only random variables

in the GLM model component, while mixed effect analyses employ both ®xed

and random variables in the GLM model component.

When a ®xed effects analysis is applied to experimental data, it is assumed

that all the experimental conditions of interest are included in the experiment.

This assumption is made because the inferences made on the basis of a ®xed

effects analysis apply only to the speci®c experimental conditions and do not

extend to any other conditions that might have been included. Therefore, the

experimental conditions used in the original study are ®xed in the sense that

exactly the same conditions must be employed in any replication of the study.

For most genuine experiments, this presents little problem: experimental condi-

tions usually are chosen deliberately and with some care, so ®xed effects

analyses are appropriate for most experimental data (see Keppel, 1991 for a

brief discussion). However, when ANOVA is applied to data obtained from non-

experimental studies, care should be exercised in applying the appropriate form

of analysis. However, excluding estimates of the magnitude of experimental

effect, it is not until factorial designs are analysed that differences between ®xed

and random effect estimates are apparent.

Random effect anlyses consider those experimental conditions employed in

the study to be only a random sample of a population of experimental con-

ditions, and consequently inferences drawn from the study may be applied to

the wider population of conditions and study replications need not be restricted

to exactly the same experimental conditions. As inferences from random effects

analyses are generalized more widely than ®xed effects inferences, all else

being equal, more conservative assessments are provided by random effects

analyses.

In psychology, mixed effect analyses are encountered most frequently with

respect to repeated measures (within subjects) designs. Due to the repeated

measures on each subject, it is possible to identify effects uniquely attributable

to subjects. This subject effect is represented by a random variable in the GLM

model component, while the experimental conditions continue as ®xed effects.

(Although it is possible to mix randomly selected experimental conditions with

®xed experimental conditions in a factorial design, with or without a random

variable representing subjects, such designs tend to be rare in psychology.)

Statisticians have distinguished between regression analysis, which assumes

®xed effects, and correlation analysis, which does not. Correlation analyses do

not distinguish between predictor and dependent variables. Instead, they study

the degree of relation between random variables and are based on bivariate±or

multivariate±normal models. However, it is rare for this distinction to be

maintained in practice. Regression is applied frequently to situations where the

sampling of predictor variables is random and where replications employ

predictors with values different to those used in the original study. Indeed, the

term regression now tends to be interpreted simply as an analysis that predicts

one variable on the basis of one or more other variables, irrespective of their

®xed or random natures (Howell, 1997). In mitigation of this approach, it can be

demonstrated that provided the other analysis assumptions are tenable, the least
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square parameter estimates and F-tests of signi®cance continue to apply even

with random predictor and dependent variables (Kmenta, 1971; Snedecor &

Cochran, 1980; Wonnacott & Wonnacott, 1970).

All of the analyses described in this book treat experimental conditions as

®xed. However, random effects are considered in the context of related measures

designs.

1.8 The bene®ts of a GLM approach to ANOVA and
ANCOVA

The pocket history of regression and ANOVA described their separate develop-

ment and the subsequent appreciation and utilization of their communality,

partly as a consequence of computer based data analysis that promoted the use

of their common matrix algebra notation. However, the single fact that the GLM

subsumes regression, ANOVA and ANCOVA seems an insuf®cient reason to

abandon the traditional manner of carrying out these analyses and adopt a GLM

approach. So what is the motivation for advocating the GLM approach?

The main reason for adopting a GLM approach to ANOVA and ANCOVA is

that it provides conceptual and practical advantages over the traditional approach.

Conceptually, a major advantage is the continuity the GLM reveals between

regression, ANOVA and ANCOVA. Rather than having to learn about three

apparently discrete techniques, it is possible to develop an understanding of a

consistent modelling approach that can be applied to the different circumstances

covered by regression, ANOVA and ANCOVA. A number of practical advantages

also stem from the utility of the simply conceived and easily calculated error

terms. The GLM conception divides data into model and error, and it follows that

the better the model explains the data, the less the error. Therefore, the set of

predictors constituting a GLM can be selected by their ability to reduce the error

term. Comparing a GLM of the data that contains the predictor(s) under

consideration with a GLM that does not, in terms of error reduction, provides a

way of estimating effects that is both intuitively appreciable and consistent across

regression, ANOVA and ANCOVA applications. Moreover, as most GLM

assumptions concern the error terms, residuals, the error term estimates, provide

a common means by which the assumptions underlying regression, ANOVA and

ANCOVA can be assessed. This also opens the door for sophisticated statistical

techniques, developed primarily to assist regression error analysis, to be applied

to both ANOVA and ANCOVA. Finally, recognizing ANOVA and ANCOVA as

instances of the GLM also provides connection to an extensive and useful

literature on methods, analysis strategies and related techniques, such as structur-

al equation modelling, which are pertinent to experimental and non-experimental

analyses alike (e.g. Cohen & Cohen, 1983; Darlington, 1968; Draper & Smith,

1998; Gordon, 1968; Keppel & Zedeck, 1989; McCullagh & Nelder, 1989;

Mosteller & Tukey, 1977; Nelder, 1977; Neter, et al., 1990; Pedhazur, 1997; Rao,

1965; Searle, 1979, 1987, 1997; Seber, 1977).
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1.9 The GLM presentation

Several statistical texts have addressed the GLM and presented its application to

ANOVA and ANCOVA. However, these texts differ in the kinds of GLM they

employ to describe ANOVA and ANCOVA and how they present GLM calcula-

tions. ANOVA and ANCOVA have been expressed as experimental design

GLMs (e.g. Maxwell & Delaney, 1990), cell mean GLMs (Searle, 1987) and

regression GLMs (e.g. Cohen & Cohen, 1983; Judd & McClelland, 1989;

Keppel & Zedeck, 1989; Pedhazur, 1997). Although each of these expressions

has its merits, the main focus in this text will be on experimental design GLMs,

which also may be known as structural models or effect models. (See Chapter 2

for further description and comparison of regression, cell mean and experimen-

tal design GLMs.)

Irrespective of the form of expression, GLMs may be described and calcu-

lated using scalar or matrix algebra. However, scalar algebra equations become

increasingly unwieldy and opaque as the number of variables in an analysis

increases. In contrast, matrix algebra equations remain relatively succinct and

clear. Consequently, matrix algebra has been described as concise, powerful,

even elegant, and as providing better appreciation of the detail of GLM

operations than scalar algebra. These may seem peculiar assertions given the

dif®culties people experience doing matrix algebra calculations, but they make

sense when a distinction between theory and practice is considered. You may

know in theory how to add two numbers together, but this will not eliminate all

errors if you have very many numbers to add. Similarly, matrix algebra can

summarize succinctly and clearly matrix relations and manipulations, but the

actual laborious matrix calculations are best left to a computer. Nevertheless,

while there is much to recommend matrix algebra for expressing GLMs, unless

you have some serious mathematical expertise, it is likely to be an unfamiliar

notation. As this text is written to introduce GLMs and many readers will not be

well versed in matrix algebra, for the most part, scalar algebra and verbal

descriptions will be employed to facilitate comprehension.

1.10 Statistical packages for computers

Most commercially available statistical packages have the capability to imple-

ment regression, ANOVA and ANCOVA. The interfaces to regression and

ANOVA programs re¯ect their separate historical developments. Regression

programs require the speci®cation of predictor variables, etc, while ANOVA

requires the speci®cation of experimental independent variables or factors, etc.

ANCOVA interfaces tend to replicate the ANOVA approach, but with the

additional requirement that one or more covariates are speci®ed. More recently,

satistical software packages offering GLM programs have become much more

common (e.g. GENSTAT, MINITAB, SYSTAT), and indeed, SPSS now has

replaced its factorial ANOVA program with a GLM program.

However, this text makes little reference to statistical packages. One reason is
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that, in addition to the often numerous and extensive manuals that accompany

statistical software, there are already many excellent books written speci®cally

to assist users in carrying out analyses with most, if not all, of the major

statistical packages. Given the extent of this documentation (e.g. Pedhazur,

1997), there seems to be little point in adding to it. Another reason is that

upgrades to statistical packages, as a consequence of statistical developments

and the addition of new features, soon make any speci®c references to statistical

software obsolete. Nevertheless, despite a lack of reference to speci®c statistical

packages, some appreciation of ANOVA and ANCOVA implementation by

statistical software should be provided by the use of the typical input and output

formats used by the standard statistical packages.
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2 TRADITIONAL AND GLM
APPROACHES TO INDEPENDENT
MEASURES SINGLE FACTOR ANOVA
DESIGNS

2.1 Independent measures designs

The type of experimental design determines the particular form of ANOVA that

should be applied. A wide variety of experimental designs and pertinent ANOVA

procedures are available (e.g. Kirk, 1995). The simplest of these are independent

measures designs. The de®ning feature of independent measures designs is that

the dependent variable scores are assumed to be statistically independent or

uncorrelated. In practice, this means that subjects are allocated to experimental

conditions on a random basis and each subject provides only one dependent

variable score.

Consider the independent measures design with three conditions presented in

Table 2.1, where the subject numbers indicate their chronological allocation to

conditions. Here, a sampling without replacement procedure has been imple-

mented (Keppel, 1991). Subjects are allocated randomly with the proviso that

one subject has been allocated to all conditions before a second subject is

allocated to any condition. This procedure distributes any subject differences

that vary over the course of the experiment randomly across conditions.

In order to analyse this data using t-tests, at least two would need to be carried

out. The ®rst might compare conditions A and B, while the second would

compare conditions B and C. A third t-test would be necessary to compare

conditions A and C. The problem with such a t-test analysis is that the

probability of a type 1 error (i.e. rejecting the null hypothesis when it is true)

increases with the number of signi®cance tests carried out. Normally the

Table 2.1 Subject allocation for an independent
measures design with three conditions

Condition A Condition B Condition C

subject 3 subject 2 subject 1
subject 5 subject 6 subject 4
subject 8 subject 9 subject 7
subject 12 subject 10 subject 11



likelihood of a type 1 error is equal to the signi®cance level chosen (e.g. 0.05),

but when two t-tests are applied, it rises to nearly double the tabled signi®cance

level, and when three t-tests are applied it rises to nearly three times the tabled

signi®cance level.

In contrast, ANOVA simultaneously examines for differences between any

number of conditions while holding the type 1 error at the chosen signi®cance

level (usually 0.05). In fact, ANOVA may be considered as the t-test extension

to more than two conditions that holds type 1 error constant. This may be seen if

ANOVA is applied to compare two conditions. In such situations, the relation-

ship between t- and F-values is

t2
(df) � F(1,df) (2:1)

where df is the denominator degrees of freedom. Yet despite this apparently

simple relationship, there is still room for confusion. For example, imagine data

obtained from an experiment assessing a directional hypothesis, where a one-

tailed t-test is applied. This might provide

t(20) � 1:725, p � 0:05

However, if an ANOVA were applied to exactly the same data, in accord with

equation (2.1) the F-value obtained would be

F(1,20) � 2:976, p � 0:100

Given the conventional signi®cance level of 0.05, the one-tailed t-value is

signi®cant, but the F-value is not. The reason for such differences is that the F-

value probabilities reported by tables and computer output are always `̀ two-

tailed'', in the sense that non-directional hypotheses always are tested. Kirk

(1995, p. 96) provides a brief description of the F-test as providing `̀ a one-tailed

test of a non-directional null hypothesis because MSBG, which is expected to be

greater than or approximately equal to MSWG, is always in the numerator of the

F statistic.'' Although perfectly correct, this description may cause some

confusion and obscure the reason for the apparently different t- and F-test

results. As stated, the F-statistic in ANOVA is one-tailed because the MSBG,

which re¯ects experimental effects, is always the numerator and should be larger

than the MSWG, which re¯ects error variance. Consequently, the F-statistic

produced should always be the larger of the two possibilities, and so only the

right-hand tail of the F-distribution need be examined. Therefore, the F-test is

one-tailed, but not because it tests a directional hypothesis. In fact, the reason a

non-directional hypothesis is assessed by the F-test is to do with the nature of

the F-test numerator, which, because it is derived from sums of squares, is

inherently non-directional (differences between means are squared, so all num-

bers become positive and any directionality is lost). Nevertheless, perhaps such

problems should never arise. As MacRae (1995) points out, one consequence of

employing directional hypotheses is that any effect in the direction opposite to

that predicted must be interpreted as a chance result, irrespective of the size of

the effect. Very few researchers would be unable, or willing, to ignore a large

and signi®cant effect even though it was in the opposite direction to that
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predicted, but this is exactly what they should do if a directional hypothesis was

tested. Therefore, to allow further analysis of such occurrences, logic dictates

that non-directional hypotheses always should be tested. The topics of appro-

priate adjustments for type 1 error in the context of multiple comparisons (cf.

more than one t-test) and tests of directional or non-directional hypotheses have

generated considerable discussion. Some of these issues are considered in

Chapter 9.

It should be noticed from the examples presented in Table 2.1 that equal

numbers of subjects are allocated to experimental conditions. This is good

design practice for at least three reasons. First, generalizing from the experiment

is easier if the complication of unequal numbers of subjects in experimental

conditions (also referred to as unbalanced data) is avoided. Second, the

mathematical formulae for ANOVA with equal numbers of subjects in each

experimental condition reduce, due to terms accommodating the different num-

bers per group cancelling out, and so are much simpler to follow, implement and

interpret. Third, when there are equal numbers of subjects in each experimental

condition, ANOVA is fairly robust with respect to certain assumption violations

(i.e. distribution normality and variance homogeneity). Indeed, the bene®ts of

balanced data are such that it is worth investing some effort to achieve. All of

the analyses presented in this text employ balanced data and it would be wrong

to presume that unbalanced data analysed in exactly the same way would provide

the same results and allow the same interpretation. Detailed consideration of

unbalanced designs may be found in the text by Searle (1987).

2.1.1 Factors and independent variables

The three experimental conditions above re¯ect three different periods of study

time. Although these conditions are distinguished by quantitative differences in

the amount of time available, it still makes sense to treat them categorically. A

categorical analysis allows task performance to be compared across conditions,

without the actual size of the time differences between conditions entering into

the calculations. Irrespective of the type of analysis carried out, it is reasonable

to label the independent variable as study time. Therefore, with categorical

comparisons, it is up to the experimenter to keep the actual differences between

conditions in mind. For example, condition A could be changed to one in which

some auditory distraction is presented. Obviously, this would invalidate the

independent variable label study time, but it would not invalidate exactly the

same categorical comparisons of task performance under these three different

conditions. The point here is to draw attention to the fact that the levels of a

qualitative factor may involve multidimensional distinctions between conditions.

While there should be some logical relation between the levels of any factor,

they may not be linked in such a continuous fashion as is suggested by the term

`̀ independent variable''. Therefore, from now on the label factor will be used.
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2.2 Traditional ANOVA for single factor designs

In psychology, ANOVA is employed most frequently to address the question: are

there signi®cant differences between the mean scores obtained in different

experimental conditions? Signi®cant differences exceed those expected on the

basis of chance. To determine signi®cance, ANOVA procedures specify the

calculation of an F-statistic. The size of the F-statistic re¯ects the extent to which

differences between conditions diverge from that expected on the basis of chance.

However, even when the null hypothesis is correct and no differences exist

between the means of the experimental condition populations, due to chance

sampling variation (sometimes called sampling error), it is possible to observe

differences between the experimental condition means of the samples. The

distributions of all F-statistics (i.e. whatever their dfs) when the null hypothesis is

correct are known. Therefore, the probability that these or more extreme

differences is due to chance sampling variation can be determined by comparing

the distribution of the F-statistic with equivalent dfs under the null hypothesis

with the F-statistic observed. If this probability is suf®ciently low, it is reasonable

to reject the possibility that the differences are due to such chance factors. The

convention is that suf®ciently low probabilities begin at 0.05 (i.e. 5/100).

In the traditional independent measures ANOVA, the total score variation is

divided into between group and within group variance. The F-statistic is

conceived as the ratio of between group variance to within group variance. If the

scores in the different conditions are in¯uenced by the experimental variables,

then the scores should vary between conditions. Although scores within an

experimental condition also vary, this variation is attributed to chance. Conse-

quently, the variance of scores between groups has to be greater than the

variance of scores within the experimental conditions, or the between groups

variation also must be attributed to chance.

2.2.1 Variance

Variance, or equivalently, variation, is a vital concept in ANOVA and many other

statistical techniques. Nevertheless, it can be a puzzling notion, particularly the

concept of total variance. Variation measures how much the observed or

calculated scores deviate from something. However, while between group

variance re¯ects the deviation amongst condition means and within group

variance re¯ects the deviation of scores from their condition means, it is less

obvious what total variance re¯ects. In fact, total variance re¯ects the deviation

of all the observed scores from the overall or grand mean.

Before this can be illustrated, some de®nitions are necessary. The most

frequently employed measure of central tendency is the arithmetic average or

mean (Y ). This is de®ned as

Y �
PN

i�1
Yi

N
(2:2)
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where Yi is the ith subject's score,
PN

i�1
Yi is the sum of all of the subjects' scores

and N is the total number of subjects. The subscript i indexes the individual

subjects and in this instance takes the values from 1 to N . The
PN

i�1 indicates

that summation occurs over the subject scores, from 1 to N . In turn, the

population variance (ó 2) is de®ned as

ó 2 �
PN

i�1
(Yi ÿ Y )2

N
(2:3)

Therefore, variance re¯ects the average of the squared deviations from the mean.

In other words, the variance re¯ects the square of the average extent to which

scores differ from the mean. However, for sample variance, this formula

provides a biased estimate, in that it always underestimates this variance. An

unbiased estimate of sample variance (s2) is given by

s2 �
PN

i�1(Yi ÿ Y )2

N ÿ 1
(2:4)

Nevertheless, while formulae (2.2) and (2.3) reveal the nature of variance quite

well, they do not lend themselves to easy calculation. A more useful formula for

calculating sample variance (s2) is

s2 �
PN

i�1
Y 2

i
ÿ [(

PN

i�1
Yi)

2=N ]

N ÿ 1
(2:5)

Another popular statistic is the standard deviation. This is simply the square

root of the variance. Consequently, the population standard deviation (ó ) is

given by

ó �
����������������������������PN

i�1(Yi ÿ Y )2

N

s
(2:6)

and the sample standard deviation (s) is given by

s �
��������������������������������������������������PN

i�1
Y 2

i
ÿ [(

PN

i�1
Yi)

2=N ]

N ÿ 1

s
(2:7)

2.2.2 EXAMPLE

The relation between total variation, between group variation and within group

variation can be illustrated using some example experimental data. Figure 2.1

and Table 2.2 present data provided by 15 subjects over three experimental

conditions. (Note: in Table 2.2 subjects are numbered consecutively per group

merely for convenience and so subject number does not re¯ect the chronological

assignment to groups as in Table 2.1.) Figure 2.1 presents the data from the

memory experiment described in Chapter 1 on the relationship between word

list study time and recall. Subjects'dependent variable (recall) scores are plotted

against the experimental condition under which the scores were recorded. The

means of conditions A (30 s study time), B (60 s study time) and C (180 s study
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time) are marked on the right Y -axis by, A, B and C. Table 2.2 lists and provides

summary statistics for the same data.

The vertical spread of the scores in Figure 2.1 can provide some sense of

between groups and within groups variance. Between groups variance re¯ects

the differences between the means of the experimental conditions (see distances

between A, B and C on right axis of the graph). Within groups variance re¯ects

the (average) spread of individual scores within each of the experimental

conditions. Examination of Figure 2.1 suggests greatest within group variation

is exhibited by experimental condition C, while condition A exhibits greater
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Figure 2.1 Dependent variable scores (words recalled) by
experimental condition

Table 2.2 Experimental data and summary statistics

Subjects Condition A Subjects Condition B Subjects Condition C

s1 7 s9 7 s17 8
s2 3 s10 11 s18 14
s3 6 s11 9 s19 10
s4 6 s12 11 s20 11
s5 5 s13 10 s21 12
s6 8 s14 10 s22 10
s7 6 s15 11 s23 11
s8 7 s16 11 s24 12

Total
XN

i�1

Yi

 !
48

X
Yi 80

XN

i�1

Yi 88

X
Y 2

i 304
X

Y 2
i 814

XN

i�1

Y 2
i 990

Mean (Y ) 6.00 Y 10.00 Y 11.00
Sample SD (s) 1.51 s 1.41 s 1.77
Sample variance (s2) 2.29 s2 1.99 s2 3.13
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within group variation than condition B. These assessments are con®rmed by

the statistics presented in Table 2.2.

In most statistics texts, a numerical subscript is used to identify the experi-

mental conditions. Typically, the subscript j indexes the experimental condi-

tions, ranging from 1 to p, where p � the number of experimental conditions.

In this example, the p experimental conditions take the indicator values j, where

A � 1, B � 2 and C � 3. For the sake of consistency, the numerical indexes are

used in formulae, but for ease of exposition, the alphabetical indexes also may

be employed to identify the experimental conditions.

The use of the N (or N ÿ 1) denominator in formulae (2.2) to (2.5), reveals

these variance estimates as re¯ecting the amount of deviation from the mean,

averaged across all of the subjects' scores involved. In ANOVA, however, the

initial calculations of variance do not employ averages. Such variance estimates

are termed `̀ sums of squares'' (SS).

Total sum of square (SS) is conceived as the deviation of all the observed scores

from the overall or grand mean. For this calculation, the only modi®cation to

formula (2.5) is to exclude the denominator that would provide the average.

SStotal �
PN

i�1
Y 2

i
ÿ (
PN

i�1
Yi)

2

N
(2:8)

� 2108ÿ (216)2

24

SStotal � 164:00

Within group variance is conceived in terms of the average of the separate

spreads of scores from the mean in each of the experimental conditions. The

separate experimental condition variance estimates averaged over all of the

scores in the experimental condition are provided in Table 2.2. These estimates

can be obtained by applying formula (2.5) separately to each of the experimental

conditions.

The components of the within group sum of squares can be calculated using

only the numerator of (2.9) below.PN

i�1Y 2

i
ÿ (
PN

i�1Y )2=Nj

Nj ÿ 1
(2:9)

For experimental condition A this gives

SSexperimental condition A �
XN

i�1

Y 2

i
ÿ

XN

i�1

Y

 !2�
Nj (2:10)

� 304ÿ (48)2=8

� 16:00

Note that this value is simply

(Nj ÿ 1)(s2) � 7(2:29)
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Similar calculations for experimental conditions B and C will provide the

sum of squares estimates used below. The within groups sum of squares can be

calculated by taking the sum of the separate experimental condition sum of

squares estimates:

SSwithin groups � SSA � SSB � SSC,

� 16:00� 14:00� 22:00

SSwithin groups � 52:00

Between groups variance is conceived in terms of the average of the

differences amongst the means of the experimental conditions. However, the

differences involved are not as simple as the mean of condition A minus the

mean of condition B, etc. Instead, the variance attributable to the differences

between the condition means and the grand mean are estimated. Although

experimental condition means are obtained by averaging over all the subjects in

the particular condition, each experimental condition mean is regarded as the

score each subject in that experimental condition would record if error variation

were eliminated. Consequently, in each experimental condition there would be

Nj experimental condition mean scores.

Between groups variance �
Xp

j�1

Nj(Y j ÿ YG)2 (2:11)

However, as before, the between groups sum of squares is calculated using only

the numerator of (2.11):

Between groups sum of squares

�
Xp

j�1

Nj(Y j ÿ YG)2

� 8(6ÿ 9)2 � 8(10ÿ 9)2 � 8(11ÿ 9)2

SSbetween groups � 112 (2:12)

The fact that

SStotal � SSbetween groups � SSwithin groups (2:13)

is easily veri®ed by substituting any two of the estimates calculated for two of

the terms above:

164:00 � 112:00� 52:00

The sum of squares (SS) calculations represent the total variation attributable

to between and within groups sources. The next step in traditional ANOVA

calculation is to determine the average variance arising from between and within

groups sources. This step requires SS denominators to provide the averages. The

denominators are termed degrees of freedom, and the averages they provide are

termed mean squares (MS).

Degrees of freedom (df) represent how many of the scores employed in
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constructing the estimate are able to take different values. For example, when

sample variance is calculated using N as a denominator, underestimates of

variance are obtained because in fact, there are not N dfs, but only (N ÿ 1) dfs.

When the correct dfs are used as the denominator, an accurate estimate of

sample variance is obtained.

The reason there are (N ÿ 1) and not N dfs is that one df is lost from the

sample variance because a mean is used in the sample variance calculation.

Once a mean is determined for a group of scores, it always is possible to state

the value of the `̀ last'' score in that group. Internal consistency demands that this

`̀ last'' score takes the value that provides the appropriate sum of scores, which,

when divided by the number of scores, gives the previously calculated mean.

For example, for the set of scores 4, 6, 4, 6 and 5, the mean is 25/5 � 5. If we

know there are 5 scores, the mean is 25 and that four of the scores are 4, 6, 4

and 6 (which add to 20), then it stands to reason that the other score from the set

must be 5. As variance estimate calculations also use the previously calculated

mean and the individual scores, the `̀ last'' score is not free to vary ± it must

have the value that provides the previously calculated mean. Therefore, only

(N ÿ 1) scores are really free to vary and so, there are (N ÿ 1) dfs.

For the between groups SS, although three experimental condition means are

involved, it is their variation around a grand mean that is determined. As the

grand mean is the average of the three experimental condition means (with

balanced data), one df is lost. Consequently,

Between groups df � k ÿ 1

� 3ÿ 1

� 2

The within groups SS comprises the variation of scores from the experimental

condition mean, over the three different conditions. As a separate mean is

employed in each condition, a df will be lost in each condition.

df experimental condition A � (N ÿ 1) � (8ÿ 1) � 7

df experimental condition B � (N ÿ 1) � (8ÿ 1) � 7

df experimental condition C � (N ÿ 1) � (8ÿ 1) � 7

Within groups df � 3(N ÿ 1)

� 3(7)

� 21

Given sums of squares and dfs, mean squares (MS) can be calculated by

dividing the former by the latter. The ratio of the between groups MS to the

within groups MS provides the F-statistic. The last item provided in the ANOVA

summary table (Table 2.3) is the probability of the calculated F-value being
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obtained by chance given the data analysed. As the probability associated with

the between groups F-value is less than 0.05, the null hypothesis (H0), which

states there are no differences between experimental condition means, can be

rejected and the alternate or experimental hypothesis (HE), which states some

experimental condition means differ, can be accepted. Further tests are required

to identify exactly which experimental condition means differ.

2.3 GLM approaches to single factor ANOVA

2.3.1 Experimental design GLMs

GLM equations for ANOVA have become relatively common sights in statistical

texts, even when a traditional approach to ANOVA is applied. However, when a

GLM equation is provided in the context of traditional ANOVA, it is more

common for the labels structural model, experimental effects model, or experi-

mental design model to be employed. The equation,

Yij � ì� á j � åij (2:14)

describes the GLM underlying the independent measures design ANOVA carried

out on the data presented in Table 2.2. Yij is the ith subject's dependent variable

score in the jth experimental condition, the parameter ì is a constant representing

the dependent variable score free of the effect of any experimental condition, the

parameter á j is the effect of the jth experimental condition and the random

variable, åij, is the error term, which re¯ects variation due to any uncontrolled

source. Therefore, equation (2.14) is actually a summary of a set, or system, of

equations, where each equation describes a single dependent variable score.

Predicted scores are based on the model component of GLM equations.

Therefore, inspection of equation (2.14) reveals predicted scores (Ŷij) to be

given by

Ŷij � ì� á j (2:15)

As ì is a constant, the only variation in prediction can come from the effect of

the j experimental conditions. Consequently, the experimental design GLM can

predict only as many different scores as there are experimental conditions and

every subject's score within an experimental condition is predicted to be the

mean score for that experimental condition:

Table 2.3 ANOVA summary table

Source SS df MS F p

Between groups 112.000 2 56.000 22.615 , 0.001
Within groups 52.000 21 2.476

Total 164.000 23
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Yij � ì j (2:16)

Applied to the data in Table 2.2, the ì j estimates are

6 � ì1

10 � ì2

11 � ì3

In the discussion of regression GLMs in Chapter 1, it was said that the

regression line passes through all of the predicted scores and the same is true of

experimental design GLMs. The line described by the experimental design

GLM is presented in Figure 2.2. Here, as convention dictates, the dependent

variable is plotted on the Y -axis and the levels of the independent variable are

plotted on the X -axis, and the line passes through each of the predicted scores:

the mean scores of each experimental condition. Note that the arbitary ordering

of the levels of the categorical independent variable will determine the exact

path of the experimental design GLM line, emphasizing the point that the term

`̀ linear'' in `̀ linear model''does not necessarily mean a straight line.

Equation (2.17) below de®nes the grand mean as

ì �
P p

j�1ì j

p
(2:17)

This reveals ì as the mean of the separate experimental condition means. Of

course, with balanced data, this is also the mean of all dependent variable

scores. Applying equation (2.17) to the data in Table 2.2 provides the estimate

ì � (6� 10� 11)=3 � 9

which is identi®ed by a dotted line in Figure 2.2. The effect of a particular

experimental condition denoted by the term á j is de®ned as

15
14
13
12
11
10
9
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5
4
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c
o
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e
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Figure 2.2 Dependent variable scores by experimental condition
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á j � ì j ÿ ì (2:18)

where ì j is the population mean for experimental condition j. Equation (2.18)

reveals the effect attributable to each experimental condition to be the difference

between the mean of the particular experimental condition and the grand mean.

Moreover, given equations (2.17), (2.18) and balanced data, it follows thatXp

j�1

á j � 0 (2:18)

As can be seen in Table 2.4, applying equation (2.18) to the data in Table 2.2

and adding the estimates of the three experimental condition effects con®rms

equation (2.19).

When unbalanced data is analysed, the different numbers of subjects in the

experimental conditions must be accommodated. Consequently, equation (2.19)

becomes Xp

j�1

(Niá j) � 0 (2:20)

The fact that the experimental effects sum to zero is more than just a logical

outcome of the calculations. In fact, it is a mathematical side condition required

to allow unique estimation of the experimental design GLM parameters. The

constraint is required because the experimental design GLM is overparameter-

ized: it contains more parameters (ì, á1, á2 and á3) than there are experimental

condition means (A, B and C) from which to estimate them. Indeed, ANOVA

may be de®ned as the special case of multiple regression which includes the side

condition that experimental effects sum to zero.

Equation (2.15) summarizes a set of GLM equations which predict each

subject's score. Bearing in mind that each subject in each experimental condition

is predicted to obtain the same score (2.16), the predicted experimental condi-

tion means can be described by the GLM equations:

YI,1 � 9� (ÿ3) � 6

YI,2 � 9� (1) � 10

YI,3 � 9� (2) � 6

Table 2.4 Estimates of the three
experimental condition effects and
their sum

estimate of á1 � 6 ÿ 9 � ÿ3
estimate of á2 � 10 ÿ 9 � 1
estimate of á3 � 11 ÿ 9 � 2

Xp

j�1

á j � 0
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In contrast to predicted scores, the åij terms representing the discrepancy

between actual and predicted scores may be different for each subject,

åij � ì j ÿ Yij (2:21)

As the scores predicted by the experimental design GLM are the experimental

condition means, it follows that

MSe �
PN

i�1(å2
ij
)

p(Nj ÿ 1)
(2:22)

where MSe is the ANOVA mean square error, Nj is the number of scores and/or

subjects in each experimental condition, and p is the number of experimental

conditions. The value provided by p(Nj ÿ 1) is the degrees of freedom of the

ANOVA MSe. Table 2.5 illustrates the calculation of error terms and how they

provide the error SS. Applying equation (2.22) provides the MSe.

52=3(8ÿ 1) � 52=21 � 2:476

It should be evident that the experimental design GLM can be used as the

Table 2.5 Calculation of error terms,
their square and sums

åij ì j ÿ Yij åij (åij )2

å1,1 � 6 ÿ 7 � ÿ1 1
å2,1 � 6 ÿ 3 � 3 9
å3,1 � 6 ÿ 6 � 0 0
å4,1 � 6 ÿ 6 � 0 0
å5,1 � 6 ÿ 5 � 1 1
å6,1 � 6 ÿ 8 � ÿ2 4
å7,1 � 6 ÿ 6 � 0 0
å8,1 � 6 ÿ 7 � ÿ1 1
å9,2 � 10 ÿ 7 � 3 9
å10,2 � 10 ÿ 11 � ÿ1 1
å11,2 � 10 ÿ 9 � 1 1
å12,2 � 10 ÿ 11 � ÿ1 1
å13,2 � 10 ÿ 10 � 0 0
å14,2 � 10 ÿ 10 � 0 0
å15,2 � 10 ÿ 11 � ÿ1 1
å16,2 � 10 ÿ 11 � ÿ1 1
å17,3 � 11 ÿ 8 � 3 9
å18,3 � 11 ÿ 14 � ÿ3 9
å19,3 � 11 ÿ 10 � 1 1
å20,3 � 11 ÿ 11 � 0 0
å21,3 � 11 ÿ 12 � ÿ1 1
å22,3 � 11 ÿ 10 � 1 1
å23,3 � 11 ÿ 11 � 0 0
å24,3 � 11 ÿ 12 � ÿ1 1P

0 52
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basis for partitioning variance in traditional ANOVA. Employing equations

(2.16), (2.18) and (2.21) allows equation (2.14) to be rewritten as

Yij � ì� (ì j ÿ ì)� (Yij ÿ ì j) (2:23)

Moving ì to the left side of equation (2.22) gives

(Yij ÿ ì) � (ì j ÿ ì)� (Yij ÿ ì j) (2:24)

Equation (2.24) de®nes the variation between the dependent variable scores (Yij)

and the grand mean (ì) as comprising variation due to experimental conditions

(ì j ÿ ì) and variation due to errors (Yij ÿ ì j). However, to obtain accurate

variance estimates based on all of the sample scores, the number of scores

contributing to each estimate must be included. Although experimental condi-

tion means are obtained by averaging over all the subjects in the particular

condition, each experimental condition mean is regarded as the score each

subject in that experimental condition would record if error variation were

eliminated. Consequently, in each experimental condition there would be Nj

scores equal to the mean. Therefore, the SS partition isXp

j�1

XN

i�1

(Yij ÿ ì)2 �
Xp

j�1

Nj(ì j ÿ ì)2 �
Xp

j�1

Xn

i�1

(Yij ÿ ì j)
2 (2:25)

Equation (2.25) and the account of variation due to experimental conditions

should seem familar, as exactly the same argument was applied to the estimation

of the traditional ANOVA between groups SS. The variation due to experimental

conditions for the data in Table 2.2 is calculated in Table 2.6.

Experimental conditions SS �
Xp

j�1

Nj(ì j ÿ ì)2 (2:26)

So,

Experimental conditions SS � 8(ÿ32)� 8(12)8(22) � 8(14) � 112

The sum of squares due to experimental conditions calculated above is

identical to that calculated for traditional ANOVA presented in Table 2.3. As

degrees of freedom can be de®ned for the experimental design GLM as they

were for traditional ANOVA, the mean square values also will be identical to

those calculated for traditional ANOVA and presented in Table 2.3.

Table 2.6 Calculation of variation due to
experimental conditions

(ì j ÿ ì)2

Condition A � (6 ÿ 9)2 � ÿ32 � 9
Condition B � (10 ÿ 9)2 � 12 � 1
Condition C � (11 ÿ 9)2 � 22 � 4P � 14
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Experimental conditions MS �
Xp

j�1

Nj(ì j ÿ ì)2=df (2:27)

� 112=2 � 56

With the error sum of squares and MSe calculated previously, it is clear that the

components of equation (2.24), based on the experimental design GLM and the

components of the traditional ANOVA equation (2.12), are equivalent:

SStotal � SSbetween groups � SSwithin groups (2:13, rptd)

It is left to the reader to con®rm thatXp

j�1

XN

i�1

(Yij ÿ ì)2 � 112� 52 � 164

2.3.2 Estimating effects by comparing full and reduced
experimental design GLMs

The comparison of full and reduced GLMs to estimate experimental effects is

more in the spirit of conventional linear modelling processes than any of the

other methods of experimental effect estimation so far described. The compari-

son of full and reduced GLMs applies a distilled form of linear modelling

processes to the analysis of experimental data.

In Chapter 1, the GLM conception was described as

data � model� error (1:1, rptd)

Usually linear modelling processes attempt to identify the `̀ best'' GLM of the

data by comparing different linear models. As in experimental analyses, these

GLMs are assessed in terms of the relative proportions of data variance

attributed to model and error components. Given a ®xed data set and because

the sum of the model and error components (the data variance) is a constant,

clearly any increase in variance accommodated by the model component will

result in an equivalent decrease in the error component.

Consider the experimental design GLM for the independent single factor

experiment,

Yij � ì� á j � åij (2:14, rptd)

This full model employs the grand mean, ì, and includes parameters á j to

accommodate any in¯uence of the experimental conditions. Essentially, it

presumes that subjects' dependent variable scores (data) are best described by

the experimental condition means. The full GLM manifests the data description

under a non-directional experimental hypothesis. This may be expressed more

formally as

á j 6� 0 for some j (2:28)
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which states that the effects of all of the experimental conditions do not equal

zero. An equivalent expression in terms of the experimental condition means is

ì 6� ì j for some j (2:29)

which states that some of the experimental condition means do not equal the

grand mean.

It is also possible to describe a reduced model that omits any effect of the

experimental conditions. Here, the reduced GLM is described by the equation

Yij � ì� åij (2:30)

which uses only the grand mean of scores (ì) to account for the data. This GLM

presumes that subjects' dependent variable scores are best described by the

grand mean of all scores. In other words, it presumes that the description of

subjects' scores would not bene®t from taking the effects of the experimental

conditions (á j) into account. The reduced GLM manifests the data description

under the null hypothesis. By ignoring any in¯uence of the experimental

conditions, the reduced GLM assumes that the experimental conditions do not

in¯uence the data. This assumption may be expressed more formally as

á j � 0 (2:31)

which states that the effect of all of the experimental conditions is zero. An

equivalent expression in terms of the experimental condition means is

ì � ì j (2:32)

which states that the grand mean and the experimental condition means are

equal.

Clearly, from what has been said above, the GLM providing the better data

description should have the smaller error component. Moreover, any reduction

in the size of the error component caused by including the effects of the

experimental conditions will be matched by an equivalent increase in the size of

the model component. Therefore, comparing the size of the error components

before and after adding the effects of the experimental conditions to the model

component provides a method of assessing the consequences of changing the

model. Presenting the full and reduced GLM equations together should clarify

this point.

Reduced GLM: Yij � ì� åij (2:30, rptd)

Full GLM: Yij � ì� á j � åij (2:14, rptd)

Any reduction in the error component of the full GLM can be attributed only to

the inclusion of the experimental condition effects, as this is the only difference

between the two GLMs.

The reduced GLM de®nes errors as,

åij � Yij ÿ ì (2:33)

Of course, as discussed, GLM errors sum to zero, so interest is in the sum of the
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squared errors (see Table 2.6). A convenient computational formula for the

reduced GLM error term sum of squares (SS) is

SSERGLM �
XN

i�1

Y 2

i
ÿ

X
Yi

 !2�
N (2:34)

Using the data from Table 2.3 provides

SSERGLM � 2108ÿ [(216)2=24] � 164

Note that this is equivalent to the TOTAL SS, described by equation (2.8). The

full GLM de®nes errors as

åij � (ì� á j)ÿ Yij (2:35)

åij � ì j ÿ Yij (2:21, rptd)

A convenient computational formula for the full GLM error term SS is

SSEFGLM �
XN

i�1

Y 2

ij
ÿ

X
Yij

 !2�
Nj (2:36)

Again using the data from Table 2.3 provides

SSEFGLM � 304ÿ [(48)2=8]� 814ÿ [(80)2=8]� 990ÿ [(88)2=8]

� 52

As this is equivalent to the within SS, described by (2.10), it should come as no

surprise that

SSERGLM ÿ SSEFGLM � Total SSÿWithin SS � Between SS

� 164ÿ 52 � 112 (2:37)

In other words, the reduction in the error component sum of squares, attributed

to the inclusion of the experimental condition effects, is identical to the

traditional ANOVA between groups sum of squares. Therefore, the reduction in

the error component sum of squares, attributable to the effects of the experi-

mental conditions, is given by

SSERGLM ÿ SSEFGLM �
Xp

j�1

Nj(ì j ÿ ì)2 (2:38)

which, of course, is equivalent to equation (2.26).

An F-test of the error component sum of squares, attributed to the inclusion

of the experimental condition effects, is given by

F � (SSERGLM ÿ SSEFGLM)=(df RGLM ÿ df FGLM)

SSEFGLM=df FGLM

(2:39)

Therefore,
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F � 164ÿ 52=23ÿ 21

52=21
� F � 56

2:476

F(2, 21) � 22:617:

A convenient alternative to solving equation (2.39) directly is to construct Table

2.7, an ANOVA summary table similar to Table 2.3.

2.3.3 Regression GLMs

The experimental design GLM equation (2.14) may be compared with an

equivalent regression equation,

Yi � â0 � â1 X i,1 � â2 X i,2 � åi (2:40)

where Yi is the dependent variable score for the ith subject, â0 is a constant, â1

is the regression coef®cient for the ®rst predictor variable X 1, â2 is the

regression coef®cient for the second predictor variable X 2 and the random

variable åi represents error. Although frequently omitted, the subscript i on the

predictor variables is included here to emphasize that while the regression

coef®cient parameters are common across subjects, each subject provides a

value for each variable X . Equation (2.40) describes multiple regression, rather

than simple regression, because k � 2 independent or predictor variables are

employed, rather than one. Like the experimental design GLM, equation (2.40)

is a summary of a set of equations, each describing the constitution of a single

dependent variable score.

Schemes for coding experimental conditions

Certain coding schemes may be used to represent experimental conditions and

other categories of data for GLM analysis. This is done by employing as

predictors particular sets of quantitative variables that operate in established

formulae to produce a `̀ categorical'' analysis. Variables used in this manner also

may be termed indicator variables.

When a regression equation represents ANOVA, the predictor variables

identify allocation to experimental conditions and a parameter is associated with

each predictor variable. However, rather than requiring p predictor variables to

Table 2.7 ANOVA summary table

Source SS df MS F p

Error reduction due to
experimental conditions

112.000 2 56.000 22.615 , 0.001

FGLM error 52.000 21 2.476

Total 164.000 23
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represent p experimental conditions, the ANOVA regression equation needs

only ( pÿ 1) predictor variables to represent all of the experimental conditions.

This is why there are only two predictors in equation (2.40). Table 2.8 illustrates

the example data from Table 2.2 using p � 3 predictor variables, X 1, X 2 and

X 3. Allocation to experimental condition A is denoted by 1s rather than 0s on

variable X 1, allocation to experimental condition B is denoted by 1s rather than

0s on variable X 2 and allocation to experimental condition C is denoted by 1s

rather than 0s on variable X 3. However, closer scrutiny of Table 2.8 reveals that

three experimental conditions will be represented even if variable X 3 is elimi-

nated. This is because allocation to experimental conditions A and B still is

denoted by a 1 on variables X 1 and X 2, respectively, but now only condition C is

denoted by a zero on X 1 and a zero on X 2. For the unique speci®cation of

experimental conditions A, B and C, variable X 3 is redundant. Indeed, not only

is variable X 3 redundant, but it is necessary to exclude it when regression

formulae employ the indicator variables in a quantitative fashion.

The reason why the particular ( pÿ 1) predictor variables are used rather than

p predictor variables has to do with linear dependence of predictors. For

example, consider the matrix A below:

A �
1 0 0

0 1 0

0 0 1

24 35
This matrix contains three rows, each corresponding to the coding for an

experimental condition in Table 2.8. However, in every regression GLM, a

variable representing the constant, â0, also is used as a predictor. Moreover,

every score is de®ned with respect to â0, and so every row contains a 1 in this

predictor column indicating the involvement of â0 in de®ning every score.

Therefore, the complete model matrix (Kempthorne, 1980) for the regression

GLM is

Table 2.8 Dummy coding indicator variables representing
subject allocation to experimental conditions

Conditions Subjects X1 X2 X3 Y

s1 1 0 0 7
A . . . . . . . . . . . . . . .

s8 1 0 0 7

s9 0 1 0 7
B . . . . . . . . . . . . . . .

s16 0 1 0 11

s17 0 0 1 8
C . . . . . . . . . . . . . . .

s24 0 0 1 12
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B �
1 1 0 0

1 0 1 0

1 0 0 1

24 35
The matrix B also can be considered as four (predictor variable) column vectors.

Different scalars (sn) can be associated with each column vector:

X 0 X 1 X 2 X 3

s0

1

1

1

26664
37775 s1

1

0

0

26664
37775 s2

0

1

0

26664
37775 s3

0

0

1

26664
37775

The column vectors are de®ned as linearly independent if the equation

s0 X 0 � s1 X 1 � s2 X 2 � s3 X 3 � 0

is satis®ed only when all the scalars are zero. However, for matrix B, a set of

scalars, some of which are not zero, can be found to satisfy this equation. For

example, the value of the expression below is zero, but, as can be seen, all of the

scalars in the set applied are non-zero:

X 0 X 1 X 2 X 3 0

1

1

1

1

26664
37775�ÿ1

1

0

0

26664
37775�ÿ1

0

1

0

26664
37775�ÿ1

0

0

1

26664
37775 �

0

0

0

26664
37775

Therefore, the X predictor column vectors are not linearly independent. This is

because the redundant variable X 3 is included in the set of predictors. When X 3

is included, the predictor variable X 0 is a linear function of all the others

(X 0 � X 1 � X 2 � X 3). Linear dependency amongst predictor variables prevents

a unique solution to the system of normal simultaneous equations upon which

GLM parameter estimation is based. However, simply eliminating the redundant

X 3 results in linear independence amongst the remaining predictors (X 0, X 1 and

X 2) and allows a unique solution to the system of normal simultaneous equa-

tions.

In summary, the dummy coding scheme uses only 1 and 0 values to denote

allocation to experimental conditions. ( pÿ 1) variables are used and one

condition (most easily the last in sequence, e.g. C), is given 0s across all

indicator variables. The other conditions (A and B) are denoted by 1s rather than

0s on variables X 1 and X 2, respectively.

Dummy coding sets the experimental condition coded by 0s on all predictors

as a reference condition. The intercept â0 re¯ects the mean of this reference

condition. Moreover, the regression coef®cient for each of the ( pÿ 1) predictor

variables re¯ects the difference between the mean of the reference condition

(coded with 0s) and whichever experimental condition the predictor variable

34 INTRODUCING ANOVA AND ANCOVA: A GLM APPROACH



codes with 1s. Therefore, a test of the signi®cance of the regression coef®cient is

equivalent to a test of the difference between these two means. All of these

estimates are unaffected by unbalanced data. Dummy coding is ideal when all

experimental conditions are to be compared with a (0 coded) control group.

As well as dummy coding, effect and orthogonal coding schemes can be used

to denote experimental conditions. Effect coding operates very like dummy

coding, but rather than the `̀ last'' experimental condition being denoted by all

indicator variables taking 0 values, it is denoted by all indicator variables taking

the value ÿ1. Effect coding for the example data in Table 2.8 is presented in

Table 2.9.

Like the experimental design GLM parameter ì, â0 with effect coding re¯ects

the mean of the experimental condition means (the unweighted mean). The

regression coef®cients re¯ect the difference between the mean of the condition

coded with 1s and â0, the mean of the experimental condition means. Therefore,

the regression coef®cient estimates equal the respective á j parameter estimates

in the experimental design GLM. This concordance gives effect coding its name

and, together with the fact that it usually is employed in matrix algebra

implementations of experimental design GLMs, probably explains why it is the

most popular coding scheme.

The orthogonal coding scheme is quite different to dummy and effect coding

schemes. The values taken by the predictor variables are the values of orthogo-

nal coef®cients (cf. multiple comparison test coef®cients, e.g. Kirk, 1995) and

their role is to implement particular orthogonal contrasts. While linear indepen-

dence refers to non-redundant information, orthogonality refers to non-

overlapping information. (Orthogonality is a special, more restricted, case of

linear independence.) The information used in one orthogonal contrast is

completely distinct from the information used in the other orthogonal contrasts.

Two contrasts are de®ned mathematically as orthogonal if the sum of the

products of the coef®cients for their respective elements is zero. Given p

groups, there are only ever ( pÿ 1) orthogonal contrasts available. With respect

Table 2.9 Effect coding to represent subject
allocation to experimental conditions

Conditions Subjects X1 X2 Y

s1 1 0 7
A . . . . . . . . . . . .

s8 1 0 7

s9 0 1 7
B . . . . . . . . . . . .

s16 0 1 11

s17 ÿ1 ÿ1 8
C . . . . . . . . . . . .

s24 ÿ1 ÿ1 12
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to experimental data in Table 2.2, it can be stated that there are (3ÿ 1) � 2

orthogonal contrasts. An orthogonal coding for the experimental conditions A,

B and C is presented in Table 2.10.

contrast 1 (coded by variable X 1): (1)A� (0)B� (ÿ1)C

contrast 2 (coded by variable X 2): (1=2)A� (ÿ1)B� (1=2)C

Focusing on only the coef®cients:

contrast 1: (1)� (0)� (ÿ1)

contrast 2: (1=2)� (ÿ1)� (1=2)

and so, (contrast 1) 3 (contrast 2):

(1)(1=2)� (0)(ÿ1)� (ÿ1)(1=2) � 1=2� 0ÿ 1=2 � 1=2ÿ 1=2 � 0

Table 2.10 presented the full set of coef®cient values taken by the ANOVA

regression predictor variables to implement the orthogonal coding scheme just

described. Notice that the particular contrasts amongst means are implemented

by each predictor variable and the issue of whether the two sets of contrasts are

orthogonal involves comparing X 1 with X 2:

Variable X 1 implements the contrast: Aÿ C,

while variable X 2 implements the contrast: [A� C]=2ÿ B:

With orthogonal coding, irrespective of balanced or unbalanced data, the

estimate of B0 re¯ects the general mean of the dependent variable scores (i.e.

the weighted mean), while the regression coef®cients re¯ect the speci®c com-

parison coded on the predictor variable. Consequently, testing the signi®cance

of any predictor variable regression coef®cient is equivalent to testing the

signi®cance of the contrast coded by that predictor variable. When only speci®c

orthogonal contrasts are of interest, usually the preferred scheme is orthogonal

coding.

Table 2.10 Orthogonal coding representing subject
allocation to experimental conditions

Conditions Subjects X1 X2 Y

s1 1 1/2 7
A . . . . . . . . . . . .

s8 1 1/2 7

s9 0 ÿ1 7
B . . . . . . . . . . . .

s16 0 ÿ1 11

s17 ÿ1 1/2 8
C . . . . . . . . . . . .

s24 ÿ1 1/2 12
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Examples of dummy and effect coding

As regression ANOVA GLMs are implemented most frequently using dummy

and effect coding, only these schemes will be considered further. (Excellent

accounts of orthogonal coding are provided by Cohen & Cohen, 1983 and

Pedhazur, 1997.) As a single predictor variable can code a comparison between

only two experimental conditions, whenever three or more conditions are

involved, multiple, rather than simple regression analysis is required. As

virtually all multiple regression analyses now are carried out using statistical

software, the examples will consider the typical output from statistical software

packages. Dummy or effect coded predictor variables are used by the multiple

regression software just as any conventional (quantitative) predictor variable

would be used.

Table 2.11 presents the ANOVA summary table output from statistical soft-

ware when a regression ANOVA GLM is carried out on the data presented in

Table 2.2 using dummy or effect (or orthogonal) coding schemes. The regression

and residual sum of squares, dfs, mean squares, as well as the F-value obtained

are equivalent to that obtained when an experimental design GLM is implemen-

ted (see Table 2.3). Most regression software provides the multiple correlation

coef®cient (R), its square and an adjusted R squared value. R squared estimates

the proportion of the dependent variable variance that can be attributed to the

predictors, but unfortunately this statistic exhibits an overestimate bias. The

smaller adjusted R squared attempts to eliminate this bias (see Pedhazur, 1997).

Irrespective of the coding scheme employed, the same values are obtained for all

of these estimates.

Dummy coding

Table 2.12 provides the output pertinent to the multiple regression equation for

dummy coding. The Constant is the estimate of â0, the Y -axis intercept. The

table also lists the estimate of the regression coef®cient parameter (Coef®cient),

its standard error (Std error), the standardized regression coef®cient (Std coef),

and t-tests (sometimes F-tests) of the signi®cance of including these terms in

the GLM.

Predicted scores are given by

Ŷi � â0 � â1 X i,1 � â2 X i,2 (2:41)

Table 2.11 ANOVA summary table output from statistical software
implementing a regression ANOVA GLM

R: 0.826, R squared: 0.683, Adjusted R squared: 0.653

Source SS df Mean square F p

Regression 112.000 2 56.000 22.615 , 0.001
Residual 52.000 21 2.476
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Although equation (2.41) also summarizes a set of regression equations, only

three experimental conditions are represented by the dummy coding scheme

used. Therefore, like the experimental design GLM, there can be only three

different predicted scores. These predicted scores are the means of the experi-

mental conditions. Substituting the pertinent X predictor variable dummy codes

and the parameter estimates from Table 2.12 into the system of equations

summarized by (2.41) provides the following three separate predictions:

Predicted YA (i:e: Y1 to Y8) � 11� (ÿ5)(1)� (ÿ1)(0) � 11ÿ 5 � 6

Predicted YB (i:e: Y7 to Y16) � 11� (ÿ5)(0)� (ÿ1)(1) � 11ÿ 1 � 10

Predicted YC (i:e: Y17 to Y24) � 11� (ÿ5)(0)� (ÿ1)(0) � 11ÿ 0 � 11:

The mean of the condition coded 0 on both X 1 and X 2 variables (the `̀ last''

condition C) always is equal to the estimate of â0, so the mean of condition

C � 11. â1 is the regression coef®cient estimate for the predictor variable X 1,

which dummy codes condition A, and â2 is the regression coef®cient estimate

for the predictor variable X 2, which dummy codes condition B (see Table 2.8).

Examination of the way in which predicted scores (condition means) are

calculated reveals the â1 and â2 as representing deviations from the `̀ last''

condition, which here is C.

The t-values presented in Table 2.12 are given by

t � coefficient=coefficient standard error

where the dfs are equal to the residual term dfs.

The signi®cance test of the Constant, â0, has no corollary in ANOVA, but it

may be considered as testing the hypothesis that the mean of condition C equals

zero. Of much greater value are the signi®cance tests of the â1 and â2 estimates.

As the â1 and â2 estimates can be regarded as representing deviations from the

`̀ last'' condition (i.e. condition C), tests of these regression coef®cient estimates

are equivalent to testing the difference between the means of the A and B

conditions and condition C. As â1 is the regression coef®cient estimate for the

predictor variable X 1, which dummy codes condition A, the test of â1 is

equivalent to testing the difference between the condition A and condition C

means. Similarly, as â2 is the regression coef®cient estimate for the predictor

variable X 2, which dummy codes condition B, the test of â2 is equivalent to

testing the difference between the condition B and condition C means.

Table 2.12 Output pertinent to multiple regression equation for
dummy coding

Variable Coef®cient Std error Std coef t p (2 Tail)

Constant 11.000 0.556 0.0 19.772 , 0.001
X1 ÿ5.000 0.787 ÿ0.902 ÿ6.355 , 0.001
X2 ÿ1.000 0.787 ÿ0.180 ÿ1.271 0.218
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Of course, any condition may be coded as the `̀ last'' and reference condition.

Therefore, the same data can be recoded using condition A or B as the `̀ last''

and reference condition and reanalysed to provide the missing comparison

between conditions A and B.

Effect coding

Table 2.13 provides the output pertinent to the multiple regression equation for

effect coding. Effect coding takes its name from the concordance between the

parameter estimates it provides and the experimental design GLM parameter

estimates. Therefore, the Constant, â0, represents the mean of the experimental

condition means (ì).

As done above for dummy coding, substituting the pertinent X predictor

variable effect codes and the parameter estimates from Table 2.13 into the

system of equations summarized by (2.41) provides the following three separate

predictions:

Predicted YA (i:e: Y1 to Y8) � 9� (ÿ3)(1)� (1)(0) � 9ÿ 3� 0 � 6

Predicted YB (i:e: Y9 to Y16) � 9� (ÿ3)(0)� (1)(1) � 9� 0� 1 � 10

Predicted YC (i:e: Y17 to Y24) � 9� (ÿ3)(ÿ1)� (1)(ÿ1) � 9� 3ÿ 1 � 11:

Alternatively, the effect of the last experimental condition (C) can be found on

the basis thatX
j

á j � 0 � áA � áB � áC � 0, hence, áC � ÿáA ÿ áB

As â1 and â2 � á1 and á2, respectively, so, áC � ÿâ1 ÿ â2. Therefore,

áC � ÿ(ÿ3)ÿ (1) � 3ÿ 1 � 2. Consequently, the predicted YC (i.e. Y16 to Y24)

� 9� 2 � 11.

As with dummy coding, a signi®cance test of Constant, the ì parameter

estimate, has no corollary in ANOVA, although it may be considered as a test of

the hypothesis that ì equals zero. (The signi®cance tests in Table 2.13 are

calculated exactly as described for Table 2.12.) The regression coef®cient

parameter estimates obtained from effect coding also can be used to test

differences between condition means, but the rationale and way in which it is

done is a little more complicated because of the way in which the condition

means are de®ned. For example, consider the calculation of the predicted score

Table 2.13 Output pertinent to multiple regression equation for effect
coding

Variable Coef®cient Std error Std coef t p (2 Tail)

Constant 9.000 0.321 0.0 28.019 , 0.000
X1 ÿ3.000 0.454 ÿ0.937 ÿ6.604 0.218
X2 1.000 0.454 0.312 2.201 0.039
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(i.e. the mean) for condition A. Because the effect coding on variable X 2 is zero,

this exerts no in¯uence on the mean and can be omitted. Therefore,

YA � ì� â1 X i,1

Moreover, as the actual code value is 1, which just indicates the presence of â1,

this also can be omitted, leaving

YA � ì� â1

Similarly,

YB � ì� â2

Therefore, the difference between the means of condition A and B can be

written as

YA ÿ YB � (ì� â1)ÿ (ì� â2)

� â1 ÿ â2

It follows that the difference between the means of condition A and C is

YA ÿ YB � (ì� â1)ÿ (ì� [ÿâ1]ÿ â2)

� (â1)ÿ ([ÿâ1]ÿ â2)

� 2(â1)� â2

Substituting the regression coef®cient parameter estimate values from Table

2.12 provides

YA ÿ YC � 2(ÿ3)� (1) � ÿ6� 1 � ÿ5

To verify the accuracy of this approach, the actual mean of condition C may be

subtracted from the mean of condition A,

YA ÿ YC � 6ÿ 11 � ÿ5

Testing differences between these regression coef®cient parameter estimates

requires the variance of estimate of the difference between the regression

coef®cients to be calculated (see Cohen & Cohen, 1983; Pedhazur, 1997).

Therefore, using effect coding regression coef®cient parameter estimates to test

differences between condition means has little advantage over tests of the

differences between the actual condition means.

Zero sum experimental effects and coding schemes

In Chapter 1, ANOVA was described as the special case of multiple regression

which includes the side condition that the experimental effects sum to zero, that

is Xp

j�1

(Niá j) � 0 (2:20, rptd)
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In fact, requiring experimental effects to sum to zero is equivalent to eliminating

one of the parameters and rede®ning the condition previously speci®ed by the

eliminated parameter in terms of the other conditions. A more formal expression

is

because
Xp

j�1

(Njá j) � 0, á p � ÿ
Xp

j�1

á j (2:42)

The use of only pÿ 1 predictors, where the `̀ last'' experimental condition is

de®ned as the negative of the sum of the remaining conditions (so that

experimental effects to sum to zero) is effect coding. Therefore, the implicit

consequence of the side condition that effects sum to zero is made explicit in a

regression ANOVA GLM using effect coding. Dummy coding does not result in

experimental effects summing to zero, but rede®nes â0 and the ( pÿ 1) experi-

mental conditions in terms of p, the `̀ last'' experimental condition. Both of

these techniques constitute reparameterization solutions to the overparameter-

ization problem.

Omnibus F-tests and orthogonal contrasts

An in®nite number of sets of orthogonal contrasts may be speci®ed for any

design, although each set contains only pÿ 1 orthogonal contrasts. The

omnibus MS obtained from an orthogonally coded regression GLM is the

average MS of the separate orthogonal contrasts, but all sets of orthogonal

contrasts provide the same average MS: the omnibus MS provided by all forms

of ANOVA implementation. Nevertheless, even when the average MS of a set of

orthogonal contrasts is not signi®cant, it is possible for individual orthogonal

contrasts within the set to be signi®cant. Moreover, orthogonal contrasts may

identify a signi®cant omnibus F-test as being due to differences between certain

combinations of experimental condition means, such as represented by the X 2

variable in Table 2.10. This may seem to contradict the earlier description that a

signi®cant omnibus F-test indicates at least one of the experimental condition

means differs from another experimental condition mean. However, as there are

an in®nite number of sets of orthogonal contrasts for any design, a signi®cant

omnibus F-test indicates that at least one of these sets will include a signi®cant

contrast between two distinct experimental condition means.

2.3.4 Cell mean GLMs

A relatively new solution to the overparameterization problem inherent with

experimental design GLMs is to apply a cell mean GLM. Although this

approach is increasingly popular with statisticians, so far it has made little

impact in psychology.

Cell mean GLMs describe each dependent variable score as comprising the

mean of the experimental condition plus error. The equation for this type of

GLM is
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Yij � ì j � åij (2:43)

In contrast to the experimental design GLM, which expresses experimental

effects in terms of deviation from the constant ì, the only structure imposed

upon the data by the experimental design cell mean model is that of the

experimental conditions. (This feature of the experimental design cell mean

model becomes more prominent with factorial designs.) As cell mean GLMs do

not employ the parameter ì, there are only as many experimental condition

means as there are parameters to be estimated.

Apart from solving the problem of overparameterization, the cell mean GLM

affords another advantage. When overparameterized experimental design GLMs

are used, it is possible to obtain a unique solution to the problem of estimating

parameters by reparameterization or estimable function techniques (Searle,

1987). These methods of circumventing the overparameterization problem work

well with balanced data, but with unbalanced data, they can result in ambiguous

hypothesis tests. In contrast, irrespective of balanced or unbalanced data, when

cell mean GLMs are applied there is never any ambiguity about which hypo-

thesis is tested.

2.3.5 Cell mean, regression and experimental design
GLMs

Despite its attractions, the cell mean model is not quite the panacea it may

appear. The major advantage afforded by cell mean GLMs is the elimination of

ambiguity over hypothesis tests with unbalanced data. Nevertheless, good

experimental design practice should ensure balanced data. Only single factor

experiments have been considered so far, but neither cell mean nor regression

ANOVA GLMs make explicit the terms in which multi-factor experiments are

conceived and in which there is most interest ± experimental main effects and

interaction effects. Explicitly representing experimental effects in experimental

design GLMs provides a clearer appreciation of experimental design issues

(Collier & Hummel, 1977; Kirk, 1995). Indeed, the merit of experimental design

GLMs is supported by the notations employed by the computer programs NAG

GLIM, NAG GENSTAT (developed from Wilkinson & Rogers, 1973), SYSTAT,

MINITAB, and SAS, as well as by numerous authors (e.g. Kirk, 1995; Howell,

1997; Maxwell & Delaney, 1990; McCullagh & Nelder, 1989; Searle, 1987;

1997; Winer et al., 1991). Accordingly, experimental design GLMs will be

employed throughout the present text. However, regression implementations of

experimental design GLMs via effect coding also will be described because

carrying out ANOVA in such a manner using available statistical software

packages immediately places ANOVA in the context of linear modelling. Read-

ers interested in cell mean GLMs should consult Searle (1987).
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3 GLM APPROACHES TO
INDEPENDENT MEASURES
FACTORIAL ANOVA DESIGNS

3.1 Factorial designs

Factorial designs are by far the most common type of design applied in psychologi-

cal research. While single factor experiments manipulate a singlevariable, factorial

experiments manipulate two or morevariables, or factors, at the same time.

As naturally occurring circumstances usually involve the interplay of a multi-

tude of variables acting together, there is an argument that factorial designs are

closer approximations to reality and so more ecologically valid than single

factor studies. Of course, the logical conclusion of this line of reasoning is that

the most ecologically valid approach is just to observe reality. However, because

reality is so complicated, understanding is impossible to obtain just by observa-

tion. Consequently, to allow understanding to develop, experiments aim to

simplify by focusing on only a particular aspect of reality. The majority of

factorial designs represent a biased compromise (unless an extremely large

number of factors are involved) between these two extremes. Therefore, the

experimental approach is reductionist, but this does not mean scienti®c theory

must be reductionist (Rose, 1992).

Although the conditions under which performance is observed are de®ned by

two or more variables, factorial designs allow the effects attributable to the

separate factors to be estimated. The separate factor estimates are termed main

effects and compare with the estimates of the effects of experimental conditions

in single factor studies. Nevertheless, the unique feature of factorial designs is

the ability to observe the way in which the manipulated factors combine to affect

behaviour. The pattern of performance observed over the levels of a single factor

may change substantially when combined with the levels of another factor. The

in¯uence of the combination of factors is called an interaction effect and re¯ects

the variation in performance scores resulting speci®cally from the combination

of factors. In other words, an interaction effect is in addition to any factor main

effects. Indeed, in many factorial experiments the issue of whether there is an

interaction may be of more interest than whether there are any main effects.

3.2 Factor main effects and factor interactions

The nature of main effects and factor interactions probably is explained best by

way of an example. Consider an extension to the hypothetical experiment



examining the in¯uence of study time on recall. A researcher may be interested

to know the consequences for recall of different encoding strategies when

different periods of study time are available. To examine this issue, the same

study time periods are crossed with two forms of encoding instruction. Subjects

are instructed to `̀ memorize the words'', just as before, or they are instructed to

use story and imagery mnemonics: construct a story from the stimulus words

and imagine the story events in their mind's eye. As before, the recall period

lasts for 2 min and begins immediately after the study period ends. The data

obtained from this independent two factor (2 3 3) design is presented in Table

3.1, as are useful summary statistics.

Two conventions are relevant here. The ®rst is that the factor with the fewest

levels is labelled A and the factor with the next fewest levels is labelled B, etc.

The second is that upper case (capital) letters are used to denote factors and

lower case letters to denote factor levels. Therefore, Factor A represents the two

levels of encoding, i.e. the two encoding conditions, with a1 and a2 representing

the memorize and story construction and imagery conditions, respectively, while

Factor B represents the study time conditions, with b1, b2 and b3 representing

30, 60 and 180 s, respectively.

An alternative presentation of the six experimental conditions comprising the

two factor design is provided by Table 3.2. Here, the mean memory performance

observed in each of the experimental conditions is presented, as are marginal

means (so termed because they appear in the table margins), which provide

performance estimates under the levels of one factor, averaged over the in¯u-

ence of the other factor. (The mean in the bottom right corner is the average of

all the averages.)

Table 3.1 Experimental data and summary statistics

Encoding
instructions

a1

Memorize
a2

Story and Image

Study
time (s)

b1

30
b2

60
b3

180
b1

30
b2

60
b3

180

7 7 8 16 16 24
3 11 14 7 10 29
6 9 10 11 13 10
6 11 11 9 10 22
5 10 12 10 10 25
8 10 10 11 14 28
6 11 11 8 11 22
7 11 12 8 12 24P

Y 48 80 88 80 96 184
(
P

Y )2 304 814 990 856 1186 4470P
Y 2 2304 6400 7744 6400 9216 33856
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As seen, six experimental conditions result from crossing a two level

independent factor with a three level independent factor. Indeed, the inclusion of

all combinations of the factor levels is a de®ning feature of factorial designs,

distinguishing them from other designs that may use more than one factor but

not in a crossed fashion (e.g. see Kirk, 1995, on nested designs).

The equation

Yijk � ì� á j � âk � (áâ) jk � åijk (3:1)

describes the experimental design GLM for the independent measures, two

factor ANOVA applicable to the data presented in Table 3.1. Yijk is the ith

subject's dependent variable score in the experimental condition de®ned by the

jth level of Factor A, where j � 1, . . ., p, and the kth level of Factor B, where

k � 1, . . ., q. As in the single factor design, the parameter ì is a constant

representing the dependent variable score free of the effect of any experimental

condition. The parameter á j is the effect of the j Factor A levels and the

parameter âk is the effect of the k Factor B levels. The effect of the interaction

between Factors A and B over the j and k levels is represented by the parameter

(áâ) jk . Finally, the random variable, åijk , is the error term, which re¯ects

variation due to any uncontrolled source. Again equation (3.1) summarizes a set

of equations, each of which describes the constitution of a single dependent

variable score.

The parameter ì is de®ned as

ì �
Xp

j�1

Xq

k�1

ì jk=pq (3:2)

In other words, ì is the grand mean of the separate experimental condition

means.

The parameters á j are de®ned as

á j � ì j ÿ ì (3:3)

where ì j is the marginal mean for Factor A, level j and ì is the grand mean as

Table 3.2 Means and marginal means for the experimental data in
Table 3.1

Study time (s)

Encoding instructions
b1

30
b2

60
b3

180 Marginal means

a1

Memorize words 6 10 11 9
a2

Story and imagery mnemonics 10 12 23 15

Marginal means 8 11 17 12
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de®ned. Therefore, the effect of the j levels of Factor A is given by the

difference between the j Factor A marginal means and the grand mean. The

(marginal) mean for the jth level of Factor A is de®ned as

ì j �
Xq

k�1

ì jk=q (3:4)

where q is the number of levels of Factor B. Therefore,

ì1 � (6� 10� 11)=3 � 9

ì2 � (10� 12� 23)=3 � 15

For the current example,

á j � ì j ÿ ì (3:3, rptd)

gives

á1 � 9ÿ 12 � ÿ3

and

á2 � 15ÿ 12 � 3

Overall, the effect of the Factor A level 1 manipulation (the memorize

instruction) is to reduce memory performance by three words, whereas the

Factor A level 2 manipulation (the story and imagery mnemonics) is to increase

memory performance by three words.

The parameters âk are de®ned as

âk � ìk ÿ ì (3:5)

where ìk is the marginal mean for Factor B, level k. Therefore, the effect of the

k levels of Factor B is given by the difference between the k Factor B marginal

means and the grand mean. The (marginal) mean for the jth level of Factor B is

de®ned as

ìk �
Xp

j�1

ì jk=p (3:6)

where p is the number of levels of Factor A. Therefore,

ì1 � (6� 10)=2 � 8

ì2 � (10� 12)=2 � 11

ì3 � (11� 23)=2 � 17

For the current example,

âk � ìk ÿ ì (3:5, rptd)

gives
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â1 � 8ÿ 12 � ÿ4

â2 � 11ÿ 12 � ÿ1

and

â3 � 17ÿ 12 � 5:

Overall, the effect of the Factor B level 1 manipulation (30 s study time) is to

reduce memory performance by four words, the Factor B level 2 manipulation

(60 s) reduces memory performance by one word, while the Factor B level 3

manipulation (180 s) increases memory performance by ®ve words.

Comparisons between marginal means compare with the effect of experimen-

tal conditions in single independent factor design presented earlier. However,

while main effects in factorial designs bear comparison with experimental

condition effects in single factor designs, subjects' performance is very unlikely

to have been observed under identical circumstances. In single factor experi-

ments there should be no systematic variation between experimental conditions

other than the experimental manipulations de®ning the levels of the single

factor. However, their factorial design counterparts, the marginal means, are

estimated by averaging across any (systematic) in¯uence of the other factor, and

so they incorporate any in¯uence of this factor. Therefore, factorial experiment

marginal means are likely to differ from their single factor counterparts, the

experimental condition means (e.g. compare the Factor B marginal means with

the original `̀ memorize the words'' single factor condition means ± level a1 in

Table 3.2). Nevertheless, because the factors are crossed, the three marginal

means for Factor B average over exactly the same levels of Factor A. Therefore,

after averaging over exactly the same levels of Factor A, the only difference

between the scores summarized by the three marginal means for Factor B is in

terms of the distinction between the Factor B levels (study time). Similarly, the

two marginal means for Factor A are averaged over equivalent levels of Factor

B, so the only difference between the scores summarized by the two marginal

means for Factor A is in terms of the distinction between the Factor A levels

(encoding instructions). Consequently, the averaging procedures result in ortho-

gonal comparisons between the levels of Factor A and the levels of Factor B and

the interaction between the Factor A and Factor B levels. Moreover, the ability

to demonstrate the in¯uence of a factor despite the changes de®ned by other

factors is the basis for arguing that factorial designs are more ecologically valid

than single factor studies.

The penultimate parameters (áâ) jk are de®ned as

(áâ) jk � ì jk ÿ (ì� á j � âk) (3:7)

where ì jk denotes the separate experimental condition means. Therefore, each

interaction effect is the extent to which each separate experimental condition

mean diverges from the additive pattern of main effects. Hopefully, this gives

some substance to the earlier claim that the interaction effects were over and

above any factor main effects. For the current example,
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(áâ)11 � ì11 ÿ (ì� á1 � â1) � 6ÿ (12ÿ 3ÿ 4) � 1

(áâ)12 � ì12 ÿ (ì� á1 � â2) � 10ÿ (12ÿ 3ÿ 1) � 2

(áâ)13 � ì13 ÿ (ì� á1 � â3) � 11ÿ (12ÿ 3� 5) � ÿ3

(áâ)21 � ì21 ÿ (ì� á2 � â1) � 10ÿ (12� 3ÿ 4) � ÿ1

(áâ)22 � ì22 ÿ (ì� á2 � â2) � 12ÿ (12� 3ÿ 1) � ÿ2

(áâ)23 � ì23 ÿ (ì� á2 � â3) � 23ÿ (12� 3� 5) � 3

Overall, the effect of the interaction is to increase or decrease subjects'

memory performance in each of the six experimental conditions by the number

of words shown. For instance, in the experimental condition where subjects were

instructed just to memorize the words and had 180s to do so (condition a1b3),

memory performance was three words less than would be expected if Factors A

and B had exerted only their main effects. This (non-zero) interaction effect

indicates that this particular combination of these two factor levels affects

memory performance in a manner different to the separate aggregate effects of

the two factors.

Based on the model component of the two factor GLM equation, predicted

scores are given by

Ŷijk � ì� á j � âk � (áâ) jk (3:8)

and so the last parameters, the error terms, which represent the discrepancy

between the actual scores observed and the scores predicted by the two factor

GLM, are de®ned as

åijk � Yijk ÿ Ŷijk (3:9)

The two independent factors experimental design GLM has been described

and its parameters de®ned. Attention now turns to how well the GLMs

incorporating some or all of these parameters accommodate the experimental

data. Two strategies for carrying out ANOVA by comparing GLMs will be

considered. The ®rst is a simple extension of the comparison between full and

restricted GLMs for factorial experimental designs, while the second concords

with hierarchical linear modelling.

At this point, one of the major bene®ts of an experimental approach for

statistical analysis should be mentioned. In factorial designs, because factor

levels are completely crossed, factor main and interaction effects are orthogonal.

This means there is absolutely no overlap in information between the factors,

and so any variance in the dependent variable attributed to one factor will be

distinct from any dependent variable variance attributed to any other factor or

interaction between factors. Therefore, no matter the order in which the sum of

squares estimates for the factor main effects, interaction effects and error are

calculated, the same values always are obtained. It may seem strange to think

that different estimates for these effects could be calculated. After all, the
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statistical analysis is just working out what happened and what happened should

not change depending on which effect you estimate ®rst. However, this sort of

perspective gives the statistical analysis far too much respect. Although the

statistical analysis exhibits complete internal consistency, its meaning is depen-

dent entirely upon the methodology that provides the numbers for analysis. For

example, imagine if the two factors involved in the study were study time and

amount of effort expended trying to learn. It would be likely that these two

factors would be related: as the amount of effort expended trying to learn

increased, so would study time. If the two factors are related, then it means they

have something in common. Moreover, if this thing they have in common

accounts for variation in subjects' memory scores, then through this common

aspect, both of these factors will try to account for some of the same variation in

subjects' memory scores. There are various consequences of this situation,

depending on exactly how the calculations are done. For example, it could be

that each factor is associated with 25% of the subjects' memory score variation,

so 50% of the memory score variation should be accommodated by the two

factors. But 50% will be an overestimate if each 25% includes a part shared with

the other factor. Another possibility is that a factor is arbitrarily chosen and the

variation in memory scores that can be attributed to it is calculated and removed

from the memory scores. Consequently, when the variation attributable to the

second factor is calculated, because variance that would have been associated

with it has been removed already, the estimate of its effect on subjects' memory

scores is reduced.

3.2.1 Estimating effects by comparing full and reduced
experimental design GLMs

The major issue for a full and restricted GLM comparison approach is what are

the pertinent GLMs to compare? The equation

Yijk � ì� á j � âk � (áâ) jk � åijk (3:1, rptd)

describes the full experimental design GLM underlying the independent meas-

ures, two factor ANOVA. The hypotheses concerning the main effect of Factor

A, the main effect of Factor B and the effect of the interaction between Factors

A and B are assessed by constructing three reduced GLMs, which manifest data

descriptions under the respective null hypotheses, and comparing their error

components with that of the full model above.

This approach is simpli®ed by virtue of all the main and interaction effects

being orthogonal as a consequence of the factorial design. Orthogonality means

that the effect estimates are completely distinct: there is absolutely no overlap.

The main effect of Factor A is assessed by constructing a reduced experi-

mental design GLM that describes the data without accommodating any in¯u-

ence of Factor A. However, in order that only the effect of Factor A explains the

difference between the reduced and full GLMs, the reduced GLM accommo-
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dates any in¯uence of Factor B and any interaction between Factors A and B.

Therefore, the reduced GLM for assessing the in¯uence of Factor A is

Yijk � ì� âk � (áâ) jk � åijk (3:10)

This reduced GLM manifests the data description under the null hypothesis that

the levels of Factor A do not in¯uence the data. This assumption may be

expressed more formally as

á j � 0 (3:11)

Applying the same rationale, the reduced GLM for assessing the effect of Factor

B is

Yijk � ì� á j � (áâ) jk � åijk (3:12)

This reduced GLM manifests the data description under the null hypothesis that

the levels of Factor B do not in¯uence the data. This assumption may be

expressed more formally as

âk � 0 (3:13)

Finally, the reduced GLM for assessing the effect of the interaction between

Factors A and B is

Yijk � ì� á j � âk � åijk (3:14)

This reduced GLM manifests the data description under the null hypothesis that

the interaction between levels of Factors A and B do not in¯uence the data. This

assumption may be expressed more formally as

(áâ) jk � 0 (3:15)

Note that the null hypotheses are expressed in terms of zero effects and not in

terms of grand mean equivalence with marginal and experimental condition

means. This is because the marginal and experimental condition means may

vary from the grand mean as a consequence of one effect even though the effect

being assessed is equal to zero.

Having established both full and reduced GLMs for the independent measures

two factor ANOVA, it is time to illustrate the calculation of the error sums of

squares for these models using the data from the memory experiment.

First, the difference between the full GLM and the Factor A reduced GLM

error sum of squares will be calculated. For both reduced and full GLMs, the

error SS can be de®ned as

SSE �
XN

i�1

(åijk)2 �
Xq

k�1

Xp

j�1

XN

i�1

(Yijk ÿ Ŷijk)2 (3:16)

where Ŷijk is the predicted scores from either the full or the reduced GLM.

For the full GLM, the estimate of Ŷijk is Y jk and so, for the Factor A reduced

GLM, the equivalent estimate of Ŷijk is Y jk ÿ á j. Therefore,
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SSEARGLM �
Xq

k�1

Xp

j�1

XN

i�1

(Yijk ÿ Y jk ÿ á j)
2 (3:17)

Contained within the brackets of equation (3.17) are the full GLM error

(Yijk ÿ Y jk) and the effect of Factor A (á j). The effect of Factor A has been

de®ned as

á j � ì j ÿ ì (3:3, rptd)

and is estimated by

á̂j � Y j ÿ YG (3:18)

where Y j represents the Factor A marginal means and YG is the grand mean.

Substituting these terms and applying some algebra reveals

SSEARGLM � SSEFGLM � Njkq
Xp

j�1

(Y j ÿ YG)2 (3:19)

where N jk is the number of subjects in each experimental condition. It follows

from equation (3.19) that

SSEARGLM ÿ SSEFGLM � Njkq
Xp

j�1

(Y j ÿ YG)2 (3:20)

Equation (3.20) speci®es the reduction in the GLM error term when the effect of

Factor A is accommodated in comparison to not accommodating only the Factor

A effect in the reduced GLM, and is equal to the main effect sum of squares for

Factor A (SSA). A similar logic reveals the main effect sum of squares for Factor

B (SSB) as

SSEBRGLM ÿ SSEFGLM � N jk p
Xq

k�1

(Yk ÿ YG)2 (3:21)

where Yk represents the Factor B marginal means. Finally, the sum of squares

for the interaction between the levels of Factors A and B (SSAB) is given by

SSEABRGLM ÿ SSEFGLM � Njk

Xp

j�1

Xq

k�1

(Y jk ÿ Y j ÿ Y k � YG)2 (3:22)

Applying these sums of squares formulae to the example memory experiment

data gives

SSEARGLM ÿ SSEFGLM � 8(3)[(9ÿ 12)2 � (15ÿ 12)2]

� 24[18]

� 432
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SSEBRGLM ÿ SSEFGLM � 8(2)[(8ÿ 12)2 � (11ÿ 12)2 � (17ÿ 12)2]

� 16[42]

� 672

SSEABRGLM ÿ SSEFGLM � 8

(6ÿ 9ÿ 8� 12)2 � (10ÿ 9ÿ 11� 12)2

� (11ÿ 9ÿ 17� 12)2 � (10ÿ 15ÿ 8� 12)2

� (12ÿ 15ÿ 11� 12)2 � (23ÿ 15ÿ 17� 12)2

26664
37775

� 8[28]

� 224

In addition to the SS for main and interaction effects, the associated dfs are

required. Previously dfs were described as the number of scores employed in

constructing the estimate that genuinely were free to vary. Equivalently, the dfs

may be de®ned in accord with the model comparison approach. The dfs for a

GLM equals the number of scores minus the number of independent parameters

employed in the model. And just as main and interactive effects are de®ned as

the difference between reduced and full GLM errors, so the main and interactive

effect dfs can be de®ned as the difference between the reduced and full GLM

dfs.

The ANOVA solution to the overparameterization problem for experimental

design GLMs is to constrain effects to sum to zero. (See the discussion of effect

coding.) Therefore, ì constitutes one parameter, there are ( pÿ 1) parameters

required to distinguish the levels of Factor A, (qÿ 1) parameters are required

for Factor B and ( pÿ 1)(qÿ 1) parameters for the interaction between Factors

A and B. For the independent (2 3 3) factors experimental design GLM, a total

of 6 independent parameters are employed. Consequently, for the (full) indepen-

dent (2 3 3) factor experimental design GLM applied to the memory experi-

ment data, there are

(N ÿ 6) � (48ÿ 6) � 42 dfs

For the Factor A reduced GLM, the ( pÿ 1) parameters distinguishing the Factor

A levels are omitted, leaving 1� (qÿ 1)� ( pÿ 1)(qÿ 1) � 1� (3ÿ 1) �
(2ÿ 1)(3ÿ 1) � 5. Therefore, for the Factor A reduced GLM there are

48ÿ 5 � 43 dfs

As the Factor A reduced GLM has 43 dfs and the full independent (2 3 3) factor

experimental design GLM has only 42 dfs, it follows that the main effect of

Factor A has 1 df.

For the Factor B reduced GLM, the (qÿ 1) parameters distinguishing the

Factor B levels are omitted, leaving, 1� ( pÿ 1)� ( pÿ 1)(qÿ 1) �
1� (2ÿ 1)� (2ÿ 1)(3ÿ 1) � 4. Therefore, for the Factor B reduced GLM

there are
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48ÿ 4 � 44 dfs

As the Factor B reduced GLM has 44 dfs and the full experimental design GLM

has 42 dfs, it follows that the main effect of Factor B has 2 dfs.

For the AB Factors interaction reduced GLM, the ( pÿ 1)(qÿ 1) parameters

distinguishing the separate experimental conditions are omitted, leaving

1� ( pÿ 1)� (qÿ 1) � 1� (2ÿ 1)� (3ÿ 1) � 4. Therefore, for the AB Fac-

tors interaction reduced GLM there are

48ÿ 4 � 44 dfs

As the AB Factors interaction reduced GLM has 44 dfs and the full experimental

design GLM has 42 dfs, again it follows that the AB interaction effect has 2 dfs.

Armed with sums of squares and degrees of freedom for the two main effects

and the interaction effect, the ANOVA summary table can be constructed (Table

3.3).

The last column in Table 3.3 provides the probability of the F-values being

obtained by chance given the data analysed. As all of the probabilities are less

than 0.05, all of the null hypotheses can be rejected and so, all of the GLMs

manifesting the null hypotheses can be discarded in favour of the full GLM.

Adopting the full GLM to describe the experimental data means that both

Factors A and B and their interaction exert a signi®cant effect on subjects'

performance as measured by the dependent variable. As well as describing

effects in terms of deviations from the grand mean, effects also can be consid-

ered as describing differences between marginal or condition means. Speci®-

cally, any effect may be interpreted as indicating that at least two of the means

involved in de®ning the effect are not equal.

In the current example, interpreting the main effect of Factor A, encoding

instructions, in terms of mean differences is quite simple. As there are only two

levels of this factor, the (marginal) means of these two levels of Factor A are the

only means that can be unequal. Therefore, all that remains to be done is to

determine the direction of the effect by identifying the Factor A levels with the

larger and smaller means. Plotting pertinent means on a graph is an extremely

Table 3.3 ANOVA summary table

Source Sum of squares df Mean square F p

A
Encoding Instructions

432.000 1 432.000 47.747 , 0.001

B
Study Time

672.000 2 336.000 37.137 , 0.001

A 3 B
Encode Inst 3 Study Time

224.000 2 112.000 12.379 , 0.001

Error 380.000 42 9.048
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useful tool in interpreting data from any experiment. The plot of the two Factor

A marginal means presented in Figure 3.1 reveals the nature of this main effect.

Interpreting the main effect of Factor B, study time, in terms of mean

differences is slightly more complicated. As there are three levels of this factor,

the unequal (marginal) means may be any one or more of b1 vs: b2, b2 vs b3 and

b1 vs b3. Further tests are required to identify exactly which (marginal) means

differ (see Figure 3.2).

An interaction effect indicates that the effect of one factor is not consistent

over all the levels of the other factor(s). This can be seen by the plot of the

means of the six experimental conditions presented in Figure 3.3. Although

there is no intrinsic continuity between the groups comprising the experimental

conditions, and so strictly a line graph is inappropriate, it is used because it

conveys the nature of the interaction most simply, avoiding any need to create

the illusion of depth in order to lay out another row of columns. Clearly the

pattern of effect over the levels of Factor B at a1 differs from the pattern of

effect over the levels of Factor B at a2. If the effect of one factor were consistent

over all the levels of the other factor, then two parallel lines would be observed.

15

10

5

Memorize Story and Imagery

Encoding instructions

Number
of words
recalled

Figure 3.1 Number of words recalled as a function of encoding
instructions

15

10

5

Number
of words
recalled

30 60 180
Study time (s)

Figure 3.2 Number of words recalled as a function of study time
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The majority of statistical texts recommend that the particular interpretation

of any interaction effect is investigated by assessing simple effects. For example,

the memory experiment applied a two factor (2 3 3) design, which can be

broken into assessments of simple effects as presented in Figure 3.4.

It should be evident that the simple effects comparisons of the three levels of

Factor B at a1 and also at a2 (see Figure 3.4 (a)) correspond with the description

25

20

15

10

5

30 60 180

Study time (s)

Number
of words
recalled

Story and Imagery instructions

Memorize instructions

Figure 3.3 Number of words recalled as a function of encoding
instructions and study time

(b) Comparison of simple effects of Factor A at b1, b2 and b3

b1 b2 b3
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b1 b2 b3

b1 b2 b3
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10
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(a) Comparison of simple effects of Factor B at a1 and a2
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b2 b3

11

23
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Figure 3.4 Decomposition of 2 3 3 factor design into simple effects
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of the interaction effect just delivered above. However, it is equally correct to

describe the interaction in terms of the simple effects comparisons of Factor A

at b1, b2 and b3 (see Figure 3.4 (b)). These three simple effect comparisons are

equivalent to three pairwise comparisons. For further detail, readers should

consult Howell (1997), Keppel (1991), Kirk (1995, who refers to simple main

effects), Maxwell and Delaney (1990) or Winer, Brown and Michels (1991).

3.3 Regression GLMs for factorial ANOVA

As mentioned earlier, comparing full and reduced GLMs is a distilled form of

linear modelling, made possible by the nature of experimental data. In factorial

designs, because factor levels are completely crossed, factor main and inter-

action effects are orthogonal. This means there is absolutely no overlap in

information between the factors, and so any variance in the dependent variable

attributed to one factor will be distinct from any dependent variable variance

attributed to any other factor or interaction between factors. Consequently, it

makes no difference which term ®rst enters the factorial ANOVA GLM.

Irrespective of entry order, exactly the same results will be obtained.

The regression ANOVA GLM for the factorial (2 3 3) experimental design

applied in the memory experiment is

Yi � â0 � â1 X 1 � â2 X 2 � â3 X 3 � â4 X 4 � â5 X 5 � åi (3:23)

The effect coding required for the regression GLM to implement the factorial

(2 3 3) ANOVA is presented in Table 3.4.

As only ( pÿ 1) predictors are required to code p experimental conditions,

the two levels of Factor A can be coded by the predictor variable X 1. Similarly,

the three levels of Factor B can be coded by the predictor variables X 2 and X 3.

Therefore, predictor X 1 represents the main effect of Factor A and predictors X 2

and X 3 represent the main effect of Factor B. The interaction between Factors A

and B is coded by the variables X 4 and X 5. Variable X 4 is obtained by

multiplying the codes of predictors X 1 and X 2, and variable X 5 is obtained by

multiplying the codes of predictors X 1 and X 3. It is worth noting that the number

of predictors required to code each main effect and the interaction effect

(Aÿ X 1, Bÿ X 2 and X 3, A 3 Bÿ X 4 and X 5) equals the dfs for each effect

(A � 1, B � 2 and A 3 B � 2).

Table 3.5 presents the ANOVA summary table output from statistical software

when the effect coded regression ANOVA GLM is applied to the data presented

in Table 3.4.

The residual SS in Table 3.5 equals the error SS in Table 3.3. However, the

regression SS in Table 3.5 is equivalent to the sum of the SS for Factors A, B

and their interaction. For ANOVA, it is not the gross SS accommodated that is

required, but rather the separate Factor and Factor interaction components of this

sum. These components can be obtained in a variety of ways. Perhaps the

simplest way is to carry out what corresponds to a hierarchical regression

analysis (Cohen & Cohen, 1983).
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3.3.1 Estimating main and interaction effects with
regression GLMs

In step 1, Factor A, as represented by the predictor variable X 1, is entered into

the regression GLM. This GLM is

Yi � â0 � â1 X 1 � åi (3:24)

Table 3.5 ANOVA summary table output from statistical software
implementing the regression ANOVA GLM described by equation
(3.23) using effect coding

R: 0.882 R squared: 0.778 Adjusted R squared: 0.751

Source SS df Mean square F p

Regression 1328.000 5 265.000 29.356 , 0.001
Residual 380.000 42 9.048

Total 1708.000 47

Table 3.4 Effect coding for a two factor (2 3 3) experimental design

X1 X2 X3 X4 X5 Y

s1 1 1 0 1 0 7
A1 B1 ´ ´ ´

s8 1 1 0 1 0 7

s9 1 0 1 0 1 7
A1 B2 ´ ´ ´

s16 1 0 1 0 1 11

s17 1 ÿ1 ÿ1 ÿ1 ÿ1 8
A1 B3 ´ ´ ´

s24 1 ÿ1 ÿ1 ÿ1 ÿ1 12

s25 ÿ1 1 0 ÿ1 0 7
A2 B1 ´ ´ ´

s31 ÿ1 1 0 ÿ1 0 7

s32 ÿ1 0 1 0 ÿ1 7
A2 B2 ´ ´ ´

s40 ÿ1 0 1 0 ÿ1 7

s41 ÿ1 ÿ1 ÿ1 1 1 7
A2 B3 ´ ´ ´

s48 ÿ1 ÿ1 ÿ1 1 1 7
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Table 3.6 presents an ANOVA summary table for this regression, which reveals

that the regression SS is identical to that for Factor A in Table 3.3. However,

note that the residual SS at this step does not equal the ANOVA error SS.

In step 2, Factor B, represented by the predictor variables X 2 and X 3, is added

to the regression. This GLM is

Yi � â0 � â1 X 1 � â2 X 2 � â3 X 3 � åi (3:25)

Table 3.7 presents an ANOVA summary table for this regression.

The increase in regression SS from step 1 to step 2, or the SS attributable to

the inclusion of X 2 and X 3, is

1104:000ÿ 432:000 � 672:000

which is identical to the SS for Factor B in Table 3.3. Another way in which the

SS attributable to predictors X 2 and X 3 could have been calculated is by

determining the reduction of residual SS:

step 1 residualÿ step 2 residual � residual reduction

1276:000ÿ 604:000 � 672:000

Table 3.7 ANOVA summary of step 2

R: 0.804 R squared: 0.646 Adjusted R squared: 0.622

Source SS df Mean square F p

Regression 1104.000 3 368.000 26.808 , 0.001
Residual 604.000 44 13.727

Total 1708.000 47 27.739

Table 3.6 ANOVA summary of step 1

R: 0.503 R squared: 0.253 Adjusted R squared: 0.237

Source SS df Mean square F p

Regression 432.000 1 432.000 15.574 , 0.001
Residual 1276.000 46 27.739

Total 1708.000 47 27.739
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In step 3, the interaction between factors A and B, represented by the

predictor variables X 4 and X 5, is added to the regression. Of course, this is now

the full regression ANOVA GLM described by equation (3.23) and summarized

in Table 3.5.
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4 GLM APPROACHES TO REPEATED
MEASURES DESIGNS

4.1 Related measures designs

Repeated measures designs are particular instances of randomized block de-

signs, which are members of the family of related measures designs. In contrast

to independent measures designs, related measures designs accommodate rela-

tions between the dependent variable measures. The randomized block label

refers speci®cally to designs that organize subjects into blocks. Subjects within

each block are matched on one or more variables pertinent to the experiment,

but between blocks, the subjects are dissimilar. For example, block 1 may

contain ten subjects all matched on high IQ scores, while block 2 may contain

ten subjects all matched on low IQ scores, with each block of subjects

experiencing and providing data under all of the experimental conditions. This

design is depicted in Table 4.1.

However, if there is only one subject per block, then the design is termed a

repeated measures design, rather than a randomized block design. Table 4.2

depicts this design, where the same subjects provide data under more than one

experimental condition, i.e. the same subjects are measured repeatedly.

Another related measures design which should be mentioned for complete-

ness is the matched samples design. In the randomized block design, subjects

within each block are matched on one or more variables pertinent to the

Table 4.1 A single factor randomized block
design with 3 factor levels and 3 blocks

Condition A Condition B Condition C

Block 1
S1
´´´
S10

Block 1
S1
´´´

S10

Block 1
S1
´´´

S10

Block 2
S11
´´´
S20

Block 2
S11
´´´

S20

Block 2
S11
´´´

S20

Block 3
S21
´´´
S30

Block 3
S21
´´´

S30

Block 3
S21
´´´

S30



experiment, but between blocks, the subjects are dissimilar. However, in

matched samples designs, subjects matched on one or more variables pertinent

to the experiment are allocated to different blocks. For example, in block 1,

subject 1 may have a high IQ score. Another subject with a comparable IQ score

would then be allocated to block 2, and if appropriate a third subject with a

comparable IQ score would be allocated to block 3. Subjects with IQ scores

comparable with that of subject 2 in block 1 would be allocated to blocks 2 and

3, and so on. The result is the opposite to the randomized block design. In

Matched Samples designs subjects within each block may be dissimilar, but

between blocks, the subjects are matched on one or more variables pertinent to

the experiment. Nevertheless, the focus here is on Repeated Measures designs,

as they are employed most frequently in psychological research. Other Related

Measures designs and their analysis procedures are presented by Hays (1994),

Howell (1997), Keppel (1991), Kirk (1995) and Winer et al. (1991).

4.2 Repeated measures designs

Like independent measures designs, the purpose of a repeated measures designs

is to determine the effect of different experimental conditions on a dependent

variable. Although repeated measures designs provide information about indivi-

dual peformance over experimental conditions, description of individual sub-

jects' performance is not an aim. Indeed, the use of a random factor to organize

subject information emphasizes that the experiment aims to generalize to the

population from which the subjects are drawn, rather than focus on the

individual subjects providing the data. As if the labels, related measures designs

and randomized block designs were insuf®cient, the typical de®nition of the

experimental effect as a ®xed effect and the de®nition of the subject effect as

random also results in repeated measures designs being labelled as mixed

designs. Although the mixed design term would be appropriate for single factor

Table 4.2 A randomized block design
equivalent to a single factor repeated
measures design, as each block contains only
one subject

Condition A Condition B Condition C

Block 1
S1

Block 1
S1

Block 1
S1

Block 2
S2

Block 2
S2

Block 2
S2

Block 3
S3

Block 3
S3

Block 3
S3
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designs, usually it is applied only to factorial designs, where the levels of at least

one factor are independent and the levels of at least one other factor are related.

In their discussion of overparameterized GLMs, Green, Marquis, Hershberger,

Thompson and McCollam (1999) label GLMs applied to related designs as

general linear mixed models (GLMMs). However, in common with all GLMs,

experimental design GLMs employ additional terms to accommodate additional

features of the experimental design. Therefore, Green et al.'s insertion of the

term `̀ mixed'' into GLM is not only unnecessary, but also misleading, as it

suggests something different about the nature of the linear modelling carried

out.

An often quoted advantage of repeated measures designs is that subjects act

as their own controls. However, as many experiments do not use a classic control

condition, this statement can be rather obtuse. Perhaps a more accurate and more

easily understood description is that subjects provide their own comparison:

each subjects' performance can be compared across all conditions.

One of the advantages of repeated measures designs compared to equivalent

independent measures designs is a reduction in the number of subjects required

to provide the same amount of data. For example, the single factor repeated

measures design with 3 conditions employing 3 subjects, illustrated in Table 4.2,

provides as much data as nine subjects in the equivalent independent measures

design. Another advantage is a reduction in error variance. It would be expected

that the total amount of score variation will be less with three subjects each

performing under 3 conditions, than with 9 subjects each performing under 1

condition. This reduction in variation is due to the greater similarity of the

scores provided by the same subjects compared to those scores provided by

different subjects. In other words, scores from the same subject are correlated. It

is from correlations between scores that the bene®ts of related measures designs

accrue. However, to make use of the correlation between the same subject's

scores not only requires more complicated statistical analyses than independent

measures designs, but also requires that additional statistical assumptions are

tenable. (These assumptions are considered in Chapter 7.) It also should be

appreciated that for some research issues repeatedly measuring subjects may not

be an appropriate strategy. For example, measuring unintentional learning by a

surprise memory test cannot be done repeatedly. Moreover, because of their

nature, control procedures are more necessary when repeated measures designs

are applied. Consider the design outlined in Table 4.2. If all subjects experience

all experimental conditions, then each subject must experience conditions A, B

and C in some order and the particular order experienced may affect the

subjects' performance in each of the experimental conditions. For example, if

all subjects experienced condition A, then condition B, then condition C,

performance might increase from conditions A to C as a result of the practice

the subject received as they performed the same experimental task under the

different conditions. Alternatively, and particularly if the task were very

demanding, subjects' performance might decrease from conditions A to C due

to fatigue. Although these order effects (also termed sequence and carry-over

effects) cannot be eliminated from subjects' performance, it is possible to exert
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some control. However, even when control is applied, a problem arises if the

data reveals different effects of order. Differential order effects is the term for

experimental condition effects that are attributable to particular experimental

condition presentation orders. They are detected as an interaction between the

experimental conditions and the presentation orders and indicate that subjects'

experience in one experimental condition has particular consequence(s) for one

or more of the other experimental conditions. For example, in a memory

experiment comparing two encoding strategies, differences between conditions

may be diminished because those subjects experiencing the semantic encoding

strategy continue to apply it (intentionally or unintentionally) in the graphemic

encoding strategy condition. However, the converse, applying the graphemic

encoding strategy in the semantic encoding condition, may not occur, resulting

in an interaction between the experimental conditions and the presentation

orders. When differential order effects occur, the usual repeated measures

analyses are invalid and it may be best to apply an independent measures design.

Further discussion of differential order effects is provided by Keppel (1991) and

Maxwell and Delaney (1990).

4.3 Order effect controls

4.3.1 Counterbalancing

Crossover designs

One way to control order effects is to determine how many different orders of

conditions are possible in the experiment. In the current example, there are 3

conditions and so, (3 3 2 3 1) 6 different order permutations possible ± ABC,

ACB, BCA, BAC, CAB and CBA. Allocating a subject to each experimental

order does not eliminate the effect of any particular order, as each individual

subject's performance continues to be in¯uenced by the order of conditions they

experience. Nevertheless, in a full crossover counterbalanced design, all orders

are experienced by equal numbers of subjects and so, any performance bene®t

arising as a consequence of a particular order of conditions is counterbalanced

by the effect of its counter-order (e.g. ABC and CBA). Moreover, including all

orders in the experiment results in the orders being crossed with the other

experimental factors. Provided more than one subject is allocated to each

presentation order, it is possible to construct a factorial model of the data that

explicitly represents the score variance due to the order effects and, if desired,

the interaction between this factor and all the other factors in the experiment.

However, differential order effects are indicated by any such signi®cant inter-

actions and conventional repeated measures analyses should not be applied

when such effects are detected. Including and assessing interactions between

experimental conditions and orders does provide a check that there are no

signi®cant differential order effects. Nevertheless, examination of the psycholo-

gical literature reveals that GLMs applied to repeated measures designs fre-

GLM APPROACHES TO REPEATED MEASURES DESIGNS 63



quently omit order terms. For this reason and due to restrictions on space, the

GLMs described here for repeated measures designs also will omit these terms,

even though the most ef®cient analyses are obtained when the study design is

re¯ected fully in the linear model applied.

Latin square designs

With only 3 experimental conditions, it is quite feasible to allocate 2, 3 or more

subjects to each experimental order. Even with 5 subjects per order, a total of

only 30 subjects is required. However, as the number of experimental conditions

increases, the number of order permutations increases exponentially. For exam-

ple, 6 conditions provides (6 3 5 3 4 3 3 3 2 3 1) 720 order permutations.

Obviously, an experimenter will not want to run more than 720 subjects in a

single experiment. However, there are alternatives to the fully counter-balanced

crossover designs which may be applied even before the number of order

permutations requires very large numbers of subjects. Rather than assign

subjects to each of all possible orders, it is possible to determine a smaller set of

orders, in which each experimental condition occurs once in each order position.

This arrangement is termed a latin square design. An example of a latin square

for the 4 experimental conditions A, B, C and D is provided in Table 4.3. As

latin square designs employ a small set of orders to represent all of the order

permutations, the selection of the orders constituting the latin square is an

important consideration. The ideal is a digram-balanced latin square, as pre-

sented in Table 4.3. A digram-balanced latin square is obtained when each

experimental condition both precedes and follows all others. The main disadvan-

tage of digram-balanced latin squares is that they can be applied only when

there are an even number of experimental conditions.

Two digram-balanced latin squares are needed when there are odd numbers of

experimental conditions. Alternatively, when there are odd numbers of experi-

mental conditions, a randomly permuted latin square may be applied. Of course,

a randomly permuted latin square does not have the property that each experi-

mental condition both precedes and follows all others, but they are a reasonable

compromise (see Kirk, 1995; Maxwell & Delaney, 1990). In any event, the sort

of latin square to avoid producing is a cyclic square. These latin squares arise

when the same sequence of experimental conditions occurs in each order

Table 4.3 Latin square for single factor
repeated measures design with 4 levels

Position in order
Order P1 P2 P3 P4

1 A B C D
2 C A D B
3 B D A C
4 D C B A
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employed, e.g. ABCD, BCDA, CDAB and DABC. Although each of the condi-

tions occupy all positions once in the four orders, nevertheless, the same

sequence A followed by B followed by C followed by D is maintained.

Kirk (1995) and Maxwell and Delaney (1990) present models for latin square

designs that represent score variance due to order effects. However, unlike

crossover designs, latin square designs employ only a particular set of the

experimental condition orders and consequently, only order main effects can be

estimated. Therefore, using order interaction effects to check the repeated

measures assumption of constant order effects is precluded. Although Tukey's

(1949; 1955) test for additivity (see Kirk, 1995) can provide some assurance that

differential order effects are not present, a more simple and parsimonious

assessment employing residuals is described in Chapter 7.

Although they may be conceived as single factor designs, all repeated meas-

ures designs are analysed as factorial designs. This is because an additional

factor is employed to represent the in¯uence on the data of each individual

subject. Moreover, crossover and latin square counterbalance designs employ

yet another factor to represent the order factor. Therefore, a `̀ single factor''

repeated measures design actually can involve three factors. However, rather

than embark upon the description of such `̀ multifactor'' designs, the simplest

single factor repeated measures design, where the order of experimental condi-

tions experienced by subjects is randomized, is considered.

4.3.2 Randomization

The basic statistical theory underlying basic repeated measures designs assumes

the order of experimental conditions experienced by subjects is randomly

determined. Randomly generating and implementing an order for each subject

means any order is equally likely to be generated and experienced by a subject.

Therefore, it is extremely unlikely that there will be a suf®cient accumulation of

orders necessary to produce a systematic bias in the data. In the sense that

randomization makes systematic data biases extremely unlikely, but does not

speci®cally control for their in¯uence, it provides an approximation to counter-

balancing. Moreover, when the control procedure of randomizing condition

order per subject is applied, the error term accommodates the score variance due

to the orders experienced by the subjects. Therefore, compared with GLMs

which remove this variance by accommodating it under additional GLM terms,

randomized condition order GLMs will have lower analysis power.

4.4 The GLM approach to single factor repeated
measures designs

Imagine the experiment described in Chapters 1 and 2 had been obtained from a

single factor repeated measures design and not a single factor independent

measures design. Rather than observing data from 24 different subjects spread
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equally across 3 conditions, the performance of the same 8 subjects would be

observed under each of the 3 experimental conditions. Table 4.4 presents the

data from Table 2.2 as if it had been obtained from a single factor repeated

measures design.

The GLM underlying the single factor related/repeated measures design

ANOVA is described by the equation

Yij � ì� ði � á j � (ðá)ij � åij (4:1)

where Yij is the ith subject's dependent variable score in the jth experimental

condition, ì is the constant representing the dependent variable score free of the

effect of any experimental condition, ði is a parameter representing the random

effect of the ith subject, á j is the effect of the jth experimental condition, (ðá)ij

is a parameter representing the interaction between the ith subject and the jth

experimental condition and as always, the error term, åij, re¯ects variation due

to any uncontrolled source. As usual, equation (4.1) summarizes a system of

equations, where each equation describes a single dependent variable score.

In comparison to the experimental design GLM for a single factor indepen-

dent measures ANOVA, the only differences are the inclusion of the terms [ði]

and [(ðá)ij]. Therefore, the repeated measures experimental design GLM

accommodates score variance attributable to different subjects. Speci®cally, the

term [ði] represents the consistent effect on all of the scores across experimental

conditions due to different subjects. In other words, it represents the average

difference between the scores from different subjects. In contrast, the interaction

term [(ðá)ij] represents the inconsistent effects on all of the scores across

experimental conditions due to different subjects. As a major part of the single

factor independent measures ANOVA error term is due to differences between

subjects, speci®cally accommodating score variance attributable to different

subjects with the [ði] term reduces the size of the repeated measures error

variance considerably and is one of the reasons for the greater analysis power

provided by repeated measures designs. However, the role played by the inter-

Table 4.4 Data from a single factor repeated measures design

Subjects Condition A Condition B Condition C Marginal means

s1 7 7 8 7.33
s2 3 11 14 9.33
s3 6 9 10 8.33
s4 6 11 11 9.33
s5 5 10 12 9.00
s6 8 10 10 9.33
s7 6 11 11 9.33
s8 7 11 12 10.00

Marginal
means 6 10 11 9
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action term (ðá)ij in repeated measures experimental design GLMs is more

complicated.

Earlier it was said repeated measures designs are analyzed as factorial

designs. Table 4.5 presents the data from Table 4.4 cast in line with the two

factor conception.

Here, there are 3 levels of the experimental condition factor and 8 levels of

the subject factor, providing one score per experimental design cell (i.e. one

score per subject per experimental condition). However, usually factorial

ANOVA designs (see Chapter 3) contain several scores per cell. The mean of the

cell scores is taken as the best estimate of the cell score and is used to calculate

interaction effects, with the discrepancy between the mean and the actual score

providing the estimates of experimental error. Obviously, if there is only one

score per subject per experimental condition, then a mean and experimental

error cannot be calculated. Without these estimates, the experimental error (åij)

cannot be separated from the interaction effect (ðá)ij. Therefore, a more

accurate description of the single factor repeated measures experimental design

GLM applied most frequently is

Yij � ì� ði � á j � [(ðá)ij � åij] (4:2)

Fortunately however, the lack of a speci®c error term does not prevent

assessment of the experimental conditions effect (á j). When a single random

factor is included in a model with ®xed effects and the ®xed effects are to be

tested, limiting the interaction of the pertinent ®xed factor and the random factor

to zero (i.e. setting it to zero) provides an appropriate error term. In repeated

measures designs, the ®xed factor representing the in¯uence of the experimental

conditions is to be tested, while the single random factor represents the in¯uence

of the subjects. The interaction between these two factors can be set to zero

simply by omitting the interaction between these two factors from the GLM.

Consequently, the single factor repeated measures experimental design GLM for

ANOVA usually is described by the equation,

Yij � ì� ði � á j � åij (4:3)

Equation (4.3) may be used for simplicity, but whenever an interaction between

experimental conditions and subjects exists, equation (4.2) describes the data

Table 4.5 Data from a single factor repeated measures design with
subjects cast as a second factor

Experimental
Subjects

conditions b1 b2 b3 b4 b5 b6 b7 b8

a1 7 3 6 6 5 8 6 7
a2 7 11 9 11 10 10 11 11
a3 8 14 10 11 12 10 11 12

GLM APPROACHES TO REPEATED MEASURES DESIGNS 67



more accurately. Nevertheless, when such an interaction exists and the inter-

action term is omitted, the expected mean square for the experimental condi-

tions, like the expected mean square for error, includes variation attributable to

the interaction between experimental conditions and subjects. Therefore, the F-

test of the effect of experimental conditions involves the following expected

mean squares:

F � E(MSexperimental conditions)

E(MSerror)
� ó 2

experimental conditions � ó 2
experimental conditions3subjects � ó 2

error

ó 2
experimental conditions3subjects � ó 2

error

(4:4)

Therefore, setting the interaction between the ®xed effect of experimental

conditions and the random effect of subjects to zero, by omitting the interaction

term from the single factor repeated measures GLM, provides an accurate F-test

of the ®xed effect of experimental conditions. However, an accurate F-test of

the random effect of subjects is not provided (e.g. Maxwell & Delaney, 1990;

Howell, 1997). Nevertheless, as the aim of repeated measures designs is to

facilitate the test of the effect of the experimental conditions by removing

variance attributable to subjects, the lack of a subject effects test is no real loss.

Comparing the effect of the experimental conditions against the error-plus-

interaction variation estimate also makes intuitive sense. The interaction repre-

sents the extent to which the experimental condition effect is not consistent

across the different subjects. The greater this inconsistency is in relation to the

effect of the experimental conditions, the less likely it is that the experimental

condition effect is reliable.

As always, the model component of the GLM equation describes the predicted

scores

Ŷij � ì� ði � á j (4:5)

As ì is a constant, variation in prediction arises from the in¯uence of the

experimental conditions (á j), but also from which subject provides the scores

(ði). Consequently, the repeated measures experimental design GLM can predict

a different score for each subject in each experimental condition. However, as

there is no interaction effect, the predicted scores for each experimental

condition are equal to the mean of all subjects' scores per condition, as given by

the marginal means at the bottom of Table 4.4.

The estimate of the single factor repeated measures experimental design

GLM parameter ì is de®ned as the grand mean of the dependent variable

scores:

ì̂ �
Pn

i�1

P p

j�1Yij

np
� YG (4:6)

Applied to the data in Table 4.4 provides

ì̂ � YG � 7� 3 � � � � � 11� 12

8(3)
� 216

24
� 9
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With balanced designs, ì also may be de®ned as the mean of the experimental

condition means:

ì �
P p

j�1ì j

p
(2:17, rptd)

Applied to the data in Table 4.4, this provides

ì̂ � YG � 6� 10� 11

3
� 9

Given that (
Pn

i�1Yi, j=n) are the experimental condition means (Y j), the experi-

mental effect estimates are de®ned by

á̂ j �
Pn

i�1
Yij

n

� �
ÿ YG (4:7)

Applying formula (4.7) to the data in Table 4.4 provides

á̂1 � 6ÿ 9 � ÿ3

á̂2 � 10ÿ 9 � 1

á̂3 � 11ÿ 9 � 2Xp

j�1

á̂ j � 0

From these estimates of experimental effects, the experimental conditions SS

can be calculated:

experimental conditions SS �
Xp

j�1

Nj(ì j ÿ ì)2 (2:26, rptd)

experimental conditions SS �
X

8(ÿ32)� 8(12)� 8(22)

� 72� 8� 32

� 112

Therefore, the estimate of the effect of experimental conditions in the single

factor repeated measures design is identical to that obtained in the single factor

independent measures design.

Given that (
P p

j�1Y1 j=p) is the mean of the scores provided by each subject,

the subject effect estimates are de®ned by

ð̂i �
P p

j�1Y1, j

p

 !
ÿ YG (4:8)

Applying formula (4.8) to the data in Table 4.4 provides
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ð̂1 � 7:333ÿ 9 � ÿ1:667

ð̂2 � 9:333ÿ 9 � 0:333

ð̂3 � 8:333ÿ 9 � ÿ0:667

ð̂4 � 9:333ÿ 9 � 0:333

ð̂5 � 9:000ÿ 9 � 0:000

ð̂6 � 9:333ÿ 9 � 0:333

ð̂7 � 9:333ÿ 9 � 0:333

ð̂8 � 10:000ÿ 9 � 1:000XN

i�1

ð̂i � 0:000

As with the experimental effect estimates, it is possible to calculate the subjects

SS:

subjects SS �
XN

i�1

p(ì j ÿ ì)2

� 3(ÿ1:6672)� 3(0:3332)� 3(ÿ0:6672)� 3(0:3332)

� 3(02)� 3(0:3332)� 3(0:3332)� 3(1:0002)

� 8:337� 0:333� 1:332� 0:333� 0� 0:333� 0:333� 3:000

subjects SS � 14:000

Using each of the parameter estimates in equation (4.5) provides the predicted

scores presented in Table 4.6.

Finally, the error estimate is provided by the discrepancy between each

observed score (see Table 4.4) and each predicted score (see Table 4.6):

Table 4.6 Scores predicted by the single factor repeated measures
experimental design GLM

Subjects Condition A Condition B Condition C Means

s1 4.333 8.333 9.333 7.333
s2 6.333 10.333 11.333 9.333
s3 5.333 9.333 10.333 8.333
s4 6.333 10.333 11.333 9.333
s5 6.000 10.000 11.000 9.000
s6 6.333 10.333 11.333 9.333
s7 6.333 10.333 11.333 9.333
s8 7.000 11.000 12.000 10.000

Means 6 10 11 9
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åij � Yij ÿ Ŷij (4:9)

Table 4.7 presents the calculation of the errors and the sum of the squared errors.

This is the estimate of the error sum of squares (SSerror) for the single factor

repeated measures GLM described by equation (4.3).

Whereas the SS for the experimental conditions equalled that obtained with a

single factor independent measures design, the single factor repeated measures

design error SS is much smaller, with the difference between the two SS errors

being that SS attributable to subjects (i.e. 52ÿ 38 � 14).

Having calculated the sum of squares for both experimental conditions and

error, the next step is to determine the degrees of freedom. The logic determin-

ing the experimental conditions dfs is identical to that for independent measures

designs. Therefore,

df Experimental Conditions � pÿ 1 � 3ÿ 1 � 2 (4:10)

As for error dfs, a separate mean is employed in each experimental condition, so

a df is lost from the N scores of each condition. However, a separate mean also

is employed to describe every set of p scores a subject provides, so for every set

of p scores a df is lost. Therefore,

df error � (Nj ÿ 1)( pÿ 1) � (8ÿ 1)(3ÿ 1) � 14 (4:11)

All of this information can be placed in an ANOVA summary table, as in

Table 4.8. However, the subject effect reported in Table 4.8 may not be

presented, as generally it is of little interest and its signi®cance cannot be tested.

Table 4.7 Calculation of the errors per experimental condition per
subject and the sum of the squared errors

Subjects Condition A Condition B Condition C

s1 7 ÿ 4.333 � 2.667 7 ÿ 8.333 � ÿ1.333 8 ÿ 9.333 � ÿ1.333
s2 3 ÿ 6.333 � ÿ3.333 11 ÿ 10.333 � 0.667 14 ÿ 11.333 � 2.667
s3 6 ÿ 5.333 � 0.667 9 ÿ 9.333 � ÿ0.333 10 ÿ 10.333 � ÿ0.333
s4 6 ÿ 6.333 � ÿ0.333 11 ÿ 10.333 � 0.667 11 ÿ 11.333 � ÿ0.333
s5 5 ÿ 6.000 � ÿ1.000 10 ÿ 10.000 � 0.000 12 ÿ 11.000 � 1.000
s6 8 ÿ 6.333 � 1.667 10 ÿ 10.333 � ÿ0.333 10 ÿ 11.333 � ÿ1.333
s7 6 ÿ 6.333 � ÿ0.333 11 ÿ 10.333 � 0.667 11 ÿ 11.333 � ÿ0.333
s8 7 ÿ 7.000 � 0.000 11 ÿ 11.000 � 0.000 12 ÿ 12.000 � 0.000Xn

i�1

å2
ij � 22.667 � 3.333 � 12.000

XN

i�1

Xp

i�1

å2
ij 38.000
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4.5 Estimating effects by comparing full and reduced
single factor repeated measures design GLMs

The full single factor repeated measures experimental design GLM was

described by equation (4.3), while the reduced GLM is similar but excludes

experimental conditions. Therefore, the GLMs are

reduced GLM: Yij � ì� ði � åij (4:12)

full GLM: Yij � ì� ði � á j � åij (4:3, rptd)

The reduced GLM manifests the null hypothesis,

á j � 0 (2:30, rptd)

which states that the experimental condition effects equal zero, i.e. there is no

effect of experimental conditions. The full GLM manifests the non-directional

experimental hypothesis,

á j 6� 0 for some j (2:27, rptd)

which states for some experimental conditions the effect is not zero, i.e. there is

an effect of experimental conditions. A convenient formulae for the reduced

GLM error SS is

SSERGLM �
XN

i�1

Xp

j�1

(Yij ÿ Y j)
2 (4:13)

Applied to the data in Table 4.4, this provides the calculations presented in Table

4.9.

Similarly, a convenient formulae for the full GLM SSerror is

SSEFGLM �
XN

i�1

Xp

j�1

(Yij ÿ Y j ÿ Yi � YG)2 (4:14)

Applied to the data in Table 4.4, this provides the calculations presented in Table

4.10.

An F-test of the error component sum of squares, attributed to the inclusion

of the experimental condition effects, is given by

Table 4.8 Single factor repeated measures ANOVA summary table

Source SS df MS F P

Subjects 14.000 7 2.000
Expt conditions 112.000 2 56.000 20.634 , 0.001
Error 38.000 14 2.714

Total 164.000 23
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F � (SSERGLM ÿ SSEFGLM)=(df RGLM ÿ df FGLM)

SSEFGLM=df FGLM

(2:39, rptd)

Therefore,

F � (150ÿ 38)=(23ÿ 14)

38=14
� 56

2:714

F(2, 14) � 20:634

However, it may be more convenient to carry out the calculations as an

ANOVA summary table is constructed (Table 4.11).

Table 4.9 Calculation of the SS error for the reduced GLM

Subjects Condition A Condition B Condition C

s1 7 ÿ 7.333 � ÿ0.333 7 ÿ 7.333 � ÿ0.333 8 ÿ 7.333 � 0.667
s2 3 ÿ 9.333 � ÿ6.333 11 ÿ 9.333 � 1.667 14 ÿ 9.333 � 4.667
s3 6 ÿ 8.333 � ÿ2.333 9 ÿ 8.333 � 0.667 10 ÿ 8.333 � 1.667
s4 6 ÿ 9.333 � ÿ3.333 11 ÿ 9.333 � 1.667 11 ÿ 9.333 � 1.667
s5 5 ÿ 9.000 � ÿ4.000 10 ÿ 9.000 � 1.000 12 ÿ 9.000 � 3.000
s6 8 ÿ 9.333 � ÿ1.333 10 ÿ 9.333 � 0.667 10 ÿ 9.333 � 0.667
s7 6 ÿ 9.333 � ÿ3.333 11 ÿ 9.333 � 1.667 11 ÿ 9.333 � 1.667
s8 7 ÿ 10.000 � ÿ3.000 11 ÿ 10.000 � 1.000 12 ÿ 10.000 � 2.000

XN

i�1

Xp

j�1

å2
ij 150.000

Table 4.10 Calculation of the SS error for the full GLM

Subjects Condition A Condition B Condition C

s1 7 ÿ 4.333 � 2.667 7 ÿ 8.333 � ÿ1.333 8 ÿ 9.333 � ÿ1.333
s2 3 ÿ 6.333 � ÿ3.333 11 ÿ 10.333 � 0.667 14 ÿ 11.333 � 2.667
s3 6 ÿ 5.333 � 0.667 9 ÿ 9.333 � 0.333 10 ÿ 10.333 � 0.333
s4 6 ÿ 6.333 � ÿ0.333 11 ÿ 10.333 � 0.667 11 ÿ 11.333 � ÿ0.333
s5 5 ÿ 6.000 � ÿ1.000 10 ÿ 10.000 � 0.000 12 ÿ 11.000 � 1.000
s6 8 ÿ 6.333 � 1.667 10 ÿ 10.333 � ÿ0.333 10 ÿ 11.333 � ÿ1.333
s7 6 ÿ 6.333 � ÿ0.333 11 ÿ 10.333 � 0.667 11 ÿ 11.333 � ÿ0.333
s8 7 ÿ 7.000 � 0.000 11 ÿ 11.000 � 0.000 12 ÿ 12.000 � 0.000

XN

i�1

Xp

j�1

å2
ij 38
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4.6 Regression GLMs for single factor repeated
measures designs

The experimental design GLM equation (4.3) may be compared with the

equivalent regression equation,

Yi � â0 � â1 X i,1 � â2 X i,2 � â3 X i,3 � â4 X i,4 � â5 X i,5 � â6 X i,6 � â7 X i,7

� â8 X i,8 � â9 X i,9 � åi (4:15)

where Yi represents the ith dependent variable score (not the ith subject), â0 is a

constant, â1 is the regression coef®cient for the predictor variable X 1 and â2 is

the regression coef®cient for the predictor variable X 2. However, in repeated

measures design, the subjects providing the repeated measures also are repre-

sented. The N levels of the subject factor are represented by (N ÿ 1) variables.

Therefore, the eight levels (i.e subjects) are represented by the ®rst seven

variables (X 1 to X 7). Similarly, the p levels of the experimental factor are

represented by ( pÿ 1) variables. Therefore, the three experimental conditions

are represented by the last two variables (X 8, X 9). Again, the random variable åi

represents error.

Table 4.12 presents effect coding for the single factor repeated measures

regression GLM. This coding scheme shows that scores associated with subjects

1 to 7 are identi®ed by the presence of a 1 in the variable column representing

the subject, while subject 8's scores are identi®ed by aÿ 1 across all (X 1 to X 7)

subject variables. As in GLM equation (4.3), terms representing the interaction

between experimental conditions and subjects are omitted.

Applying a regression GLM to implement a single factor repeated measures

ANOVA is a two stage procedure. For example, the ®rst stage may employ a

regression GLM using only those variables representing experimental condi-

tions, while the second stage employs those variables representing both experi-

mental conditions and subjects. A comparison of the ®rst and second regressions

provides all the information needed for the single factor repeated measures

ANOVA. Moreover, as the variables representing experimental conditions are

orthogonal to those representing subjects, which stage comes ®rst does not

matter, as identical results are obtained.

Table 4.11 Single factor repeated measures ANOVA summary
table

Source SS df MS F P

Error reduction due to
experimental conditions

112.000 2 56.000 20.634 , 0.001

FGLM error 38.000 14 2.714

Total 164.000 23
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Consistent with estimating effects by comparing full and reduced GLMs, the

®rst regression carried out here will be that for the full single factor repeated

measures experimental design GLM, when all subject and experimental condi-

tion predictor variables are included (i.e. variables X 1 to X 9). The results of this

analysis are presented in Tables 4.13 and 4.14.

Table 4.13 presents the predictor variable regression coef®cients and standard

deviations, the standardized regression coef®cients, and signi®cance tests (t-

and p-values) of the regression coef®cient. From the repeated measures ANOVA

perspective, the information in this table is of little interest, although it is worth

noting that the regression coef®cient estimates are equivalent to the subject

effect estimates calculated earlier.

Table 4.14 presents the ANOVA summary table for the regression GLM

describing the complete single factor repeated measures ANOVA. As the

residual SS is that obtained when both subject and experimental conditions are

included in the regression, this is the error term obtained when the single factor

repeated measures ANOVA GLM is applied.

In the second stage, the aim is to determine by how much the residual SS

increases when the predictor variables representing the experimental conditions

are omitted. To do this, a regression GLM corresponding with the reduced single

Table 4.12 Effect coding for the single factor repeated measures
regression GLM

S Y X1 X2 X3 X4 X5 X6 X7 X8 X9

s1 7 1 0 0 0 0 0 0 1 0
s2 3 0 1 0 0 0 0 0 1 0
s3 6 0 0 1 0 0 0 0 1 0
s4 6 0 0 0 1 0 0 0 1 0
s5 5 0 0 0 0 1 0 0 1 0
s6 8 0 0 0 0 0 1 0 1 0
s7 6 0 0 0 0 0 0 1 1 0
s8 7 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 0
s1 7 1 0 0 0 0 0 0 0 1
s2 11 0 1 0 0 0 0 0 0 1
s3 9 0 0 1 0 0 0 0 0 1
s4 11 0 0 0 1 0 0 0 0 1
s5 10 0 0 0 0 1 0 0 0 1
s6 10 0 0 0 0 0 1 0 0 1
s7 11 0 0 0 0 0 0 1 0 1
s8 11 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 1
s1 8 1 0 0 0 0 0 0 ÿ1 0
s2 14 0 1 0 0 0 0 0 ÿ1 0
s3 10 0 0 1 0 0 0 0 ÿ1 0
s4 11 0 0 0 1 0 0 0 ÿ1 0
s5 12 0 0 0 0 1 0 0 ÿ1 0
s6 10 0 0 0 0 0 1 0 ÿ1 0
s7 11 0 0 0 0 0 0 1 ÿ1 0
s8 12 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0
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factor repeated measures experimental design GLM described by equation

(4.12) is constructed. This regression GLM employs only those variables

representing the subjects (variables X 1 to X 7) as predictors. As subject and

experimental condition variables are orthogonal, the predictor variable regres-

sion coef®cients, their standard deviations, the standardized regression coef®-

cients, and the signi®cance tests (t- and p-values) of the regression coef®cients

provided by this analysis are identical to those presented in Table 4.13. There-

fore, the main interest is in the ANOVA summary table (Table 4.15). This

presents the residual SS for the reduced single factor repeated measures

experimental design GLM. (As the residual SS contains both SS for experi-

mental conditions and SS error, the F-test is irrelevant.)

Table 4.13 Output pertinent to multiple regression equation for effect
coding

Variable Coef®cient Std error Std coef t p (2 tail)

Constant 9 0.336 , 0.001 26.762 , 0.001
X1 ÿ1.667 1.654 ÿ0.319 ÿ1.008 0.329
X2 0.333 1.654 0.064 0.202 0.843
X3 ÿ0.667 1.654 ÿ0.128 ÿ0.403 0.692
X4 0.333 1.654 0.064 0.202 0.843
X5 , 0.001 1.654 , 0.001 , 0.001 1.000
X6 0.333 1.654 0.064 0.202 0.843
X7 0.333 1.654 0.064 0.202 0.843
X8 ÿ3.000 0.476 ÿ0.937 ÿ6.308 , 0.001
X9 1.000 0.476 0.312 2.103 0.054

Table 4.14 ANOVA summary table for subject and experimental
condition effect regression

R: 0.877 R squared: 0.768 Adjusted R squared: 0.619

Source SS df Mean square F p

Regression 126.000 9 14.000 5.158 0.003
Residual 38.000 14 2.714

Table 4.15 ANOVA summary table for subject effect regression

R: 0.292 R squared: 0.085 Adjusted R squared: 0.000

Source SS df Mean square F p

Regression 14.000 7 2.000 0.213 0.977
Residual 150.000 16 9.375
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The experimental condition effect now can be estimated by subtracting the

full GLM residual from the reduced GLM residual:

SS error for reduced regression GLM � 150.000

SS error for full regression GLM � 38.000

SS error reduction due to experimental conditions � 112.000

Putting this information and the corresponding dfs in Table 4.16 essentially

recasts Table 4.14, but separates the regression SS and dfs into experimental

condition SS and dfs, and subject SS and dfs.

Repeated measures ANOVA also may be implemented by a regression GLM

which uses a single criterion scaled variable, rather than (N ÿ 1) variables, to

accommodate the subject effect (e.g. Pedhazur, 1997). One advantage of this

approach is the reduction in predictors required, especially with larger numbers

of participants. This was particularly useful when statistical software was limited

in the number of predictor variables that could be accommodated in a regression

analysis. However, this is no longer a serious concern, as the capability of most

statistical software now far exceeds the demands likely to be made by most

repeated measures designs.

Table 4.16 ANOVA summary table for single factor repeated
measures ANOVA

Source SS df Mean square F p

Subjects 14.000 7 2.000
Experimental conditions 112.000 2 56.000 20.634 , 0.001
Error 38.000 14 2.714
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5 GLM APPROACHES TO FACTORIAL
REPEATED MEASURES DESIGNS

5.1 Factorial related measures designs

There are two sorts of factorial repeated measures designs. There are factorial

designs where repeated measures ®ll the levels of all factors. In these fully

related factorial designs, each subject provides scores in every condition de®ned

by the factor combinations. The second sort of factorial repeated measures

design includes one or more independent factors along with one or more

repeated measures factors. In psychology, these may be termed mixed designs,

as both independent and related factors are included, or split-plot designs.

However, it is worth noting that in the statistical literature, the label `̀ mixed

design'' refers to any design with a random factor and not just related factor

designs. The name `̀ split-plot design'' re¯ects the design origins in agricultural

research, where a plot of land was split into parts which received different

treatments. Two factor fully related and mixed designs will be considered here.

These designs are presented schematically in Table 5.1.

Table 5.1 Two factor fully related and mixed designs

Factor A a1 a2

Factor B b1 b2 b3 b1 b2 b3

s1 s1 s1 s1 s1 s1
s2 s2 s2 s2 s2 s2
. . . . . . . . . . . . . . . . . .

s8 s8 s8 s8 s8 s8

A two factor (2 3 3) fully related design

Factor A a1 a2

Factor B b1 b2 b3 b1 b2 b3

s1 s1 s1 s9 s9 s9
s2 s2 s2 s10 s10 s10
. . . . . . . . . . . . . . . . . .

s8 s8 s8 s16 s16 s16

A two factor (2 3 3) mixed design



Given the advantages of factorial and related measures designs, it is not

surprising that related factors designs are popular in psychological research.

However, the need to implement appropriate controls for order effects remains.

In fully related factorial designs generally, where the subjects provide scores

under all experimental conditions, there are a greater number of order permuta-

tions, so a more extensive implementation of order controls is required. Mixed

designs are more popular, probably because they provide the ef®ciency of

related designs, but do not require subjects to experience as many conditions as

a fully related design. In turn, as subjects experience fewer experimental

conditions, the potential for order effect problems is reduced and so is the effort

required to control the order of experimental conditions. Mixed designs also

lend themselves to the study of different groups of subjects over time (e.g. Hand

& Crowder, 1996).

5.2 The fully related factorial design GLM

As with all factorial designs, there are a greater number of main and interaction

effects in related factorial designs compared with related single factor designs.

However, with fully related factorial designs, there is also an increase in the

number of `̀ error'' terms. In fact, there is a separate `̀ error'' term for each ®xed

experimental factor and interaction between ®xed experimental factors and as

with single factor designs, each of these `̀ error'' terms actually comprises error

plus the interaction between the subjects factor and the factor(s) assessed.

The GLM for a fully related two factor ANOVA is described by the equation,

Yijk � ì� ði � á j � âk � (ðá)ij � (ðâ)ik � (áâ) jk � åijk (5:1)

where Yijk is the dependent variable score for the ith subject at the jth level of

Factor A and the kth level of Factor B, ì is the constant representing the

dependent variable score free of the effect of any experimental condition, ði is a

parameter representing the random effect of the ith subject, á j is the effect of

the jth level of Factor A, âk is the effect of the kth level of Factor B, (ðá)ij is the

effect of the interaction between the ith subject and the jth level of Factor A,

(ðâ)ik is the effect of the interaction between the ith subject and the kth level of

Factor B, (áâ) jk is the interaction effect of the jth level of Factor A and the kth

level of Factor B, and as always, åijk represents the random error associated with

the ith subject in the jth level of Factor A and the kth level of Factor B.

As with single factor repeated measures designs, due to there being only one

score per subject per experimental condition, the error term and the interaction

between the two experimental factors and subjects cannot be separated, and so

åijk is written more accurately as [(ðáâ)ijk � åijk]. In fully related factorial

designs, the error term åijk is used to assess only the effect of the interaction

between the two ®xed experimental factors. As described with respect to the

single factor repeated measures design, when a single random factor is included

in a model with ®xed effects and the ®xed effects are to be tested, limiting the

interaction of the pertinent ®xed factor(s) and the random factor to zero provides
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an appropriate error term. In this fully related factorial design, the term

representing the interaction of the ®xed factors A and B is to be tested, while the

only random factor represents the in¯uence of the subjects. Therefore, setting

the [(ðáâ)ijk] interaction to zero simply by omitting this term from the GLM

provides an appropriate error term to assess the interaction between the two

®xed experimental factors A and B.

This may seem to leave the main effects of Factors A and B without a

denominator error term for the F-test. However, in the fully related factorial

design, the variation associated with the interaction between Factor A and

subjects [(ðá)ij] is used to assess the effect of the Factor A manipulation, while

the variation associated with the interaction between Factor B and subjects

[(ðâ)ik] is used to assess the effect of the Factor B manipulation (see Howell,

1997, for F-test numerator and denominator expected mean squares). As in the

single factor repeated measures design, using these variation estimates to assess

the main effects of Factors A and B also makes intuitive sense. In both instances,

the interactions represent the extent to which the factor effect is not consistent

across different subjects and the greater this inconsistency is in relation to the

factor effect, the less likely is the factor effect to be reliable.

Consider the experiment presented in Chapter 3. Here, a fully related factorial

design would not be appropriate. If subjects had to switch between `̀ memoriz-

ing'' the words and constructing stories from the words and imagining the story

events, it is likely that the story construction/imagery strategy would be used in

the `̀ memorize'' conditions, with the result that the distinction between these

factor levels would diminish. Nevertheless, for the sake of illustrating the

analysis of a fully related factorial design, imagine the data in Table 5.2 had

been obtained from just 8 subjects participating in all conditions.

Table 5.2 Experimental data from a fully related two (2 3 3) factor design

Encoding instructions
a1 a2

Memorize Story and image
Study time (s) Study time (s)

b1 b2 b3 b1 b2 b3 Subject
30 60 180 30 60 180 means

s1 7 7 8 16 16 24 13.000
s2 3 11 14 7 10 29 12.333
s3 6 9 10 11 13 10 9.833
s4 6 11 11 9 10 22 11.500
s5 5 10 12 10 10 25 12.000
s6 8 10 10 11 14 28 13.500
s7 6 11 11 8 11 22 11.500
s8 7 11 12 8 12 24 12.333

Expt condition
means

6 10 11 10 12 23 12
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As was described for the single factor repeated measures design, the manner

of calculating experimental condition effects remains the same as in independent

measures designs, emphasizing that repeated measures designs have conse-

quence only for error estimates. Therefore, as the estimates of ì, and the á j, âk

and (áâ) jk effects are de®ned just as for the independent measures factorial

design, their de®nitions will not be repeated here.

The mean of the scores provided by each subject is

ì̂i �
P p

j�1

Pq

k�1Yij

pq

 !
(5:2)

and so the subject effects are,

ð̂i � ìi ÿ ì (5:3)

Applying formula (5.3) to the data in Table 5.2 provides

ð̂1 � 13:000ÿ 12 � 1:000

ð̂2 � 12:333ÿ 12 � 0:333

ð̂3 � 9:833ÿ 12 � ÿ2:167

ð̂4 � 11:500ÿ 12 � ÿ0:500

ð̂5 � 12:000ÿ 12 � 0:000

ð̂6 � 13:500ÿ 12 � 1:500

ð̂7 � 11:500ÿ 12 � ÿ0:500

ð̂8 � 12:333ÿ 12 � 0:333XN

i�1

ð̂i � 0:000

The subject SS is given by

SSsubjects � pq
XN

i�1

(ìi ÿ ì)2

� 6[(1:0002)� (0:3332)� (ÿ2:1672)� (ÿ0:5002)

� (02)� (1:5002)� (ÿ0:5002)� (0:3332)]

SSsubjects � 52:008

The subject 3 Factor A interaction effects are de®ned by

(ðá)ij � ìij ÿ (ì� ði � á j) (5:4)

which reveals each interaction effect to be the extent to which each subject mean

within each level of Factor A diverges from the additive pattern of subject and

Factor A main effects. Applying formula (5.4) to the data in Table 5.2 provides
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(ðá)1,1 � 7:333ÿ (12:000� 1:000ÿ 3) � ÿ2:667

(ðá)2,1 � 9:333ÿ (12:000� 0:333ÿ 3) � 0:000

(ðá)3,1 � 8:333ÿ (12:000ÿ 2:167ÿ 3) � 1:500

(ðá)4,1 � 9:333ÿ (12:000ÿ 0:500ÿ 3) � 0:833

(ðá)5,1 � 9:000ÿ (12:000� 0:000ÿ 3) � 0:000

(ðá)6,1 � 9:333ÿ (12:000� 1:500ÿ 3) � ÿ1:167

(ðá)7,1 � 9:333ÿ (12:000ÿ 0:500ÿ 3) � 0:833

(ðá)8,1 � 10:000ÿ (12:000� 0:333ÿ 3) � 0:667

(ðá)8,2 � 14:667ÿ (12:000� 0:333� 3) � ÿ0:666

(ðá)1,2 � 18:667ÿ (12:000� 1:000� 3) � 2:667

(ðá)2,2 � 15:333ÿ (12:000� 0:333� 3) � 0:000

(ðá)3,2 � 11:333ÿ (12:000ÿ 2:167� 3) � ÿ1:500

(ðá)4,2 � 13:667ÿ (12:000ÿ 0:500� 3) � ÿ0:833

(ðá)5,2 � 15:000ÿ (12:000� 0:000� 3) � 0:000

(ðá)6,2 � 17:667ÿ (12:000� 1:500� 3) � 1:167

(ðá)7,2 � 13:667ÿ (12:000ÿ 0:500� 3) � ÿ0:833XN

i�1

(ðá)ij � 0:000

The subject 3 Factor A SS is given by

SSsubjects 3 Factor A � q
XN

i�1

[ìij ÿ (ì� ði � á j)
2] (5:5)

or alternatively,

SSsubjects 3 Factor A � q
XN

i�1

(ðá)2

ij
(5:6)

Therefore,

SSsubjects 3 Factor A � 3[(ÿ2:6672)� (02)� (1:5002)� (0:8332)� (02)� (ÿ1:1672)

� (0:8332)� (0:6672)� (2:6672)� (02)� (ÿ1:5002)

� (ÿ0:8332)� (02)� (1:1672)� (ÿ0:8332)� (ÿ0:6662)]

SSsubjects 3 Factor A � 75:333

Similarly, the subject 3 Factor B interaction effects are de®ned by

(ðâ)ik � ìik ÿ (ì� ði � âk) (5:7)

which reveals each interaction effect to be the extent to which each subject mean
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within each level of Factor B diverges from the additive pattern of subject and

Factor B main effects. Applying formula (5.5) to the data in Table 5.2 provides

(ðâ)1,1 � 11:500ÿ (12:000� 1:000ÿ 4) � 2:500

(ðâ)2,1 � 5:000ÿ (12:000� 0:333ÿ 4) � ÿ3:333

(ðâ)3,1 � 8:500ÿ (12:000ÿ 2:167ÿ 4) � 2:667

(ðâ)4,1 � 7:500ÿ (12:000ÿ 0:500ÿ 4) � 0:000

(ðâ)5,1 � 7:500ÿ (12:000� 0:000ÿ 4) � ÿ0:500

(ðâ)6,1 � 8:500ÿ (12:000� 1:500ÿ 4) � ÿ1:000

(ðâ)7,1 � 7:000ÿ (12:000ÿ 0:500ÿ 4) � ÿ0:500

(ðâ)8,1 � 7:500ÿ (12:000� 0:333ÿ 4) � ÿ0:833

(ðâ)1,2 � 11:500ÿ (12:000� 1:000ÿ 1) � ÿ0:500

(ðâ)2,2 � 10:500ÿ (12:000� 0:333ÿ 1) � ÿ0:833

(ðâ)3,2 � 11:000ÿ (12:000ÿ 2:167ÿ 1) � 2:167

(ðâ)4,2 � 10:500ÿ (12:000ÿ 0:500ÿ 1) � 0:000

(ðâ)5,2 � 10:000ÿ (12:000� 0:000ÿ 1) � ÿ1:000

(ðâ)6,2 � 12:000ÿ (12:000� 1:500ÿ 1) � ÿ0:500

(ðâ)7,2 � 11:000ÿ (12:000ÿ 0:500ÿ 1) � 0:500

(ðâ)8,2 � 11:500ÿ (12:000� 0:333ÿ 1) � 0:167

(ðâ)1,3 � 16:000ÿ (12:000� 1:000� 5) � ÿ2:000

(ðâ)2,3 � 21:500ÿ (12:000� 0:333� 5) � 4:167

(ðâ)3,3 � 10:000ÿ (12:000ÿ 2:167� 5) � ÿ4:833

(ðâ)4,3 � 16:500ÿ (12:000ÿ 0:500� 5) � 0:000

(ðâ)5,3 � 18:500ÿ (12:000� 0:000� 5) � 1:500

(ðâ)6,3 � 19:000ÿ (12:000� 1:500� 5) � 0:500

(ðâ)7,3 � 16:500ÿ (12:000ÿ 0:500� 5) � 0:000

(ðâ)8,3 � 18:000ÿ (12:000� 0:333� 5) � 0:667XN

i�1

(ðâ)ik � 0:000

The subject 3 Factor B SS is given by

SSsubjects 3 Factor B � p
XN

i�1

[ìik ÿ (ì� ði � âk)2] (5:8)

or alternatively,
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SSsubjects 3 Factor B � p
XN

i�1

(ðâ)2

ik (5:9)

SSsubjects 3 Factor B � 2[(2:5002)� (ÿ3:3332)� (2:6672)� (02)� (ÿ0:5002)

� (ÿ1:0002)� (ÿ0:5002)� (ÿ0:8332)� (ÿ0:5002)

� (ÿ0:8332)� (2:1672)� (02)� (ÿ1:0002)� (ÿ0:5002)

� (0:5002)� (0:1672)� (ÿ2:0002)� (4:1672)� (ÿ4:8332)

� (02)� (1:5002)� (0:5002)� (02)� (0:6672)]

SSsubjects 3 Factor B � 161:000

Based on the model component of the fully related two factor experimental

design GLM equation, predicted scores are given by

Ŷijk � ì� ði � á j � âk � (ðá)ij � (ðâ)ik � (áâ) jk (5:10)

Using the parameter estimates in this formula provides the predicted scores per

subject per experimental condition.

The ®nal parameters for the fully related two factor experimental design

GLM, the error terms, which represent the discrepancy between the actual

scores observed (Table 5.2) and the scores predicted by the two factor GLM

(Table 5.3), are de®ned as

åijk � Yijk ÿ Ŷijk (5:11)

The error terms, obtained by subtracting the predicted scores in Table 5.3 from

the observed scores in Table 5.2, are presented by subject and experimental

condition in Table 5.4.

Degrees of freedom are required next. For the subject effect,

dfssubject � N ÿ 1

Table 5.3 Predicted scores for the fully related two (2 3 3) factor
experiment

a1 a2

b1 b2 b3 b1 b2 b3

s1 6.833 7.833 7.333 16.167 15.167 24.667
s2 3.000 9.500 15.500 7.000 11.500 27.500
s3 8.000 11.500 5.500 9.000 10.500 14.500
s4 6.333 10.333 11.333 8.667 10.667 21.667
s5 5.500 9.000 12.500 9.500 11.000 24.500
s6 6.333 9.833 11.833 12.667 14.167 26.167
s7 5.833 10.833 11.333 8.167 11.167 21.667
s8 6.167 11.167 12.667 8.833 11.833 23.333
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This re¯ects how the subject effect is calculated from the deviation of N means

from ì, which is the mean of these N means. Therefore, as described before,

only (N ÿ 1) of the component means are free to vary. As the subject factor has

N levels, clearly the subject 3 Factor A interaction effect,

df subject 3 Factor A � (N ÿ 1)( pÿ 1)

and the subject 3 Factor B interaction effect,

df subject 3 Factor B � (N ÿ 1)(qÿ 1)

follow the same rationale as for any interaction dfs. For error dfs, a separate

mean is employed in each experimental condition, so a df is lost from the N

scores of each condition. However, a separate mean is employed to describe

every set of p scores a subject provides, so for every set of p scores a df is lost,

and similarly, a separate mean is employed to describe every set of q scores a

subject provides, so for every set of q scores a df is lost. Therefore,

df error � (N ÿ 1)( pÿ 1)(qÿ 1)

Placing each of the SS estimates just calculated, along with the SS for the

experimental Factors A and B calculated in Chapter 3 and the dfs, into an

ANOVA summary table gives Table 5.5.

5.3 Estimating effects by comparing full and reduced
fully related factorial experimental design GLMs

The full experimental design GLM for the fully related two factor ANOVA was

described by equation (5.1). As with the independent factors ANOVA estimated

Table 5.4 Error terms for the fully related two (2 3 3) factor experiment

a1 a2

b1 b2 b3 b1 b2 b3

s1 0.167 ÿ0.833 0.667 ÿ0.167 0.833 ÿ0.667
s2 ÿ0.000 1.500 ÿ1.500 0.000 ÿ1.500 1.500
s3 ÿ2.000 ÿ2.500 4.500 2.000 2.500 ÿ4.500
s4 0.333 0.667 ÿ0.333 0.333 ÿ0.667 0.333
s5 ÿ0.500 1.000 ÿ0.500 0.500 ÿ1.000 0.500
s6 1.667 0.167 ÿ1.833 ÿ1.667 ÿ0.167 1.833
s7 0.167 0.167 ÿ0.333 ÿ0.167 ÿ0.167 0.333
s8 0.833 ÿ0.167 ÿ0.667 ÿ0.833 0.167 0.667

XN

i�1

å2
ijk 7.889 10.722 27.223 7.889 10.723 27.222

XN

i�1

Xp

j�1

Xq

k�1

å2
ijk 91.668
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by comparing full and reduced experimental design GLMs, the hypotheses

concerning the main effect of Factor A, the main effect of Factor B and the

effect of the interaction between Factors A and B may be assessed by construct-

ing three reduced GLMs, which manifest data descriptions under the respective

null hypotheses, and comparing their error components with the full model.

Again this approach is simpli®ed by virtue of all the subject, experimental

factors and their interactions being orthogonal. As the effect estimates are

completely distinct, omitting or including any particular effect has no conse-

quence for the estimates of the other effects.

The main effect of Factor A is assessed by constructing the reduced

experimental design GLM,

Yijk � ì� ði � âk � (ðá)ij � (ðâ)ik � (áâ) jk � åijk (5:12)

This model manifests the null hypothesis that the p levels of Factor A do not

in¯uence the data. More formally this is expressed as

á j � 0 (5:13)

The main effect of Factor B is assessed by constructing the reduced experi-

mental design GLM:

Yijk � ì� ði � á j � (ðá)ij � (ðâ)ik � (áâ) jk � åijk (5:14)

This model manifests the null hypothesis that the q levels of Factor B do not

in¯uence the data. Expressed more formally this is

âk � 0 (5:15)

Finally, the reduced GLM for assessing the effect of the interaction between

Factors A and B is

Yijk � ì� ði � á j � âk � (ðá)ij � (ðâ)ik � åijk (5:16)

This reduced GLM manifests the data description under the null hypothesis that

Table 5.5 Fully related two factor ANOVA summary table

Source Sum of squares df Mean square F p

Subjects (S) 52.000 7 7.429

A (Encoding Instructions) 432.000 1 432.000 40.141 , 0.001

S 3 A 75.333 7 10.762

B (Study time) 672.000 2 336.000 29.217 , 0.001

S 3 B 161.00 14 11.500

A 3 B (Encode inst 3 study time) 224.000 2 112.000 17.105 , 0.001

Error 91.668 14 6.548
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the interaction between levels of Factors A and B do not in¯uence the data and

is expressed more formally as

(áâ) jk � 0 (5:17)

Nevertheless, when fully related two factor ANOVAs are carried out by hand,

the strategy of comparing different experimental design GLM residuals is very

laborious, as there are so many reduced experimental design GLMs. In addition

to the full experimental design GLM error term, reduced experimental design

GLM error terms have to be calculated for each of the effects (A, B and AB),

and then further reduced experimental design GLMs must be constructed to

obtain the error terms for the main effect of Factor A (S 3 A), the main effect of

Factor B (S 3 B) and the interaction effect (the error term which also re¯ects

S 3 A 3 B). Therefore, when hand calculations are employed, instead of

calculating the error SS associated with each of these reduced experimental

design GLMs and comparing them with the full experimental design GLM, it is

more ef®cient to calculate directly the SS for each of the effects and errors.

Formulae for calculating all of the fully related two factor ANOVA effects

directly, which are more convenient than those used to de®ne and illustrate the

SS calculation, are provided in Table 5.6. However, the strategy of estimating

fully related ANOVA effects by comparing different GLM residuals is relatively

easy to achieve using regression GLMs.

Table 5.6 Formulae for the (balanced) fully related two
factor ANOVA effects

Effect Formulae

Subject pq
XN

i�1

(Yi ÿ YG )2

A qN
Xp

j�1

(Y j ÿ YG )2

S 3 A q
XN

i�1

Xp

j�1

(Yij ÿ Yi ÿ Y j � YG )2

B pN
Xq

k�1

(Yk ÿ YG )2

S 3 B p
XN

i�1

Xq

k�1

(Yik ÿ Yi ÿ Y j � YG )2

A 3 B N
Xp

j�1

Xq

k�1

(Yik ÿ Y j ÿ Yk � YG )2

Error
XN

i�1

Xp

j�1

Xq

k�1

(Yijk ÿ Yij ÿ Yik ÿ Y jk � Yi � Y j � Yk ÿ YG )2
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5.4 Regression GLMs for the fully related factorial
ANOVA

The fully related (2 3 3) factor experimental design GLM equation (5.1) may be

compared with the equivalent regression equation,

Yi � â0 � â1 X i,1 � â2 X i,2 � â3 X i,3 � â4 X i,4 � â5 X i,5 � â6 X i,6 � â7 X i,7

� â8 X i,8 � â9 X i,9 � â10 X i,10 � â11 X i,11 � â12 X i,12 � â13 X i,13 � â14 X i,14

� â15 X i,15 � â16 X i,16 � â17 X i,17 � â18 X i,18 � â19 X i,19 � â20 X i,20 � â21 X i,21

� â22 X i,22 � â23 X i,23 � â24 X i,24 � â25 X i,25 � â26 X i,26 � â27 X i,27 � â28 X i,28

� â29 X i,29 � â30 X i,30 � â31 X i,31 � â32 X i,32 � â33 X i,33 � åi (5:18)

where Yi represents the ith dependent variable score (not the ith subject), â0 is a

constant, â1 is the regression coef®cient for the predictor variable X 1 and â2 is

the regression coef®cient for the predictor variable X 2, etc. As with the single

factor repeated measures regression GLM, there are 7 variables which represent

scores from individual subjects (X 1 to X 7), 3 variables which represent experi-

mental factors (X 8 to X 10) and 21 variables which represent interactions between

the subjects and the experimental factors (X 11 to X 31) and ®nally, 2 variables

which represent the interaction between the experimental factors (X 32, X 33).

Clearly, equation (5.18) is unwieldy and the earlier mention of the prolifera-

tion of predictor variables required for repeated measures designs can be

appreciated. Nevertheless, once the effect coding scheme has been established

in a computer data ®le, it is relatively simple to carry out the fully related

factorial ANOVA. Effect coding applied to the data in Table 5.2 is presented in

Table 5.7.

Applying a regression GLM to implement a fully related factors ANOVA may

be done in a manner consistent with estimating effects by comparing full and

reduced GLMs. As all of the variables representing effects are orthogonal in a

balanced design, the order in which SSs are calculated is of no consequence.

The ®rst regression carried out is that for the full fully related factorial

experimental design GLM, when all subject and experimental condition pre-

dictor variables are included (i.e. variables X 1 to X 33). Although information

about each of the predictor variables will be provided by linear regression

software, as most of the experimental design effects are represented by two or

more regression predictor variables, information about the individual predictor

coef®cients, etc. generally is of little interest. Of much more interest is the

ANOVA summary presented in Table 5.8, which provides the full GLM residual

SS. This may be compared with the fully related factorial experimental design

GLM error term in Table 5.5.

Having obtained the full GLM residual SS, the next stages involve the

implementation of the various reduced GLMs to obtain their estimates of

residual SS. The reduced GLM for the effect of the subjects factor is obtained
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Table 5.7 Effect coding for a fully related two factor (2 3 3) experimental design

S A B S 3 A S 3 B A 3 B

s Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33

s1 7 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
s2 3 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
s3 6 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
s4 6 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
s5 5 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
s6 8 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
s7 6 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
s8 7 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 1 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 0 1 0
s1 7 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
s2 11 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
s3 9 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
s4 11 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
s5 10 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
s6 10 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
s7 11 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
s8 11 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 0 1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 1
s1 8 1 0 0 0 0 0 0 1 ÿ1 ÿ1 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 ÿ1
s2 14 0 1 0 0 0 0 0 1 ÿ1 ÿ1 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 ÿ1 ÿ1
s3 10 0 0 1 0 0 0 0 1 ÿ1 ÿ1 0 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 ÿ1 ÿ1
s4 11 0 0 0 1 0 0 0 1 ÿ1 ÿ1 0 0 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 ÿ1 ÿ1
s5 12 0 0 0 0 1 0 0 1 ÿ1 ÿ1 0 0 0 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 ÿ1 ÿ1
s6 10 0 0 0 0 0 1 0 1 ÿ1 ÿ1 0 0 0 0 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 ÿ1 ÿ1
s7 11 0 0 0 0 0 0 1 1 ÿ1 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1
s8 12 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ÿ1 ÿ1
s1 16 1 0 0 0 0 0 0 ÿ1 1 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ÿ1 0
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Table 5.7 (continued )

S A B S 3 A S 3 B A 3 B

s Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33

s2 7 0 1 0 0 0 0 0 ÿ1 1 0 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ÿ1 0
s3 11 0 0 1 0 0 0 0 ÿ1 1 0 0 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ÿ1 0
s4 9 0 0 0 1 0 0 0 ÿ1 1 0 0 0 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ÿ1 0
s5 10 0 0 0 0 1 0 0 ÿ1 1 0 0 0 0 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ÿ1 0
s6 11 0 0 0 0 0 1 0 ÿ1 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ÿ1 0
s7 8 0 0 0 0 0 0 1 ÿ1 1 0 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ÿ1 0
s8 8 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 0 1 1 1 1 1 1 1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 0 ÿ1 0
s1 16 1 0 0 0 0 0 0 ÿ1 0 1 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ÿ1
s2 10 0 1 0 0 0 0 0 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ÿ1
s3 13 0 0 1 0 0 0 0 ÿ1 0 1 0 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ÿ1
s4 10 0 0 0 1 0 0 0 ÿ1 0 1 0 0 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ÿ1
s5 10 0 0 0 0 1 0 0 ÿ1 0 1 0 0 0 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ÿ1
s6 14 0 0 0 0 0 1 0 ÿ1 0 1 0 0 0 0 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ÿ1
s7 11 0 0 0 0 0 0 1 ÿ1 0 1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ÿ1
s8 12 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 ÿ1
s1 24 1 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 1 1
s2 29 0 1 0 0 0 0 0 ÿ1 ÿ1 ÿ1 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 1 1
s3 10 0 0 1 0 0 0 0 ÿ1 ÿ1 ÿ1 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 1 1
s4 22 0 0 0 1 0 0 0 ÿ1 ÿ1 ÿ1 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 1 1
s5 25 0 0 0 0 1 0 0 ÿ1 ÿ1 ÿ1 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 1 1
s6 28 0 0 0 0 0 1 0 ÿ1 ÿ1 ÿ1 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 1 1
s7 22 0 0 0 0 0 0 1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 0 0 0 0 0 0 ÿ1 1 1
s8 24 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9
0

IN
TRO

D
U

C
IN

G
A

N
O

VA
A

N
D

A
N

C
O

VA
:A

G
LM

A
PPRO

A
C

H



by carrying out the regression analysis again but omitting the predictors

representing the subjects ± variables X 1 to X 7. The summary of this ANOVA,

presented in Table 5.9, provides the subjects reduced GLM residual SS. There-

fore,

dfs

Subjects factor reduced GLM residual SS � 143.667 21

Full GLM residual SS � 91.667 14

SS attributable to subjects factor � 52.000 7

Next, the Reduced GLM for the effect of Factor A is applied by omitting only

the predictor representing the Factor A experimental conditions ± variable X 8.

The summary of this ANOVA, presented in Table 5.10, provides the Factor A

reduced GLM residual SS.

Table 5.8 ANOVA summary table for the full fully related factorial
experimental design GLM (subjects and experimental condition effects
regression)

R: 0.973 R squared: 0.946 Adjusted R squared: 0.820

Source SS df Mean square F p

Regression 1616.333 33 48.980 7.481 , 0.001
Residual 91.667 14 6.548

Table 5.9 ANOVA summary table for the reduced GLM which omits
the subjects factor

R: 0.957 R squared: 0.916 Adjusted R squared: 0.812

Source SS df Mean Square F p

Regression 1564.333 26 60.167 8.795
Residual 143.667 21 6.841

Table 5.10 ANOVA summary table for the reduced GLM which
omits the Factor A experimental conditions

R: 0.833 R squared: 0.693 Adjusted R squared: 0.039

Source SS df Mean square F p

Regression 1184.333 32 37.010 1.060 0.470
Residual 523.667 15 34.911
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Therefore,

dfs

Factor A reduced GLM residual SS � 523.667 15

Full GLM residual SS � 91.667 14

SS attributable to Factor A � 432.000 1

Next, the subjects 3 Factor A Reduced GLM is applied by omitting only the

predictors representing the subjects 3 Factor A interaction ± variables X 11 to

X 17. The summary of this ANOVA, presented in Table 5.11, provides the

subject 3 Factor A reduced GLM residual SS. Therefore,

dfs

Subject 3 Factor A interaction reduced GLM residual SS � 167.000 21

Full GLM residual SS � 91.667 14

SS attributable to subject 3 Factor A interaction � 75.333 7

Next, the Factor B reduced GLM is applied by omitting only the predictors

representing the Factor B experimental conditions ± variables X 9 and X 10. The

summary of this ANOVA, presented in Table 5.12, provides the Factor B

reduced GLM residual SS. Therefore,

Table 5.12 ANOVA summary table for the reduced GLM which
omits the Factor B experimental conditions

R: 0.744 R squared: 0. 553 Adjusted R squared: 0.000

Source SS df Mean square F p

Regression 944.333 31 30.462 0.638 0.862
Residual 763.667 16 47.729

Table 5.11 ANOVA summary table for the reduced GLM which
omits the subject 3 Factor A interaction

R: 0.950 R squared: 0.902 Adjusted R squared: 0.781

Source SS df Mean square F p

Regression 1541.000 26 59.269 7.453 , 0.001
Residual 167.000 21 7.952
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dfs

Factor B reduced GLM residual SS � 763.667 1

Full GLM residual SS � 91.667 14

SS attributable to Factor B � 672.000 2

Next, the subjects 3 Factor B reduced GLM is applied by omitting only the

predictors representing the subjects 3 Factor B interaction ± variables X 18 to

X 31. The summary of this ANOVA, presented in Table 5.13, provides the

subject 3 Factor B reduced GLM residual SS. Therefore,

dfs

Subject 3 Factor B interaction reduced GLM residual SS � 252.667 28

Full GLM residual SS � 91.667 14

SS attributable to subject 3 Factor B interaction � 161.000 14

Next, the Factor A 3 Factor B interaction reduced GLM is applied by

omitting only the predictors representing the Factor A 3 Factor B interaction ±

variables X 32 and X 33. The summary of this ANOVA, presented in Table 5.14,

provides the Factor A 3 Factor B reduced GLM residual SS. Therefore,

dfs

Factors A 3 B interaction reduced GLM residual SS � 315.667 16

Full GLM residual SS � 91.667 14

SS attributable to Factor A 3 Factor B interaction � 224.000 2

Table 5.14 ANOVA summary table for the reduced GLM which
omits the Factor A 3 Factor B interaction

R: 0.903 R squared: 0.815 Adjusted R squared: 0.457

Source SS df Mean square F p

Regression 1392.333 31 44.914 2.277 0.042
Residual 315.667 16 19.729

Table 5.13 ANOVA summary table for the reduced GLM which
omits the subject 3 Factor B interaction

R: 0.925 R squared: 0.852 Adjusted R squared: 0.752

Source SS df Mean square F p

Regression 1455.333 19 76.596 8.488 , 0.001
Residual 252.667 28 9.024
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Using the SS and dfs calculated for each effect by comparing full and reduced

GLMs, the ANOVA summary table (Table 5.5) can be reconstructed.

5.5 Mixed factorial ANOVA

Consider again the experiment presented in Chapter 3. Here, a mixed factorial

design, with an independent experimental factor and a related experimental

factor, would be a good choice of design. By having different groups of subjects

receive `̀ memorize'' and `̀ story/image'' instructions, the problem of subjects in

`̀ memorize'' conditions employing a `̀ story/image'' strategy is minimized. Table

5.15 presents the data from the two factor experiment described in Chapter 3

cast as if it had been obtained with a two factor mixed design.

The GLM for the mixed two factor ANOVA is described by the equation

Yijk � ì� ði( j) � á j � âk � (áâ) jk � åijk (5:19)

where Yijk is the dependent variable score for the ith subject at the jth level of

Factor A and the kth level of Factor B, ì is the constant representing the

dependent variable score free of the effect of any experimental condition, ði( j) is

a parameter representing the random effect of the ith subject in the jth level of

Factor A, á j is the effect of the jth level of Factor A, âk is the effect of the kth

level of Factor B, (áâ) jk is the interaction effect of the jth level of Factor A and

the kth level of Factor B, and as always, åijk represents the random error

associated with the ith subject in the jth level of Factor A and the kth level of

Factor B. The use of brackets around the subscript j indicates that these effects

Table 5.15 Experimental data from a mixed two (2 3 3) factor
design

Encoding instructions
a1 a2

Memorize Story and image

Study time (s) Study time (s)
b1 b2 b3 Subject b1 b2 b3 Subject
30 60 180 means 30 60 180 means

s1 7 7 8 7.333 s9 16 16 24 18.667
s2 3 11 14 9.333 s10 7 10 29 15.333
s3 6 9 10 8.333 s11 11 13 10 11.333
s4 6 11 11 9.333 s12 9 10 22 13.667
s5 5 10 12 9.000 s13 10 10 25 15.000
s6 8 10 10 9.333 s14 11 14 28 17.667
s7 6 11 11 9.333 s15 8 11 22 13.667
s8 7 11 12 10.000 s16 8 12 24 14.667

Expt condition
means

6 10 11 9 Expt condition
means

10 12 23 15
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involve the scores of subjects nested within the j levels of Factor A (i.e. separate

groups of subjects are employed in each of the p levels of Factor A). Although

the subjects factor is crossed with the levels of Factor B: all subjects receive all

levels of Factor B, the subjects factor is nested under the levels of Factor A, so a

different group of subjects receive each level of Factor A.

Experimental effects in mixed factorial designs are assessed using fewer error

terms than their equivalent fully related factorial designs, but more than are

employed in equivalent independent measures factorial designs. Mixed designs

may be conceived as separate related designs nested within each of the levels of

the independent factors. In the example presented in Table 5.15, the two

independent factor levels, a1 and a2, each contain a single factor repeated

measures design. As each subject again provides only one score in each level of

the related factor, it is not possible to separate the error from the subject and

related factor interaction. Therefore, the åijk term is written more accurately as

[åijk � (ðâ)ik( j)], where (ðâ)ik( j) is the interaction effect of the ith subject and the

kth level of Factor B in the jth level of Factor A. However, conceived as two

single factor repeated measures designs, it can be appreciated that this problem

and its solution are analogous to that discussed with respect to both single factor

repeated measures (and also fully related factorial) designs. Indeed, the error

term based on åijk is a weighted average of the two single factor repeated

measures error terms, each weighted by (Nj ÿ 1), so in balanced designs åijk is

just the average of the two single factor repeated measures error terms. In mixed

designs therefore, the pertinent error term for the related factor main effect is

åijk . Moreover, because subjects are nested within, not crossed with, the

independent factor levels, there is no term representing the interaction between

the subjects factor and the two experimental factors (A and B). However, as the

experimental factors interaction involves comparison of the nested related factor

(B) effects across the independent factor levels, and the effect of nesting (i.e

score variance due to different groups of subjects) is accommodated by the

independent factors error term ði( j), so the experimental factors interaction is

limited to comparisons of the related Factor B effects, making (ðâ)ik( j) the

pertinent basis for the independent and related factors interaction effect.

As before, the estimates of ì, and the á j, âk and (áâ) jk effects are de®ned

just as for the independent measures factorial design and so their de®nitions will

not be repeated here. This leaves only the two error terms to be calculated. The

simplest of these is the error term used to assess the independent experimental

Factor A. This is obtained by taking the average of the scores provided by each

subject. Essentially, this eliminates the related experimental Factor B and, with

each subject providing a single (average) score and different subjects in each

level of the independent factor, produces an independent measures ANOVA.

The mean of the scores provided by each subject is

ìi( j) �
Pq

k�1
Yi( j)

q

� �
(5:20)

Therefore, the effect due to the different subjects nested within the levels of the

independent factor is
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ð̂i( j) � ìi( j) ÿ ì j (5:21)

Applying formula (5.21) to the data in Table 5.15 provides

ð̂1 � 7:333ÿ 9 � ÿ1:667 ð̂1 � 18:667ÿ 15 � 3:667

ð̂2 � 9:333ÿ 9 � 0:333 ð̂2 � 15:333ÿ 15 � 0:333

ð̂3 � 8:333ÿ 9 � ÿ0:667 ð̂3 � 11:333ÿ 15 � ÿ3:667

ð̂4 � 9:333ÿ 9 � 0:333 ð̂4 � 13:667ÿ 15 � ÿ1:333

ð̂5 � 9:000ÿ 9 � 0:000 ð̂5 � 15:000ÿ 15 � 0:000

ð̂6 � 9:333ÿ 9 � 0:333 ð̂6 � 17:667ÿ 15 � 2:667

ð̂7 � 9:333ÿ 9 � 0:333 ð̂7 � 13:667ÿ 15 � ÿ1:333

ð̂8 � 10:000ÿ 9 � 1:000 ð̂8 � 14:667ÿ 15 � ÿ0:333XN

i�1

ði( j) � 0:000
XN

i�1

ði( j) � 0:000

XN

i�1

ð2
i( j) � 4:667

XN

i�1

ð2
i( j) � 37:782

Xp

j�1

XN

i�1

ð2
i( j) � 42:449

The error SS due to the different subjects nested within the levels of the

independent factor is

subject error SS � q
Xp

j�1

XN

i�1

ð2
i( j) � 3(42:449) � 127:347 (5:22)

The last error term required is that based on the subject 3 Factor B inter-

action. Based on the model component of the fully related two factor experi-

mental design GLM equation, predicted scores are given by

Ŷijk � ì� ði( j) � á j � âk � (áâ) jk (5:23)

Inserting the parameter estimates determined earlier into this formula provides

the predicted scores per subject per experimental condition.

The ®nal parameters for the fully related two factor experimental design

GLM, the error terms, which represent the discrepancy between the actual

scores observed (Table 5.15) and the scores predicted by the two factor GLM

(Table 5.16), are de®ned as

åijk � Yijk ÿ Ŷijk (5:24)

The error terms (observed scores in Table 5.15 minus the predicted scores in

Table 5.16) are presented by subject and experimental condition in Table 5.17.
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Degrees of freedom are required next. For the error SS due to the different

subjects nested within the levels of the independent factor,

df � (N ÿ p) � (16ÿ 2) � 14

and for the error term based on åijk ,

df � (N ÿ p)(qÿ 1) � (16ÿ 2)(3ÿ 1) � 14(2) � 28

Placing these SS and dfs and the SS and dfs for the experimental effects

obtained previously in an ANOVA summary table provides Table 5.18.

Table 5.16 Predicted scores for the mixed two (2 3 3) factor
experiment

a1 a2

b1 b2 b3 b1 b2 b3

s1 4.333 8.333 9.333 s9 13.667 15.667 26.667
s2 6.333 10.333 11.333 s10 10.333 12.333 23.333
s3 5.333 9.333 10.333 s11 6.333 8.333 19.333
s4 6.333 10.333 11.333 s12 8.667 10.667 21.667
s5 6.000 10.000 11.000 s13 10.000 12.000 23.000
s6 6.333 10.333 11.333 s14 12.667 14.667 25.667
s7 6.333 10.333 11.333 s15 8.667 10.667 21.667
s8 7.000 11.000 12.000 s16 9.667 11.667 22.667

Table 5.17 Error terms for the mixed two (2 3 3) factor experiment

b1 b2 b3 b1 b2 b3

s1 2.667 ÿ1.333 ÿ1.333 s9 2.333 0.333 ÿ2.667
s2 ÿ3.333 0.667 2.667 s10 ÿ3.333 ÿ2.333 5.667
s3 0.667 ÿ0.333 ÿ0.333 s11 4.667 4.667 ÿ9.333
s4 ÿ0.333 0.667 ÿ0.333 s12 0.333 ÿ0.667 0.333
s5 ÿ1.000 0.000 1.000 s13 0.000 ÿ2.000 2.000
s6 1.667 ÿ0.333 ÿ1.333 s14 ÿ1.667 ÿ0.667 2.333
s7 ÿ0.333 0.667 ÿ0.333 s15 ÿ0.667 0.333 0.333
s8 0.000 0.000 0.000 s16 ÿ1.667 0.333 1.333

XN

i�1

å2
ijk 22.667 3.333 11.999 44.446 32.446 137.663

Xp

j�1

Xq

k�1

XN

i�1

å2
ijk 252.554
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5.6 Estimating effects by comparing full and reduced
experimental design GLMs

The full experimental design GLM for the mixed two factor ANOVA was

described by equation (5.19). As with all the previous factorial ANOVAs

calculated by comparing full and reduced experimental design GLMs, the

hypotheses concerning the main effect of Factor A, the main effect of Factor B

and the effect of the interaction between Factors A and B are assessed by

constructing three reduced GLMs, which manifest data descriptions under the

respective null hypotheses, and comparing their error components with the full

model. Again this approach is simpli®ed by virtue of all the subject, experi-

mental factors and their interactions being orthogonal. As all of the effect

estimates are completely distinct, omitting or including any particular effect has

no consequence for the effect estimates.

The main effect of Factor A is assessed by constructing the reduced

experimental design GLM,

Yijk � ì� ði( j) � âk � (áâ) jk � åijk (5:25)

This model manifests the data description under the null hypothesis,

á j � 0 (5:26)

The main effect of Factor B is assessed by constructing the reduced experi-

mental design GLM,

Yijk � ì� ði( j) � á j � (áâ) jk � åijk (5:27)

This model manifests the data description under the null hypothesis,

âk � 0 (5:28)

Finally, the reduced GLM for assessing the effect of the interaction between

Factors A and B is

Table 5.18 Mixed two factor ANOVA summary table

Source Sum of squares df Mean square F p

A (Encoding instructions) 432.000 1 432.000 47.493 , 0.001

S(A) (Error of subjects nested
within encoding instructions)

127.347 14 9.096

B (Study time) 672.000 2 336.000 37.251 , 0.001

A 3 B (Encode inst 3 study
time)

224.000 2 112.000 12.417 , 0.001

Error 252.554 28 9.020
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Yijk � ì� ði( j) � á j � âk � åijk (5:29)

This reduced GLM manifests the data description under the null hypothesis,

(áâ) jk � 0 (5:30)

Although fewer error terms need be calculated for mixed ANOVAs, when hand

calculations are employed, instead of calculating the error SS associated with

each of these Reduced experimental design GLMs and comparing them with the

full experimental design GLM, it may be more ef®cient to calculate directly the

SS for each of the effects and errors. Formulae for calculating all of the mixed

two factor ANOVA effects directly, which are more convenient than those used

to de®ne and illustrate the SS calculation, are provided in Table 5.19. However,

again the strategy of estimating mixed ANOVA effects by comparing different

GLM residuals is relatively easy to achieve using regression GLMs.

5.7 Regression GLMs for the mixed factorial ANOVA

The mixed (2 3 3) factor experimental design GLM equation (5.19) may be

compared with the equivalent regression equation,

Yi � â0 � â1 X i,1 � â2 X i,2 � â3 X i,3 � â4 X i,4 � â5 X i,5 � â6 X i,6 � â7 X i,7

� â8 X i,8 � â9 X i,9 � â10 X i,10 � â11 X i,11 � â12 X i,12 � â13 X i,13 � â14 X i,14

� â15 X i,15 � â16 X i,16 � â17 X i,17 � â18 X i,18 � â19 X i,19 � åi (5:31)

Table 5.19 Formulae for the
(balanced) fully related two factor
ANOVA effects

Effect Formulae

A qN
Xp

j�1

(Y j ÿ YG )2

S(A) q
XN

i�1

Xp

j�1

(Yij ÿ Yi )2

B pN
Xq

k�1

(Yk ÿ YG )2

A 3 B N
Xp

j�1

Xq

k�1

(Yik ÿ Y j ÿ Yk � YG )2

Error
XN

i�1

Xp

j�1

Xq

k�1

(Yijk ÿ Yij ÿ Yik � Y j )2
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where Yi represents the ith dependent variable score, â0 is a constant, â1 is the

regression coef®cient for the predictor variable X 1 and â2 is the regression

coef®cient for the predictor variable X 2, etc.

As with the fully related factorial design, there are X variables which

represent experimental factors and their interactions (X 1 to X 5), while 14

variables (X 6 to X 19) identify the subjects providing the scores. The ®rst seven

subject variables (X 6 to X 12) identify those subjects providing scores in the

condition labelled as Factor A level one (memorize), while the second set of

seven subject variables identify those subjects providing scores in the condition

labelled as Factor A level two (story and imagery).

Equation (5.31) is only sightly more wieldy than equation (5.18), but as

before, once the effect coding scheme has been established in a computer data

®le, it is relatively simple to carry out the mixed factorial ANOVA. Table 5.20

presents effect coding applied to the data in Table 5.17.

Applying a regression GLM to implement a mixed factors ANOVA also may

be done in a manner consistent with estimating effects by comparing full and

reduced GLMs. In such balanced designs, the predictor variables representing

experimental factors and those identifying subjects' scores again are orthogonal,

and so the order in which SSs are calculated is of no consequence.

The ®rst regression carried out is that for the full mixed factorial experimental

design GLM, when all experimental condition and subject predictor variables

are included (i.e. variables X 1 to X 19). Of interest is the ANOVA summary

presented in Table 5.21, which provides the full GLM residual SS. This may be

compared with the mixed factorial experimental design GLM error term in

Table 5.18.

Having obtained the full GLM residual SS, the next stages involve imple-

menting the various reduced GLMs to obtain their estimates of residual SS.

First, the reduced GLM for the effect of the subjects nested within Factor A is

obtained by carrying out the regression analysis again but omitting the predic-

tors identifying the subjects providing the scores (X 6 to X 19). The summary of

this ANOVA, presented in Table 5.22, provides the subjects nested within Factor

A reduced GLM residual SS. Therefore,

dfs

Subjects (Factor A) reduced GLM residual SS � 380.000 42

Full GLM residual SS � 252.667 28

SS attributable to subjects nested within Factor A � 127.333 14

Next, the reduced GLM for the effect of Factor A is applied by omitting only

the predictor variable representing the Factor A experimental conditions (X 1).

The summary of this ANOVA presented in Table 5.23 provides the Factor A

reduced GLM residual SS. Therefore,
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Table 5.20 Effect coding for the mixed (2 3 3) factorial ANOVA

Sbj Y A B A 3 B A � 1 subjects A � ÿ1 subjects

Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

1 7 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 6 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 6 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5 5 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 8 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
7 6 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
8 7 1 1 0 1 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 0

1 7 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 11 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 9 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 11 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5 10 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 10 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
7 11 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
8 11 1 0 1 0 1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 0

1 8 1 ÿ1 ÿ1 ÿ1 ÿ1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 14 1 ÿ1 ÿ1 ÿ1 ÿ1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 10 1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 11 1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5 12 1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 10 1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
7 11 1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
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Table 5.20 (continued )

Sbj Y A B A 3 B A � 1 subjects A � ÿ1 subjects

Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

8 12 1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 0 0 0 0 0 0 0

1 16 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 7 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3 11 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4 9 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 10 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 11 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 8 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 8 ÿ1 1 0 ÿ1 0 0 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1

1 16 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 10 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3 13 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4 10 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 10 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 14 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 11 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 12 ÿ1 0 1 0 ÿ1 0 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1

1 24 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2 29 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3 10 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4 22 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 25 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 28 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 22 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 24 ÿ1 ÿ1 ÿ1 1 1 0 0 0 0 0 0 0 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1 ÿ1
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dfs

Factor A reduced GLM residual SS � 684.667 29

Full GLM residual SS � 252.667 28

SS attributable to Factor A � 432.000 1

Next, the Factor B reduced GLM is applied by omitting only the predictor

variables representing the Factor B experimental conditions (X 2 and X 3). The

summary of this ANOVA presented in Table 5.24 provides the Factor B reduced

GLM residual SS.

Table 5.21 ANOVA summary table for the full mixed factorial
experimental design GLM (experimental condition and subjects effects
regression)

R: 0.923 R squared: 0.852 Adjusted R squared: 0.752

Source SS df Mean square F p

Regression 1455.333 19 76.596 8.488
Residual 252.667 28 9.024

Table 5.22 ANOVA summary table for the mixed factorial
experimental design GLM omitting the effect of subjects nested within
Factor A

R: 0.882 R squared: 0.778 Adjusted R squared: 0.751

Source SS df Mean square F p

Regression 1328.000 5 265.600 29.356
Residual 380.000 42 9.048

Table 5.23 ANOVA summary table for the reduced GLM which
omits the Factor A experimental conditions

R: 0.774 R squared: 0.599 Adjusted R squared: 0.350

Source SS df Mean square F p

Regression 1023.333 18 56.852 2.408 0.017
Residual 684.667 29 23.609
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Therefore,

dfs

Factor B reduced GLM residual SS � 924.667 30

Full GLM residual SS � 252.667 28

SS attributable to Factor B � 672.000 2

Next, the Factor A 3 Factor B interaction reduced GLM is applied by

omitting only the predictor variables representing the Factor A 3 Factor B

interaction (X 4 and X 5). The summary of this ANOVA presented in Table 5.25,

provides the Factor A 3 Factor B reduced GLM residual SS. Therefore,

dfs

Factors A 3 B interaction reduced GLM residual SS � 476.667 30

Full GLM residual SS � 252.667 28

SS attributable to Factor A 3 Factor B interaction � 224.000 2

Using the SS and dfs calculated for each effect by comparing full and reduced

GLMs, the ANOVA summary table (Table 5.18) can be reconstructed.

Table 5.24 ANOVA summary table for the reduced GLM which
omits the Factor B experimental conditions

R: 0.677 R squared: 0.459 Adjusted R squared: 0.152

Source SS df Mean square F p

Regression 783.333 17 46.078 1.495 0.163
Residual 924.667 30 30.822

Table 5.25 ANOVA summary table for the reduced GLM which
omits the Factor A 3 Factor B interaction

R: 0.849 R squared: 0.721 Adjusted R squared: 0.563

Source SS df Mean square F p

Regression 1231.333 17 72.431 4.559 , 0.001
Residual 476.667 30 15.889
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6 THE GLM APPROACH TO ANCOVA

6.1 The nature of ANCOVA

Consider the story and imagery experimental conditions described in

Chapter 3. Different subjects are likely to have different story and imagery

abilities. Although not a guarantee, random sampling of the population and

random allocation to the three study time experimental conditions makes it

most likely that across the three groups of subjects the average story and

imagery abilities will be equivalent. Nevertheless, even when this is so,

within each of the groups there will be subjects with greater story and

imagery abilities and subjects with lesser story and imagery abilities, and

this variation in story and imagery ability will have consequence for the

subjects' memory recall scores. However, in most conventional experimental

studies, subjects' story and imagery abilities will not have been measured

prior to the experiment. Moreover, because there is no term in the ANOVA

GLM to accommodate any systematic variation of subjects' story and

imagery abilities with their memory recall scores, this variation increments

the ANOVA error term. All else being equal, the consequence of a larger

error term is a less powerful analysis (see Chapter 9) and so, a greater

chance that any in¯uence of study time on memory recall will not be

detected. Obviously, a clearer picture of the in¯uence of study time on

memory recall when story and imagery encoding strategies are used would

be obtained if all of the subjects had the same ability to construct stories

and images.

ANCOVA offers a way to deal with such situations. As well as recording

the independent and dependent variables, one or more other variables are

measured for ANCOVA. These variables (variously known as covariates,

predictor variables, concomitant variables or control variables) represent

sources of variation that are thought to in¯uence the dependent variable, but

have not been controlled by the experimental procedures. In the present

example, the covariates would be measures of the subjects' story and

imagery abilities. The rationale underlying ANCOVA is that the effect of

the independent variable(s) on the dependent variable is revealed more

accurately when the in¯uence on the dependent variable represented by the

covariate(s) is equal across the experimental conditions. In psychology, when

the GLM includes a quantitative variable in addition to the categorical

coding of experimental conditions, but experimental effects remain the

major concern, the analysis is termed ANCOVA (cf. Cox & McCullagh,

1982).



6.2 Single factor independent measures ANCOVA
designs

In the following example, the story and imagery conditions of the memory

experiment described in Chapter 3 will be regarded as a separate experiment.

Further, it will be assumed that the subjects in this experiment completed a test

which provided a single measure of their story and imagery abilities. Table 6.1

presents the subjects' story and imagery task (covariate) scores and the subjects'

memory recall scores after story and imagery encoding in the three study time

conditions.

The equation

Yij � ì� á j � âZij � åij (6:1)

describes an experimental design GLM for the single factor independent meas-

ures ANCOVA with one covariate applicable to the data presented in Table 6.1.

Yij is the ith score in the jth treatment, ì is a constant common to all Y scores,

á j is the effect of the jth treatment level and the error term, åij, re¯ects random

variation due to any uncontrolled source. The new term âZij represents the

in¯uence of the covariate on the dependent variable. It comprises the regression

coef®cient parameter â, which represents the degree of linear relationship

between the covariate and the dependent variable and Zij, the particular covariate

score corresponding to the Yij. It is important to appreciate that the degree of the

linear relationship between the covariate and the dependent variable is deter-

mined empirically from the data. The ANCOVA GLM combines features of an

ANOVA GLM and a regression GLM. The (categorical) experimental condition

effects are speci®ed as in ANOVA, while the relationship between the (quantita-

tive) covariate and the dependent variable are speci®ed as in regression.

Table 6.1 Story and imagery test scores and recall scores after story
and imagery encoding

Study 30 60 180
time (s) Z Y Z Y Z Y

9 16 8 16 5 24
5 7 5 10 8 29
6 11 6 13 3 10
4 9 5 10 4 22
6 10 3 10 6 25
8 11 6 14 9 28
3 8 4 11 4 22
5 8 6 12 5 24P

Z=Y 46 80 43 96 44 184

Z=Y 5.750 10.000 5.375 12.000 5.500 23.000

(
P

Z=Y )2 292 856 247 1186 272 4470P
Z 2=Y 2 2116 6400 1849 9216 1936 33856
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In Figure 6.1, the regression lines of subjects' dependent variable memory

recall scores on their story and imagery ability test scores are plotted for each

study time experimental condition (b1, b2 and b3). Also shown is (â̂), the slope

of the regression line employed in the ANCOVA GLM, which is given by

â̂ �
P p

j�1

PN

i�1(Zij ÿ Z j)(Yij ÿ Y j)P p

j�1

PN

i�1(Zij ÿ Z j)2
(6:2)

â̂ also may be calculated from

â̂ �
PN

i�1(Zi1 ÿ Z1)2b1 �
PN

i�1(Zi2 ÿ Z2)2b2 �
PN

i�1(Zi3 ÿ Z3)2b3PN

i�1(Zi1 ÿ Z1)2 �PN

i�1(Zi2 ÿ Z2)2 �PN

i�1(Zi3 ÿ Z3)2
(6:3)

Equation (6.3) reveals â̂ as the weighted average of the separate (within group)

regression lines, b1, b2 and b3, where each experimental condition regression

coef®cient (b1, b2 and b3) is weighted by the variation of the covariate scores in

that experimental condition. Consequently, â̂ may be called the within groups

regression coef®cient (â̂w � bw). An important point to appreciate is that equa-

tions (6.2) and (6.3) provide a regression coef®cient which is free of the

35

30

25

20

15

10

5

0 2 4 6 8 10ZG

Covariate (story and imagery test) score

Yfai3

Yai2

Yai1

µ

Yfai2

Yfai1

(Z, Y)

b3

b2

b1

â
^Yai3

Recall
scores

Figure 6.1 Dependent variable memory recall scores plotted on their
story and imagery ability test scores for each study time experimental
condition
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in¯uence exerted on the dependent variable scores by the experimental condi-

tions.

A little algebra applied to equation (6.1) reveals

Yfaij � Yij ÿ âZij � ì� á j � åij (6:4)

where Yfaij is the fundamental adjusted dependent variable score observed if all

in¯uence of the covariate is removed from the dependent variable score. The

Yfaij correspond to the points on the dependent variable axis intersected by each

of the experimental condition regression lines (see Figure 6.1). This is where the

value of the covariate equals zero. Traditionally in ANCOVA however, the

dependent variable scores are not adjusted to remove all in¯uence of the

covariate. Instead, adjustment is made as though all subjects had obtained a

covariate score equal to the general covariate mean (ZG � 5:542). Replacing

âZij in equation (6.1) with â(Zij ÿ ZG) provides the single factor independent

measures experimental design GLM for traditional ANCOVA with one covari-

ate,

Yij � ì� á j � â(Zij ÿ ZG)� åij (6:5)

Applying the same algebra to equation (6.5) as was applied to equation (6.1)

provides

Yaij � Yij ÿ â(Zij ÿ ZG) � ì� á j � åij (6:6)

where Yaij is the adjusted dependent variable score based on the difference

between the recorded covariate score and the general covariate mean scaled by

the regression coef®cient estimated from the data. The experimental condition

means of the Yaij scores correspond to the points on the dependent variable axis

where the separate experimental condition regression lines intersect the line

representing ZG (see Figure 6.1).

Although the GLMs described by equations (6.1) and (6.5) employ the same

regression coef®cient, obviously the adjustments provided by âZij and

â(Zij ÿ ZG) do not provide identical adjusted dependent variable scores (cf. Yaij

and Yfaij in Figure 6.1). Nevertheless, as the effect of the experimental conditions

is represented by the vertical differences between the experimental condition

regression lines, and traditional ANCOVA assumes the regression lines of the

dependent variable on the covariate in each of the treatment groups are parallel,

clearly the experimental condition effect estimates will be constant across all

values of the covariate. Therefore, when traditional ANCOVA (i.e. ANCOVA

assuming homogeneous regression coef®cients/slopes) is applied, the Yfaij and

Yaij terms provide equivalent estimates of the experimental conditions effect and

so accommodate identical variance estimates. (For further details, see Maxwell

& Delaney, 1990.)

Calculating â̂ for the data in Table 6.1 provides Table 6.2. From Table 6.2 we

®nd

â̂ � 33� 20� 68

27:500� 15:875� 30:000
� 1:649
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Table 6.2 Calculations based on Table 6.1

b1

30
b2

60
b3

180
Zij ÿ Z j Yij ÿ Y j Zij ÿ Z j Yij ÿ Y j Zij ÿ Z j Yij ÿ Y j

9 ÿ 5.750 � 3.250 16 ÿ 10 � 6 8 ÿ 5.375 � 2.625 16 ÿ 12 � 4 5 ÿ 5.500 � ÿ0.500 24 ÿ 23 � 1
5 ÿ 5.750 � ÿ0.750 7 ÿ 10 � ÿ3 5 ÿ 5.375 � ÿ0.375 10 ÿ 12 � ÿ2 8 ÿ 5.500 � 2.500 29 ÿ 23 � 6
6 ÿ 5.750 � 0.250 11 ÿ 10 � 1 6 ÿ 5.375 � 0.625 13 ÿ 12 � 1 3 ÿ 5.500 � ÿ2.500 10 ÿ 23 � ÿ13
4 ÿ 5.750 � ÿ1.750 9 ÿ 10 � ÿ1 5 ÿ 5.375 � ÿ0.375 10 ÿ 12 � ÿ2 4 ÿ 5.500 � ÿ1.500 22 ÿ 23 � ÿ1
6 ÿ 5.750 � 0.250 10 ÿ 10 � 0 3 ÿ 5.375 � ÿ2.375 10 ÿ 12 � ÿ2 6 ÿ 5.500 � 0.500 25 ÿ 23 � 2
8 ÿ 5.750 � 2.250 11 ÿ 10 � 1 6 ÿ 5.375 � 0.625 14 ÿ 12 � 2 9 ÿ 5.500 � 3.500 28 ÿ 23 � 5
3 ÿ 5.750 � ÿ2.750 8 ÿ 10 � ÿ2 4 ÿ 5.375 � ÿ1.375 11 ÿ 12 � ÿ1 4 ÿ 5.500 � ÿ1.500 22 ÿ 23 � ÿ1
5 ÿ 5.750 � ÿ0.750 8 ÿ 10 � ÿ2 6 ÿ 5.375 � 0.625 12 ÿ 12 � 0 5 ÿ 5.500 � ÿ0.500 24 ÿ 23 � 1P

(Zij ÿ Z j )
2 � 27:500

P
(Zij ÿ Z j )

2 � 15:875
P

(Zij ÿ Z j )
2 � 30:000

b1

30
b2

60
b3

180
(Zij ÿ Z j )(Yij ÿ Y j ) (Zij ÿ Z j )(Yij ÿ Y j ) (Zij ÿ Z j )(Yij ÿ Y j )

3.250 (6) � 19.500 2.625 (4.00) � 10.500 ÿ0.500 (1.00) � ÿ0.500
ÿ0.750 (ÿ3) � 2.250 ÿ0.375 (ÿ2.00) � 0.750 2.500 (6.00) � 15.000

0.250 (1) � 0.250 0.625 (1.00) � 0.625 ÿ2.500 (ÿ13.00) � 32.500
ÿ1.750 (ÿ1) � 1.750 ÿ0.375 (ÿ2.00) � 0.750 ÿ1.500 (ÿ1.00) � 1.500

0.250 (0) � 0.000 ÿ2.375 (ÿ2.00) � 4.750 0.500 (2.00) � 1.000
2.250 (1) � 2.250 0.625 (2.00) � 1.250 3.500 (5.00) � 17.500

ÿ2.750 (ÿ2) � 5.500 ÿ1.375 (ÿ1.00) � 1.375 ÿ1.500 (ÿ1.00) � 1.500
ÿ0.750 (ÿ2) � 1.500 0.625 (0.00) � 0.000 ÿ0.500 (1.00) � ÿ0.500P � 33:000

P � 20:000
P � 68:000
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One consequence of including the dependent variable on the covariate

regression component in the ANCOVA GLM is that the de®nition of the

parameter ì changes slightly. For balanced ANOVA, ì was de®ned as the mean

of the experimental condition means, but this is not the case even for balanced

ANCOVA. Nevertheless, as in ANOVA, ì remains the intercept on the Y-axis

(cf. Figures 2.2 and 6.1) of the â̂ regression line, which passes through the

general covariate and dependent variable means and may be calculated simply

by estimating the reduction from the dependent variable mean on the basis of

the general mean of the covariate. In Figure 6.1, the â̂ regression line intercepts

the Y-axis at a point below the dependent variable general mean. This point is

determined by the distance from the general mean of the covariate to the origin,

scaled by the â̂ regression coef®cient. Therefore,

ì̂ � YG ÿ â̂(ZG) (6:7)

Applying this to the data in Table 6.1 provides

ì̂ � 15ÿ 1:649(5:542) � 5:861

The adjusted experimental condition means are given by

Yaj � Y j ÿ â(Z j ÿ ZG) (6:8)

Therefore,

Ya1 � Y1 ÿ â(Z1 ÿ ZG) � 10ÿ 1:649(5:750ÿ 5:542) � 9:657

Ya2 � Y2 ÿ â(Z2 ÿ ZG) � 12ÿ 1:649(5:375ÿ 5:542) � 12:275

Ya3 � Y3 ÿ â(Z3 ÿ ZG) � 23ÿ 1:649(5:500ÿ 5:542) � 23:069

Moreover, just as experimental condition means in ANOVA comprise the

constant ì plus the effect of the experimental condition, so ANCOVA adjusted

means comprise the constant ì plus the effect of the experimental condition:

Yaj � ì̂� á̂ j (6:9)

and so it follows that

á̂ j � Yaj ÿ ì̂ (6:10)

For the data in Table 6.1 this provides

á̂1 � 9:657ÿ 5:861 � 3:796

á2 � 12:275ÿ 5:861 � 6:414

á3 � 23:069ÿ 5:861 � 17:208
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6.3 Estimating effects by comparing full and reduced
ANCOVA GLMs

Although ì and the experimental condition effects just described are not needed

to calculate the error terms for full and reduced GLMs, the calculation methods

are provided for completeness. In fact, these experimental condition effect

estimates should not be used to obtain the experimental condition SS, in the

manner described for ANOVA GLMs, as this provides an inaccurate estimate

(Cochran, 1957; Maxwell, Delaney & Manheimer, 1985; Rutherford, 1992).

The traditional full GLM for the single factor single covariate ANCOVA

design was described in equation (6.5). The reduced GLM for this design omits

the variable representing experimental conditions and is described by the equa-

tion

Yij � ì� âT (Zij ÿ ZG)� åij (6:11)

Equation (6.11) describes a simple linear regression, where the difference

between each subjects' covariate score and the general covariate mean is used to

predict the subjects' dependent variable scores. This GLM may be compared

with the reduced GLM that employs Zij as the predictor:

Yij � ì� âT (Zij)� åij (6:12)

This would be the reduced GLM for the ANCOVA model described by equation

(6.1). As with the GLMs described by equations (6.1) and (6.5), the GLMs

described by equations (6.11) and (6.12) accommodate the same amount of

dependent variable variation and employ the same regression coef®cient, (âT ).

The T subscript is applied to this regression coef®cient to identify it as the

regression coef®cient for the total set of scores, where all scores are treated as

one large group: no distinctions are made on the basis of experimental

condition.

The application of a little algebra to the full GLM for the single factor, single

covariate ANCOVA de®nes the error term in the following way. If

Yaij � Yij ÿ â(Zij ÿ ZG) � ì� á j � åij (6:6, rptd)

then clearly

Yij ÿ â(Zij ÿ ZG) � Yaij � ì� á j � åij

Omitting the terms to the left of the ®rst equals sign and employing equation

(6.9) provides

Yaij � Yaj � åij

Therefore,

åij � Yaij ÿ Yaj (6:13)

In other words, the full GLM errors are equal to each subject's adjusted score

minus the adjusted mean for the experimental condition. Equation (6.6) de®nes

subjects' adjusted scores as
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Yaij � Yij ÿ â(Zij ÿ ZG) (6:6, rptd)

and these are calculated in Table 6.3.

As a check on the accuracy of the adjusted scores, they can be used to

calculate group means for comparison with those calculated from equation

(6.8). Error terms are calculated using the adjusted scores and adjusted experi-

mental condition means according to equation (6.13). As always, the sum of the

errors per experimental condition and across conditions equals zero (given

rounding error). The sum of the squared errors across experimental conditions is

the (reduced) error term for the full GLM (Table 6.4).

The reduced GLM errors for this ANCOVA design may be found in the same

way as above. First, reordering the terms in equation (6.11) allows the subjects'

adjusted scores to be speci®ed. As

Yij � ì� âT (Zij ÿ ZG)� åij (6:11, rptd)

so,

Yij ÿ âT (Zij ÿ ZG) � Yaij � ì� åij (6:14)

As experimental conditions are ignored, ì is equal to the general mean of the

adjusted scores (YaG). It follows that for the reduced GLM,

åij � Yaij ÿ YaG (6:15)

A ®rst requirement to calculate the reduced GLM errors is the regression

coef®cient âT ,

â̂T �
P p

j�1

PN

i�1(Zij ÿ ZG)(Yij ÿ YG)P p

j�1

PN

i�1(Zij ÿ ZG)2
(6:16)

Applying this to the data in Table 6.1 provides Table 6.5. From Table 6.5,

â̂T � 114:000

73:958
� 1:541

This regression coef®cient estimate is used to calculate each subjects' adjusted

score, according to equation (6.14) (Table 6.6).

With the reduced GLM, the mean of the adjusted scores equals the mean of

the unadjusted scores, 15. Given rounding error, this is the value obtained from

the adjusted scores. As speci®ed by equation (6.15), the discrepancy between

this mean and the subjects' adjusted scores provide the error term estimates.

Given rounding error, 0.012 is not too bad an estimate of the correct value of

zero. The sum of the squared errors provides the estimate of the reduced GLM

error SS. Therefore, the error reduction as a consequence of taking account of

the experimental conditions is

reduced GLM SSerror ÿ full GLM SSerror � 936:279ÿ 128:463 � 807:816

Again the Full GLM SS error is employed as the error term, but an additional

degree of freedom is lost due to the use of the dependent variable on covariate

regression line: for every regression line, or equivalently, covariate, employed,
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Table 6.3 Calculation of adjusted scores

b1

30
b2

60
b3

180
Yi1 ÿ â(Z i1 ÿ ZG ) � Yai1 Yi2 ÿ â(Z i2 ÿ ZG ) � Yai2 Yi3 ÿ â(Z i3 ÿ ZG ) � Yai3

16 ÿ 1.649(9 ÿ 5.542) � 10.298 16 ÿ 1.649(8 ÿ 5.542) � 11.947 24 ÿ 1.649(5 ÿ 5.542) � 24.894
7 ÿ 1.649(5 ÿ 5.542) � 7.894 10 ÿ 1.649(5 ÿ 5.542) � 10.894 29 ÿ 1.649(8 ÿ 5.542) � 24.947

11 ÿ 1.649(6 ÿ 5.542) � 10.245 13 ÿ 1.649(6 ÿ 5.542) � 12.245 10 ÿ 1.649(3 ÿ 5.542) � 14.192
9 ÿ 1.649(4 ÿ 5.542) � 11.543 10 ÿ 1.649(5 ÿ 5.542) � 10.894 22 ÿ 1.649(4 ÿ 5.542) � 24.543

10 ÿ 1.649(6 ÿ 5.542) � 9.245 10 ÿ 1.649(3 ÿ 5.542) � 14.192 25 ÿ 1.649(6 ÿ 5.542) � 24.245
11 ÿ 1.649(8 ÿ 5.542) � 6.947 14 ÿ 1.649(6 ÿ 5.542) � 13.245 28 ÿ 1.649(9 ÿ 5.542) � 22.298

8 ÿ 1.649(3 ÿ 5.542) � 12.192 11 ÿ 1.649(4 ÿ 5.542) � 13.543 22 ÿ 1.649(4 ÿ 5.542) � 24.543
8 ÿ 1.649(5 ÿ 5.542) � 8.894 12 ÿ 1.649(6 ÿ 5.542) � 11.245 24 ÿ 1.649(5 ÿ 5.542) � 24.894

Yai1 � 9:657 Yai2 � 12:275 Yai3 � 23:069
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an error df is lost. If desired, the SS accommodated by the covariate, may be

determined by comparing the error SS from the Full ANCOVA with the error SS

from an equivalent Full ANOVA GLM. As before, all of this information can be

presented conveniently in an ANCOVA summary table (Table 6.8).

6.4 Regression GLMs for the single factor
independent measures ANCOVA

The experimental design GLM equation (6.1) may be compared with the

equivalent regression equation,

Yij � â0 � â1 X i,1 � â2 X i,2 � â3 Zij � åij (6:17)

Similarly, the experimental design GLM equation (6.5) may be compared with

the equivalent regression equation,

Yij � â0 � â1 X i,1 � â2 X i,2 � â3(Zij ÿ ZG)� åij (6:18)

In both equations (6.17) and (6.18), â0 represents a constant common to all Y

scores, â1 is the regression coef®cient for the predictor variable X 1 and â2 is the

regression coef®cient for the predictor variable X 2, where the variables X 1 and

X 2 code the differences between the three experimental conditions, â3 is the

regression coef®cient for the covariate, Zij is the covariate score for the ith

subject in the jth condition and as always, the random variable, eij, represents

error. Table 6.9 presents effect coding for the single factor, single covariate

Table 6.4 Calculation of the error sum of squares

b1

30
b2

60
b3

180
Yai1 ÿ Ya1 � åi1 Yai2 ÿ Ya2 � åi2 Yai3 ÿ Ya3 � åi3

10.298 ÿ 9.657 � 0.641 11.947 ÿ 12.275 � ÿ0.328 24.894 ÿ 23.069 � 1.825
7.894 ÿ 9.657 � ÿ1.763 10.894 ÿ 12.275 � ÿ1.381 24.947 ÿ 23.069 � 1.878

10.245 ÿ 9.657 � 0.588 12.245 ÿ 12.275 � ÿ0.030 14.192 ÿ 23.069 � ÿ8.877
11.543 ÿ 9.657 � 1.886 10.894 ÿ 12.275 � ÿ1.381 24.543 ÿ 23.069 � 1.474
9.245 ÿ 9.657 � ÿ0.412 14.192 ÿ 12.275 � 1.917 24.245 ÿ 23.069 � 1.176
6.947 ÿ 9.657 � ÿ2.710 13.245 ÿ 12.275 � 0.970 22.298 ÿ 23.069 � ÿ0.771

12.192 ÿ 9.657 � 2.535 13.543 ÿ 12.275 � 1.268 24.543 ÿ 23.069 � 1.474
8.894 ÿ 9.657 � ÿ0.763 11.245 ÿ 12.275 � ÿ1.030 24.894 ÿ 23.069 � 1.825

XN

i�1

åi1 � 0:002
XN

i�1

åi2 � 0:005
XN

i�1

åi3 � 0:004

XN

i�1

å2
i1 � 21:944

XN

i�1

å2
i2 � 11:207

XN

i�1

å2
i3 � 95:312

Xp

j�1

XN

i�1

å2
ij � 128:463
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Table 6.5 Calculation of the regression coef®cient âT

b1

30
b2

60
b3

180
(Zij ÿ ZG )(Yij ÿ YG ) (Zij ÿ Z G )(Yij ÿ YG ) (Zij ÿ Z G )(Yij ÿ YG )

(9 ÿ 5.542)(16 ÿ 15) � 3.458 (8 ÿ 5.542)(16 ÿ 15) � 2.458 (5 ÿ 5.542)(24 ÿ 15) � ÿ4.878
(5 ÿ 5.542)(7 ÿ 15) � 4.336 (5 ÿ 5.542)(10 ÿ 15) � 2.710 (8 ÿ 5.542)(29 ÿ 15) � 34.412

(6 ÿ 5.542)(11 ÿ 15) � ÿ1.832 (6 ÿ 5.542)(13 ÿ 15) � ÿ0.916 (3 ÿ 5.542)(10 ÿ 15) � 12.710
(4 ÿ 5.542)(9 ÿ 15) � 9.252 (5 ÿ 5.542)(10 ÿ 15) � 2.710 (4 ÿ 5.542)(22 ÿ 15) � ÿ10.794

(6 ÿ 5.542)(10 ÿ 15) � ÿ2.290 (3 ÿ 5.542)(10 ÿ 15) � 12.710 (6 ÿ 5.542)(25 ÿ 15) � 4.580
(8 ÿ 5.542)(11 ÿ 15) � ÿ9.832 (6 ÿ 5.542)(14 ÿ 15) � ÿ0.458 (9 ÿ 5.542)(28 ÿ 15) � 44.954
(3 ÿ 5.542)(8 ÿ 15) � 17.794 (4 ÿ 5.542)(11 ÿ 15) � 6.168 (4 ÿ 5.542)(22 ÿ 15) � ÿ10.794
(5 ÿ 5.542)(8 ÿ 15) � 3.794 (6 ÿ 5.542)(12 ÿ 15) � ÿ1.374 (5 ÿ 5.542)(24 ÿ 15) � ÿ4.878X

� 24:680
X
� 24:008

X
� 65:312Xp

j�1

XN

i�1

� 73:958

b1

30
b2

60
b3

180
(Zij ÿ Z G ) (Zij ÿ Z G ) (Zij ÿ ZG )

(9 ÿ 5.458) � 3.458 (8 ÿ 5.542) � 2.458 (5 ÿ 5.542) � ÿ0.542
(5 ÿ 5.542) � ÿ0.542 (5 ÿ 5.542) � ÿ0.542 (8 ÿ 5.542) � 2.458
(6 ÿ 5.542) � 0.458 (6 ÿ 5.542) � 0.458 (3 ÿ 5.542) � ÿ2.542
(4 ÿ 5.542) � ÿ1.542 (5 ÿ 5.542) � ÿ0.542 (4 ÿ 5.542) � ÿ1.542
(6 ÿ 5.542) � 0.458 (3 ÿ 5.542) � ÿ2.542 (6 ÿ 5.542) � 0.458
(8 ÿ 5.542) � 2.458 (6 ÿ 5.542) � 0.458 (9 ÿ 5.542) � 3.458
(3 ÿ 5.542) � ÿ2.542 (4 ÿ 5.542) � ÿ1.542 (4 ÿ 5.542) � ÿ1.542
(5 ÿ 5.542) � ÿ0.542 (6 ÿ 5.542) � 0.458 (5 ÿ 5.542) � ÿ0.542X

(Zij ÿ ZG )2 � 27:846
X

(Zij ÿ Z G )2 � 16:098
X

(Zij ÿ Z G )2 � 30:014Xp

j�1

XN

i�1

� 114:000
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Table 6.6 Calculation of adjusted scores

b1

30
b2

60
b3

180
Yij ÿ âT (Zij ÿ ZG ) � Yaij Yij ÿ âT (Zij ÿ Z G ) � Yaij Yij ÿ âT (Zij ÿ Z G ) � Yaij

16 ÿ 1.541 (3.548) � 10.671 16 ÿ 1.541 (2.458) � 12.212 24 ÿ 1.541(ÿ0.542) � 24.835
7 ÿ 1.541(ÿ0.542) � 7.835 10 ÿ 1.541(ÿ0.542) � 10.835 29 ÿ 1.541 (2.458) � 25.212

11 ÿ 1.541 (0.458) � 10.294 13 ÿ 1.541 (0.458) � 12.294 10 ÿ 1.541(ÿ2.542) � 13.917
9 ÿ 1.541(ÿ1.542) � 11.376 10 ÿ 1.541(ÿ0.542) � 10.835 22 ÿ 1.541(ÿ1.542) � 24.376

10 ÿ 1.541 (0.458) � 9.294 10 ÿ 1.541(ÿ2.542) � 13.917 25 ÿ 1.541 (0.458) � 24.294
11 ÿ 1.541 (2.458) � 7.212 14 ÿ 1.541 (0.458) � 13.294 28 ÿ 1.541 (3.458) � 22.671

8 ÿ 1.541(ÿ2.542) � 11.917 11 ÿ 1.541(ÿ1.542) � 13.376 22 ÿ 1.541(ÿ1.542) � 24.376
8 ÿ 1.541(ÿ0.542) � 8.835 12 ÿ 1.541 (0.458) � 11.294 24 ÿ 1.541(ÿ0.542) � 24.835

Yi � 15:001
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regression GLM. It can be seen that apart from the addition of the Z covariate,

the set up is identical to the effect coding for a single factor ANOVA with three

levels.

As with other design analyses, implementing a single factor, single covariate

ANCOVA is a two stage procedure if only the variance attributable to the

experimental conditions is to be assessed, and a three stage procedure if the

variance attributable to the covariate regression is to be assessed. Consistent

with estimating effects by comparing full and reduced GLMs, the ®rst regression

carried out is for the full single factor, single covariate experimental design

GLM, when all experimental condition predictor variables (X 1 and X 2) and the

covariate are included. The results of this analysis are presented in Tables 6.10

and 6.11.

Table 6.10 presents the predictor variable regression coef®cients and standard

deviations, the standardized regression coef®cients, and signi®cance tests (t-

Table 6.7 Estimation of error terms

b1

30
b2

60
b3

180
Yai1 ÿ Ya1 � åi1 Yai2 ÿ Ya2 � åi2 Yai3 ÿ Ya3 � åi3

10.671 ÿ 15 � ÿ4.329 12.212 ÿ 15 � ÿ2.788 24.835 ÿ 15 � 9.835
7.835 ÿ 15 � ÿ7.165 10.835 ÿ 15 � ÿ4.165 25.212 ÿ 15 � 10.212

10.294 ÿ 15 � ÿ4.706 12.294 ÿ 15 � ÿ2.706 13.917 ÿ 15 � ÿ1.083
11.376 ÿ 15 � ÿ3.624 10.835 ÿ 15 � ÿ4.165 24.376 ÿ 15 � 9.376

9.294 ÿ 15 � ÿ5.706 13.917 ÿ 15 � ÿ1.083 24.294 ÿ 15 � 9.294
7.212 ÿ 15 � ÿ7.788 13.294 ÿ 15 � ÿ1.706 22.671 ÿ 15 � 7.671

11.917 ÿ 15 � ÿ3.083 13.376 ÿ 15 � ÿ1.624 24.376 ÿ 15 � 9.376
8.835 ÿ 15 � ÿ6.165 11.294 ÿ 15 � ÿ3.706 24.835 ÿ 15 � 9.835

Xp

j�1

XN

i�1

åij � 0:012

Xp

j�1

XN

i�1

å2
i2 � 936:279

Table 6.8 Single factor, single covariate ANCOVA summary table

Source SS df MS F p

Error reduction due to
experimental conditions

807.816 2 403.908 62.883 , 0.001

Error reduction due to
covariate

199.537 1 199.537 31.065 , 0.001

Full GLM error 128.463 20 6.423
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and p-values) of the regression coef®cient. As can be seen, the constant (coef®-

cient) is equivalent to ì. Another useful value from this table is the estimate of

the full ANCOVA GLM covariate regression coef®cient, â̂ or bw. A t-test of this

regression coef®cient also is provided.

Table 6.11 presents the ANOVA summary table for the regression GLM

describing the complete single factor, single covariate ANCOVA. As the residual

SS is that obtained when both covariate and experimental conditions are

Table 6.9 Effect coding and covariate for a single
factor ANCOVA with one covariate. Subject number
and the dependent variable score also are shown

Subject Z X1 X2 Y

1 9 1 0 16
2 5 1 0 7
3 6 1 0 11
4 4 1 0 9
5 6 1 0 10
6 8 1 0 11
7 3 1 0 8
8 5 1 0 8
9 8 0 1 16

10 5 0 1 10
11 6 0 1 13
12 5 0 1 10
13 3 0 1 10
14 6 0 1 14
15 4 0 1 11
16 6 0 1 12
17 5 ÿ1 ÿ1 24
18 8 ÿ1 ÿ1 29
19 3 ÿ1 ÿ1 10
20 4 ÿ1 ÿ1 22
21 6 ÿ1 ÿ1 25
22 9 ÿ1 ÿ1 28
23 4 ÿ1 ÿ1 22
24 5 ÿ1 ÿ1 24

Table 6.10 Results for the full single factor, single covariate
ANCOVA regression GLM

Variable Coef®cient Std error Std coef t p (2 tail)

Constant 5.861 1.719 0.000 3.409 0.003
B1 ÿ5.344 0.734 ÿ0.641 ÿ7.278 , 0.001
B2 ÿ2.725 0.733 ÿ0.327 ÿ3.716 0.001
Z 1.649 0.296 0.425 5.574 , 0.001
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included in the regression, this is the error term obtained when the single factor,

single covariate ANCOVA GLM is applied.

The second stage of the procedure to implement a single factor, single

covariate ANCOVA via regression is to carry out a regression where the

experimental conditions are omitted and the only regression predictor is the

covariate (Z). This regression GLM is equivalent to the reduced GLM for

the single factor, single covariate ANCOVA. The results of this analysis are

presented in Tables 6.12 and 6.13, although the former are rather redundant, as

they pertain to a GLM in which there is virtually no interest. Of most concern is

the regression error SS provided in Table 6.13.

The difference between the residual/error SS in Table 6.11 and that in Table

6.13 is equivalent to the SS attributable to experimental conditions. (This SS is

presented in Table 6.15.) However, the SS attributed to the covariate in Table

6.13 is not the covariate SS calculated when the full ANCOVA GLM is applied.

As mentioned in Section 6.3, the SS for the covariate in the full ANCOVA GLM

Table 6.11 ANOVA summary table for covariate and experimental
conditions regression

R: 0.940 R squared: 0.884 Adjusted R squared: 0.867

Source SS df Mean square F p

Regression 983.537 3 327.846 51.041 , 0.001
Residual 128.463 20 6.423

Table 6.12 Results for the reduced single factor, single covariate
ANCOVA regression GLM

Variable Coef®cient Std error Std coef t p (2 tail)

Constant 6.458 4.410 0.000 1.465 0.157
Z 1.541 0.759 0.398 2.032 0.054

Table 6.13 ANOVA summary table for covariate regression

R: 0.398 R squared: 0.158 Adjusted R squared: 0.120

Source SS df Mean square F p

Regression 175.721 1 175.721 4.129 0.054
Residual 936.279 22 42.558
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may be obtained by comparing the error SS from the full ANCOVA with the

error SS from an equivalent full ANOVA GLM. A full ANOVA GLM is

implemented by a regression that uses only the predictors representing the

experimental conditions (X 1 and X 2). Table 6.14 presents the ANOVA summary

of this analysis.

Armed with the error term from the regression GLM implementation of the

single factor ANOVA, the error reduction attributable to the covariate can be

calculated. This information is summarized in Table 6.15.

6.5 Other ANCOVA designs

Many texts on experimental design and statistical analysis are vague about any

form of ANCOVA other than single factor independent measures ANCOVA.

Although there is insuf®cient space here to consider other ANCOVA designs in

a detailed fashion, the following discussion is presented to provide some

appreciation of the different types of ANCOVA designs and analyses available.

Table 6.15 ANOVA summary table for covariate and experimental
conditions regression

R: 0.940 R squared: 0.884 Adjusted R squared: 0.867

Source SS df Mean square F p

Error reduction due to
experimental conditions

807.816 2 403.908 62.883 ,0.001

Error reduction due to
covariate

199.537 1 199.537 31.065 ,0.001

Full ANCOVA GLM
residual

128.463 20 6.423

Table 6.14 ANOVA summary table for experimental conditions
regression

R: 0.840 R squared: 0.705 Adjusted R squared: 0.677

Source SS df Mean square F p

Experimental condition 784.000 2 392.000 25.098 , 0.001
regression predictors

Residual 328.000 21 15.619
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6.5.1 Related measures ANCOVA designs

Single factor repeated measures designs and indeed, all fully related factorial

designs derive no bene®t from ANCOVA. In these designs, as all subjects

experience and provide a dependent variable score in all of the experimental

conditions, there are no group differences to adjust and so no role for ANCOVA.

(See Keppel & Zedeck, 1989, for a similar account.)

6.5.2 Mixed measures factorial ANCOVA

In contrast to fully related factorial designs, there may be advantages in applying

ANCOVA to mixed designs. There are two sorts of mixed ANCOVA design. In

the simplest of these designs (Table 6.16(a)), each subject provides a single

score on the covariate(s). In the more complicated design (in Table 6.16(b)),

each subject provides covariate scores in each experimental condition, and so

provides covariate scores for each dependent variable score.

Table 6.16 Mixed factorial ANCOVA designs
(a) Mixed factorial ANCOVA design with one covariate measure
per subject

Factor B

b1 b2 b3

Factor A Subject Z Y Y Y

1
a1 2

3

4
a2 5

6

(b) Mixed factorial ANCOVA design with one covariate measure
per repeated measure

Factor B

b1 b2 b3

Factor A Subject Z Y Z Y Z Y

1
a1 2

3

4
a2 5

6
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For the simpler mixed measures factorial ANCOVA design, the covariate(s)

will have consequences for the independent measures factor (Factor A in Table

6.16(a)) and, for the same reasons as described for single factor repeated

measures designs, the covariate will have no effect on the related factor effect

(Factor B in Table 6.16(a)), nor will the covariate exert any in¯uence on the

interaction between the related and the independent factor. Therefore, the

simpler mixed measures factorial ANCOVA design may be analysed by carrying

out two separate analyses: one a single independent measures factor ANCOVA

and the other a mixed measures factorial ANOVA. The effect of the independent

measures factor is assessed by a single factor ANCOVA applied to the subjects'

covariate score(s) and the mean of their repeated measures scores. The related

factor main effect and the independent factor and related factor interaction effect

are assessed by a mixed measures factorial ANOVA. Huitema (1980) describes

the regression GLM for this form of factorial ANCOVA.

In the more complicated mixed measures factorial ANCOVA design (Table

6.16(b)), the covariate(s) have consequence for both independent and related

factor effects. Consequently and in contrast to the simpler mixed measures

factorial ANCOVA design, there are no convenient short-cuts or checks. The

traditional ANOVA approach to both mixed factorial ANCOVA designs is

presented by Winer et al. (1991), although beware errors in some of the

numerical examples. Considerable care also should be taken when using

statistical software to implement this sort of ANCOVA. Indeed, there is

suf®cient ambiguity over the form of ANCOVA implemented by some statistical

software packages, despite the apparent set-up, that initially testing the package

by having it analyse example data (as provided in statistics texts) and inspecting

the results output to see if they match with the expected results is a wise

strategy.
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7 ASSUMPTIONS UNDERLYING
ANOVA, TRADITIONAL ANCOVA
AND GLMS

7.1 ANOVA and GLM assumptions

7.1.1 Independent measures

It has been said a number of times that ANOVA, the special case of multivariate

regression with the side condition that effects sum to zero, is subsumed by the

GLM. Therefore, it should come as no surprise that an identical set of

assumptions underly both ANOVA and any GLM. This would be obvious if it

was not for the separate histories of these approaches leading to the same

assumptions being expressed in slightly different terms.

The assumptions typically described as underlying ®xed effect independent

measures ANOVA and GLMs are those presented in Table 7.1. Whereas

ANOVA assumptions are described in terms of the dependent variable scores,

GLM assumptions are described mainly in terms of errors. This is because there

are actually two parts to any GLM. The ®rst part, which has been presented

frequently, is the GLM equation describing the data in terms of model

parameters and error terms. The second part is a set of assumptions that specify

both restrictions on the model parameters and the error terms.

For ®xed effect independent measures GLMs, each dependent variable score

Table 7.1 Fixed effect independent measures ANOVA and GLM
assumptions

ANOVA assumptions GLM assumptions

(a) Each condition contains a random sample of
the population of such scores

Each condition contains a random sample of
the population of such scores

(b) The scores in each condition are distributed
normally

Errors are distributed normally

(c) The scores in each condition are independent
of each other

Errors are independent

(d) The variances of the scores in each
experimental condition are homogeneous

Errors are homoscedastic (errors exhibit
common variance across all values of the
predictor variables)



is conceived as being constituted of ®xed and random parts. The ®xed part

comprises the model components, while the random part comprises just the

error component. As only the error component is taken to be random, the

remaining GLM assumptions apply only to the errors. As might be expected,

this conception also applies to ANOVA. The mean of each experimental

condition is taken by ANOVA to be the score for that condition and the deviation

between the subjects' actual scores and the condition mean is taken to represent

sampling error. This is manifest in the way the variance per condition is

calculated: this variance is based on the discrepancy between each score and its

condition mean. As the variation in scores can arise only from this discrepancy,

which is the GLM error, clearly the same division of ®xed and random compo-

nents arises in ANOVA, but it tends not to be expressed as such.

Obviously, the ANOVA and GLM assumptions labelled (a) in Table 7.1 are

equivalent. For the reasons described in the previous paragraph, the (b) assump-

tions are equivalent, as are the (c) assumptions of independent scores and

independent GLM errors. However, the relationship between the (d) assumptions

of homogeneous treatment group variances and homoscedastic errors is slightly

more complicated. In fact, the homoscedasticity assumption is a more general

statement about variance homogeneity, which subsumes the ANOVA assump-

tion. The homoscedasticity assumption states that the error variance at any

combination of predictor variable values will be equivalent, whereas the

ANOVA assumption refers only to homogeneous variance across experimental

conditions. For ANOVA, the experimental conditions constitute all of the

predictors, but GLMs, as in ANCOVA, may also include predictors that are not

experimental conditions.

Valid signi®cance tests require normally and independently distributed (NID)

errors. Therefore, the assumptions of NID errors are made for the purpose of

carrying out signi®cance tests (e.g. Draper & Smith, 1998; Kirk, 1995;

Pedhazur, 1997; Snedecor & Cochran, 1980). Although these assumptions are

not necessary when a GLM is used only to describe data, as most GLMs are

applied with the intent to test the signi®cance of parameter estimates, in most

cases NID errors are necessary assumptions.

The level of measurement appropriate for the GLM dependent variable is not

presented as an ANOVA or GLM assumption. Some authors consider the level

of measurement of the dependent variable as determining which statistical

analyses are and are not appropriate (e.g. Stevens, 1951; Suppes & Zinnes,

1963). Typically, such authors would consider ANOVA as assuming an interval

level of dependent variable measurement. However, there are also authors who

consider the level of the dependent variable measurement to be largely irrelevant

as far as choosing a statistical technique is concerned (e.g. Townsend & Ashby,

1984; Mitchell, 1986). Recent texts covering ANOVA have tended, either

implicitly (Kirk, 1995) or explicitly (e.g. Winer et al., 1991; Howell, 1997) to

accord with the latter view. Currently, the general opinion seems to be that the

measurement issue falls within the realm of methodology rather than statistics,

and it is more important that the numbers representing the dependent variable

accurately re¯ect the entity in which there is interest, than they comply with the
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requirements of a particular measurement scale. After all, it may be that the

entity in which we are interested does not increment in an orderly fashion.

7.1.2 Related measures

When scores through their error components are related, both the F-ratio mean

square numerator and denominator are biased (e.g. Kenny & Judd, 1986).

Nevertheless, if the data relations manifest a spherical or circular variance±

covariance matrix and group effects are accommodated by additional terms in

the GLM, the biases in the F-ratio mean squares cancel out and a valid F-test is

obtained.

In related measures ANOVAs and GLMs, a spherical variance±covariance

matrix is obtained when the variances of the differences between the experi-

mental condition scores are homogeneous. For example, given a related ANOVA

with three experimental conditions, A, B and C, the variance of the differences

between the subjects scores in conditions A and B should be the same as the

variance of the differences between the subjects scores in conditions A and C, or

B and C. For psychological data, the need to assume a spherical variance±

covariance matrix tends to be a signi®cant restriction.

The consequences of the violation of the spherical variance±covariance

matrix assumption can be accommodated by modifying the F-value numerator

and denominator dfs, which provides an adjusted omnibus F-test: modifying

numerator and denominator dfs has consequence for the p-values associated

with the F-value. A number of different modi®cations have been suggested.

Box (1954) described a parameter that indexes the extent of the sphericity

assumption violation. (Unfortunately, the Greek letter epsilon, å, is used to

denote this parameter, which sets up potential confusion as epsilon also is used

to denote the error term parameter.) Box's å varies between 0 and 1, with lower

values indicating greater violation of sphericity, but tends to underestimate the

parameter å. However, due to the laborious calculation required to obtain an

estimate of å (å̂), most workers used Geisser and Greenhouse's lower bound

adjustment instead. Geisser and Greenhouse (1958) demonstrated that the lowest

possible value for the parameter å in a single factor ANOVA design with p

levels provides a numerator df of 1 and denominator dfs of ( pÿ 1). Of course

this is a very conservative adjustment, as for most data the true value of å would

be much larger than that which would provide the lowest bound adjustment. In

an attempt to compensate for the underestimate bias of å̂, Huynh and Feldt

(1976) suggested the estimate ~å. However, ~å tends to overstimate å. Laborious

calculations are required to obtain å̂ and ~å, but from the late 1970s, these

estimates were provided by many statistical packages and began to be used in

preference to Geisser and Greenhouse's lowest bound adjustment. Confusingly

however, the statistical packages usually label å̂ as the Geisser and Greenhouse

adjustment. This is because these programs follow Geisser and Greenhouse's

(1958) generalization of å̂ to more complicated designs.

Greater access to statistical computing resources also has supported the
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application of a multivariate approach to the analysis of related measures data

(e.g. Hand & Taylor, 1987; Maxwell & Delaney, 1990; O'Brien & Kaiser,

1985). Although empirical evidence indicates that with balanced designs, both

the corrected df and multivariate approaches provide valid and effective control

of Type 1 error (Keselman, Lix & Keselman, 1996), generally the univariate

approach is more powerful (see Davidson, 1972, or the summary provided by

Maxwell & Delaney, 1990). Therefore, this text concentrates on the univariate

GLM approach to related measures.

7.1.3 Traditional ANCOVA

Amongst the standard descriptions of ANCOVA assumptions and tests are some

ambiguous and even some misleading accounts. Clearly it is important to

distinguish genuine statistical assumptions from those made to simplify ANCO-

VA interpretation, to test the appropriate statistical assumptions, and to employ

pertinent techniques to assess the tenability of these assumptions.

In addition to all of the ANOVA assumptions, most psychology statistical

texts present ANCOVA as making the assumptions listed in Table 7.2. However,

these three assumptions have no counterparts in GLM terms because all are

made to simplify the interpretation and/or calculation of the ANCOVA.

GLMs can accommodate nonlinear regression of the dependent variable on

the covariate (see polynomial regression, e.g. Draper & Smith, 1998; Neter et

al., 1990), heterogeneous regressions (e.g. Rutherford, 1992; Searle, 1979, 1987)

and correlations between the covariate and treatments. Although covariate-

treatment correlations may cause particular interpretation problems, they do not

preclude accurate and informative analysis (Cohen & Cohen, 1983; Rutherford,

1992).

The form of ANCOVA incorporating the assumptions listed in Table 7.2 may

be termed traditional ANCOVA to distinguish it from less constrained forms of

ANCOVA. Traditional ANCOVA is still the most common form of ANCOVA

applied in psychological research and the programs labelled ANCOVA in most

commercial statistical packages implement traditional ANCOVA. Beyond the

bene®ts accrued from simplifying ANCOVA interpretation and/or calculation,

there are other reasons for choosing traditional ANCOVA. First, the good

ANCOVA design practice of measuring the covariate before administering the

Table 7.2 Speci®c ANCOVA assumptions

(a) The covariate is independent of the treatments

(b) In each treatment group the relationship between the covariate and the dependent variable is
linear (the covariate and dependent variable are expressed at the ®rst power only)

(c) The regression coef®cients of the dependent variable on the covariate in each treatment group
are homogeneous
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experimental manipulation(s) usually ensures the experimental conditions do

not in¯uence the covariate (to do so would require their effect to be exerted

backwards through time). Second, most relationships between covariates and

dependent variables in psychology appear to be linear, or are approximately

linear. Therefore, it is very likely that two of the three traditional assumptions

will be tenable for most ANCOVAs. Unfortunately, however, the third assump-

tion of homogeneous regressions within each of the experimental conditions

becomes more tenuous as the number of experimental conditions increases, as

in factorial experimental designs (Winer et al.,1991).

7.2 A strategy for checking ANOVA and traditional
ANCOVA assumptions

A general strategy for checking the ANOVA and traditional ANCOVA assump-

tions is presented. Although lack of space prevents the detailed description of

measures to remedy data that fail to meet ANOVA or ANCOVA assumptions,

these may be found in Daniel and Wood (1980), Kirk (1995), Mosteller and

Tukey (1977), Neter et al. (1990) and Weisberg (1985), while alternatives to

traditional ANCOVA are described in the next chapter.

The GLM assumptions provide the fundamental criteria by which the

statistical validity of any GLM is judged. Even violations of speci®c traditional

ANCOVA assumptions manifest as violations of one or more GLM assumptions

(when an inappropriate GLM is applied). However, compliance with the speci®c

assumptions made by traditional ANCOVA does not mean compliance with the

GLM assumptions. Therefore, assessing the extent to which a model complies

with the GLM assumptions provides the best criteria to judge the statistical

validity of any traditional ANCOVA model.

The general strategy advocated to check ANOVA and ANCOVA assumptions

employs a stepwise, and, when necessary, iterative, approach. A basic outline of

this strategy is presented in Figure 7.1, with the boxes labelled for easy

reference. First, the analysis is implemented and the GLM residuals are obtained

(B1 and B2). These residuals are analysed in terms of their conformity to GLM

assumptions (B3). At this point the ®rst branch in the assessment path is reached.

If the GLM assumptions are judged to be tenable, nothing more need be done

and the analysis results can be interpreted (B4). However, if any of the GLM

assumptions are judged to be untenable after an ANOVA was implemented (B5),

then remedial action(s) must be undertaken with respect to the model or data

(B6). If any of the GLM assumptions are judged untenable after an ANCOVA

was implemented (B7), then it is possible that the cause of the GLM assumption

violation(s) is a failure of one or more of the speci®c traditional ANCOVA

assumptions (B8). If violations of any speci®c traditional ANCOVA assumptions

are detected, then appropriate remedial action on the model or data should be

undertaken (B6). If there are no speci®c traditional ANCOVA assumption

violations, then a failure of one or more of the GLM assumptions is indicated
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(B9). In such circumstances, remedial actions with respect to the model or data

should be undertaken (B6) and the analysis repeated (B1). Nevertheless, after the

second analysis, it is again necessary to ensure the underlying assumptions are

tenable before interpreting the results.

7.3 Assumption checks and some assumption
violation consequences

There are both graphical and signi®cance test methods for assessing assumption

conformity. Although the former approach seems more popular (e.g. Cohen &

Cohen, 1983; Cook & Weisberg, 1982; Draper & Smith, 1998; Lovie, 1991;

Montgomery & Peck, 1982; Neter et al., 1990; Norusis, 1985, 1990; Pedhazur,

1997), it may be dif®cult for the less experienced to determine assumption

violations in this way. With graphical approaches there may be a tendency to

ignore or fail to appreciate the spread of scores in relation to the speci®c aspect

of the data considered. In contrast, it is exactly these relations that most

Violations of
specific traditional
ANCOVA
Assumptions
detected?

B8

Carry out
ANOVA/ANCOVA

B1

Examine
errors

B2

GLM
Assumptions
tenable?

B3

Interpret
results

B4

Yes

No

ANOVA?

B5

ANCOVA?

B7

No

Yes

Violation of GLM
Assumptions

B9

Remedial action
on model/data

B6

Figure 7.1 Flow chart of a general strategy for checking ANOVA
and ANCOVA assumptions

128 INTRODUCING ANOVA AND ANCOVA: A GLM APPROACH



signi®cance tests formalize. Nevertheless, as sample size increases, test power

increases and with large enough samples, virtually all tests will have suf®cient

power to reject the null hypothesis. This is a problem because the in¯uence of

random processes makes exact conformity with assumptions extremely unlikely

and so the issue always is the extent to which assumptions are met. With large

data sets, the ability to reject the null hypothesis may not be the best assessment

criterion. As well as determining the signi®cance level, the extent of the

assumption violation should be considered, perhaps by comparing the size of the

test statistic obtained with its expected value under the null hypothesis.

To illustrate graphical and signi®cance test methods, some of the assessment

techniques described are applied to the single factor independent measures

ANCOVA with one covariate data presented in Chapter 6. Most commercially

available statistical packages are able to describe ANCOVA in terms of the

experimental design GLM and can provide ANCOVA model errors/residuals as

part of the output. Once obtained, the residuals, the error term estimators, can be

input to other programs in the statistical package for examination. However,

implementing ANOVA and ANCOVA as regression models does offer an

advantage with respect to the analysis of errors. As most good quality regression

software provides a range of techniques for examining errors, ANOVAs and

ANCOVAs as regression models can make use of these (frequently automatic)

regression diagnostics programs.

7.3.1 ANOVA and ANCOVA

Random sampling

Ideally, assumption (a) in Table 7.1 should be satis®ed by implementing two

randomization procedures, one after the other. First, subjects are sampled ran-

domly from the population of interest. The manner of this sampling determines the

validity of the inferences from the sample to the population of interest. However,

very few experiments in psychology invest great effort to ensure a random sample

of the population to which inferences will be generalized. Most research conducted

in European and American unversities employs convenience samples of the under-

graduate population. Usually results are generalized to the western, if not world,

populations on the presumption that with respect to the psychological processes

examined in the experiment, there are no real differences between the participating

undergraduates, the rest of the undergraduate population, and the western and

world populations (see Maxwell & Delaney, 1990; Wright, 1998).

Second, the subjects constituting the sample are assigned randomly to the

experimental conditions. After such random assignment, it is most likely that

any subject characteristics such as academic ability, friendliness, etc. will be

distributed equally across all conditions. In other words, it is most unlikely that

differences in subjects' dependent variable scores will be due to differences in

subject characteristics across experimental conditions. Consequently, random

assignation of subjects to experimental conditions is the basis for attributing any

differences observed between the experimental conditions to these experimental
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conditions. The validity of any ANOVA is severely questioned whenever these

sampling procedures are compromised.

Normality

Recently, Wilcox (e.g. 1998a) has raised the pro®le of the normality assumption.

Wilcox argues strongly that even slight deviations from the normal distribution

can have substantial consequences for analysis power. Wilcox's view is consid-

ered further in Chapter 9. However, most psychology statistical texts report

ANOVA (and so ANCOVA) as being robust with respect to violations of the

normality assumption (e.g. Hays, 1994; Kirk, 1995; Winer et al., 1991),

especially when the experimental condition sample distributions are symmetri-

cal and the sample sizes are equal and greater than 12 (Clinch & Keselman,

1982; Tan, 1982). Indeed, Hays (1994) describes the robustness of ANOVA to

non-normal distributions to be in proportion to the sample size; greater non-

normality exerts less in¯uence on the F-test as the sample size increases.

Although data which mildly violates the normality assumption is not uncom-

mon, severe departures from normality are quite rare (but see the differing views

of Bradley, 1978 and Glass, Peckham & Sanders, 1972). Nevertheless, robust-

ness is a matter of degree and greater departures from normality will affect the

F-test Type 1 error rate (also see Chapter 9). Therefore, screening data to ensure

there is no gross departure from normality or to determine the extent of the

departure from normality is prudent.

Note that the ANOVA assumption concerns the dependent variable scores and

assumes a normal distribution within each experimental condition. In contrast,

the GLM assumption simply is that all of the errors are distributed normally.

The difference between the two assumptions is the dependent variable scores

contain the ®xed component, which is responsible for any differerences between

the experimental conditions. With this component in the scores, any experimen-

tal differences can interfere with a proper assessment of the data normality,

hence the requirement to examine the data from the experimental conditions

separately. However, with errors, the ®xed component is absent, so the normality

assessment can afford to ignore experimental conditions.

Conformity to a normal distribution can be assessed in a number of ways.

Hays (1994) suggests the use of the Kolmogorov±Smirnov test, which assess the

discrepancy between hypothetical and sample distributions. This appears to be

more powerful than the alternative chi-square test (Siegel & Castellan, 1988).

However, the Shapiro±Wilk (1965) test is another popular means of assessing

normality, as is the Lilliefors test (Lilliefors, 1967), which is a modi®cation of

the Kolmogorov±Smirnov test, speci®cally for sample data. The Shapiro±Wilk

is a more conservative test than the Lilliefors, but as ANOVA and ANCOVA are

robust with respect to violations of the normality assumption and the aim is to

screen for large deviations, very powerful tests are unnecessary (but again see

Wilcox's views reported in Chapter 9).

Several statistical packages provide skew and kurtosis statistics and also the

standard errors of these statistics. (Karl Pearson originally labelled the skew
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index g1 and the kurtosis index g2. Skew and kurtosis are also known,

respectively, as the 3rd and 4th moments of the normal distribution.) Dividing

the skew and kurtosis statistics by their standard errors provides an approxima-

tion to a Z-score that can be used as a signi®cance test. However, standard error

is a function of sample size (all else being equal, larger samples have smaller

standard errors) and so larger samples tend to provide greater Z-scores. Conse-

quently, although Z-tables have no obvious markers of sample size, such as dfs,

it should be appreciated that the power of these Z-score tests also increases with

sample size.

Popular graphical methods for assessing normality include normal and half-

normal (i.e. unsigned) probability plots of residuals (Draper & Smith, 1998).

The bene®t of such normal probability plots is that deviation from a normal

distribution is represented by deviation from a straight line. With computer

output, usually the data points should fall approximately along the straight

diagonal line from bottom left to top right. However, when the sample size tends

towards the small, expect this line not to be smooth, perhaps with smaller

approximately straight line components. Generally, normal probability plots are

easier to appreciate than alternatives, such as plots of residual distributions, as

these have to be compared with the normal distribution per se.

Often half-normal probability plots of residuals (obtained by plotting absolute

residual values) are suggested when there are few data points (e.g. Lovie, 1991).

Unfortunately however, half-normal probability plots of residuals often suggest

greater deviation from linearity than the equivalent `̀ full-normal'' probability

plots and greater experience may be required to interpret these plots accurately

(Draper & Smith, 1998; also see Judd & McClelland, 1989). A normal

probability plot of the Chapter 6 ANCOVA errors and the results of the Lilliefors

tests are presented in Figure 7.2. Both the normal probability plot and the

signi®cance test indicate some deviation from a normal distribution, but, given

the robustness of ANOVA and the size and balanced nature of the sample,

insuf®cient to affect the F-test interpretation.

Independence

The value of one GLM error is assumed not to affect the value of another.

However, while error terms are conceived as independent, when h GLM

parameters are estimated from n observations, there are only nÿ h degrees of

freedom, so the residuals, the error term estimators, will covary (Draper &

Smith, 1998). Residuals related only in this way are of little concern. However,

residuals may be related in additional ways and relatively few statistical texts

point out that ANOVA and ANCOVA are not robust with respect to violation of

the independent errors assumption (e.g. Maxwell & Delaney, 1990).

As well as being part of the basis for attributing experimental effects to the

experimental manipulation, randomization procedures also increase the like-

lihood of independent scores: there is no reason to believe that scores from

subjects randomly selected from the population of interest and randomly

allocated to experimental conditions will be related. Generally, appropriate
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randomization procedures, and the application of a pertinent type of analysis,

provide independent errors. However, contrary to some claims (e.g. Winer et al.

1991), randomization procedures cannot assure error independence. Sometimes,

despite random sampling and assignment, relations between scores can arise. In

particular, the way in which the dependent variable scores are collected may

produce related scores. For example, scores from subjects tested as a group, or

scores obtained using a certain piece of equipment, or questionnaire, etc. may be

related. Consequently, consideration of the full study methodology, ideally

before its implementation, is necessary to ensure independent errors.

Kenny and Judd (1986) describe means of assessing the nonindependence of

ANOVA errors due to groups, sequence and space, as well as methods, to

eliminate the F-ratio numerator and denominator mean square biases caused by

non-independent errors. Of these three sources, non-independence due to groups

is most frequently encountered in psychological research. Groups may be

de®ned in a variety of different ways (e.g. blocking, see Hays 1994; Kirk, 1995;

Winer et al., 1991). Most familiar and obvious is the situation where groups and

experimental conditions are equivalent. However, data sharing any common

feature can be grouped. Ideally, groups should be crossed with experimental

conditions. Repeated measures designs are examples of grouping on the basis

that all scores are provided by the same subject.

Kenny and Judd (1986) provide a formula for estimating the non-indepen-

dence of errors due to groupings when a spherical variance±covariance matrix
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Figure 7.2 Normal probability plot of ANCOVA errors and the
Lilliefors signi®cance test result
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is assumed. In a single factor ANOVA design, where data is arranged on the

basis of the grouping criteria, this is given by the within groups correlation

WGC � MSb ÿ MSw

MSb � MSw(Nj ÿ 1)
(7:1)

where MSb and MSw are the mean squares between and within groups, and Nj is

the number of scores in each group. The WGC calculated can be treated as an

F-ratio with (N ÿ 1) numerator and (N ÿ 1) denominator degrees of freedom

(Donner & Koval, 1980). Negative group linkage is indicated by signi®cant

WGC values below 1 and positive group linkage is indicated by signi®cant

WGC values above 1. Positive values indicate greater similarity of residuals

within groups than between, while negative values indicate the converse.

Preliminary application of this formula may indicate non-independence that

should be accommodated in the experimental design GLM.

Once the related scores are identi®ed, they are treated just as scores from the

same subject (or block) would be treated. In other words, the statistical

procedures used to analyse repeated measures (or blocked) designs are applied.

Nevertheless, prevention of non-independence is far preferable to cure, not least

because, unlike the use of blocks in a planned experiment, post hoc groupings

may not be conveniently nested or crossed.

Graphical assessment of errors related through groups is also possible. When

errors are plotted against the suspected groupings, dependence should be

revealed by errors bunching within groups. This is a graphical analogue of (7.1).

In addition to non-independence due to grouping, Kenny and Judd (1986) also

discuss signi®cance test methods of assessing error dependence due to sequence

and space, while Draper and Smith (1998), Montgomery and Peck (1982), and

Neter et al. (1990) present graphical methods of assessing error dependence due

to sequence.

Homoscedasticity: homogeneity of variance

Homoscedasticity can be de®ned as constant error variance (estimated by the

GLM residuals) at every value of the predictor variable, and/or every combina-

tion of the predictors (e.g. Kirby, 1993). Alternatively, some authors de®ne

homoscedasticity as constant error variance across all of the predicted values of

the dependent variable (e.g. Cohen & Cohen, 1983; Judd & McClelland, 1989).

However, the most detailed set of predictor value combinations available from

any data set are provided by the predictor combinations associated with each

data point. As each data point has a corresponding predicted value, examining

variance by predicted values is equivalent to variance examination at every

combination of predictor values.

The F-test denominator, the MSe, is the average of all the deviations between

the predicted and actual values of the dependent variable. With heteroscedasti-

city, the averaging procedure introduces error into the MSe, making it a poor

estimate of error variation for all of the predicted values so compromising the

accuracy of the F-test. Most psychology statistical texts report ANOVA as being
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robust with respect to moderate violations of variance homogeneity, provided

the experimental condition sample sizes are equal and greater than ®ve. How-

ever, the argument made with regard to the normality assumption also applies

here. Moreover, to appreciate the adequacy of the GLM for the data, it is

important to know if heteroscedasticity is present.

Errors plotted on the ANOVA or ANCOVA experimental conditions, as in

Figure 7.3, should take the shape of a horizontal band. Discrepancies in the

length of the vertical error `̀ stripes'' over the experimental conditions indicate

heterogeneous error variance as a function of the experimental conditions.

However, errors also should be plotted on the predicted values, as in Figure 7.4.

Indeed, this may be the easier method of graphical assessment, particularly if

more than two experimental conditions have been coded for a regression model

implementation of ANOVA or ANCOVA. Ideally, the errors should take the

shape of a horizontal band. Other shapes most likely indicate error variance

increasing with the size of the GLM estimate. Although in theory error variance

may decrease as the predicted values increase, this is seen rarely in practice.

Also presented in Figures 7.3 and 7.4 are the results from Cook and

Weisberg's (1983) score test. The score statistic is the regression of U , the

standardized residual squared, on the predicted values (or any independent

variable), divided by 2. The score statistic has an approximate chi-square

distribution with one df, which provides a very useful signi®cance test of

homoscedasticity. Step by step accounts of how to calculate the score test are
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Figure 7.3 Errors plotted on experimental conditions
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presented by Weisberg (1985) and Kirby (1993). This test also is incorporated

into the BMDP regression program P2R. Unfortunately however, the score test

is very poorly documented and easily could be missed. The score test result

appears as a single line directly below the diagnostic error variance plot to

which it refers. Moreover, there is no account in the BMDP manuals of the fact

that separate score test statistics are calculated for each predictor and for the

predicted values, but only the plot and score test for the variable associated with

the largest score test and so, greatest heteroscedasticity, is provided. Indeed,

nowhere in the BMDP manuals is there mention of this extremely useful

signi®cance test of homoscedasticity (see BMDP Communications, 1983, Vol

16, No. 2, p. 2).

Whereas the graphical and signi®cance test assessments of errors by predicted

scores suggest conformity to the homoscedasticity assumption (Figure 7.4), this

is not the case when the graphical and signi®cance test assessments examine

errors by experimental condition (Figure 7.3). This difference emphasises the

value of examining errors as a function of a variety of GLM components. The

error attributable to an outlier (the data point nearest the X-axis in both graphs)

also is very noticeable. The most appropriate way to deal with outliers is a topic

beyond the scope of this text, but a good introduction is provided by Pedhazur

(1997).
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Figure 7.4 Errors on predicted scores and Cook and Weisberg's
score test for predicted scores
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7.3.2 Traditional ANCOVA

Covariate independent of experimental conditions

Although it is inevitable that the covariate(s) and experimental conditions will

have some sort of conceptual link, traditional ANCOVA assumes the covariate(s)

and experimental conditions are statistically independent: experimental condi-

tions should not affect the distribution of covariate scores, nor should the

covariate(s) in¯uence the nature of the experimental conditions. When the

covariate(s) and experimental conditions are related, traditional ANCOVA

adjustments on the basis of the general covariate mean(s) are equivalent to

modifying the experimental conditions, so that adjustments to the dependent

variable can remove part of the experimental effect or produce an artefactual

experimental effect (Cochran, 1957; Elashoff, 1969; Keppel, 1991; Kirk, 1995;

Smith, 1957). Good design practice in ANCOVA involves measuring the

covariate(s) before the experimental manipulation. Logically, this makes it

impossible for the experimental conditions to in¯uence the covariate (e.g.

Howell, 1997; Keppel, 1991; Kirk, 1995; Winer et al., 1991). Measuring the

covariate(s) after the experimental manipulation affords the opportunity for the

experimental conditions to exert an in¯uence on the covariate(s) and is one way

in which a relation between covariate(s) and experimental conditions can arise.

However in ANCOVA, a relation between covariate(s) and experimental condi-

tions also can arise as a consequence of the procedures employed to assign

subjects to experimental conditions.

The least serious relation between covariate(s) and experimental conditions

has been termed ¯uke assignment (Maxwell & Delaney, 1990). Fluke assign-

ment is when, despite random assignment, different experimental condition

covariate distributions are obtained. With ¯uke assignment, the differences

between experimental condition covariate distributions that produce the relation

between covariate(s) and experimental conditions re¯ect a Type 1 error. How-

ever, in these circumstances, ANCOVA is the appropriate analysis to control any

resulting bias (Permutt, 1990; Senn, 1989; Shirley & Newnham, 1984).

A more serious relation between covariate(s) and experimental conditions

caused by assignment procedures is known as biased assignment. Here, the

covariate scores are used as an assignment criterion. Two types of assignment

may be used. In one, only subjects with particular covariate scores (e.g. below

the mean of all covariate scores recorded) are assigned to the experimental

conditions. With the other type of assignment, subjects scoring high on the

covariate are placed in one experimental condition and low scoring subjects are

placed in another experimental condition (Huitema, 1980). Even when biased

assignment has been used, traditional ANCOVA will adjust for the differences

between the covariate distributions and will provide an unbiased test of the

experimental effects (Rubin, 1977). Nevertheless, as experimental condition

covariate distributions become more distinct, so the tenability of the traditional

model assumptions becomes more important for the interpretation of the analy-

sis (see Cochran, 1957; Huitema, 1980; Maxwell & Delaney, 1990). Taylor and
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Innocenti (1993) also refer to this issue, when they assert that if the general

covariate mean is not logical for a variable, then it should not be used as a

covariate. They state this is most often true for dichotomous (i.e. categorical)

covariates, but it is dif®cult to think of a situation where it would be appropriate

to use a categorical variable as a covaricate.

The most serious covariate±experimental condition relation caused by assign-

ment procedures occurs when intact groups serve as the subjects in each of the

experimental conditions. A typical example is the use of two classes of school

children to compare two types of teaching method. When intact groups

constitute the experimental conditions, interpretation of the ANCOVA results

should proceed with considerable caution. With biased assignment, the basis for

the difference between experimental conditions is known. In contrast, intact

groups may be distinguished on the basis of a whole range of unknown

variables. If the covariate scores of the intact experimental conditions differ, this

can be conceived as an effect of the experimental conditions on the covariate(s).

However, as the relationship between the covariate(s) and any set of (unknown)

variables distinguishing the experimental conditions cannot be determined, there

is a model speci®cation error and the nature and consequences of the ANCOVA

adjustment cannot be known (e.g. Overall & Woodward, 1977).

The issue of covariate measurement error is also pertinent here. Strictly, the

covariate (in common with all of the independent variables) is assumed to be

measured without error. However, provided random assignment or even biased

assignment to experimental conditions is employed and all other assumptions

are tenable, the consequence of covariate measurement error (cf. no covariate

measurement error) is only a slight reduction in the power of the ANCOVA.

However, when intact experimental conditions are used, covariate measurement

error is expected to provide biased ANCOVA experimental effects. (For further

discussion of assignment to experimental conditions procedures, and the con-

sequences of covariate measurement errors and methods of repair, see Maxwell

& Delaney, 1990; Huitema 1980 and Bollen, 1989.)

In the GLM context, correlations amongst predictor variables, such as the

covariate and experimental conditions, is termed multicollinearity (e.g. Cohen

& Cohen, 1983; Pedhazur, 1997; Neter et al., 1990). Previously, this term was

used to describe predictors that were exact linear combinations of other model

predictors (e.g. Draper & Smith, 1998), but now it tends to be applied more

generally. Data exhibiting multicollinearity can be analysed, but this should be

done in a structured manner (e.g. Cohen & Cohen, 1983; also see Rutherford,

1992, regarding the use of heterogeneous regression ANCOVA to attenuate the

problems caused by covariate±experimental conditions dependence). Multicol-

linearity also may arise through correlations between two or more covariates.

However, because there is seldom concern about the relative composition of the

extraneous variance removed by covariates, this is much less problematic than a

relation between the covariate(s) and the experimental conditions.

One symptom of a covariate±experimental conditions relation is that the

ANCOVA regression homogeneity assumption may not be tenable (Evans &

Anastasio, 1968). Elashoff (1969), Maxwell & Delaney (1990) and Winer et al.
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(1991) claim that carrying out an ANOVA on the treatment group covariate

scores can be a useful indicator of experimental conditions in¯uencing the

covariate. However, as said, with random assignment, the expectation is equal

covariate treatment means. Similarly, the null hypothesis of an ANOVA applied

to the covariate scores is equal experimental condition means. Given that the

covariate was measured before any experimental manipulation, what is to be

made of a signi®cant F-test? In such circumstances, covariate imbalance should

re¯ect just less likely covariate distributions and, as argued by Senn (1989) and

Permutt (1990), ANCOVA is the appropriate analysis to control any resulting

bias. Consequently, an ANOVA on the treatment group covariate scores is

appropriate only when there are theoretical or empirical reasons to believe that

something more serious than ¯uke assignment has occurred. Adopting good

ANCOVA design practice and applying all knowledge about the relationships

between the study variables seem the only ways to avoid violating this assump-

tion.

Linear regression

When a linear regression is applied to describe a nonlinear relationship between

two variables, the regression line will not only provide a poorer overall ®t to the

data, but also it will ®t the data better at some points than at others. At the well

®tting points there will be smaller deviations between the actual and adjusted

scores than at the ill ®tting points. Consequently, the residual variance is likely

to be heterogeneous and it is possible that the residuals may not be distributed

normally (Elashoff, 1969). Moreover, as the points through which the regression

line passes provide the predicted scores, a regression line that does not track the

data properly provides predicted scores of questionable meaning.

Atiqullah (1964) examined in purely mathematical terms the traditional

ANCOVA F-test when the real relationship was quadratic. With just two

experimental conditions Atiqullah found that the F-test was biased unless there

was random assignment of subjects to experimental conditions. The other

situation considered by Atiqullah was a single factor ANCOVA where the

number of experimental conditions approached in®nity. In such circumstances,

despite random assignment, the traditional ANCOVA F-test was gravely biased,

with the amount of bias depending upon the size of the quadratic component.

However, precisely because the number of experimental conditions approached

in®nity, there is considerable dubiety concerning the relevance of these conclu-

sions for any real ANCOVA study (Glass et al., 1972). Moreover, because

Atiqullah's examination was in purely mathematical terms, dealing with expec-

tations over many, many experiments, these reservations may extend to the

whole study.

Huitema (1980) states that the assumption of linear regression is less

important than the traditional ANCOVA assumptions of random assignment,

covariate±experimental conditions independence and homogeneity of regres-

sion. This claim is made on the grounds that linear regression provides an

approximate ®t to most behavioural data and that nonlinearity reduces the power
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of the ANCOVA F-test by only a small amount. Nevertheless, as Huitema

illustrates, in the face of substantial nonlinearity, ANOVA can provide a more

powerful analysis than traditional ANCOVA. Moreover, with nonlinearity, as

experimental conditions covariate distribution imbalance increases, ANCOVA

adjustments become extremely dubious.

Although it may interfere with the smooth execution of the planned data

analysis, nonlinearity should not be considered as a statistical nuisance prevent-

ing proper analysis of the data. Not only is nonlinearity a pertinent ®nding in its

own right, but also it is a feature of the data that must be accommodated in the

model in order to allow its proper analysis.

Many psychology statistical texts deliver a rather enigmatic presentation of

regression linearity assessment. Most psychology statistics texts merely state the

regression linearity assumption (e.g. Hays, 1994), or like Keppel (e.g. 1991),

they refer readers to Kirk (e.g. 1995, who cites Kendall, 1948), or Winer (e.g.

Winer et al., 1991). Winer et al. (1991) distinguish between ANCOVA assump-

tion tests and tests of other properties of the data. However, Winer (1962, 1971)

includes tests of the regression linearity of the dependent variable experimental

condition means on the covariate experimental condition means (â̂ECM) and the

linearity of the regression line based on the total set of scores (â̂T), plus a test of

â̂T � â̂W (see Chapter 6). Winer (1962) states,

If this regression . . . (â̂ECM) . . . does not prove to be linear, interpretation of the
adjusted treatment means becomes dif®cult. (Winer, 1962, p. 588)

Winer (1971) omits this sentence, but as the presentation is identical other-

wise, the same meaning is conveyed. Similarly, in his section on ANCOVA

assumptions, Kirk (1968; 1982; 1995) includes tests of the regression linearity

of â̂ECM, and the linearity of â̂T, but no distinction is made in the text between

these tests and those which assess the speci®c ANCOVA assumptions. Unfortu-

nately, considerable misunderstanding and confusion about the nature of the

traditional ANCOVA regression linearity assumption and how it should be tested

can be caused by these accounts.

The traditional ANCOVA linearity assumption is that the regression of the

dependent variable on the covariate(s) in each of the experimental conditions

is linear (i.e. the â̂W j are linear). No other tests of regression linearity are

pertinent. Linearity of â̂T and â̂ECM is expected only when there are no

experimental effects. Given that regression linearity should be determined prior

to the assessment and in the presence of experimental effects, the indirect tests

of â̂W j linearity are not satisfactory.

Probably the most obvious way to assess the linearity of the separate groups

regressions is to plot the dependent variable against the covariate (or each

covariate) for each experimental condition. Another popular, but much less

direct approach is to ignore experimental conditions and to plot residuals against

the predicted scores. This approach has the advantage of generalizing over

covariates. However, nonlinearity within one condition may be masked by the

linearity within the other conditions, particularly when there are many condi-

tions. Moreover, when any nonlinearity is detected, it will need to be traced to
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source and so, eventually, checks per covariate per condition will be required.

Further discussion of graphic checks of regression linearity is provided by

Draper and Smith (1998) Montgomery and Peck (1982) and Neter et al. (1990).

Assessing linearity by inspecting data plots may be more dif®cult than the

graphic assessments of normality and homoscedasticity, particularly when the

linearity assessments are carried out per experimental condition, where there are

fewer data upon which to form an opinion. Consequently, signi®cance test

methods may have a larger role to play, particularly for those less experienced in

graphical assessment.

One way of checking regression linearity is to carry out a signi®cance test for

the reduction in errors due to the inclusion of nonlinear components (e.g.

Maxwell & Delaney, 1990). A nonlinear relationship between the dependent

variable and a covariate can be modelled by including the covariate raised above

the ®rst power as a predictor. For example, the ANCOVA GLM equation,

Yij � ì� á j � â(Zij ÿ ZG)� â(Zij ÿ ZG)2 � åij (7:2)

is termed a second order polynomial model and describes a quadratic curve. The

ANCOVA GLM equation,

Yij � ì� á j � â(Zij ÿ ZG)� â(Zij ÿ ZG)2 � â(Zij ÿ ZG)3 � åij (7:3)

is termed a third order polynomial model and describes a cubic curve. Further

components (e.g. quartic, quintic, etc.) can be added to increase the order of a

GLM, but the highest order any equation may take is equal to the number of

experimental conditions minus 1 (here, pÿ 1). However, it is exceptional for

more than a third order polynomial model to be needed to describe psychologi-

cal data.

To apply a polynomial model as described by equation (7.3), two new

predictor variables must be created: Z 2 and Z 3. However, these variables will be

correlated with Z, so the problem of multicollinearity arises. To deal with this,

the data should be analysed in a structured manner (e.g. Cohen & Cohen, 1983).

For example, the traditional ANCOVA model,

Yij � ì� á j � â(Zij ÿ ZG)� åij (6:5, rptd)

should be compared with the traditional ANCOVA model described by (7.2).

Any decrement in the error estimate of GLM (7.2) in comparison to the same

estimate in (6.5) can be attributed to the â(Zij ÿ ZG)2 component. The compo-

nent is retained if an F-test of the variance attributed to the component is

signi®cant. However, if error examination suggests that further curvilinearity

exists, a third order GLM may be compared with the second order GLM. (For

further information on curvilinear ANCOVA, see Cohen & Cohen, 1983;

Huitema, 1980; Maxwell & Delaney, 1990. For further information on poly-

nomial models, see Cohen & Cohen, 1983; Draper & Smith, 1998; Neter et al.,

1990; Pedhazur, 1997). One advantage of this approach is that when all signi®-

cant curvilinear components are included, the description of the curvilinear

ANCOVA GLM is complete and the ANCOVA results can be interpreted.

Figure 7.5 contains a plot of the dependent variable on the covariate, with the
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linear regression lines depicted, for each experimental condition. The ANCOVA

summary for the GLM described by equation (6.5) is presented in Chapter 6,

while the ANCOVA summaries of the second and third order ANCOVA GLMs

are presented in Table 7.3. As can be seen, graphically assessing linearity per

experimental condition with few data can be a dif®cult task. However, the

insigni®cant reduction in error variance attributable to the inclusion of the

quadratic and cubic components suggests that the assumption of linearity for the

dependent variable±covariate regression is tenable.

Homogeneous regression

The ®nal traditional ANCOVA assumption is that the regression slopes,

described by the regression coef®cients, are homogeneous across the experi-
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Figure 7.5 A plot of the dependent variable on the covariate per
experimental condition

Table 7.3 Summaries of error reduction due to the second and third
order ANCOVA GLMs

R: 0.941 R squared: 0.886 Adjusted R squared: 0.862

Source SS increment df Mean square F p

Covariate (Z2)
GLM equation (7.2) 2.086 1 2.086 0.308 0.586

Covariate (Z3)
GLM equation (7.3) 4.464 1 4.464 0.659 0.428

Error from GLM
equation (7.3) 121.913 18 6.773
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mental conditions. As the regression coef®cient employed in ANCOVA is a

weighted average of the separate experimental conditions' regression coef®-

cients (â̂W), two problems occur if there is heterogeneity of experimental

condition regression coef®cients. The ®rst problem concerns the effect on the

F-test. Monte Carlo investigations employing random assignment (e.g. Hamil-

ton, 1976; also see Huitema, 1980) indicate that provided sample sizes are equal

and exhibit homogeneous variance, heterogeneity of regression coef®cients

tends to result in conservative F-values, reducing the sensitivity or power of the

analysis. This is because averaging over heterogeneous regression coef®cients

introduces error into â̂W, with the result that it is a poor estimate of the

dependent variable on covariate regression slopes in all of the experimental

conditions. Therefore, in comparison to the homogeneous regression slopes

situation, where â̂W is a good descriptor of all of the experimental condition

regression slopes, there will be larger discrepancies between the actual and

predicted scores. Consequently, the error variance will be larger and so the

power of the analysis will be lower. However, this applies to ANCOVA employ-

ing random assignment, where the differences between experimental condition

covariate means are expected to be zero. Hollingsworth (1976, cited by Huitema,

1980) found Type 1 error increased with regression heterogeneity when nonzero

differences between experimental condition covariate means were provided by

nonrandom assignment.

The second problem posed by heterogeneous regression ANCOVA is that

treatment effects vary as a function of the covariate. As a result, and in contrast

to the homogeneous regression situation, an assessment of experimental effects

at any one measure of the covariate cannot be taken to re¯ect experimental

effects at any other measures of the covariate. (This is discussed further in

Chapter 8.)

As with the regression linearity of the dependent variable on the covariate,

heterogeneous regression coef®cients across experimental conditions should not

be considered a statistical nuisance interfering with the proper analysis of the

data. Heterogeneous regression across experimental conditions is an important

®nding. Regression heterogeneity indicates that the dependent variable on co-

variate relationship differs between experimental conditions. This is a result that

should be considered on a par with differences observed between experimental

condition dependent variable means and it must be accommodated in the GLM to

allow proper analysis of the data. However, it is worth repeating that hetero-

geneous regression coef®cients may be symptomatic of a relationship between

the covariate and the experimental conditions (Evans & Anastasio, 1968).

Regression homogeneity may be assessed graphically by judging the relative

slopes of experimental condition regression lines (see Figure 7.5). Alternatively,

a signi®cance test approach can be applied by examining the reduction in errors

due to the inclusion in the GLM of a term representing the interaction between

the covariate and the experimental conditions. The predictor variables represent-

ing the interaction between the covariate and the experimental conditions is

constructed in exactly the same manner as those variables representing factor

interactions were constructed (see Chapters 3 & 5. For further details see Cohen

142 INTRODUCING ANOVA AND ANCOVA: A GLM APPROACH



& Cohen, 1983; Howell, 1997; Pedhazur, 1997; Neter et al., 1990). However, as

with the tests of regression linearity, the problem of multicollinearity arises: the

predictor variables representing the interaction between the covariate and the

experimental conditions will be correlated with Z. Therefore, the data analysis

should proceed in a structured manner (e.g. Cohen & Cohen, 1983). This

emphasizes the point that the signi®cance test approach examines the (further)

reduction in errors due to the inclusion in the GLM of a term representing the

interaction between the covariate and the experimental conditions, after those

terms representing experimental conditions and the single regression line have

been included in the GLM. A signi®cant reduction in error (i.e. a signi®cant

interaction term) indicates regression heterogeneity. This means the model ®t to

data can be improved by employing a different regression coef®cient in at least

one of the experimental conditions.

The ANCOVA table summarizing the error reduction when separate regres-

sion slopes are employed in the different experimental conditions is presented in

Table 7.4. As can be seen, no signi®cant improvement is observed and so the

tenability of the assumption of homogeneous regression coef®cients is accepted.

If a signi®cant interaction between the covariate and the experimental condi-

tions had been detected, the next question should be, which of the experimental

conditions require distinct regression coef®cients? It may be that only one or

two of the experimental conditions requires a unique regression slope. As a

degree of freedom is lost from the error variance estimate with every distinct

regression line employed, for this and other reasons (e.g. Draper & Smith,

1998), applying only the minimum number of terms required is a guiding

principle of linear modelling.

Which experimental conditions require distinct regression lines can be

determined by comparing different models which employ a common regression

line for all but one of the experimental conditions. Rather than obtaining an

estimate of the error when all experimental conditions employ distinct regres-

sion lines, an error estimate is obtained when only one experimental condition

employs a distinct regression line. The reduction in residuals due to this one

distinct regression line then can be assessed in comparison to the residual

estimate obtained when a common regression line is applied in all treatment

groups. Successive estimations can be made and each time a distinct regression

Table 7.4 Summary of additional error reduction due to
heterogeneous regression ANCOVA

R: 0.941 R squared: 0.886 Adjusted R squared: 0.862

Source SS Increment df Mean square F p

Additional error reduction due to
covariate x experimental
conditions

19.394 2 9.697 1.600 0.229

Full GLM error 109.070 18 6.059
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line is employed in a different experimental condition, any signi®cant reduction

in errors indicates a signi®cant improvement in the ®t of the model to the data.

The signi®cance test method described above is equivalent to the standard test

of regression homogeneity presented by Kendall (1948), reproduced by Hays

(1994), Keppel (1991), Kirk (1995) and Winer et al. (1991). For the single

factor, single covariate independent sample design, this is

F[( pÿ 1), p(N ÿ 2)] � S2=( pÿ 1)

S1=p(N ÿ 2)
(7:4)

where S1 is the residual variation when separate group regressions have been

employed and S2 is the variation of the separate experimental condition re-

gressions about the weighted average regression line (see texts above for

computational formulae). The sum of squares S2 estimates the variation not

accommodated when the weighted average regression line, rather than separate

experimental condition regression lines, are used and is equivalent to the estimate

of the interaction effect, or the reduction in residuals due to the separate

experimental condition regression lines. For all of the signi®cance test methods,

the same F-test denominator estimate is employed and a signi®cant F-value

indicates that the homogeneity of regression coef®cients assumption is untenable.

In order to avoid Type 2 errors, Kirk (1995) and Hays (1994) recommend the use

of a liberal level of signi®cance (about 0.25) with the regression homogeneity

test. However, test power increases with large data sets, so more conservative

signi®cance levels should be set when the test is applied to large data sets.

Regression homogeneity also must be checked after polynomial components

have been added to the traditional ANCOVA model to accommodate curvilinear

regression. This is achieved most easily by applying a signi®cance test in a

manner similar to that described above. Another set of predictors is created to

represent the interaction between the polynomial components (added to accom-

modate the curvilinearity) and the experimental conditions. For example, had it

been decided that the GLM described by equation (7.2) was most appropriate

for the data, incorporating an additional term to represent an experimental

conditions±curvilinear interaction would result in the model

Yij � ì� á j � â(Zij ÿ ZG)� â(Zij ÿ ZG)2

� [(á j)(â(Zij ÿ ZG)� â(Zij ÿ ZG)2)]� åij (7:5)

An F-test is applied to the reduction in error variance attributed to the inter-

action term. A signi®cant F-test indicates that better prediction is provided

when at least one of the experimental conditions employs a different curvilinear

regression line. Therefore, the next step is to determine which experimental

conditions actually require distinct regression lines. As always, when any new

GLM is considered, it is necessary to check that it conforms to the set of GLM

assumptions. As with curvilinear regression, an advantage of this approach is

that when all signi®cant heterogeneous regression components are included, the

description of the heterogeneous regression ANCOVA GLM is complete and the

ANCOVA results can be interpreted.
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8 SOME ALTERNATIVES TO
TRADITIONAL ANCOVA

8.1 Alternatives to traditional ANCOVA

Most alternatives to traditional ANCOVA address the problem caused by

heterogeneous regression coef®cients across experimental conditions. There are

a number of good reasons for this focus. First, regression homogeneity probably

is the most frequently violated traditional ANCOVA assumption. Second, most

regression of dependent variables on covariates are at least approximately linear.

Third, homogeneous curvilinear regression does not complicate the interpreta-

tion of the ANCOVA as much as heterogeneous regression. Fourth, although not

generally appreciated, one of the bene®ts of applying heterogeneous regression

ANCOVA is amelioration of the problems caused by a relation between the

covariate(s) and experimental conditions.

An implicit assumption is that relaxing restrictions by developing more

sophisticated GLMs allows greater accuracy in representing the in¯uence and

relations of the recorded variables. By dispensing with the homogeneous

regression requirement, heterogeneous regression ANCOVA can provide more

realistic models of a far greater number of situations. A variety of approaches

have been suggested to cope with the violation of the assumption of homo-

geneous regression coef®cients across experimental conditions (Rutherford,

1992). However, here three alternatives to traditional ANCOVA are presented.

Although all employ the GLM in one way or another, they are suf®ciently

distinct to merit separate discussion.

8.2 The heterogeneous regression problem

As the term ANCOVA is applied, the main concern is the determination of

experimental effects. However, the basic problem posed by heterogeneous

regression ANCOVA is that experimental effects vary as a function of the

covariate. This is illustrated in Figure 8.1, where a simple independent measures,

single covariate, single factor (with just two levels) experimental design is

depicted.

From Figure 8.1, it can be appreciated that the experimental effect, repre-

sented by the vertical distance between the regression lines, is not constant

across the range of the covariate values, as is the case in traditional ANCOVA,

but instead varies as a function of the covariate values. As a result and in

contrast to the homogeneous regression situation, an assessment of experimental



effect at any one measure of the covariate cannot be taken to re¯ect the

experimental effect at any other measures of the covariate. In essence therefore,

heterogeneous regression ANCOVA presents a problem of experimental effect

determination and description.

If the process of model selection determines that distinct regressions (in

graphical terms, lines which pass through all ®tted values) are required to

accommodate the data, then there seems little reason to consider the null

hypothesis that the separate regressions predict the same dependent variable

values. Yet by de®nition, non-parallel regression lines intersect at some point.

Here, the same values will be predicted by the two distinct regression lines and

importantly, the experimental effect observed below this covariate value will be

the converse of the experimental effect observed above this value. (A plot of the

regression lines is the most obvious way to determine if regressions intersect

within the range of observed covariate values.) Depending upon the location of

this intersection point, it may be necessary to determine the covariate values at

which signi®cant experimental effects are exerted and to specify the nature of

these experimental effects. As the the intersection point in Figure 8.1 is below

Z � 0, although the effect size may vary, the nature of the experimental effect is

consistent across the range of positive covariate values.

8.3 The heterogeneous regression ANCOVA GLM

In Chapter 6, two versions of the ANCOVA GLM were described. The typical

traditional ANCOVA GLM expresses the covariate scores in terms of their

deviation from the overall covariate mean, while the more general ANCOVA

GLM simply expresses the covariate score. The latter version of the independent

measures, single factor, single covariate experimental design GLM is

Yij � ì� á j � âZij � åij (6:1, rptd)

Dependent
variable (Y)

Regression line for
experimental condition 1

Regression line for
experimental condition 2

Covariate (Z)

Figure 8.1 Heterogeneous regression across two experimental
conditions
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As described in Chapter 6, subtracting the term BZ from the dependent variable

score removes all in¯uence of the covariate, leaving the fundamental adjusted

score (Yfaij). This is the predicted dependent variable score when Z � 0.

Yfaij � Yij ÿ âZij � ì� á j � åij (6:4, rptd)

If the general covariate mean (ZG) is substituted for Zij, then the predicted

dependent variable scores are the values Yaij, as in traditional ANCOVA. Both of

these predictions are speci®c instances of the general prediction on the basis of

Z, where Z is any measure of the covariate.

To accommodate the heterogeneous regressions depicted in Figure 8.1, equa-

tion (6.1) may be re-written as

Yij � ì� á j � â j Zij � åij (8:1)

where the regression coef®cient â of equation (6.1) is replaced by â j, which, by

virtue of the j subscript, denotes a different regression coef®cient per experi-

mental condition. An important point to appreciate about the separate regression

lines is that they are statistically independent (e.g. Searle, 1987).

As heterogeneous regression ANCOVA GLMs simply incorporate terms to

accommodate the different slopes, they are able to provide tests comparable with

the traditional ANCOVA hypotheses, as well as tests of the covariate effect and

factor interactions. In traditional ANCOVA, the omnibus F-test of experimental

conditions compares adjusted means, which are those scores predicted on the

basis of the general covariate mean (ZG). However, when heterogeneous regres-

sion ANCOVA is applied, the omnibus F-test of experimental conditions

compares the predicted scores when Z � 0 (e.g. Searle, 1987): the Y -intercepts

of the separate regression lines are compared (see Figure 8.1). Nevertheless, it is

unlikely there will be much interest in comparing treatment groups at the zero

value of the covariate, not least because it may be impossible to observe a zero

covariate score in the real world.

Of course, once the heterogeneous regression ANCOVA GLM is selected and

parameter estimates obtained, it is possible to predict a dependent variable score

based on any covariate value for each experimental condition. Moreover, as the

standard errors associated with these predicted scores also are determinable, it is

possible to carry out F-tests of the effect of experimental conditions at any

covariate value(s). For example, F-tests of the experimental effects might be

carried out at ZG, or at the separate experimental condition covariate means

(Z j).

In ANCOVA, the accuracy of the predicted dependent variable scores and so

the power of the F-test of experimental effects is greatest when the covariate

value employed is that which lies at the centre of the covariate distribution. This

is known as the centre of accuracy (Ca). Interestingly, Rogosa (1980) revealed

that the heterogeneous regression ANCOVA experimental effect at Ca is

identical to the traditional homogeneous regression ANCOVA experimental

effect at Ca. Moreover, with balanced designs, estimating experimental effects

on the basis of the separate Z j values provides an F-test at Ca (becauseP
�Zj=p � �ZG). Paradoxically, therefore, estimating experimental effects at Z j
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provides a simple heterogeneous regression alternative to the traditional ANCO-

VA experimental effect estimate, which is also identical to the traditional

ANCOVA experimental effect estimate. There may be theoretical reasons for

comparing all subjects across the experimental conditions at the same covariate

value, but as prediction accuracy drops with distance from the experimental

condition covariate means, the power cost inherent in these comparisons

depends on the difference between ZG and each of the Z j.

It is important to appreciate that most statistical packages able to implement

heterogeneous regressions will apply GLMs in the form of equation (8.1), and

so the ANCOVA summary table will present experimental effects assessed when

all in¯uence of the covariate has been removed (i.e. at Z � 0). If experimental

effects are to be assessed at any other covariate values, further analysis beyond

that presented in the ANCOVA summary table is necessary. Moreover, when

statistical software is used to implement heterogeneous regression ANCOVA, it

is advisable to check (empirically) which covariate value(s) are the basis for any

adjusted experimental condition means presented.

8.4 Single factor independent measures
heterogeneous regression ANCOVA

In the following example, two of the conditions reported in Chapter 6 will be

presented as if they constituted a separate experiment. Table 8.1 presents the

subjects' story and imagery task (covariate) scores and the subjects' memory

recall scores after story and imagery encoding in two study time conditions.

Table 8.1 Story and imagery test scores and recall
scores after story and imagery encoding

Study b1 b3

time (s) 30 180
Z Y Z Y

9 16 5 24
5 7 8 29
6 11 3 10
4 9 4 22
6 10 6 25
8 11 9 28
3 8 4 22
5 8 5 24P

Z=Y 46 80 44 184

Z=Y 5.750 10.000 5.500 23.000

(
P

Z=Y )2 292 856 272 4470P
Z 2=Y 2 2116 6400 1936 33856
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Maxwell and Delaney (1990) argue for a bias in applying heterogeneous

regression ANCOVA as the only disadvantage is a slight loss of power if the

experimental condition regressions are completely homogeneous. In line with

this view, heterogeneous regression ANCOVA is applied to the data presented in

Table 8.1 (also see Figure 7.5).

The slope of the regression lines (â̂ j) for each of the experimental conditions

employed in the ANCOVA GLM are given by

â̂ j �
PN

i�1(Zij ÿ Z j)(Yij ÿ Y j)PN

i�1(Zij ÿ Z j)2
(8:2)

For â̂1 this provides Table 8.2, which gives

â̂1 � 33:000

27:500
� 1:200

for â̂3 Table 8.3 is obtained, which provides

â̂3 � 68:000

30:000
� 2:267

Table 8.2 Calculation of â̂1

(Zij ÿ Zj )2 Yij ÿ Y j (Zij ÿ Z j )(Yij ÿ Y j )

9 ÿ 5.750 � 3.250 16 ÿ 10 � 6 19.500
5 ÿ 5.750 � ÿ0.750 7 ÿ 10 � ÿ3 2.250
6 ÿ 5.750 � 0.250 11 ÿ 10 � 1 0.250
4 ÿ 5.750 � ÿ1.750 9 ÿ 10 � ÿ1 1.750
6 ÿ 5.750 � 0.250 10 ÿ 10 � 0 0.000
8 ÿ 5.750 � 2.250 11 ÿ 10 � 1 2.250
3 ÿ 5.750 � ÿ2.750 8 ÿ 10 � ÿ2 5.500
5 ÿ 5.750 � ÿ0.750 8 ÿ 10 � ÿ2 1.500P
(Zij ÿ Zj )2 � 27:500

P � 33:000

Table 8.3 Calculation of â̂3

(Zij ÿ Zj )2 Yij ÿ Y j (Zij ÿ Y j )(Yij ÿ Y j )

5 ÿ 5.500 � ÿ0.500 24 ÿ 23 � 1 ÿ0.500
8 ÿ 5.500 � 2.500 29 ÿ 23 � 6 15.000
3 ÿ 5.500 � ÿ2.500 10 ÿ 23 � ÿ13 32.500
4 ÿ 5.500 � ÿ1.500 22 ÿ 23 � ÿ1 1.500
6 ÿ 5.500 � 0.500 25 ÿ 23 � 2 1.000
9 ÿ 5.500 � 3.500 28 ÿ 23 � 5 17.500
4 ÿ 5.500 � ÿ1.500 22 ÿ 23 � ÿ1 1.500
5 ÿ 5.500 � ÿ0.500 24 ÿ 23 � 1 ÿ0.500P
(Zij ÿ Zj )2 � 30:000

P � 68:000
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The formula for calculating adjusted means used in Chapter 6 is repeated

below:

Ya j � Y j ÿ â(Z j ÿ ZG) (6:8, rptd)

Applying this to the heterogeneous regression situation where each experimental

condition has a distinct regression line and employs the experimental condition

covariate mean as a predictor reveals the adjusted experimental condition means

to be equal to the unadjusted experimental means:

Ya j � Y j ÿ â(Z j ÿ Z j)

Ya j � Y j ÿ â(0)

Ya j � Y j (8:3)

However, it is worth noting that the equivalence of adjusted and unadjusted

means is a consequence of employing distinct regression lines in each experi-

mental condition and employing the respective experimental condition covariate

means as predictors. Consequently, when heterogeneous regression ANCOVA

which does not ®t a distinct regression line per experimental condition or does

not employ experimental condition covariate means as predictors is applied,

adjusted and unadjusted means may not be equivalent.

8.5 Estimating heterogeneous regression ANCOVA
effects

The Full GLM for the single factor single covariate heterogeneous regression

ANCOVA design was described in equation (8.1). The reduced GLM for this

design omits the variable representing experimental conditions and is described

by the equation

Yij � ì� â j Zij � åij (8:4)

The GLM equation (8.4) describes p dependent variable on covariate regression

lines all with a common Y -intercept (ì). However, the estimates of the â̂ j in

equation (8.4) and those estimated for equation (8.1) are not equal (see Searle,

1987). Therefore, to minimize the amount of calculation required, an alternative

approach to estimating heterogeneous regression ANCOVA effects will be

described. This approach simply applies and extends the check of the regression

homogeneity assumption.

First, the full traditional ANCOVA error term is required. As these calcula-

tions were described in Chapter 6, albeit for all three experimental conditions,

the traditional ANCOVA error SS will be accepted as, 116.591, with dfs � 13.

Next, the full heterogeneous regression ANCOVA GLM predicted scores must

be calculated. A little algebra applied to equation (8.1) reveals

Yij ÿ â j Zij � ì� á j � åij (8:5)
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Simply re-writing this equation in terms of the parameter estimates provides

Ŷij ÿ â̂ j Zij � ì̂� á̂ j (8:6)

which states that when all in¯uence of the covariate has been removed, the

predicted dependent variable score is equivalent to the constant plus the effect

of the particular experimental condition. Of course, when all in¯uence of the

covariate is removed, Z � 0. Therefore, (ì̂� á̂ j) must be equivalent to the Y -

intercept of each experimental condition regression line (see Figure 8.1). Indeed,

with balanced data,

ì �
P p

j�1(ì� á j)

p
(8:7)

As well as passing through the (ì̂� á̂ j) intercepts, each of the regression lines

passes through the point de®ned by the experimental condition dependent

variable mean and the experimental condition covariate mean (Z jY j). Substitut-

ing these mean values into equation (8.6), along with the pertinent regression

coef®cient estimates, allows calculation of the regression line intercepts. For

experimental condition 1,

(ì̂� á̂1) � 10:000ÿ 1:200(5:750) � 3:100

and for experimental condition 3

(ì̂� á̂3) � 23:000ÿ 2:267(5:500) � 10:532

In fact, the (ì̂� á̂ j) values are actually the means of the distribution of predicted

scores, as can be seen by adding the Yfaij term to equation (8.5):

Yfaij � Yij ÿ â j Zij � ì� á j � åij (8:8)

Therefore, substituting each subjects' dependent variable and covariate scores

into the ®rst half of equation (8.8),

Yfaij � Yij ÿ â j Zij (8:9)

provides the Ŷfaij scores (Table 8.4).

As said, the Ŷfaij are the scores distributed about the (ì̂� á̂ j) means. There-

Table 8.4

b1 b3

30 180
Yij ÿ â̂1(Zij ) � Ŷfaij Yij ÿ â̂3(Zij ) � Ŷfaij

16 ÿ 1.200 (9) � 5.200 24 ÿ 2.267 (5) � 12.665
7 ÿ 1.200 (5) � 1.000 29 ÿ 2.267 (8) � 10.864

11 ÿ 1.200 (6) � 3.800 10 ÿ 2.267 (3) � 3.199
9 ÿ 1.200 (4) � 4.200 22 ÿ 2.267 (4) � 12.932

10 ÿ 1.200 (6) � 2.800 25 ÿ 2.267 (6) � 11.398
11 ÿ 1.200 (8) � 1.400 28 ÿ 2.267 (9) � 7.597

8 ÿ 1.200 (3) � 4.400 22 ÿ 2.267 (4) � 12.932
8 ÿ 1.200 (5) � 2.000 24 ÿ 2.267 (5) � 12.665
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fore, the discrepancy between the Ŷfaij scores and the (ì̂� á̂ j) intercepts provide

the error term estimates, å̂ij. This may be appreciated through the application of

a little algebra to equation (8.8):

Yfaij � Yij ÿ â j Zij � ì� á j � åij (8:8, rptd)

so,

Yfaij � (ì� á j)� åij

and

Yfaij ÿ (ì� á j) � åij (8:10)

Table 8.5 shows calculation of the error estimates, and Table 8.6 summarizes

the SS error and its df obtained when homogeneous and heterogeneous regres-

sion ANCOVA GLMs are applied to the data.

As before, an F-test of the reduction in the error SS, attributed to hetero-

geneous regressions, is given by

F � SSerror reduction=dfs reduction

SSHeterogeneous regression=dfHeterogeneous regression

F � 16:338=1

100:253=12
� 1:956

Table 8.6 SS error and dfs with homogeneous and heterogeneous
regression ANCOVA GLMs

Homogeneous regression
ANCOVA GLM

Heterogeneous regression
ANCOVA GLM Reduction

SS 116.591 100.253 16.338
df 13 12 1

Table 8.5 Error term estimates

b1 b3

30 180
Ŷ fai1 ÿ (ì̂� á̂1) � å̂i1 Ŷ fai3 ÿ (ì̂� á̂3) � å̂i3

5.200 ÿ 3.100 � 2.100 12.665 ÿ 10.532 � 2.133
1.000 ÿ 3.100 � ÿ2.100 10.864 ÿ 10.532 � 0.334
3.800 ÿ 3.100 � 0.699 3.199 ÿ 10.532 � ÿ7.333
4.200 ÿ 3.100 � 1.100 12.932 ÿ 10.532 � 2.400
2.800 ÿ 3.100 � ÿ0.300 11.398 ÿ 10.532 � 0.867
1.400 ÿ 3.100 � ÿ1.699 7.597 ÿ 10.532 � ÿ2.933
4.400 ÿ 3.100 � 1.300 12.932 ÿ 10.532 � 2.400
2.000 ÿ 3.100 � ÿ1.100 12.665 ÿ 10.532 � 2.133P

å2
i1 � 16:395

P
å2

i1 � 83:858PN
i�1

P p
j�1å

2
ij � 100:253
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As F(1, 12) � 1:956 is not signi®cant at the 0.05 level, the traditional

ANCOVA homogeneity of regression assumption is tenable. Nevertheless,

following Maxwell and Delaney's (1990) recommendation, analysis of the data

presented in Table 8.1 will continue on the basis of the heterogeneous regression

ANCOVA GLM, despite the tenability of the homogeneity assumption. Later

in this chapter (8.7), another bene®t of applying heterogeneous regression

ANCOVA will be discussed.

Earlier it was said that the omnibus F-test of the effect of experimental

conditions when a heterogeneous regression ANCOVA GLM is applied com-

pares the separate experimental condition regression line Y -intercepts ± the

predicted differences between the experimental conditions when Z � 0. There-

fore, a simple comparison of these Y -intercepts provides the same test of the

effect of the experimental conditions.

In general, the experimental effect is denoted by the vertical difference

between the experimental condition regression lines at any experimental condi-

tion covariate value, i.e. the experimental effect can be predicted using different

covariate values in the different experimental conditions. Equation (8.11)

provides a formula for calculating such experimental effects when there are two

experimental conditions:

F � (Ŷ Zpj ÿ Ŷ Zpj)
2

MSe 1=Nj � 1=Nj � (Zpj ÿ Z j)
2PN

i�1(Zij ÿ Z j)2
� (Zpj ÿ Z j)

2PN

i�1(Zij ÿ Z j)2

" #2
(8:11)

where MSe is the heterogeneous regression ANCOVA mean square error, the

Ŷ Zpj are the predicted means given the covariate values for the particular

experimental condition, the Nj are the number of subjects per experimental

condition, the Zpj are the experimental condition covariate values upon which

the dependent variable means are predicted and the Z j are the experimental

condition covariate means. Substituting the values for the current example

provides

F � (3:100ÿ 10:532)2

8:354 1=8� 1=8� (0ÿ 5:750)2

27:500
� (0ÿ 5:500)2

30:000

� �

� 55:235

20:552

� 2:688

As F(1, 12) � 2:688 is not signi®cant at the 0.05 level, the null hypothesis

that the two experimental condition regression line Y -intercepts are equivalent

cannot be rejected. However, examination of Figure 8.1 shows that the differ-

ence between the regression lines is at its minimum (ignoring negative covariate

values) when Z � 0. For theoretical reasons, there may be relatively little

interest in comparing the predicted experimental condition means when the
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covariate is zero. Probably of much more interest is the predicted effect of

experimental conditions when subjects obtain covariate scores equal to the

experimental condition covariate means. Given balanced data, the convenient

fact that the predicted experimental effect at the respective experimental

condition covariate means obtained with heterogeneous regression ANCOVA is

equal to that obtained with traditional homogeneous regression ANCOVA may

be employed. If the strategy outlined here, of ®tting a traditional homogeneous

regression ANCOVA GLM and then testing for error reduction after ®tting

heterogeneous regressions, has been applied, then both the traditional ANCOVA

experimental effect and the heterogeneous regression ANCOVA experimental

effect will have been calculated already. Table 8.7 summarizes the traditional

ANCOVA GLM applied to the data presented in Table 8.1.

Clearly Table 8.7 reveals a signi®cant effect of experimental conditions

predicted on the basis of the experimental condition covariate means. Equation

(8.10) may be used to check the F-value reported.

8.6 Regression GLMs for heterogeneous ANCOVA

The experimental design GLM equation (8.1) may be compared with the

equivalent regression equation,

Yij � â0 � â1 X i,1 � â2 Zij � â3(XZ)� åij (8:12)

As always, â0 represents a constant common to all Y scores, â1 is the regression

coef®cient for the predictor variable X 1, which distinguishes between the two

experimental conditions, and â2 is the regression coef®cient for the covariate,

Zij is the covariate score for the ith subject in the jth condition, â3 is the

regression coef®cient for the (XZ) interaction, which represents the heteroge-

neous regression, and as always, the random variable, eij, represents error. Table

8.8 presents effect coding for the single factor, single covariate heterogeneous

regression ANCOVA GLM.

As with other design analyses, implementing a single factor, single covariate

heterogeneous regression ANCOVA is a two stage procedure if only the variance

attributable to the experimental conditions is to be assessed, and a three stage

procedure if the variance attributable to the covariate regression is to be

Table 8.7 Summary of the traditional ANCOVA of the data in Table 8.1

Source SS df MS F P

Error reduction due to 719.313 1 719.313 80.204 , 0.001
experimental conditions

Error reduction due to covariate 177.409 1 177.409 19.781 0.001

Full GLM error 116.591 13 8.969
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assessed. Consistent with estimating effects by comparing full and reduced

GLMs, the ®rst regression carried out is for the full single factor, single

covariate heterogeneous regression experimental design GLM, when all experi-

mental condition predictor variables (X 1), the covariate (Z) and the experimen-

tal condition±covariate interaction (XZ) are included. The results of this

analysis are presented in Tables 8.9 and 8.10.

Table 8.9 presents the predictor variable regression coef®cients and standard

deviations, the standardized regression coef®cients, and signi®cance tests (t-

and p-values) of the regression coef®cients. Table 8.5 is also interesting in that

the Constant is the value of ì free of á j. This con®rms

ì �
P p

j�1(ì� á j)

p
(8:7, rptd)

Table 8.8 Effect coding and covariate for a
single factor single covariate heterogeneous
regression ANCOVA. Subject number and the
dependent variable score also are shown

Subject Z X1 XZ Y

1 9 1 9 16
2 5 1 5 7
3 6 1 6 11
4 4 1 4 9
5 6 1 6 10
6 8 1 8 11
7 3 1 3 8
8 5 1 5 8

17 5 ÿ1 ÿ5 24
18 8 ÿ1 ÿ8 29
19 3 ÿ1 ÿ3 10
20 4 ÿ1 ÿ4 22
21 6 ÿ1 ÿ6 25
22 9 ÿ1 ÿ9 28
23 4 ÿ1 ÿ4 22
24 5 ÿ1 ÿ5 24

Table 8.9 Results for the full single factor, single covariate
heterogeneous regression ANCOVA regression GLM

Variable Coef®cient Std error Std coef t p (2 tail)

Constant 6.817 2.267 0.000 3.007 0.011
X1 ÿ3.717 2.267 0.477 ÿ1.639 0.127
Z 1.733 0.382 0.423 4.543 0.001
XZ ÿ0.533 0.382 ÿ0.407 ÿ1.398 0.187
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Table 8.10 presents the ANOVA summary table for the regression GLM

describing the complete single factor, single covariate ANCOVA.

As the residual SS is that obtained when both covariate and experimental

conditions are included in the regression, this is the error term obtained when

the single factor, single covariate ANCOVA GLM is applied.

The second stage is to carry out a regression where the experimental

conditions are omitted, but all other regression predictors are included. This

regression GLM is equivalent to the reduced GLM for the single factor, single

covariate heterogeneous regression ANCOVA. The results of this analysis are

presented in Tables 8.11 and 8.12.

The results presented in Table 8.11 are of little interest, but they do demon-

strate that the reduced GLM estimates of the constant (ì) and the dependent

variable on covariate regressions per experimental condition differ from those of

the full GLM estimate, the additional calculation of which was the reason given

earlier for taking an alternative approach to calculating the effects of the

experimental conditions. Of most interest is the residual/error term from the

heterogeneous regression presented in Table 8.12.

Table 8.10 ANOVA summary table for experimental conditions and
heterogeneous regressions

R: 0.947 R squared: 0.897 Adjusted R squared: 0.871

Source SS df Mean square F p

Regression 869.733 3 289.911 34.697 , 0.001
Residual 100.267 12 8.356

Table 8.11 Results for the heterogeneous regression ANCOVA GLM
omitting experimental conditions

Variable Coef®cient Std error Std coef t p (2 tail)

Constant 7.110 2.402 0.000 2.959 0.011
Z 1.694 0.405 0.413 4.186 0.001
XZ ÿ1.126 0.130 ÿ0.858 ÿ8.692 , 0.001

Table 8.12 ANOVA summary table for the heterogeneous
regression GLM omitting experimental conditions

R: 0.935 R squared: 0.873 Adjusted R squared: 0.854

Source SS df Mean square F p

Regression 847.278 2 423.639 44.876 , 0.001
Residual 122.722 13 9.440
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The difference between the residual/error SS in Table 8.10 and that in Table

8.12 is equivalent to the SS attributable to experimental conditions. However,

the SS attributed to the regressions in Table 8.12 is not equivalent to the

covariate SS calculated when the full ANCOVA GLM is applied. The SS for the

covariate in the full ANCOVA GLM may be obtained by comparing the error SS

from the full ANCOVA with the error SS from an equivalent full ANOVA GLM.

A full ANOVA GLM is implemented by a regression that uses only the

predictors representing the experimental conditions (X 1). Table 8.13 presents

the ANOVA Summary of this analysis.

Armed with the error term from the regression GLM implementation of the

single factor ANOVA, the error reduction attributable to the covariate can be

calculated. This information is summarized in Table 8.14. Of course, like the

full experimental design heterogeneous regression ANCOVA, this regression

ANCOVA GLM assess the experimental effect when Z � 0.

8.7 Covariate±experimental condition relations

A particularly useful consequence of heterogeneous regression is that it allows a

relaxation of the traditional requirement that the covariate is unaffected by the

Table 8.14 ANOVA summary Table for experimental conditions
regression and heterogeneous covariate regressions

R: 0.940 R squared: 0.884 Adjusted R squared: 0.867

Source SS df Mean square F p

Error reduction due to
experimental conditions 22.456 1 22.456 2.688 0.127

Error reduction due to
covariate 188.754 2 94.377 20.636 , 0.001

Full ANCOVA GLM residual 100.267 12 8.356 1.954

Table 8.13 ANOVA summary table for experimental conditions
regression

R: 0.835 R squared: 0.697 Adjusted R squared: 0.675

Source SS df Mean square F p

Experimental
condition regression
predictors

676.000 1 676.000 32.190 , 0.001

Residual 294.000 14 21.000
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experimental conditions. A traditional ANCOVA where covariate and treat-

ment(s) are related will be correct in terms of its statistical validity and

accuracy, but it is unlikely to pertain easily or usefully to the real world (see

Huitema, 1980, for the traditional ANCOVA approach to this issue).

In what probably remains the most detailed consideration of covariate and

treatment covariation in traditional ANCOVA, Smith (1957) identi®ed three

situations that result in such an association (also see Huitema, 1980; Maxwell &

Delaney, 1990). The ®rst situation is when a variable not included in the GLM

exerts an effect on the dependent variable and also in¯uences the covariate. The

best way of dealing with this source of systematic bias is to include the pertinent

variable in the GLM. The two other situations identi®ed by Smith are when the

covariate is affected by the experimental conditions, and when the covariate and

dependent variable are both measures of the one entity.

Just as separate experimental condition means may better describe a depen-

dent variable, in situations where covariate and experimental conditions are

related, so separate group means may better describe the covariate scores also.

In such circumstances, a general covariate mean may lie between the group

covariate score distributions. Estimation of the experimental effects at such a

general covariate mean value is comparable to estimating experimental effects

given a new experimental condition, which may have no counterpart in reality

(Huitema, 1980; Smith, 1957).

In contrast, heterogeneous regression allows separate and independent regres-

sion lines to be ®tted to groups with different covariate score distributions

(Searle, 1987). Therefore, heterogeneous regression maintains any differences

between the covariate distributions of these groups and obviates any spurious

adjustments based on ®ctitious covariate values (see Urquhart, 1982, for a

similar assessment and conclusion).

Although heterogeneous regression ANCOVA maintains the integrity of the

separate covariate score distributions, the correlation between the experimental

conditions and the covariate continues to exert an effect. Speci®cally, variation

removed from the dependent variable on the basis of its regressions on the

covariate would have been part of the experimental effect, with the amount of

common variance extracted determined by the size of the correlation between

the covariate and the experimental conditions. Although this can be problematic,

by avoiding con¯ated covariate distributions, the relation between the experi-

mental conditions and the covariate in heterogeneous regression ANCOVA

reduces from a condition that seriously questions the validity and complicates

the interpretation of adjusted experimental effects to the familiar regression

topic of multicollinearity.

8.7.1 Multicollinearity

As described in Chapter 1, multicollinearity creates three problems that

affect the processes of model selection and parameter estimation: the

substantive interpretation of partial coef®cients (if calculated simulta-

158 INTRODUCING ANOVA AND ANCOVA: A GLM APPROACH



neously, correlated predictors' partial coef®cients are reduced), the sam-

pling stability of partial coef®cients and the accuracy of their calculation

(Cohen & Cohen, 1983). When multicollinearity exists and there is interest

in the contribution of each of the predictors, a hierarchical analysis can be

adopted (Cohen & Cohen, 1983). This approach also concords with

Nelder's (1977; McCullagh & Nelder, 1989) linear model approach to

ANOVA and ANCOVA, which attributes variance to factors in an ordered

manner that accommodates the marginality of factors and their interactions

(also see Bingham & Fienberg, 1982).

In situations of multicollinearity, the reduction of partial coef®cient estimates

is due to correlated predictor variables accounting for similar parts of the

dependent variable variance. As a result, in a hierarchical analysis, the common

variance will be attributed to the ®rst correlated predictor to be included in the

linear model. Therefore, different perspectives on the amount of variance

accounted for by the correlated predictors can be obtained by changing their

order of entry into the linear model.

To illustrate a hierarchical analysis, consider a simple hypothetical experi-

ment that compares memory performance for differently encoded words. A

single factor independent measures design with just two levels might be

implemented. The two levels should be de®ned by the different encoding

strategies. In a semantic encoding condition, subjects should be presented with a

stimulus word and should have to decide whether it is a member of a speci®c

semantic category. In the phonetic encoding condition, subjects should have to

decide if a stimulus word rhymes with a comparison word. 30 minutes after

presentation, memory is tested by cued recall. Subjects in the phonetic encoding

condition are presented with phonetic cues and subjects in the semantic

encoding condition are presented with semantic cues. The dependent variable

measure could be the number of words correctly remembered.

Although a controlled experiment should take care to standardize the

stimulus materials used and the instructions delivered, still there is likely to

be variation in subjects' performance. This variation could arise from at least

two aspects of performance. First, there may be variation in the extent of

appropriate processing in encoding conditions across stimulus words: for any

subject not all words may receive the appropriate processing and some words

may not receive any processing. Second, there may be variation between

subjects in terms of the ef®ciency of any mode of processing when engaged.

An assessment of these aspects of subjects' performance should be a very

useful covariate for an ANCOVA of the experimental data. Although the

form of assessment should be determined by the theoretical issues of

pertinence to the particular study, tests that could provide scores related to

these performance aspects range from a score based on subjects' performance

on earlier and similar tasks, through subjects' scores on a standard recogni-

tion task on a small proportion of the current experimental stimulus items, to

a self-assessment rating of how well all of the stimulus words had been

learned.

Conventional design practice presumes that if the covariate is measured
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before the experimental manipulation then the covariate cannot be in¯uenced by

the treatment and the treatment and covariate will be independent (e.g. Keppel,

1991; Kirk, 1995; Winer et al., 1991). However, in itself, this does not guarantee

independence. For example, if a covariate is obtained on the basis of earlier and

similar tasks, precisely because these tasks are similar to the tasks that de®ne

the experimental conditions, it is highly likely that both the covariate and the

experimental conditions will measure the same entity. Consequently, the covari-

ate will be related to the treatment, despite the fact that the covariate is obtained

before the experimental manipulation. The other covariate measures suggested

also should be related to the covariate, but as they are measured after the

experimental manipulation and violate conventional design practice, perhaps

this is more obvious.

Nevertheless, even with a relation between the covariate and the experimental

conditions, if heterogeneous regression across the two groups is employed, the

integrity of the separate covariate distributions is maintained and dependent

variable adjustments across the two groups are independent. A heterogeneous

regression ANCOVA could be applied to the data obtained from the experiment

on the basis of the experimental design GLM equation (8.1), where â j Zij

represents the heterogeneous regression across the p levels of Factor A, the

types of encoding processing.

As the covariate and experimental conditions are not orthogonal, and because

covariation of encoding conditions and covariate in this hypothetical experiment

results in multicollinearity, the ANCOVA should be implemented by a hierarch-

ical analysis, i.e. there should be a speci®c order of extraction of variance

attributable to terms in the linear model.

In hierarchical analysis 1, the dependent variable variance due to the encoding

manipulation (áj) is extracted ®rst. When this is done, the estimate of the effect

of the experimental conditions will equal that which would be obtained with a

conventional ANOVA. If the variance due to the covariate is extracted next,

using heterogeneous regression, only that variance which is uniquely attributable

to the covariate will be extracted. As all of the dependent variable variance

associated with áj has been extracted already, only variance independent of the

experimental conditions remains. Therefore, any part of the remaining depen-

dent variable variance attributed to the covariate will be independent of the

experimental conditions.

However, in hierarchical analysis 2, if the dependent variable variance

attributable to the covariate on the basis of a heterogeneous regression is

extracted ®rst, variance that could have been attributed to the experimental

conditions will be removed. Therefore, the variance subsequently attributed to

the experimental conditions will be found to be less than that obtained when the

experimental condition variance is extracted ®rst, the difference being a function

of the degree of relationship between the experimental conditions and the

covariate. In most experiments this form of analysis would not be implemented,

due to a primary interest in the effect of the experimental conditions. However,

it does suggest another way of analysing the experimental data (see Section

8.8.2).
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8.8 Other alternatives

8.8.1 Strati®cation (blocking)

Rather than a statistical operation, strati®cation is a modi®cation to the design

of the study, which necessitates a change in the experimental design GLM. The

strategy employed is to allocate subjects to groups de®ned by certain ranges of

the covariate scores. This creates another factor in the study design, with the

same number of levels as the number of newly de®ned groups. This modi®cation

also changes the ANCOVA into an ANOVA: the dependent variable scores are

input to a conventional ANOVA on the basis of the new experimental design

GLM. For example, the GLM equation for the independent measures, single

covariate, single factor design, described by equation (8.1), after strati®cation

would be described by equation (8.13),

Yijjk � ì� á j � âk � (áâ) jk � åijk (8:13)

where â k is the new factor with q levels, from 1 to k. The q levels of âk

represent the de®ned ranges of the covariate values (see Cochran, 1957; Elash-

off, 1969; Kirk, 1995; Maxwell & Delaney, 1990; Winer et al., 1991).

Ideally, the decision to employ this sort of analysis would be taken before

subjects are recruited to the experiment. This would enable the appropriate

allocation procedures to be implemented (Maxwell & Delaney, 1990). The

major advantage conferred by strati®cation is that no assumptions are made

about the form of the relationship between the treatments and the covariate.

Consequently, all of the problems unique to ANCOVA are avoided.

Nevertheless, as Maxwell and Delaney (1990) describe, when ANCOVA

assumptions are tenable, there are disadvantages of strati®cation compared with

ANCOVA. First, information is lost in the change from the covariate measure-

ment scale to the categorical strati®cation measurement scale.

The consequence is that variance accommodated by the covariate in

ANCOVA cannot be accommodated by the strati®ed covariate. Second, while

ANCOVA typically accommodates only linear trend, with strati®cation all

possible trends, such as linear, quadratic, cubic, etc., are accommodated: another

trend component with each level of the new factor. The consequence is that

where ANCOVA devotes only one df to the covariate, strati®cation devotes

(qÿ 1) dfs. Unfortunately, this is not economical, as the linear trend component

accommodates the vast majority of the variance in most psychological data.

Both of these strati®cation features result in a loss of analysis power in compari-

son with ANCOVA. Third, the increase in the number of experimental condi-

tions reduces considerably the dfs associated with the error term. The largest

reduction is due to the dfs associated with the most complex or highest order

interaction involving the covariate strati®cation factor. This interaction provides

the approximation to the ANCOVA capability of assessing experimental effects

at any value of the covariate. Generally, the reduction in error term dfs results in

higher error term estimates and so again, less powerful F-tests in comparison

with ANCOVA.
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Given the preceding points, a strati®ed analysis is most likely to be applied

when one or more ANCOVA assumptions are untenable. As the untenability of

ANCOVA assumptions is likely to be determined only after the experiment has

been completed and the data analysed, a major dif®culty with strati®cation is

that the distribution of subjects' covariate scores may not allow convenient

allocation to useful covariate range groups to conform to conventional ANOVA

design requirements. In other words, without discarding data, which itself raises

problematic issues, it is likely that this approach will require analysis of

unbalanced designs. Therefore, when an ANCOVA design is in the planning

stage, it would seem wise to consider that all assumptions may not be tenable

and carry out the experiment such that the data obtained are compatible with the

requirements of a strati®cation analysis.

8.8.2 Replacing the experimental conditions with the
covariate

In some situations of multicollinearity caused by covariate and treatment

covariation, as when both variables measure the same entity, it may be bene®cial

to modify the experimental conception by dropping the terms representing the

correlated experimental conditions (factors) from the experimental design GLM

and employ only the covariate (and any non-correlated factors) to predict

dependent variable scores. Certainly, one advantage enjoyed by the covariate is

measurement on a ratio or interval scale (although sometimes this is stretched to

an ordinal scale), in contrast to the categorical scale on which the factor levels

are measured. An analysis based on a new linear model may be carried out by

dropping the correlated factor and its interactions, and introducing terms to

represent covariate interactions with other variables. Naturally, with a different

GLM ®tted to the data, consideration would need to be given to the suitability of

the new hypotheses tested and the conclusions that could be drawn from their

rejection or support. (See Cohen & Cohen, 1983; Pedhazur, 1997, and McCul-

lagh & Nelder, 1989, regarding the interpretation of categorical and quantitative

variable interactions.)

8.9 The role of ANCOVA

Although heterogeneous regression ANCOVA is only an extension of traditional

ANCOVA, its application to real problems pushes to the foreground a particu-

larly important issue: the nature of the relationship between the covariate and

the dependent variable. Smith (1957) pointed out that a direct causal link

between covariate and dependent variable is not a necessary requirement in

traditional ANCOVA, but without knowledge of the causal effects, the inter-

pretation of adjusted means is hazardous. In heterogeneous regression this state

of affairs would appear to be even more pronounced, due to the potential

increase in causal routes provided by the separate regressions. Therefore, the
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price of achieving an accurate interpretation of effects in heterogeneous regres-

sion ANCOVA is a more extensive theoretical consideration of the relationship

between the covariate and the dependent variable under the different experi-

mental conditions than needs to be undertaken when traditional ANCOVA is

employed.

With the emphasis on a GLM approach to heterogeneous ANCOVA, the

similarities between the theoretical description of causality required of the linear

model and the causality which is examined usually with structural equation

models (Bentler, 1980), such as LISREL (e.g. Joreskog & Sorbom, 1993)

becomes more apparent (also see Cohen & Cohen, 1983; Pedhazur, 1997). It is

for these reasons that heterogeneous regression should be regarded as a means

by which the validity of theoretical accounts can be further assessed and not as a

cheap way to circumvent research effort or repair faulty research designs.

SOME ALTERNATIVES TO TRADITIONAL ANCOVA 163



9 FURTHER ISSUES IN ANOVA AND
ANCOVA

9.1 Power

When all assumptions are valid, ANOVA provides the most powerful test of the

omnibus null hypothesis. When all the additional assumptions of ANCOVA are

valid and the covariates employed are correlated with the dependent variable

(e.g. Cochran, 1957), ANCOVA provides an even more powerful test of the

omnibus null hypothesis concerning the experimental conditions.

The credit for making clear the importance of power analysis is due to Cohen

(e.g. 1969, 1988). However, Welkowitz, Ewen and Cohen (1991) have presented

a slightly simpler account that employs a very accurate approximation technique

to determine analysis power (also see Howell, 1997). The discussion of power

presented here is based on the latter account.

Power can be de®ned in a variety of equivalent ways. For example, the power

of an analysis is the probability that it will detect an effect in the sample data, at

the chosen signi®cance level, when this effect exists in the population(s).

Alternatively, power is the probability of rejecting a false null hypothesis. As a

Type 2 error (â) is the probability of not detecting an effect, power also may be

de®ned as 1ÿ â.

ANOVA power is increased by increases in the probability of a Type 1 error,

the size of the effect to be detected and the sample size. In related measures

designs, the degree of correlation between the related measures also in¯uences

power.

Type 1 error is equal to the signi®cance level chosen: a less rigorous

signi®cance level will increase analysis power ± the likelihood of detecting an

effect. The size of the effect is the difference between the means of the different

experimental condition sample distributions divided by the (homogeneous)

standard deviation. Effect size increases with greater differences between the

experimental condition means (provided the standard deviation does not in-

crease), or with a smaller standard deviation (provided the differences between

the experimental condition means do not decrease). Of course, the (homoge-

neous) standard deviation is the square root of the ANOVA MSe, so two aspects

of the experimental data are encompassed by effect size: the differences between

experimental condition means and the error variance.

Differences between experimental condition means and error variance are set

by nature and not the experimenter, although error variance may be constrained

by the implementation of appropriate experimental controls. The Type 1 error

tolerated in an experiment is bound by the signi®cance level convention and the



undesirability of increasing Type 1 error beyond 0.05. Therefore, of the three

variables affecting ANOVA power, the most easily manipulated is sample size,

and so most attempts to increase ANOVA power have involved increasing the

size of the sample.

9.1.1 Optimal experimental designs

Rather than just include more and more subjects in experiments to increase

analysis power, McClelland (1997) argues that psychologists should follow the

lead of researchers in other disciplines by optimizing experimental designs to

increase the power of the important experimental comparisons. McClelland

describes how reducing the variance of parameter estimates increases analysis

power. Increasing the sample size, decreasing the error variance, or increasing

the variance of the independent variables all reduce parameter estimate variance

and increment the power of analysis. As the variance of the independent

variables is affected by varying the number of subjects allocated to the different

experimental conditions, McClelland advocates this as a method of optimizing

the experimental design to increase the power of the important experimental

comparisons. Although different numbers of subjects would need to be allocated

to different experimental conditions to obtain the maximum power for each

comparison, it is also possible to obtain slightly less powerful optimal solutions

for one or more comparisons.

McClelland also discusses some of the reasons why researchers have persev-

ered with non-optimal designs that employ equal numbers of subjects per

experimental condition (i.e. balanced data). One reason for balanced data is to

minimize the affect of statistical assumption violations. However, in contrast to

the research presented in Chapter 7, McClelland claims that balanced data

makes little difference to the robustness of ANOVA and has a high power cost in

comparison to applying an unbalanced optimum design. Instead, McClelland

suggests checks for assumption violations and remedy by data transformation,

or the adoption of modern robust comparison methods (see below) when

assumption violations are detected. The other two reasons for employing

balanced data dismissed by McClelland are: the ease of calculation with

balanced data and the interpretation of parameter estimates. As these two

matters are related, they will be considered together. McClelland claims that

computer based statistical calculation has made the ease of calculation with

balanced data largely irrelevant. Nevertheless, there are a number of different

ways to implement ANOVA. With balanced data in factorial experiments,

factors and their interactions are orthogonal, and so the same variance estimates

are obtained irrespective of the order in which the variance is attributed.

However, with unbalanced data, factors and their interactions are not necessarily

orthogonal, and so appropriate analysis techniques must be employed to obtain

accurate estimates of the variance due to the factors and their interactions.

Essentially, with unbalanced data, reparameterization and estimable function

techniques can provide parameter estimates that are ambiguous and so provide
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ambiguous hypothesis tests, and this problem is compounded by the opacity of

much statistical software (Searle, 1987). Therefore, while statistical software

may ease calculation with unbalanced data, it also may exacerbate the serious

problem of accurately interpreting the parameter estimates.

Optimizing experimental designs by allocating different numbers of subjects

to different experimental conditions to increase the power of the comparisons is

certainly a very useful approach. However, even from the brief presentation

above, it is obvious this approach is not without its drawbacks. Clearly, consid-

erable thought needs to be given to the pros and cons of this type of

experimental design, particularly in the light of the typical data obtained in the

area under study.

9.1.2 Normality violations

Although most sources report ANOVA (and so ANCOVA) as being robust with

respect to violations of the normality assumption (see Chapter 7), Wilcox (e.g.

1995; 1998a) has argued strongly that even small deviations from normality can

result in ANOVA with low power. Wilcox identi®es skewed or leptokurtic

distributions as being responsible for low analysis power. (A distribution

exhibiting positive kurtosis may be labelled a leptokurtic distribution, i.e. it

possesses longer or thicker tails than the normal distribution: see De Carlo,

1997 for discussion of kurtosis.) The reason for lower power is that skewed and/

or leptokurtic distributions are more likely to contain outliers (extreme scores)

than normal distributions and these outliers can increase the sample variance

estimates substantially. Wilcox also argues that large reductions in analysis

power can occur even when the deviation of the skewed and/or leptokurtic

distribution from normal is small enough to go undetected by distribution

normality checks such as the Kolmogorov±Smirnov test or the Lilliefors test

(see Chapter 7). Consequently, Wilcox promotes the application of modern

robust analysis techniques (e.g. Wilcox, 1997, 1998b) as a way of maintaining

high analysis power.

Beyond simple single df t-test like comparisons, regression (of which

ANOVA and ANCOVA are special instances) presents a number of problems for

modern robust methods. Unfortunately, for regression and other types of analy-

sis, there is no single best robust method. There are a variety of robust methods,

all of which perform differently under different conditions. Therefore, selecting

a robust method is not necessarily simple and the use of different robust methods

across laboratories, studies or experiments reduces the comparability of results.

Wilcox's examples demonstrate that small skewed and/or leptokurtic devia-

tions from a normal distribution can substantially reduce analysis power. How-

ever, Wilcox is at odds with the results of the majority of studies investigating

the consequences of normality violations for ANOVA F-tests reported in

Chapter 7. Ideally, some resolution of these differences, which also provides

account of the circumstances under which ANOVA F-tests are robust in the face

of deviations from normality, will be forthcoming.
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9.1.3 Main effects and interactions

In a two factor experiment, at least three ANOVA F-tests are carried out. An F-

test is carried out to assess each factor main effect and another assesses the

interaction between the two factors.

In fully independent factorial designs, a single error term is employed in all

three F-tests. Therefore, if the same differences between pertinent means are

assumed for the three F-test comparisons, then the effect sizes across each of

the three F-tests will be equal. Similarly, if all F-tests are assessed at the same

signi®cance level, then the Type 2 error for each of the three F-tests will be

equal too. However, a major feature of the experimental data that always affects

F-test power is the size of the sample involved in each F-test. Table 9.1 outlines

a fully independent two factor (2 3 3) design, with 8 subjects in each of the 6

conditions.

When the main effect of Factor A is assessed, the dependent variable meas-

ures of 24 subjects (i.e. a1 ÿ 8� 8� 8) are compared with the dependent

variable measures of the other 24 subjects (i.e. a2 ÿ 8� 8� 8). When the main

effect of Factor B is assessed, the dependent variable measures of three groups

of 16 subjects are compared (i.e. b1 ÿ 8� 8, b2 ÿ 8� 8, b3 ÿ 8� 8). When the

Factor A 3 Factor B interaction effect is assessed, the dependent variable

measures of six groups of 8 subjects are compared. Given the assumptions made

above, it is clear that the Factor A main effect F-test is most powerful, next most

powerful is the Factor B main effect F-test and least powerful is the F-test of

the A 3 B interaction.

The relative differences between the power of each of the F-tests varies with

the number of levels of each factor and the total number of subjects allocated.

Nevertheless, irrespective of whether the experimental design is fully indepen-

dent, fully related or mixed, when all other in¯uences on power are equal, the

powers of the omnibus F-tests always follow the same rank order. First is the

main effect of the factor with fewest levels, next is the main effect of the factor

with most levels and last is the F-test of the interaction effect. Knowledge of

this general pattern of factorial ANOVA F-test power should be used to combat

the tendency to treat all omnibus ANOVA F-tests as if they operated at the same

power and provide an appropriate basis for drawing conclusions about effect

size.

Table 9.1 A fully independent two factor (2 3 3) design
outline with eight subjects per condition

Level of Factor A a1 a2

Level of Factor B b1 b2 b3 b1 b2 b3

N 8 8 8 8 8 8
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9.2 Error rate and the omnibus F-tests

In Chapter 2, it was mentioned that the likelihood of obtaining a signi®cant

effect by chance increases as the number of statistical tests carried out on a data

set increases. Whereas this Type 1 error increases with the number of t-tests

carried out, ANOVA F-tests simultaneously examine for differences between

any number of conditions while holding the Type 1 error at the chosen

signi®cance level. The probability of at least one Type 1 error occurring when a

number of tests are carried out is given by

Probability of at least one Type 1 error � 1ÿ (1ÿ á)c (9:1)

where á is the signi®cance level and c is the number of tests or comparisons

carried out. However, equation (9.1) is based on the assumption that all of the

tests carried out are orthogonal and the probability of at least one Type 1 error

occurring will be overestimated when this condition is not met.

Nevertheless, in a two factor experiment, three (orthogonal) omnibus ANOVA

F-tests are routinely carried out. This begs the question, why is the likelihood of

obtaining a signi®cant effect by chance not increased in these circumstances?

The short answer to this is that in a two factor experiment where any three

ANOVA F-tests are carried out, the likelihood of obtaining a signi®cant effect

by chance is increased. In fact, the probability of at least one Type 1 error

occurring when three omnibus F-tests are carried out in a balanced two factor

design is

� 1ÿ (1ÿ 0:05)3

� 1ÿ (0:857)

� 0:143

Therefore, the true probability of a Type 1 error occurring when three omnibus

F-tests are carried out (when Type 1 error rate is set at 0.05 for each test) is not

0.05, but 0.143. The true probability has to be calculated because the probabil-

ities reported by statistical software or presented in tables assume only one test

is carried out. In the same way that the true Type 1 error rate can be calculated

from the nominal p-values, so, conversely, the nominal Type 1 error rate

re¯ecting a true Type 1 error rate can be calculated. The nominal Type 1 error

rate re¯ecting a true Type 1 error rate is given by

1ÿ
���������������
(1ÿ á)c

p
(9:2)

where again á is the signi®cance level and c is the number of comparisons

carried out. Applying equation (9.2) to the three omnibus F-test situation

provides

1ÿ
��������������������
(1ÿ 0:05)3

p
� 1ÿ 0:983

� 0:017
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Therefore, when three comparisons are applied, the nominal Type 1 error rate of

0.017 is required to achieve a true Type 1 error rate 0.05. As the signi®cance

level and the Type 1 error always are equivalent, this means setting the nominal

signi®cance level at 0.017 per test will provide tests operating at the 0.05 level

of signi®cance with a true Type 1 error rate of 0.05.

The fact that no such adjustments are made to the omnibus F-test p-values

reported for each of the main and interaction effects indicates that a familywise

error rate strategy is applied. Essentially, Type 1 error rate may be conceived as

applying to each and every test (testwise Type 1 error rate) or to each family of

tests ( familywise Type 1 error rate), or to each experiment (experimentwise Type

1 error rate). If Type 1 error rate is controlled for each test separately, then for

each test the unadjusted p-values apply. If Type 1 error rate is controlled for

each family of tests, then each of the main and interaction effects is considered a

family and control is exerted over the number of tests carried out per family. If

Type 1 error rate is controlled for the whole experiment, then control is exerted

over the total number of tests carried out in the analysis of the whole

experiment. Of course, in single factor studies, familywise and experimentwise

error rate are equivalent.

9.3 Error rate and multiple comparisons

The overview of multiple comparison tests presented here is best considered as a

primer for further reading on this topic. The aim is to introduce the purpose of

multiple comparison tests and to consider some of the issues that determine the

type of multiple comparison tests employed. The approach is intentionally

discussive and so, either the references or other sources must be consulted to

obtain formulae and implementation procedures.

A signi®cant omnibus ANOVA F-test indicates that of the experimental

means compared, at least one differs signi®cantly from another. Usually, the next

step is to determine exactly where the signi®cant difference or differences are

located. In single factor studies, this amounts to determining which experimental

condition means differ signi®cantly from which other experimental condition

means. For example, in a single factor study involving four experimental

conditions, A, B, C and D, there may be interest in whether A and B differ

signi®cantly, whether B and C differ signi®cantly and whether C and D differ

signi®cantly. Of course, other comparisons may be of interest and these may

include comparisons of the average performance over two experimental condi-

tions, e.g. (A� B)=2 cf. (C � D)=2. Clearly, for any experiment it is likely that

comparisons between several pairs of experimental condition means or averages

over experimental condition means will be necessary. Tests that accommodate

comparisons of both experimental condition means and averages over experi-

mental condition means are termed `̀ multiple comparison tests''. Tests which

only compare pairs of experimental condition means are called `̀ pairwise

comparison tests''.

As a main effect in a factorial study is similar to a signi®cant effect in a single
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factor study, both sorts of effect can be analysed in a similar manner. Usually

interaction effects are analysed in terms of simple effects (see Chapter 3). As

simple effects analysis treats a factorial design as if it were a set of single factor

analyses, a signi®cant simple effect can be analysed as if it were a signi®cant

effect in a single factor study.

Although there are a number of excellent accounts of multiple comparisons

tests (e.g. Hays, 1994; Howell, 1997; Keppel, 1991; Kirk, 1994, 1995; Tooth-

aker, 1993), they can appear complicated. This is due to the discussion of such

issues as comparison orthogonality, control of Type 1 error rate, whether

comparisons were planned (a priori) or unplanned (a posteriori) and to the large

number of multiple comparison tests available. A variety of different views on

which multiple comparison test is appropriate in which circumstances also can

complicate the choice of test.

Nevertheless, some simpli®cation is provided by the fact that orthogonality

should not in¯uence which experimental condition means are compared, nor the

choice of test. Orthogonality really need only come into consideration if the

variance explained by the pertinent omnibus F-test and the variance explained

by the multiple comparisons are tracked. As the omnibus F-test assesses the

total variance due to any set of orthogonal contrasts, it is possible for non-

orthogonal multiple comparisons to appear to accommodate more variance than

the omnibus F-test. Of course, this is false and is due to variance involved in

one non-orthogonal comparison also being involved in one or more other non-

orthogonal comparisons.

Planned comparisons are those theoretically motivated and intended from the

inception of the experiment. In fact, it is perfectly legitimate to carry out any

planned comparisons directly, without the intercession of an ANOVA omnibus

F-test. However, when the assumption of homogeneous error variance is tenable,

the ANOVA MSe provides its best estimate. Therefore, the error variance

estimate employed in the multiple comparison tests should be based on the

ANOVA MSe. Not only is this the best estimate, but the extra dfs associated

with the ANOVA MSe (cf. the dfs associated with the error estimate based on

the speci®c experimental conditions being compared) also increases the power

of the multiple comparison tests. When the assumption of homogeneous error

variance is not tenable, the error variance estimated from the speci®c conditions

being compared may be homogeneous, and consequently may provide more

powerful multiple comparison tests than those based on the heterogeneous

ANOVA MSe. As the experiment is designed speci®cally to test the hypotheses

implicit in the planned comparisons, the current convention is to assess planned

comparisons (of which there should be relatively few) at the nominal signi®-

cance levels, i.e. without controlling Type 1 error rate.

Unplanned comparisons are data driven and are suggested by the experimen-

tal results. Data snooping, a slightly pejorative term, is applied when experi-

mental data is investigated using a number of unplanned comparisons. In

contrast to planned comparisons, current convention dictates that a pertinent

signi®cant omnibus F-test is required before embarking on unplanned compari-

sons. Again, provided the assumption of homogeneous error variance is tenable,
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the error variance estimate employed in the multiple comparison tests should be

based on the ANOVA MSe, as this is the best estimate of error variance and

provides more powerful multiple comparison tests. Whenever unplanned com-

parisons are applied, Type 1 error rate is controlled. Generally, unplanned

multiple comparison tests control the familywise error rate and it is the way they

try to control this Type 1 error rate that distinguishes the various multiple

comparison tests.

9.4 The role of the omnibus F-test

It has been said already that planned comparisons can be applied directly,

without reference to any omnibus F-test. This is not because a signi®cant

multiple comparison test guarantees a signi®cant omnibus F-test, or vice versa.

In fact, it is possible to obtain signi®cance with a multiple comparison test, but

not with the omnibus F-test. For example, consider an omnibus F-test that

compares four experimental condition means (A, B, C and D) by assessing the

three orthogonal contrasts. If mean A is greater than B, which equals C and D,

then the omnibus F-test assesses the effect (i.e. the differences between means)

averaged over the three orthogonal contrasts (dfs), and this may not be signi®-

cant. However, with planned multiple comparisons, it is possible to draw

comparisons only between particular experimental condition means. Therefore,

if a particular comparison speci®cally compared the A experimental condition

mean with another experimental condition mean (or even the average of the

other experimental condition means) is more likely to be signi®cant than the

omnibus F-test. As (1) the hypotheses tested by omnibus F-tests are not

equivalent to those tested by multiple comparison tests, there is no statistical

reason why multiple comparison tests may not be applied irrespective of the

omnibus F-tests, (2) signi®cant differences may be missed by the omnibus F-

test but detected by a multiple comparison test and (3) even when signi®cant

omnibus F-tests are obtained, usually multiple comparison tests still are required

to disambiguate the results. These features of data analysis have caused some

authors (e.g. Howell, 1997; O'Brien, 1983; Rosnow & Rosenthal, 1989) to ask

the question, why carry out ANOVA omnibus F-tests?

A short and simple answer to this question is provided by (1) above ±

different hypotheses are tested by omnibus F-tests and multiple comparison

tests. This is especially so with interactions. As O'Brien (1983) states, the

procedures used to analyse experimental data should depend upon what the

experimenter wants to know and the Type 1 error rate to be tolerated. An

omnibus F-test is appropriate when the experimenter wants to know if there are

any differences between the experimental condition means (the null hypothesis

tested is that all experimental condition means are equal). However, if the

experimenter only wants to know about speci®c differences between particular

experimental condition means, then carrying out planned or unplanned compari-

sons directly may be an appropriate strategy. Nevertheless, if Type 1 error is to

be controlled and the possibility of observing unpredicted differences is to be
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maintained, then applying an ANOVA omnibus F-test is a better strategy than

conducting planned and unplanned comparisons directly to compare any/all

differences between experimental condition means.

Another way to answer this question would be in terms of the data analysis

perspective. From the GLM perspective, an overall F-test reveals if the complete

GLM signi®cantly predicts the dependent variable scores. In factorial studies,

the omnibus F-tests reveal whether particular components of the GLM make

signi®cant contributions to this prediction. If the overall F-test and the omnibus

F-tests in factorial studies indicate signi®cant prediction, then further analyses

are carried out to identify how the particular component elements manifest the

prediction. In short, the GLM perspective employs overall and omnibus F-tests

as part of a coherent data analysis strategy that accommodates ANOVA,

ANCOVA and regression. If however, the data analysis perspective is solely in

terms of where signi®cant differences lie, then conducting planned and/or

unplanned comparisons directly may be appropriate. This sort of strategy may

seem simpler and easier at ®rst, but its piecemeal approach also can be the

source of a great deal of mistakes and confusion in the control of Type 1 error.

As the coherent rationale underlying the application of planned and/or un-

planned comparisons directly to experimental data actually is achieved by

implicit reference to the GLM, it seems most sensible to make this explicit from

the start.
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